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Solvability of Equations for Motion of a Vortex
with or without Axial Flow

By

Atusi TANI* and Takahiro NISHIYAMA*

Abstract

It is known that the motion of a vortex filament with axial flow in a perfect fluid is
approximately described by a generalization of the localized induction equation. The unique
solvability of the initial value problem for it is first established by parabolic regularization. As
the axial flow effect vanishes, its solution converges to that of the localized induction
equation. Analogous results are obtained in the spatially periodic case.

§1. Introduction

In [13], we proved the weak solvability of some initial and initial-boundary
value problems for the localized induction equation

(1.1) xt = xsyxss,

which approximately describes the deformation of a vortex filament in a perfect
fluid. Here x = x(s,t) represents the position of a point on the filament in R3

as a vector-valued function of arclength s e R and time t. But the uniqueness
and smoothness of the solution were not found.

According to [15], Da Rios [2] firstly formulated (1.1) in 1906. Since
then, it has been studied by many authors. Fukumoto and Miyazaki [3]
proposed a generalization of (1.1):

(1.2) xt = xs x xss + a{xsss 4-(3/2)*ss x (xs x xss)},

when the vortex filament has an axial flow within its thin vortex core. Here
a is a real constant representing the magnitude of the axial flow effect.
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By Hasimoto's method in [4], (1.2) can be transformed into the Hirota
equation (or the nonlinear Schrodinger equation if a = Q)

(1.3) iY, + ¥M + (l/2)|V|2¥-MVJM + (3/2)|'F|2'F,}=0

S

for *¥ = K(s,t)exp(i$i(s,t)ds + iq(t)) (see [3]). Here K(SJ) and i(s, t) are the
o

curvature and the torsion of the filament, respectively, and r\(f) is a real function
of t. Hirota [5] showed that (1.3) has soliton solutions. In addition, the
well-posedness of the initial value problem for (1.3) can be proved by the
theory of evolution equations ([7], [10], [11]).

However, in investigating the solvability of (1.2) with an arbitrary
(non-soliton) initial data, which is the theme of this paper, we do not use the
well-posedness of (1.3) for the following reasons.

1. We consider s and t to be independent. When a^O, it is nontrivial
to prove that |jts| = l is really derived from (1.2) and |jts(,s,0)| = l.
Without this proof, Hasimoto's method cannot be applied to (1.2).

2. If the filament is not an infinitely straight line and it has a segment
where K vanishes (or i is indefinite), then Arg*F is not well-defined
even outside this segment. In this case, Hasimoto's transformation
from (1.2) into (1.3) is not possible.

Recently, it was shown in [8] that (1.1) can be transformed into the
nonlinear Schrodinger equation by not Hasimoto's method but a geometrical
one which is valid even if |jcj vanishes. Then unique and classical solvability
of the initial value problem for (1.1) was obtained, although the class of the
solution was C°°.

Differentiating (1.2) with respect to s and setting v = xs yield

(1.4) vt = vx vss + atvsss + (3/2){vs x(vx wj} J.

We impose the initial condition

(1-5) v(s90) = vM l»ol = l

for seR. In [14], we proved classical solvability of (1.4) and (1.5) on any finite
time interval. The solution for (1.2) and

(1-6) Jtfc0) = jc0(4 |*oJ = l
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is reconstructed from (1.4) and (1.5) with v0 = x0s by

(1.7) * = *„

The main goal in this paper is to establish the existence of a unique
solution to (1.2) and (1.6) for «/0 or a = Q such that xs has unit length and
its derivatives belong to the Sobolev spaces bounded-continuously in
fe[0, oo). To this end, we first investigate a parabolic regularization for (1.4)
which has a solution with unit length. At this time, the estimate (2.17) below,
which was used without proof in [14], plays a crucial role. To obtain it, a
conservation law for (1.3) is suggestive, although we stated above that we do
not use the solvability of (1.3) in this paper.

Moreover, analogous results are obtained even if the spatially periodic
condition
(1-8) xj(s,t)

is added.
In [9], the system (1.4) with a = Q was derived as a continuum model of

the classical Heisenberg spin system. The initial value problem for it was
considered and the existence of a unique solution was obtained by Sulem et
al. [17]. Their method was applied to the problem (1.1) and (1.6) with
\x0ss(±oo)\=^0 i*1 [12], while |jc0ss( ± oo)| = 0 in [14] and this paper.

We discuss the parabolic regularization for (1.4) in §2. Then the solvability
of (1.2) for 0/0 is obtained from that of (1.4) in §3. In this section, the limit
a -> 0, or the vanishing axial flow, is also investigated. It is shown in §4 that a
spatially periodic case is analogously discussed.

Let us introduce the notation which we use. The norms in L2(R) and
in the Sobolev space W%R) (w = l ,2 ,-») are denoted by || • || and ||-||(B),
respectively. The set of all continuous (resp. once continuously differentiable)
functions in a Hilbert space X on a finite time interval [0, T~\ is denoted by
C(0, T\ X) (resp. Cl(Q, T\ X)). The spaces L2(0, T\ X) and L°°(0, T\ X) are defined
in the same way. We represent the supremum over [0, T~\ by < - > r and the
L2(J?r)-norm, RT = Rx(Q,T), by | |- | |T . Positive constants, denoted by c, ca

and c#, change from line to line. Here ca is a monotone increasing function
in \a\ and independent of e, and c^. is independent of e and a. The operator
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D stands for d/ds.

§2, Parabolic

We first consider the Initial value problem

(2.1) ut=-eum+f(s,t),

(2.2) «(j,0) = ir0(4

Let Cb(Q) (Q c R or R2) be the set of bounded continuous functions on
Q. Then we get

Lemma 2.1. For given g>0, r>0, u0eCb(R) with M0sEW^(R) and
/eC(0, T;L2(R))r\L2(Q,Ti W%(R)\ there exists a unique solution u of (2.1) and
(2.2) such that ueCb(RT\ mseC(^T\W2(R)\ usssseL2(^T\Wl(R)) and ut

eL2(0, r; Wj (*))• Moreover, the estimate

(2.3) sup N + <|M<2>>r+K^
sell

0 < f < T

holds, where c is independent of T and b(T) is a positive continuous function
depending on T such that b(T)lO as J|0.

Proof. According to [16], the solution is formally written as

r r rM=IE(s- sf, t) M0(s
f)dsf +\dt'l E(s -sf,t- f)f(s\ t')dsf

j J J
M O R

where E(s,t) is a fundamental solution (matrix) of (2.1) and is estimated as
|DM

JE|^cr(14")/4exp(-cM4/3r-1/3). Then we have

0|| (^ = 1,2,3),
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Here we used the formula J exp(-^4/3r i!3)ds = (3/4)1^(3/4)^ /4.
o

On the other hand, the Fourier transformation yields

\\D*'-2u0\\ (p = 4,5),

\\f\\t^ctV\\(/]\yt,

The coefficients c's in these estimates depend on e. However, they are
independent of t. Hence the statement of the lemma follows. D

Now, let us investigate a parabolic regularization of (1.4):

(2.4) vt = v x v,s + a[vsss + (3/2){vs x(vx »5)} J - s{vssss + 4(vs • vsss)v + 3\vss\
2v}

for e>0. Then we obtain

Proposition 2.1. Let s>0, aeR and Z>OSE W%(R\ Then there exists a
positive constant T0 such that (2.4) with (1.5) has a unique solution v satisfying
v E Cb(RTo\ vs e C(0, r0 ; Wl(R}\ vssss e L2(0, T0 ; W\(R)) and vt e L2(0, T0 ; W}(

Proof. Set n(0) = 0 and let u(n) (« = 1,2, • • • ) be a solution in Lemma 2.1
on a time interval [0, f] with u0 = v0 and

-v

Then u(n) is well-defined for each n. Indeed, it follows from (2.3) and the Sobolev
imbedding theorem that

s,t

is bounded from above by c1{l + b(t)(l+tll2)An_i(l+An_l)
2} for n^2 and by

cl for n = l. Here Cj (>0) is a constant depending only on ||iy0sll
(2) (note that
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Let M be a constant satisfying M>c1. Then, choosing t=Tl so small
that c1{H-Z?(r1)(l + r1

1/2)M(l + M)2}^M, we have, by induction, An^M
(/i = 1,2,-) on [0,7\].

Setting w(n) = u(n}-m(n~l\ we estimate w(n+1) on [0,f], 0<t^Tl9 by

(2.3) as

while BI=AI. If we choose roe(0, 7\] so small that cb(T0)(l + ro
1/2)(l +M)2

<1, then Bn converges to zero as «|oo. Hence u(n} converges to a solution
v of (2.4) and (1.5) belonging to the class in the proposition.

It is easy to prove the uniqueness of the solution. D

Next, we prove the following lemma, which implies that the length of the
vortex filament is conserved.

Lemma 22, Let v be a solution of (2.4) and (1.5) belonging to the class
in Proposition 2.1 with T0 replaced by an arbitrary T>Q. Then

(2.5) |*| = 1

holds for any (s, t)eRx [0, 7*].

Proof. Define the function h(s, t) by

for seR, Ogf^r . Then, from (2.4) and (1.5), we obtain

ht = a{hsss - 3(v • vss)hs + 6(vs • vss)h} ~ s{hssss + 8fe - vsss)h + 6\vs

Since (d/dt)\\h\\2^c(sups,t\v\ + ||ws||
(3))||ws||

(3)||/i||2 follows, GronwalFs inequality
yields that \\h\\ = 0. Hence we have h = Q, which leads to (2.5). D

Utilizing Lemma 2.2, we derive an a priori estimate for (2.4).
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Lemma 2.3. Let v be as in Lemma 2.2. Then there exists a positive

constant e0 depending only on T and ||v0sll sucn that, for any ee(0, £0]5 ^ie

solution v satisfies the estimate

(2.6) <||f s | |
(2 )>r+l|f (llr + e1/4(ll^ssllr+ll^,llr) + e1/2||I'5^llr^cfl,

where ca depends only on \a\, ||w0J
<2), EO and T.

Proof. From (2.5), we have

(2'7) »-».= -3r.-».,

v' ^ssss = - 4zv x;sss - 3| vj2.

Then, in (2.4),

(2.8) {vs x(vx vs)}s = (\vs\
2v)s = 2(z;s • v> + \va\

2va

holds. It also follows from (2.5) that, at each point where \vs\ is nonzero, the

vectors v, vs/\vs\ and vxvs/\vs\ are the unit tangent, the unit principal normal

and the unit binormal vectors in J?3, respectively.

Then

vs x Dnv = vsx [(v • Dnv)v + {(v x vs) • D
nv}v x vj\vs\

2~\

holds for n = 2, 3, 4, • • • and leads to

(2.9) vs xDnv=-(v Dnv)v xvs + {(v x vs) • D
nv}v.

Clearly, (2.9) is also valid where |vj=0.

Multiplying (2.4) by vssi integrating over R and using (2.7) and (2.8), we

obtain

(2.10)

Here c0 is a positive constant given by use of the multiplicative and Young's
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inequalities. Note that the scalar equation dr/dt = sc0r
5 with r(0)= ||v0J

2 has
the solution r(f) = (\\VQS\\~

s—4ec0t)~
114 when 4ec0/< ||v<jr8. Then, choosing

80 so small that

(2.11)

we have

(2.12)

on [0, F] for all ee(0,e0].
To obtain further a priori estimates for (2.4), a conservation law for (1.3)

is suggestive, as was mentioned in Sect. 1 (see also [12]). According to the
soliton theory ([!]), Zakharov-Shabafs recurrence formula ([18]) yields

i?

(the bar denotes the complex conjugate) as an invariant for (1.3) independently
of a (see also [10], [11]). This invariant represents the same quantity as

(2.13) lksssll
2-^llklksll

2-14||^-^||2+^||W3||2
2 o

if Hasimoto's transformation is possible. Thus we anticipate that, for (2.4),
the time derivative of (2.13) is bounded from above by a constant proportional
to e. The correctness of this anticipation will be verified in (2.17) below.

Set

- 2vssss ' vsst - l(vs • vs$vss\
2 - 7|i;s|

2(z>ss • vsst)

- 2%(vs • vss}(vs • vss)t + (63/4KI V, • «, J

equal to Jj + a!2 + e/3 , where 7j , 72 and 73 are independent of a and e. It is

clear that the time derivative of (2.13) is equal to J(71+a72 + e73)d15'. Then,
R

noting (2.8), we have

\vs\
2(v x vss) • vssss + I4\vs\

2(vs x vss) - vsss
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4 28(vs • vss}(v x vss) • vsss - (63 /4)| vs|
4(v x vs) • vsss ,

I2=- 2vssss • D
5

4 54|x;J2(z;ss • v55S) - 7|z;ss|
2(i;s • vssss) 4 6(*;s - z/5SS)(z;s • *;ssss)

- 46(vs • vj(vss - vssss) - 3|v5|
2(vOTS • vssss) - l\vs\

2(vss • D
5v)

- 2%(vs • vj(vs • D5v) + (105/2)|t;si
4(i;ss • vsss) + (147/4)|*5|>, - va8J

- (lll/2)\vs\
2\vss\

2(vs • vss) - 213\vs\
2(vs • VsJ(va • ^sss) - 420(va • vss)\

Since (2.7) and (2.9) yield

(vs
 x ^SSJ ' vssss

= 3(vs • vj(v x vs) • vssss - 4(vs • vsss)(v x vs) • vsss - l\vss\
2(v x vs] • vsss ,

we get

/, - 7\vs\
2(v x VJ • vssss + U\v8\

2(v8 x vsa) - vsss + I9\vss\
2(v x VJ • vsss

+ 1 6(vs - vss)(v x vs) • vsss, + 1 6(vs • vsss)(v x x;5) • vsss

+ 28(vs • vss)(v x vss) • vsss-(63/4)\vs\
4(v x vs) • vsss .

If /j can be written in the differentiated form, then it is as

(2. 1 4) {kv(vs • vss)(v x vs) • vsss + ^2|^s|
2(z; x vss) • vsss

+ £3(^5 • *>MS)(v
 x O ' *>ss + k4 vss\

 2(v x vs) -vss + k5 vs\*(v x v5) • vss}s

with constants k},--,k5. In fact, ignoring the coefficients, we see that this

contains all terms of 7t . Since

(2. 1 5) \vs
 2(v x vss) • vssss = (vs ' vss)(v x vs) • usvss ~ (vs ' vssss)(

v x vs) " vs*

can be proved in the same way as (2.9) and

(2. 1 6) vs\
2(vs x vj • v,ss = vs\

 4(v x vs) • vsss - l\vs\
2(vs ' vss)(v x vs) • vss

is verified by (2.7) and (2.9), (2.14) is equal to

(k l + k±)\vss\
2(v x vs) • vsss 4- (fe! + ^3)(^s ' v5J(v x vs) - vsss

4- 2k2)(vs • vj(v x vj • vsss + (kt+ k6)(vs • vj(v x vs) • VSSM
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-k6)\vs\
2(v x vsJ • vs

(vss • vsss)(v x vs) ' vs

+ (4k 5 - 3fc7)|»J2(»s • » «X» x » J ' ̂  + (ks + *:7) W V x vJ ' ».» •

Here k6 and ^7 are constants related to (2.15) and (2.16), respectively.
Comparing the coefficients In It with those in 7t , we get

jfc1 = 18, k2 = 5, k3=-2, fc4=l, k5=-21/4

and

^c6=-23 k7=-9.

In the same way, under the assumption that I2 can be written as

|i;/^

4

we obtain

W ! = — 4, w2=17, w3 = 21, m4 = 37/4, m5=— 28,

m6=-l^ w7 = 2, /w8 = 63/8, m9=-210, /w10 = 147/4.

Thus,

JR A

holds.
On the other hand, by the multiplicative and Young's inequalities, we have

Hence
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(2.17)

follows for ee(0,e0]. Then

holds. Since \\\vl\v^\\2£cJV,\\5'2\\vm\\3'2Z(l/m\v^2+Ct, we have

This estimate together with (2.12) yields

It is easy to derive \\vt\\T + sll4\\vst\\T^ca.

Similar a priori estimates were obtained in [14], where we used (2.17)
without proof.

From Proposition 2.1, Lemmas 2.2 and 2.3, we have

Theorem 2.1. Let 7>0, v0se W%(R) and aeR. Then, for each £e(0,£0]
with e0 satisfying (2.11), there exists a unique solution v to (2.4) with (1.5) such
that VSE C(0, r; »f (*)), ^ssss e L2(0, T; ̂ (/?)), ^,eL2(0, T; ^W), (2.5) and (2.6)
AoW.

f

Furthermore, the following lemma is clear since ||v — v0ll =J l l
o

Lemma 2.4. The solution in Theorem 2.1 satisfies



520 ATUSI TANI AND TAKAHIRO NISHIYAMA

(2.18) <\\v

§30 Vortex Filament with or without Axial Flow

In this section, we first consider eJO. Consequently, the following theorem
is established. Its proof is mainly based on the method in [6].

Theorem 3,1, Let v0se Wj;(R) and <2/0. Then, for any r>0, there exists
a unique solution v of (1.4) with (1.5) such that (2.5) is satisfied and
(v-v0)eC(0, T;

Proof. Let v*(s, t) be the solution of (2.4) with (1.5), where the existence
is guaranteed by Theorem 2.1. Noting (2.8) and taking the difference of (2.4)
for e = e' and that for s = s" (0 < e" < e' ̂  s0), we have

' • <> £" + 3KI V"},

where z = v£' — VE". For the function z9

if"'z,= -it-z(=*t''in
holds (by (2.7)) and leads to

V*" mzss=- « + <') ' zs ~ vl's • z.

Moreover, (2.6) and (2.18) yield

<||z||(3)>r^<IK^

Noting these relations, we have

2dt
R
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1 H
-~l
2 at

^ I (z x <) •

« + vl") • zs}s(v°" • zss) + {(v r + <') - zs}«' • jss)]d^| + cae

(f r • o& • zj + 3« • f aizj2

cas

They yield

(3.1)

Since z(s,Q) = 0, if follows that <||z||(1)>r^a(e')1/2- Thus, VE-VQ converges to
some function (w-v0)£ C(0, T\ W±(R)) in the ^(^-norm uniformly on [0, T]
as sj,0. From this, we see that |w| = l.

On the other hand, (2.6) and (2.18) imply that w — VQ belongs to
L°°(0, T\ Wl(R}). Let <D = a>(^) be an infinitely differentiable vector function
with a compact support. Denoting the scalar product in W^R) by ( • , • )(n\
we have

D2 4- D4 -

This means that (ve — v0, <1>)(3) converges uniformly. Therefore, by the density
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theorem, VE — v0 converges to w — VQ weakly in Wl(R) uniformly on [0, T~] and
W — VQ is weakly continuous in Wl(R). It is clear that w(s,Q) = z>0 and
W-,0-»

Let

Then <||G(i;£)||{1)>r^cfl follows from (2.5) and (2.6). Moreover, since

G(vE) converges to G(w) e L°°(0, T\ W\(R}} weakly in W\(R} uniformly on [0, F].
Next, integrate (2.4) over [f',f"] c [0,7]. Then we get

t"

*(s, t") - "£(s, t') = f OL + G(v*) - e{*m + 4(v*s • «O/ + 3 Kl V}]df.
Q/

r'

Taking its scalar product in L2(R) with an arbitrary element of L2(R) and
making use of the above convergence and (2.6), we have

fr
w(s,t"} - w(s, t') = (awsss + G(w))dt.

J
t'

in L2(R). Hence w is a solution of (1.4) with (1.5) and \\w — v0\\ is Lipschitz
continuous.

Suppose that there exist two solutions w/ and w" for (1.4) with the same
initial data and set z = w' — w". Then we obtain the same estimate as
(3.1) with s=Q. Hence z = 0 and the uniqueness of the solution follows.

We can derive (d/df) || x&s ||
 2 ^ ca from (2.6) and (2.4) for 8 e (0, e0]. Therefore,

\\vlss(-,t}\\^\\vvsss\\+cat
112 follows. Letting ejO, we have | |w5M(-,OII^K«,ll

+ cat
112, which leads to lim sup ||wsss(-,r)ll ^ \\v0sss\\ = Kss(-,0)||. Since wsss is

riO

weakly continuous in L2(R), lim ||wsss(-,OII = INosssll is obtained. As in [6], by
t io

the uniqueness of w and the reversibility of (1.4) in t, we can show
wsssEC(Q,TiL2(R)). Then it yields (w-x;0)eC(0, T\ W\(R}}^C1^ T\L\R}\

D

Now, by (1.7), we establish the unique solvability of (1.2) and (1.6).
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Theorem 3.2. Let x0ss e Wl(R) and a / 0. Then, for any T> 0, there exists
a unique solution x of (1.2) with (1.6) such that \xs\ = 1 and(x-x0)eC(Q, T\ W}(R))
n C^O, T\ Wl(R)). Moreover,

(3-2) <||*-Jt0||<4>>r^cfl

is valid.

Next, we consider the limit a-+Q.

Theorem 3.3. Let xa be the solution of (12) and (1.6) for a^Q, which is
guaranteed by Theorem 3.2. Then xa — xQ converges strongly in W^R) and
weakly in W*(R) uniformly on [0, T~\ as a -*• 0. The limit function x is a unique
solution of (1.1) with (1.6) such that \xs\ = \ and (x-x0)eC(Q,T;W%(R))

Proof. Taking the difference of (1.2) for a = a' and that for a = a" and
setting p = xa' — xa'\ we have

Pt = < x />„ +ps x jcj; + a'{x«'ss

Let Q<\a"\<\a'\^l. Then, since ca^c* holds if |a|gl, it follows that

~ ll^il2^ \\P\\ IIPs

I +cja'|,

;j| \\p

Here we noted that

« *PSS + PS X '̂)5 = < XPsss+P* X -C

and

il (2)>r + <P^
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The above estimates lead to

d

dt

which yields <||j?|l (2)>r^c#Kl i /2 since p(s,Q) = ®. Thus, xa — x0 converges to
some function (x-x0)eC(0, T\ Wj(R)) in the Wf(J?)-norm uniformly on [0, T]
as a-»0. Therefore, (3.2) with |a|^l gives the weak convergence of xa — x0

to x — x0 in WlW uniformly on [0, T] and the strong convergence in Wl(R)
uniformly on [0,7*]. In the same way as in the proof of Theorem 3.1, we
can prove that x is a unique solution of (1.1) and (1.6) belonging to the class
in the theorem. D

From Theorems 3.2 and 3.3, the following theorem is derived.

Theorem 3A Let x be a solution to (1.2) and (1.6) for aeR which is
guaranteed by Theorem 3.2 or 3.3. Then it is extended so that \\(x — JTO)(-,£)| | ( I )

is continuous in te{09 oo), and ||xj/90ll(2> and ||xf(-,0||(1) (or \\xt(-,t)\\
(2} ifa = Q)

are bounded and continuous in t e [0, oo).

Proof. It follows from (2.10) and (2.17) that every solution to (1.2) satisfies

ll*J = ll*oJ>

whether a ̂  0 or a = 0. Then xss is bounded in W%(R) uniformly in t. Therefore,
the solutions to (1.2) in Theorems 3.1 and 3.2 are extended bounded-continuously
for t^T. D

In addition, the existence of a unique solution with ||D5x|| bounded and
continuous was obtained in [12].

§40 Spatially Periodic Case

In this section, the domain of s is restricted to 7=(051), and the norms
in L2(/) and in the Sobolev space Wl(I) (n = 1,2, • • • ) are denoted by || • ||7 and
|| • |(/!), respectively. Let P" be the completion with respect to | |- | | jn) of the
space where every element g belongs to C°°[0,1] and Djg(Q) = Djg(l) for any
j=0,1,2, • • •. Then, imposing
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(4.1) v(s,t) = v(s+l,t)

on (2.4), we have

Theorem 4.1. Let T>Q, s;0e.P3 and aeR. Then, for each £6(0, e0] with
0<e0<(4f07T||z;0Jj)~1, there exists a unique solution of (2.4) with (1.5) and
(4. 1) such that v e C(0? T\ P3) n L2(0, T\ P5), and vt e L2(0, T\ P1). Moreover, (2.5)

and <|lvlli3))r = ca are va^d, where ca depends only on \a\, VQ, T and e0.

Proof. The proof is divided into two parts. One is to establish the
existence of a temporally local solution as in Proposition 2.1. It is possible
because (2.1) with (2.2) and the spatially periodic condition is solved by the
Fourier expansion analogously to Lemma 2.1. The other is to derive (2.5)
and the a priori estimate in the theorem. The former is clear from the proof
of Lemma 2.2. In order to get the latter by the method in the proof of
Lemma 2.3, we should verify the validity of the multiplicative inequality for
an element in Pn.

Let g = (g\g2,g3)eP", n^2. Then, for k=l,2,--,n-l, we have

Here st (z=l ,2,3) is a point on [0,1] satisfying Dkgl(st) = Q, whose existence is
obtained from lrD

kgds = 0. From this, we see that the multiplicative inequality
is valid for an element in Pn. Q

In the same way as in the preceding section, we can establish

Theorem 4.2. Let xQsEP3 and a/0. Then, for any T>0, there exists a

unique solution x of (12) with (1.6) and (1.8) such that |jcs| = l, xseC(0,F;P3)
and xt 6 C(0, T\ Pl). Moreover, if x0 e P4, then x e C(0, T\ P4).

Theorem 43. The solution of (12), (1.6) and (1.8) in Theorem 4.2 converges

strongly in Wl(I) and weakly in W4(I} uniformly on [0, T] as a -» 0. The limit
function is a unique solution 0/(l.l), (1.6) and (1.8). It has the same properties
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as in Theorem 4.2 but JtfeC(0, T\P2\

Furthermore, we can repeat the above arguments infinitely many times.

Theorem 4A. Let x be a solution to (1.2), (1.6) and (1.8) for aeR which
is guaranteed by Theorem 4.2 or 4.3. Then it is extended so that | | jc(-,f) | | j is

continuous in fe[0,oo), and \\xs(-,t)\\
(^ and \\xt(-,t)\\

(
r
1} (or | |x t(-,0llj2) if a = 0)

are bounded and continuous in 1e [0, oo).
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