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Semialgebraic Description of Teichmiiller Space

By

Yohei KOMORI*

Abstract

We give a concrete semialgebraic description of Teichmiiller space Tg of the closed surface
group Yg of genus g(>2). Our result implies that for any SL2(R)-representation of Tg, we
can determine whether this representation is discrete and faithful or not by using 4g —6 explicit
trace inequalities. We also show the connectivity and contractibility of Tg from the point of
view of SX2(R)-representations of Fg. Previously, these properties of Tg had been proved by
using hyperbolic geometry and quasi-conformal deformations of Fuchsian groups. Our method
is simple and only uses topological properties of the space of 51L2(R)-representations of Tg.
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§1. Introduction

The Teichmiiller space Tg of compact Riemann surfaces of genus g(>2)
Is the moduli space of marked Riemann surfaces of genus g. Thanks to the
uniformizatlon theorem due to Klein, Koebe and Poincare, any compact
Riemann surface of genus g(>2) can be obtained as the quotient space
G\H where H Is the upper half plane and G Is a cocompact Fuchsian group,
i.e. a cocompact discrete subgroup of PSL2(R). As an abstract group, G is
Isomorphic to the surface group Tg, which has the following presentation

rg:=<a1,j81, •••,ocg,^| J][ (af • /?,-• a/" * • j8i~
1) = /rf.>.

From this point of view, Tg can be considered as the deformation space of a
Fuchsian group which is isomorphic to Vg and this Is called Fricke space
studied by Fricke himself and more precisely by Keen ([F], [Kl], [K2],
[K3]).

In this article, we consider this Fricke space from the point of view of
5X2(R)-representations of the surface group rg. We treat Tg as' the
PGL2(R)-adjoint quotient of the set of discrete and faithful PSL2(R)-
representations of Tg

Tg = {Tg -> PSL2(R): discrete and faithful} /FGL2(R)

where a discrete and faithful F5'L2(R)-representation of Tg means a group
homomorphism from Tg to PSL2(R) which is injective and the Image of Fg

is a discrete subgroup of PSL2(E). Because any Fuchsian group which is
isomorphic to Fg can be lifted to SL2(R) ([Pa],[S-S]), we can start from
Hom(rg,SL2(R)) the set of 5L2(R)-representations of Tg. And Tg can be
considered as the set of characters of discrete and faithful 5X2(R)-representations

From this point of view, we can get a real algebraic structure on Tg as
follows. By using the presentation of Tg, Hom(rg,SL2(R)) can be embeded
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into the product space SL2(R)2g as the real algebraic subset R(Y) which is
called the space of representations ([C-S], [Go], [M-S]). The adjoint action
of P(jL2(R) on R(T) induces the action on R[/?(F)] the affine coordinate ring
of R(T) and put R[/?(F)]PGL2(R) the ring of invariants under this action. Let
X(T) be a real algebraic set whose affine coordinate ring is isomorphic to
R[/?(F)]PGL2(R). Then Tg can be realized as a semialgebraic subset of
X(T). Hence Tg is determined by finitely many polynomial equalities
and inequalities on X(T). This construction is essentially due to Helling [He],
and later Culler-Shalen [C-S] and Morgan-Shalen [M-S] made this process
more clear. And by using this procedure, Brumfiel described the real spectrum
compactification of Tg [Br]. More recently, in a series of works [Sa 1], [Sa
2] and [Sa 3], Saito obtained a description of the coordinate ring for Tg as a
semialgebraic set defined over Z.

Our theme in this paper is to study the semialgebraic structure on Tg,
and we mainly consider the following two things. First we describe the
defining equations of Tg on X(T) by using 6g-6 explicit polynomial inequalities.
(Theorems 3.2 and 4.2). This problem is related to the construction
of the global coordinates of Tg by means of a small number of traces of
elements of Fuchsian groups which have been studied deeply by Keen ([Kl],
[K2], [K3]) and more recently by Okai and Okumura ([Ok], [Ol], [O2]) by
using hyperbolic geometry on H and an argument involving the fundamental
polygons of Fuchsian groups. Our treatment in this paper is rather
algebraic. The second is that from a real algebraic viewpoint, we also show
the well known fact that Tg is a 6g-6 dimensional cell (Theorems 3.1 and 4.1)
which was proved by Teichmiiller himself by means of his theory of quadratic
differentials and quasi-conformal mappings.

For our purposes, we only need some elementary topological properties
of semialgebraic sets and some geometric properties of the space of
representations R(T). More precisely, the next three assertions are essential
for our arguments (the following notations are defined in Sections 3 and 4):

1. Let RQ(T) be the set of discrete and faithful SL2(R)-repretations of
Fg. Then R0(T) consists of finitely many connected components of
R(r) = Hom(rg,SL2(R)).

2. Let r~!(5(F)) be the of SL2(R)-representations p of Tg satisfying the
following 2g-3 trace inequalities
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where [a,£] ^a-0-oT 1 -/T1. Then r^F)) consists of 24*~3x2
connected components such that each components is homemorphic
to M6^"6 x PSL2(R) and this homeomorphism is P&L2(M)-equivariant

3. /^(Dc

In fact, we will construct global coordinates on t~l(S(T)), and by using
these coordinates, we shall find a system of trace inequalities which characterize
R0(T) in t~1(S(T)). Finally, we obtain a semialgebraic description of Tg and
a cell structure of Tg. The trace inequalities which define t~ H^CO) in Assertion
2 above already appeared in the paper of Seppala-Sorvali (S-S])5 and in that
paper, they used these inequalities to solve the lifting problem of a Fuchsian
group to 5L2(R). At first, I proved Assertion 2 above by using a slightly
complicated method involving some geometric properties of R(T), and I would
like to thank Professor Kyoji Saito for telling me about the result of
[S-S]. These inequalities also appeared in the paper of Okumura [O2].

The remainder of this paper is organized as follows. Section 2 deals with
the construction of Teichmiiller space Tg following Culler-Shalen [C-S] and
Morgan-Shalen [M-S]. The description of the defining inequalities and cell
structure of Tg are given in Sections 3 and 4. In Section 3 we treat the case
of genus g = 2 and in Section 4, the case of genus g>3 is discussed.

Finally I would like to express the deepest thanks to the following persons:
Kyoji Saito my advisor who helped me constantly on the way to the completion
of this work, and from whom I learned the excitement of doing mathematics;
and Yoshikazu Yamagishi and Yasushi Yamashita for the interest that they
expressed at every stage, as well as for lengthy discussions which were
very meaningful for me. Most of the work contained in this paper was done
at the Saturday Seminar at RIMS, Kyoto University, 1992-93, and I would
also like to thank referees for their helpful comments and corrections.

§2. Construction of Teichmiiller Space as a Semialgebraic Set

In this section we review the construction of Teichmiiller space following
[C-S], [M-S], [Sa 1], [Sa 2], [Sa 3].
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§2.1. The Space of 5L2(R)-Representations of the Surface Group T

Let g>2 be fixed. We define the (closed) surface group of genus g by
the following presentation

where [a,, ft] :=a,- 0,-af1 - f r 1 •
By using this presentation, we can embed Hom(r,SL2(R)) the set of

SX2(R)-representations of F into the product space 5L2(R)2g and let R(T)
denote the image of Hom(r,SL2(R))

, SL2(R))

We identify #(F) and //om(F,SL2(R)). In the following we also identify
a representation p and the image (^j,^, •-,Ag,Bg)ESL2(R)2g of the
system of generators {<Xi,f}i,--,ag9f}g} of F under p. R(T) is a real algebraic
set and we call this the space of SL2(R)-representations of F. PGL2(R) acts
on R(T) from the right-hand side

R(F) x

We remark that although we use the system of generators {a l 3 /? l 5 •••,%g,Pg}
of F to define ^(F), the real algebraic structure of R(T) does not depend on
this system of generators. In fact if we choose another system of generators
of F consisting of N elements and embed Hom(r,SL2(R)) into the product
space 5L2(R)]V, we get another real algebraic set but it is canonically isomorphic
to

Next we consider the following subset of R(T)

R'(T) := {p 6 ̂ (F) | p is non abelian and irreducible}

where a representation p is non abelian if p(F) is a non abelian subgroup of
SL2(R) and p is irreducible if the action of p(F) on R2 admits no nontrivial
invariant subspaces. Hence if p is not irreducible (i.e., reducible) then there
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exists Fe/3GL2(E) such that P~lp(T)P consists of upper triangular matrices,
hence in particular p(F) is solvable. We remark that the action of PGL2(R) on
R(r) preserves R'(r). The next lemma is useful for the study of R'(T).

Lemma 2.1. For peR'(r), there exist g.heT such that p(g) is a hyperbolic
matrix, ie., \tr(p(g))\>2, and p(h) has no fixed points in common with p(g). In
other words there exists PeP(jL2(R) such that

c d

Proof. For peR'(T)9 suppose that p(F) has no hyperbolic elements. If
there exists a parabolic element p(g) e p(F), there exists P e PGL2(E) such that

W

As p is irreducible, there exists AeF with

Then for weN

and p(g)n' p(h) = p(gnh) is hyperbolic for sufficiently large «. This is a
contradiction. Next if every element of p(T) — {id} is elliptic, as p is non

abelian, there exist g,/zeF with [p(g\ p(h)~] i=- 1 I. Then there exists

R) such that

\sint; cost/
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with a2 + b2 + c2 + d2^2, and tr(p(tg,h~])) = 2 + sin2 0(a2 + b2 + c2 + d2-2)>2.
This is a contradiction. Hence there exists geF so that p(g) is hyperbolic
and

for some PEPGL2(R). Next suppose that any element of P~lp(Y)P is either
upper or lower triangular matrix. Because p is irreducible there exist /z l 9 / i 2 er
such that P~lp(hl)P is an upper triangular matrix and P~lp(h2)P
is a lower triangular matrix. But P~ lp(h1h2)P is not a triangular matrix. This
is a contradiction. Therefore there exists heT so that

c d)

We have another characterization of R'(T).

Proposition 2.1.

R'(T) = {pe R(T) | tr(p([a, 6])) + 2 for some a,beT}

= R(T)-

Proof. (=>) Take g, /z e F which satisfy the conditions of Lemma 2. 1 . Then

A o\
(<=) If p(T) is abelian, [p(a)5 p(6)] = I I for any a, b e T. If p(T) has a non

trivial invariant subspace, there exists PePGL2(R) such that any element of
P~1p(T)P is an upper triangular matrix. Hence tr([p(a), p(bj]) = 2 for any

Corollary 2.1. ^'(H « C!P«« m /?(F).

Proposition 2.2. /?'(O /za^ a structure of a 6g-3 dimensional real analytic
manifold.

Proof. We consider the mapping r
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Then R(r) = r~l(( j). We will check that the rank of the differential (dr)p

at peR'(r) is maximal. By regarding sl2(R), the Lie algebra of SL2(R), as

the Lie algebra of left-invariant vector fields on SL2(R), (dr)p can be written as
follows. For p = (Al9Bl9-~9Ag9Bg)eR'(r)

where F^W^A^B^A^ and for AeSL2(R) and Xesl2(W), SA(X):=
X-A~1XA.

Put Si'^FiAFr1, Si+g — FtBiFi'1 ( i= l , - - - ,g) . Then {5J is a system of
generators of p(F). As p e /?'(n» some Sj is not the identity matrix hence 57-
is hyperbolic, parabolic or elliptic. First we assume that Sj is hyperbolic. Then
there exists PEPGL2(R) such that

Because peR'(T)9 there exists 5fc such that

or

I f we put XJ = P S j

^)zj o
ps - qr)xk +pqzk - rsyk *

Therefore the mapping
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is surjective, and this shows the surjectivity of (dr)p . By a similar argument,
one can also show the surjectivity of (dr)p for the case that Sj is parabolic or
elliptic. Hence by the implicit function theorem R'(T) has the structure of a
6g-3 dimensional real analytic manifold. •

Next we define the subset RQ(T) of R(T) by

R0(D:={peR(r)\p is discrete and faithful} (1)

where a representation p is discrete if p(F) is a discrete subgroup of SL2(R)
and p is faithful if p is injective. We remark that the action of PGL2(R) on
R(T) preserves R0(F). Then another characterization of R0(r) is

Proposition 23.

/?0(F) — {p E R(T) I p is cocompact, discrete and faithful] (2)

= {p E R(T) | p is purely hyperbolic} (3)

where a representation p is cocornpact if the quotient space p(T)\SL2(R) is compact

with respect to the quotient topology, and p is called purely hyperbolic if p(h)
is hyperbolic for any h( ̂  identity) E F.

Proof. (1) => (2) The fundamental group of a surface p(F)\H is isomorphic
to the surface group F. Hence p(F)\H is compact.
(2) => (3) Because p(F) is discrete, any elliptic element of p(F) is finite order. But
F is torsion free. Thus p(F) has no elliptic elements. Moreover if p(F) has a
parabolic element, then p(F)\H has a cusp. Since p(F)\H is compact, p(F)
has no parabolic elements.
(3)=>(1) Faithfulness is immediate. Discreteness follows from Nielsen's
theorem (see [Si, Theorem 3, p33]). •

Proposition 2.4. /?0(F) is open and closed in R(T).

Proof. We give a sketch of a proof. We recall the inequalities of J0rgensen
([J0], especially the argument of Proposition 1, §3):
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For any p^R(T}p is contained in R^(T) if and only if

\tr(lp(g), p(A)]) - 2| + \tr(p(h))2 - 4| > 1

for any pair g, /-? e F with gh ̂  hg.
These inequalities are closed conditions of R0(T) in R(r).
The openness of R0(F) c R(F) follows from the next theorem due to

Weil [W]:

If G is a coonnected Lie group and T is a discrete group, then the set of
cocompact, discrete and faithful representations from Y to G is open in the set
of all representations from T to G. ffl

Next we recall the notions of a semialgebraic set. Let V be a real algebraic
set with affine coordinate ring R[V], i.e., the ring of polynomial functions on
V. A subset S of V is called a semialgebraic subset of V if there exist finitely
many polynomial functions fi9 gI1? ••• gfwi(i) ( /=! , • • • , / ) on V such that S can
be written as

S=

From the above definition, it follows immediately that any real algebraic
set is a semialgebraic set. Moreover, it is known that any connected component
of a semialgebraic set (with respect to the Euclidean topology) is also a
semialgebraic set and the number of connected components of a semialgebraic
set is finite (see [B-C-R] Theorem 2.4.5).

Corollary 2.28 R0(r) consists of finitely many connected components of
R(T)9 hence RQ(T) is a semialgebraic subset of R(T). H

The relation between R'(T) and R0(T) is

25o R0(T) c R'(D.

Proof. Let p be a element of R0(T). Since the surface group F is non
abelian and p is injective, p is non abelian. Also beccause F is not solvable,
p is irreducible. H
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Corollary 23. Rr>(T) has the structure of a 6g-3 dimensional real analytic
manifold. H

§2.2, The Action of PGL2(R) on R'(T)

This subsection follows the argument of Gunning (Section 9 in [Gu]). We
will show that the quotient space R'(T)/PGL2(R) under the action defined in
Subsection 2.1 has the structure of a 6g-6 dimensional real analytic manifold
such that the natural projection

is a real analytic principal PGL2(R)-bund\e.

Lemma 2,2. PGL2(R) acts on R'(T) without fixed points.

Proof. For PePGL2(R) and pERf(F) suppose that P~lpP = p. Then by
Lemma 2.1 there exists geF and QePGL2(R) such that

Then P~1pP = p implies that Q~1PQ is also diagonal, and if Q~1PQ is not
the identity, then Q~1p(h)Q is also diagonal for any /zeF, but this contradicts
the fact that peRr(T). Therefore, Q~1PQ, hence also P, is the identity.

Lemma 2.3, The action of PGL2(R) on R'(T) is proper: i.e., every element
of R'(T) has an open neighborhood U c Rr(T) such that the closure of the set

(where U- P:={P'1 pP\pE U} is compact in PGL2(R).

Proof. By Proposition 2.2 R'(T) is a real analytic manifold. Hence any
p of R'(T) has an open neighborhood U c: R'(T) such that U is compact in
R'(T). Because SO(2) is compact, by replacing U by U-SO(2) if necessary,
we may assume that U is invariant under the adjoint action of SO(2). Suppose
that there is a sequence {Tv} c PGL2(R) such that (U- Tv)n U±$ for each v
but {Tv} has no accumulation points in PGL2(R). Tv can be considered as
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an element of SL2(R) or ( ) SL2(R). Then by taking a subsequence we

may assume that {Tv} c 5L2(R) or {Tv} <= | JSL2(R). First we treat the

case that {Tv} c S£2(R) (a similar argument works for the other case). Then Tv

can be written as

TV = AV-BV

where ^6.50(2) and Bv = l v * j. Because {Tv} has no accumulation points
\ o^/

in jP(7L2(R) we may assume that

\av\ -> 0, |<zv| -^ oo or |6V| -» oo (as v -» oo).

Since C7 is SO^-in variant

Hence there exists pve U so that Bv
 1pvBve U for each v. Since U is compact

we may assume that {pv} and {B~ ^pvBv} converge to p e U and tj e U respectively.
For geF put

/„ ^ \
(4)

(5)

(6)
v-»oo \r oo S ^J

Then

f n - n h r *4n -,^±n -h*r\ ^

Since pv, p, Y\ and B~1pvBv are all contained in the compact set 17, each
component of the matrices of (4), (5), (6) and (7) is bounded. If \av\ -> oo, the
boundedness of {a^rv} implies that r0 0=limv_> 0 0rv = 0. If {av} is bounded and
does not converge to 0 and \bv\ -> oo, the boundedness of {avbvrv + sv} also
implies ra o=limv_> 0 0rv = 0. In these cases, for any geF, p(g) is an upper
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triangular matirx. If |0V|-»0, then r'ao=limv^aoa*rv = Q. In this case, for any
g e F, rj(g) is an upper triangular matrix. But p, rj e U c R'(T). This is a
contradiction. •

Proposition 2.6. The quotient space R'(T)/PGL2(R) has the structure of a
6g-6 dimensional real analytic manifold such that the natural projection

R'(r)->R(r)/PGL2(R)

is a real analytic principal PGL2(l&)-bundle.

Proof. Let pER'(T) be fixed. Let us define a real analytic mapping
G by

G : PGL2(R) -» R'(T) c SL2(R)2g

We first show that for PePGL2(R) the differential (dGJP at P has maximal

rank. We may assume that PeSL2(R)

is essentially the same procedure). Then

rank. We may assume that PeSL2(R) (For the case ~~ ]PeSL2(R)

where {y^} is the system of generators of F. If (dG)P(X) = Q for A"e j/2(R), then
p-lp(g)PX=XP-1p(g)P for all geF. peRr(T) implies that JT=0. Hence
(^G);, is injective. Therefore the mapping G is regular and there exists an open
neighborhood A of the identity /e,PGL2(R) such that G:A->G(A) is a real
analytic homeomorphism. Thus, there exist an open neighborhood U of p
and a real analytic submanifold V of U so that V and G(A) are transversal
at p. Then the real analytic mapping defined by

is regular at (/,/?). We may assume that this mapping is a real analytic
homeomorphism A x V^ U. To complete the proof, it is enough to show that
this mapping extends to a real analytic homeomorphism from PGL2(R) x V
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into Rf(T). For this purpose it is only necessary to check that after
restricting V if necessary, no two points of V are in the same PGL2(R)-
orbit. Suppose that there are sequences (pv),(ffv) c= V and PvePGL2(R) such
that P~1pvPv = ?]v and limv^aopv = \imv^aoriv = p. Then Lemma 2.3 shows
that by taking subsequence, we may assume that Pv converges to some
FePGL2(R). Since

p-lpP=limP~1pvPv = p
v-»oo

P is identity by Lemma 2.2. Hence ,PveA for sufficiently large v. But

and A x ¥~ U. This is a contradiction. H

§2o3o The Space of Characters of F

As we have seen in Subsection 2.1, R(T) has the structure of a real algebraic
set. Let R[/?(F)] be its affine coordinate ring i.e., the ring of polynomial
functions on R(T). Then the action of PGL2(R) on R(T) induces the action of
PGL2(R) on R[J?(F)]

PGL,(R)

and let R[^(F)]FGL2(R) be the ring of invariants of this action. For example the
function TfteR[^(F)] (/ieF) on R(V) defined by

Th(p):=tr(p(h))

the trace of p(h) for peR(T) is an element of R[J?(F)]PGL2(R). In fact
M[^(F)]PGL2(R) is generated by the ih (heT) and is a finitely generated
R-subalgebra of M[J?(F)] (see [He], [Ho], [Pr]).

Let A^F) be a real algebraic set whose affine coordinate ring R[Ar(F)] is
isomorphic to R[J?(F)]PGL2(M). And let 4eR[^(F)] correspond to ih

eR[^(F)]PGL2(M). Then R[^F)] is generated by the Ih (heT) as an
R-algebra. The injection

induces a polynomial mapping
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Because R[jR(F)]PGL2(R) is generated by the ih (/zeF), for a represectation
p e R(T), t(p) can be considered as the character ip of p

Therefore the image t(R(r)) c X(T) of R(T) under the mapping t can be
considered as the set of characters of SX2(R)-representations of F. We call
X(T) the space of characters of F.

Moreover any element of X(r) — t(R(T)) can be considered as a character
of an 5"C/(2)-representation. To explain this we need to review briefly the
theory of SL2(C)-representations of F following [C-S] and [M-S]. Let RC(T) be
the set of 5£2(C)-representations of F3 then Rc(^) has the structure of a complex
algebraic set and let C[J?c(r)l be its affine coordinate ring. PGL2(C) acts on
Rc(r) and also on C[^C(F)]. Let C[J?C(F)]PGL2(C) denote the ring of invariants
of this action and let XC(T) be a complex algebraic set whose affine
coordinate ring C[XC(T)~] is isomorphic to C[J?C(F)]PGL2(C). Then the injection

induces the polynomial map

which is surjective. Since R<£T), tc and X^T) are all defined over Q, we can
consider XR(T), the set of real-valued points of XC(T). Then we can consider
XR(T) as the set of real-valued characters of SX2(C)-representations of F. It
is known that any element of XR(T) is either a character of 5L2(R) or
SLpJ-representation of F ([M-S] Proposition 3.1.1).

If we consider the polynomial function trhEC[Rc(F)~] (heT) on RC(^)
defined by

trh(p):=tr(p(h))

for p E /?c(n. tlien *rh is an element of C[^C(F)]PGL2(C), and we shall denote
the corresponding element of C[^C(F)] also by trh for the sake of
simplicity. Then by regarding R(T) as the set of real-valued points of /?c(O»
we obtain a natural surjective homomorphism from R[XR(F)]. the affine
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coordinate ring of ^(F), to

Therefore there is a canonical injection from X(T) to X^(T). Hence any element
of X(T) is either contained in t(R(T)) or can be considered as a character of
a St/(2)-representation of F.

Next, we define the following subsets of X(T)

for some a,beT}

Then U(T) is open in X(T). By Proposition 2.1 t~l(Xf(T)) = R'(r) and
X'(T) c

Proposition 2.7. T(F) w o/?^« /« U(T). Hence X'(T) is open in X(T).

Proof. Let V(T) be the set of characters of St/(2)-representations of
F. Since SU(2) is compact, V(T) is compact in XR(T). Hence U(T)
= Xr(r)u(U(T)nV(r)) and (U(T)nV(r)) is compact in U(T). Therefore it is
enough to show that X'(T)n(U(r)n V(T)) = (t). For peR'(r), by Lemma 2.1
there exists geF with \tr(p(g))\ = \Ig(p)\>2. On the other hand for any
<SC/(2)-representation rj of F

\IM<2 for any h € F.

Therefore X'(T) n ( U(Y) n F(F)) = 0. •

Next we will show that the restriction of the mapping t to ^'(F)

t:R'(r)-+X'(T)

is a principal PGL2(R)-bundle. By the result of Subsection 2.2, it is enough
to show that X'(T) is the PGL2(1&) adjoint quotient of R'(T). For this purpose,
we need to prepare two lemmas which are 5L2(R) versions of the results in
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[C-S] and [M-S].

Lemma 2.4. ([C-S, Proposition 1.5.2])
For p l 5 p 2 e jR'(F), we assume that ^(p1) = ?(p2), in other words, they have the
same character %P1 = %P2. Then there is a Pe PGL2(R) such that p2 = P~1plP.

Proof. By Lemma 2.1 and the assumption X,PI = XP2, there exist geF and
e i?02e/>GL2(R) such that

a 0
i
a

Because pl is irreducible, there exist heY and a diagonal matrix /^1eJPGL2(R)
such that

'a, 1

Moreover because %p^,h]) = %p2§g,h~]}^2, there is a diagonal matrix
R2EPGL2(R) such that

For any yeF put

Pi 0i
ri si

»2 32

Then %pl(y) = xp2(y) and xpl{gy) = xp2{gy) implies that /?! -j^2 and ^=52. If we
put y = h, then we obtain that a±=a2 and dl=d2. Then detfa^h)) = det(p2(h)) = 1
shows c1=c2 . If we take hy for our y, then we obtain r!=r2 and
qi=q2. Therefore if we take P = (Q1Ri)(Q2R2r\ then p2 = P~l

PlP. |

Lemma 2.5. ([M-S, Lemma 3.1.7])
For a subset U of X'(T) we assume that t~l(U) fs open in R'(r), hence open
in [/?(F)]. Then U is open in X'(Y) hence in X(T\
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Proof. Suppose that there exists a sequence {/f} c= X'(T) — U so that %t

converges to # e 17. Let peR '(P) satisfy %p = %. By Lemma 2. 1 we may assume
that there exist g,heY such that

c d)

Since /[g.f,](%) / 2, by taking a subsequence of {#;} we may suppose that

\Ig(Xi)\>2 and

Let piER'(r) — t l(U) satisfy xP, = Xi- Then since \Ig(Xi)\>2 we may suppose
that

A, 0

0 i

Moreover as Ig(Xi) -* Ig(%) we may assume that /^ -* A.
For yeF put

z,- w.-

Then /yg(%f) -> J^(x) and /yg2fe) -> /^2(%) shows that xt- -* x and wt -> w. On
the other hand, since /[g.^O^) 7^ 2, we may suppose that

Then replacing y by A, we have a{ -» a, dt -> ^/ and c£ -> c. Moreover replacing
y by Ay, we have v^ -> j and zf -* z. Hence pf converges to p. But
•e^'Cn-r1^) and per^C/). This is a contradiction. H

By Lemmas 2.4 and 2.5, we conclude that

Proposition 2.88 t : R'(r) -* Xr(T) can be considered as the quotient map
of R'(T) under the action of PGL2(R), i.e.,
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Therefore by the result of Subsection 2.2, t: R '(F) — > X'(T) is a principal

PGL2(R)-bundle. 1

Define the closed subset X0(T) of X(T) by

x0(r> := {z 6 *(r) | i^x) - 2| + |/A(z)2 - 4| > i
for g, h e F with

Then the proof of Proposition 2.4 implies that ^

Proposition 2.9. 1 . JT0(F) - t(R0(r)).
2. X0(T) is open in Xr(T) hence open in X(T).

3. ri(
Proof. 1. Any representation of F to SL2(C) is discrete and faithful if

and only if it satisfies the inequalities of J0rgensen which we saw in the proof
of Proposition 2.4. But there are no discrete and faithful St/^-representations
of F because SU(2) is compact and F is an infinite group. Hence
X0(T) c t(R(T)) and it follows that X0(T) = t(R0(T)).

2. R0(T) c R'(T) implies X0(T) c X'(T). Because R0(T) is open in R(T)
and t:R'(r)-> X'(T) is an open map by Proposition 2.6, X0(T) is open
in X'(T).

3. This is immediate from the proof of Proposition 2.4. H

Corollary 2.4. X0(Y) is open and closed in X(T). Therefore X0(T) consists

of finitely many connected components of X(T). Hence it is a semialgebraic
subset of X(T). H

Corollary 2.5. t : R0(T) -» X0(T) is also a principal PGL2(R)-bundle. Hence

X0(T) can be considered as the PGL2(R) adjoint quotient of R0(T\ i.e.,

X0(T) = R0(r)/PGL2(R). H

We summarize the results of this subsection as the following diagram
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R(r) ID R'(T) ID RQ(T)

'I I i PGL2(R)-bundle

§2.4. The Relation Between SL2(R)- and PSL2(R)-Representations of P

Next we consider the relation between SL2(R)- and jPSX2(R)-representations
of the surface group P.

The group Hom(r,Z/2Z) (^(Z/2Z)2g) acts on R(T) as follows. For any
fjLeHom(r,Z/2Z) and pe/£(P), we define the representation fj,-pR(r) by

IJL • p(h) := M/z) • p(A) (for all heT)

where Z/2Z acts on SL2(R) by multiplication by ±1.

Proposition 2.10. ([Pa], [S-S], [O2])
Let ^ : P -» jPSL2(R) fe a discrete and faithful PSL2(R) representation. Let

Ai,BieSL2(R) denote any representatives of^(^ <*(&) e PSL2(R) (i=l,-~9g).
Then

//7 0f/zer words, £ can always be lifted to a representation p€R0(T) and the set
of all liftings of £ is equal to the //om(P,Z/2Z) orbit of p in R0(T).

SL2(R)

P PSL2(R)

Proof. We briefly review what Seppala and Sorvali showed in their paper
[S-S].

Let £ be a discrete and faithful PSL2(R) representation. Suppose
A^B^SL^R) ( i = l , ~ > , g ) denote any representatives of <J(a£), £(&) e PSL2(R).
Then they showed that
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In particular

tr(\_Ag,Bg-\)<-2

We may suppose that [Al,B1']~'[Ag-.i,Bg-l'] is a diagonal matrix. Then
[_Ag,Bg] must be also diagonal, hence the above inequalities imply the
conclusion. H

Corollary 2.6. 1. //ora(F, Z/2Z) acta o« ^o(r) and the quotient space
Hom(r,Z/2Z)\R0(T) can be considered as the set of discrete and faithful
PSL ^^-representations of F.

2. Through the mapping t, Hom(T, Z/2Z) also acts on ^0(F) and the
quotient space Hom(T, Z/2Z)\Ar

0(F) can be considered as the PGL2(R)-adjoint

quotient of the set of discrete and faithful PSL2(R)-representations of

r. •

We call this set the Teichmuller space Tg

= Hom(T, Z/2Z)\R0(T)/PGL2(R).

Remark. ([Sa 1]) For any p£^0(F), let n be the projection

and put p := n(^/ — I ) e M. Then the isomorphism from p(T) to the fundamental
group 7C1(M,/?) of M with a base point p

is uniquely determined. Put at:=i(p(ct$), b^i^^en^M.p) (i=l,-»,g).
We say a representation p is orientation preserving (resp. reversing),

if, with respect to the orientation on M coming from the complex structure on H,
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(ij= 1, ••-,£•) where [aj is the homology class of a{ and < , > is the intersection
pairing on H^M^Z). If ^o(F) (resp. RQ(T)) denotes the set of orientation
preserving (resp. reversing), discrete and faithful (S

rL2(M)-representations
of F, then R0(T) is the disjoint union of RQ (P) and RQ (T) and

X0(T) = R0(r)/PGL2(R) =

Proposition 2.3 implies |4|>2 (for all h(^ identity) eP) on X0(r). Hence
the sign of Ih is constant on each connected component of X0(T). This means
that Hom(V9Z/2Z) permutes the set of connected components of X0(Y)

freely. Thus

Corollary 2.7. The quotient map X0(r)-+ Tg is an unramified (Z/2Z)2g-
covering. Hence by taking any lifting of this mapping, we can consider Tg as

a finite union of connected components of X0(T). Therefore Tg can be considered
as a semialgebraic subset of XQ(T). H

Corollary 2M. If 7c0(A
r
0(P)) denotes the number of connected components

of X0(r)9 the order of Hom(T,Z/2Z) divides n0(X0(r)). In particular

We summarize the result of this subsection as the following diagram,

X(T) ^ X0(Y) =

I
Tg = Hom(T,Z/2Z)\X0(T)

§3B Semialgebraic Description of Tekhmiilier Space Tg (g = 2)

In this section, by construction global coordinates on X0(T\ we will give a
semialgebraic description of the Teichmiiller space T2, which we will use to
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show its connectivity and contractibility. For this purpose, we need to find
some semialgebraic subset S(F) of X(T) containing X0(T) whose presentation
as a semialgebraic set and topological structure are both simple.

§3.1. Definition of the Semialgebraic Subset S(T) of X(T)

We define an open semialgebraic subset S(T) of X(T) by

where C1:=[a1,)91] = [a2,j82]~1er.

Proposition 3.1. S(F) a X'(T). Hence r\S(Y})^S(T) is a PGL2(R)-

bundle, and S(T) can be considered as the PGL2(R)-adjoint quotient of
rl(S(r)), i.e.,

) = rl(S(r))/PGL2(R).

Proof. First we show

As we have seen in Subsection 2.3, any element of X(T) — t(R(T)) can be considered
as a character of an SU(2)-representation of F. Thus for % e X(T) — t(R(T))

This means that S(T) c t(R(T)). On the other hand, Proposition 2.1 shows
that S(T) c X'(T). m

The next result is due to Keen, Okumura and Seppala-Sorvali
([Kl], [K2], [K3], [01], [02], [S-S]).

Proposition 3.2. X0(T) c S(T).

Proof. Any element p = (Al,Bl9A2,B2) of /?0(F) induces a discrete and
faithful PSX2(R)-representation of F. Hence we have seen in the proof of
Proposition 2.10 that
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This completes the proof.

The above arguments give rise to the following diagram.

Corollary 3.1.

R(Y) ID R'(T) ID

'i i 1 I
X(T) ID X'(T) ID

§3a2. Topological Structure of S(T)

In this subsection, by constructing global coordinates on S(Y)9 we will show
that S(T) consists of 24 x 2 connected components such that each component is a
6 dimensional cell. For this purpose we need some preliminaries.

Let us define a polynomial mapping / from X(T) to R6: For any
), let

f(x) •= (4i (i\ fPl(x), larffa), ia2(x),

By the definition of Ih (h e F), for any p e R(T)

f o t(p) = (

X(T) R6

We denote the coordinates (xl,x2,x3 ,yl ,y2 ,y3) on R6 by (x,~y) for the sake
of simplicity. Next we define a polynomial function K(x9y,z) on R3 by

K(X, y, z) := x2 -\-y2 + z2 — xyz — 2.

Easy calculation shows the following lemma ([F], [Go]).

Lemma 3.1. 1. For any A,BeSL2(R)
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2. If (x, y, z) e R3 satisfies K(X, y,z)< — 2, then

2, |z|>2

In particular if we put

then from the definition of 5(F), we have /(S(F)) c= F_ . In fact we will see
in Proposition 3.3 that f(S(T)) = F_ .

Lemma 3.2. F_ c R6 consists of 24 connected components such that each

components is a 5- dimensional cell More precisely, put U:= K_ n{(x,3;)6R6

| Xi > 0, yt > 0 (/= 1, 2)} fl«^/ rfe/?«e ̂ Ae 0cf/0« o/(Z/2Z)4 o« R6 6^ multiplication by
±1 on the Xi and y{ (/'=!, 2). 77z^« U is a 5 dimensional cell and F_ ca« be
written as

V-= LI y(U) (disjoint union).
ye(

Proof. For r<—2 put

, z>0}

and u:=x— y, v:=x+y for (x,y9z)e Wr. Then by Lemma 3.1.2

Hence the next mapping is a homeomorphism, and consequently Wr is a 2
demensional cell.

(*,;;, Z)I-»(M,Z)

Since C/is a fiber bundle over the base space {reR | r< — 2} with fibers Wr x H^,
C/ is a 5 dimensional cell and by Lemma 3.1.2
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V_= U y(U\
ye(Z/2Z)4

The next lemma can be shown directly by calculation, but it is a key
lemma in the whole story of this section.

Lemma 3o3« Let (A,B)eSL2(R)2 be a pair of hyperbolic matrices which
satisfies the following condition

A

Put (x, y, z) := (tr(A), tr(B\ tr(AB)). Then K(X, y,z)<- 2, and there exists a constant
:=R — {0} such that A and B can be written as

-.2)

j_ 1M A

-J

A + l (A+l)2 ' /

Conversely for any k e R * and (x, y, z) e R3 vv/^/z K:(JC, y, z) < — 2, define A < — 1

= K:(X,J?Z). Then the pair of matrices (A,B)ESL2(^)2 defined by condition
2) satisfies 1) and (x,y,z) = (tr(A\tr(B\tr(AB)). I!

Since the pair (^,5)e5'L2(R)2 defined by the above condition 2) is uniquely
determined by &eR* and (x,y,z)eR3 with K(x,y,z)< — 2, we write it as
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(A9B) = (A(x,y9z,k)9B(x9y,z,k)).

Now we can show the main result of this subsection.

Proposition 3.3. S(T) consists of 24 x 2 connected components such that

each component is a ^-dimensional cell.

Proof. First, we define the mapping *F

T : r l(S(T)) -> R* x F_ x PGL2(R).

as follows: For any p = (Ai,B1,A2,B2)et~i(S(T)), we first diagonalize
[ A i , B l ~ ] . More precisely, by using Lemma 3.3, we can choose PePGL2(R)
uniquely such that by use of the notations of Lemma 3.3, (PAiP~1,

(/=1,2) can be written as

PA,P- 1 =A(tr(Al\ tiiB.

PB2P~l = ( ° 1}B(tr(A2)9tr(B2)9tr(A2B2)9k)(0 ~
\ — 1 u/ \1 u

where fceR* is some constant. We define the mapping *F by

> R* x F_ x PGL2(R)

Lemma 3.3 implies that *P is bijective and, in fact, a homeomorphism. From
the difinition, *F is .PCjZ^W-equivariant. Hence it induces a homeomorphism
<D from S(T) to R* x V_ as follows.

rl(S(T)) ~ R* x F_ x PGL2(R)

t | i Pr°J-

S(T) ~ R* x K_
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Moreover by Lemma 3.2, R* x V _ consists of 24 x 2 connected components
such that each component is a 6-dimensional cell. •

§3.3. Cell Structure of Teichmiiller Space T2

Next we consider conditions which characterize the connected components
of X0(T) in S(F). By the definition of 0 in the proof of Proposition 3.3, the
first component k of $ can be considered as a function on S(T).

Proposition 3.4. Suppose that U ̂  S(T) is a connected component on which
the function 7ai • 7a2 • & is negative. Then there exists # e £/ such that % is not
contained in XQ(T).

Proof. First we remark that on a connected component U of 5(F), the
signs of the functions 7ai-7a2, and k are constant. We consider (5c,J)eK_
satisfying |x.| = [y.|=4 (*=1,2,3). Then there are 24 points of F_ satisfying
this condition. Since f ( U ) is a connected component of V ___ , take p =
(Al9Bl9A2,B2)erl(S(r)) with t(p)c U and f ° t ( p ) = (x,y). If 7ai(f(p)) • 7a2«p))
= tr(Al)-tr(A2)= 16 >0, then by using the presentation of p = (A1,Bl,
A 29 B 2) in the proof of Proposition 3.3, tr(AlA2) = — 2— &— -f where we denote
k(p) by k for the sake of simplicity. Hence if k(p) = k= —2 (i.e., 7ai • 7a2 • A; < 0
on U), then tr(AlA2) = 2 and this means that AlA2eSL2(R) is a parabolic
matrix, thus t(p) is not contained in X0(T). Similar argument holds for
the case Ia(p)-Ill(p) = tJiA1)'tr(A2)= - 16 <0. •

Since X0(T) consists of finitely many connected components of A^F) by
Corollary 2.4, Proposition 3.4 implies that there are 16 connected components
of 5(F) on which the function 7ai • 7a2 • k is negative. Hence the number of
connected components of X0(T), n0(X0(T)) is less than or equal to 16. On
the other hand, as the argument in Subsection 2.4 implies n0(X0(T))> 16,
we get following result.

Theorem 3.1. 7u0(Jr0(F))=16. Thus

is a connected 6-dimensional cell, and, in particular, contractible.
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§3.4. Semialgebraic Structure of Teichmiiller Space T2

The preceding argument shows that X0(r) can be presented as the following
subset of X(r):

X0(T) = {XE S(T) | /ai(x) • 7.2 (X) • k(X) > 0}

= {x e X(r) I /Cl < - 2 and 7ai (Z) - /a2(x) ' *(*) > 0}

where cl ^[a^jftjer. This presentation induces the following semialgebraic
description of X0(T) in X(T).

Theorem 3.2. X0(T) can be described as a semialgebraic subset of X(T) as

follows

X0(T) = {K e X(T) \ ICIM < - 2, > 2}.
4i(x)-/«2(x)

Hence for any representation p = (A1,Bl,A2,B2)eR(r), p is a discrete and
faithful SL2(R)-representation of F (/ and only if

tr(lAM]<-2 andA 7 1_1/

Proof. For any p = (Al,B1,A2,B2)et (SP")), calculating tr(A^A2) gives

1^2 ( lt ^ x 2tr(A1)-tr(A2)\,. .k(p)2 + ( tr(A,A2)-^ ir\
 !' n\

 2' )k(p)

i
If we consider this as a quadratic equation in k(p), the constant term is
positive. Hence the sign of k(p) and the sign of the coefficients of the linear term
of this equation are opposite each other. Thus, for p = (Ai,Bl,A2,B2)



556 YOHEI KOMORI

Remark. The various connected components of X0(T) are separated by the
action of /70/w(r,Z/2Z), i.e., the sign conditions on the functions 7ai, IP2, 7az

and Ip2. Therefore, by adding these 4 conditions, we obtain a semialgebraic
description of T2 by means of 6 polynomial inequalities (see Corollary 2.7).

Corollary 302a The function k = k(%) on 5(F) can be written as follows

A2 2 L-L
7 _

= A(%) is the function on S(T) defined by

Especially, the point of T2 is completely determined by the 8 functions 7^,7^,7^
O'=l,2), 7aia2 a«^ 7a iCia2C-i.

For p = (Ai,Bl,A29B2)
 E t~l(S(r)), by comparing tr(AlA2) =

IM2(t(p)) and ^i[><i^i]^2[^i^i]"1) = /«1c1«2c-i(^)), we obtain

where x = rr(X1), y = tr(A2), A<-1 with A + i = /r([^1,51]) and k = k(p).
Subtracting A2 times the second equation from the first equation then gives the
desired formula. iU

§4B Description of Teichmiiller Space Tg (g>3)

In this section, we assume g>3. We show the connectivity and
contractibllity of the Teichmiiller space Tg, as well as give a semialgebraic
description of It, by means of arguments similar to those Section 3.
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§4.1. Definition of the Semlalgebrak Subset S(T) of X(T)

We define an open semialgebraic subset S(Y) of X(T) by

-2 (/ = 2, -,g-2)}

where c{ := [a<, j6J e F and dj:=clc2-- cjf

Similar arguments to those used to prove Propositions 3.1 and 3.2 show

Proposition 4.1. S(T) ^ X'(T). Hence r\S(T))^S(T) is a PGL2(R)-

bundle and can be considered as the PGL2(R)-adjoint quotient of t~l(S(T))
i.e.,

Proposition 4.2. X0(T) c S(T). •

Moreover if a representation p=(Al9Bl9--,Ag,Bg) is contained in R0(T),
the representation pj:=(Aj,Bj9"'9Ag9Bg9Al9Bl,-"9Aj,l9Bj,l) (j = 2,~-,g) is
well-defined and also an element of jR0(^)» hence we have

Corollary 4.1. For /eA^OT), 7C|Ci + 1(x)< — 2 (i = 2,-~,g) where we assume
that cg+l=c1. H

The above arguments give rise to the following diagram.

Corollary 4.2.

R(T) =3 R'(T) ^ r\S(T)) ID R0(T)

a i i i
X(T) => X'(r) ^ S(T) => X0(T)
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§4.2. Topologica! Structure of S(F)

In this subsection, by constructing global coordinates on S(T)9 we will show
that S(T) consists of 22gx22g~3 connected components such that each
component is a 6g-6 dimensional cell. For this purpose we need some
preliminaries.

First we define a polynomial mapping / from X(T) to R3^ by

/fa) := tfufa), fftl(x), I*tfi(ti, • • •> 4gfa)> Ipg(x)> 4g/*gfa))

for IeX(Y).

R(Y)

X(T)

Let (3c lJ"-,xg) denote the coordinates (x l l 5 x 1 2 j Xi3, "•5^gi5^23
;cg3) on

We define a semialgebraic subset V _ by

where K(x,y,z) is a polynomial function on R3 defined in Subsection 3.2. Then
from the definition of 5(F), we obtain that /(5(F)) c: F_ . In fact we will see
in the proof of Proposition 4.3 that f(S(T)) = ¥_ .

The next lemma can be proved by the same argument as that used to
prove Lemma 3.2.

Lemma 4.1. V_ c= R3^ consists of22g connected components such that each
component is a ^-dimensional cell. More precisely, put

and define the action of Z,/2Z)2g on R3g by multiplication by ±1 on the x{j

(i=l,--,gl 7=1,2). Then U is a 3g-dimensional cell and V _ can be represented
as

V-= LJ y(U) (disjoint union).
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The next lemma, which is shown by elementary calculation, is a key
lemma in this section.

Lemma 4.2. 1. For a pair of hyperbolic matrices (C±, C2) e SL2(R)2, assume
that Q is diagonal

If the traces of Ci, C2 and Cl C2 satisfy

x •= ̂ (CJ< -2, y := tr(C2)<-2 and z:= tr(ClC2) < - 2 • • • 1)

then there exists a unique meR* such that C2 can be written as follows.

r=

Conversely, for any constant meR* and (.x,j,z)eR3 w^/z x< — 2, j<— 2
z< — 2, */ we /e^ ff fte the unique real number < — 1 JMC/Z £/z«£ f/ + ^ = x, and define

d=l^ 1 } and C2 by the condition 2), then (x,y,z) = (tr(Ci),tr(C2),tr(C1C2)) as

the condition 1).
2. Moreover for such a pair (Cl , C2) 6 5L2(R)2, we ca« diagonalize QC2 0ra/
C2 fe^ w^-rng r/ie following matrices P,Qe SL2(R).

T2-lp .__ i

y) rrj(r]z-y)-(r]2-l)

where K-l with i + ± = z = tr(C1C2) and ClC2 = p(T ^P'1.
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(?•=

m(r,2-l)

$=y = tr(Cj and C2 =

In the following we write these C2, /* and Q by C(x,y,z,m)9 P(x,y,z,m)
and

Proposition 403e S^F) consists of22gx22g~3 connected components such
that each component is a 6g-6 dimensional cell.

Proof. We construct a mapping ¥

¥ : rl(S(T)) -» F_ x {weR \ w< -I}8'3 x (R*f ~3 x (R*f x PGL2(R)

as follows.

For p = (^1,J?1,-,^,J3fp6r1(5(r)), put

_ (where ^:-(^1?^2,^3)

We remark that

The definition of S(F) implies that

wl<—2, u2<—2, a n d w 2 < — 2.
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Lemma 4.2.1 shows that there exists a unique RePGL2(R) such that

/!<-! with

Then by Lemma 4.2.2 there exists Pl=P(wl9u2,w2,l) such that

°^-i , 1 -,u l

1 W 2 < ~ 1 W™ *?2+ = W2)'

Similarly because

w 2 < — 2 , w 3 < — 2 a n d w 3 < — 2

Lemma 4.2.1 shows that there exists a constant m jeR* such that

and by Lemma 4.2.2 there exists P2 = JD(w2,w3,w3,m1) such that

'3 \ D - l Z 3 - l i™ ^ 1 «MfU ^ i _

Inductively, for 7 = 2, •••,g— 1, because

Wj-^ — 2, MJ< — 2, and W ; < — 2

Lemma 4.2 shows

where m J-_2eR* with m0 = l, /J
J-_1=P(wJ-_1,wJ-,wJ-,w<7-_2) with P0

 = ( )

with fy7. + i = Wj..

Moreover, RCKR 1 can be written as
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1 ° ° ~ 1 > - 1

On the other hand, by Lemma 3.3,

for some kleR^ where we denote A(xli,xl29xl39k1) by ^[(jc!,/:!). By Lemma
4.2.2 there exist Q2 = Q(^\^2,w2,l) and &2eR* such that

Inductively, for j = 2, • • • , g — 1

RBJR~1=P1 -Pi-iQiB$i,kdQJlPj-l
l - Pf

where Qj=:Q(wj-l,Uj,wj,mj^2) and ^-eR*. Moreover

for some ^:geR*. Now we can define the mapping

_ x weR | w< -

Lemma 4.2 shows that this mapping is bijective and homeomorphic. *F induces
a homeomorphism $ as follows
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t I I Pr°j-

5(F) ^ F_ x {weR| w< -2}*~3 x (R*f ~3 x (R*f.

Thus by Lemma 4.1, S(T) consists of 22gx22g~3 connected components such
that each component is a 6g-6 dimensional cell. •

§4.3. Cell Structure of Teichmiiller Space Tg

In the following, by using the global coordinate functions on S(T)
constructed in the previous subsection, we give conditions which characterize
the connected components of X0(T) in S(r).

Proposition 4.4. On X0(r), the component mj (j= 1, • • - ,£ — 3) of the mapping
<I> is positive. •

This is equivalent to the next proposition for the space of representations.

Proposition 4.5. For p = (Al,Bl,--',Ag,Bg)€R0(r), the value nij(p) of the

component m-3 (/=1, • • - ,£ — 3) of the mapping ^ at p is positive.

To prove this, we need the following elementary lemma.

Lemma 4.3. If the matrices P, C(m) e SL2(R) (m < 0) satisfy

a b\

c d)

I ^ ™\ ,C(m) = { (x>Q, w<0, m<0, x + w< — 2)
\±(xw-l) wj

then there exists m0<0 such that PC(m0)P~l is a lower triangular
matrix. Moreover if Pl,P2£SL2(R) satisfy the above condition (*), then P1P2

also satisfies the above condition (*).

Proof of Proposition 4.5. We use the notations of the proof of Proposition
4.3. We apply the above Lemma 4.3 to Pl and C(w2,u3,w3,mi) to conclude
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that m1>Q on R0(T) because p(T) is a discrete purely hyperbolic subgrourp
of A$X2(R), RC1R~1 and RC^R~l cannot have a common fixed point. Hence
P2 and P1P2 also satisfy the condition (*) in Lemma 4.3 and by applying it
to P^P 2 and C(w33t/4, w4,m2), we get w2>0 on R0(T). Successive repetition of
this procedure proves the Proposition. H

Proposition 46,. On X0(T), the product of components xtl-ki of the
mapping O is positive (/=!,•••,£). H

This is equivalent to the next proposition for the space of representations.

Proposition 4.1. For p = (Al,Bl,---,Ag,Bg)eR0(T), the value ;cn(p) •&;(
of the product of components x{l andki of the mapping T at p is positive (i= 1, • • -,g).

Proof. We use the notations in the proof of Proposition 4.3. For
p = (A1,Bl,'-',Ag,Bg)ER0(T), a computation shows that

= tr(A(xl , kl)C(wi ,u2,w2, 1))

li

Suppose that there exists a connected component C7 of R0(T) such that C7
contains a representation p with jtn •&!<(). Then the function xll-kl is
negative on U. Moreover there exist t<—2 and pet/ such that

\=w1=w2 = u2 = t and
t2

Then since xll-k1<0

tr(AiC2)=+-2t- ^21-- -- 1~ T

= ±2.

This contradicts the pure hyperbolicity of p e R0(r) (see Proposition 2.3). Hence
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xli-kl is positive on R0(T).
Next we will show that the function xn •kj (j = 2, •••,#) is also positive on

R0(T). For p = (Al9Bl9'"9Ag9Bg)ER0(r)9 Proposition 4.2 and Corollary 4.1
show that

trCj<-2, trCj+i<-2 and tr(CjCj+l)< -2 (j= 1, •••,#).

Hence by Lemma 4.2 there exists a unique RjEPGL2(R) such that

-j j j i -
RjCj+ iR]- » - QtrCj, trCJ+ 1 , tr(CjCJ+ ,)

where /Lj.<-l with ^+^=trCj ( j = l , - - - , g ) . We remark that R}=R and
^i = '7i- Then by Lemma 3.3 there exists £,-eR* ( j = l , - - - , g ) such that

We remark that £l=kl. Moreover, the argument just applied to show that
xll-kl>0 on R0(T) also implies (by permuting the A's and B's as in the
paragraph preceding Corollary 4.1) that xjl-ltj>Q on R0(T) (j=l,--,g\ In
the following, we will show that as functions on ^0(r), kj and Hj have the
same signs on each connected component of R0(T). More precisely, for
pER0(r\ there exists j^-eR* (/=!, -',g) such that sJ-JCj = kj. By proving this
claim, we will thus obtain that xjlL

 m£j>0 on R0(T) is equivalent to xjl -kj>Q on
R0(T). This will complete our proof.

For y'= 2, •••,£- 2 put

Then we have

RJCJRJ = (Q ^

RjCj+ ^r i = Q-1 P._ 1 C(wp uj+1,wj+l, m,-_ jpr.^ Q.

Proposition 4.5 implies that m7.>0 on R0(r) (j=l, •~,g— 3). Hence the

signs of entries of the matrices C(Wj9 uj+1,wj+1, m^_ j), P7-_ l and 2jare 1 I»
\~ "—/
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) and I ). Therefore there exists j/eR* such that
V- '

: ; j f \ . :o J J J o

Hence

Similarly put

-1

0

Then a similar argument shows that there exist jg_1,^eR* such that

1 K Jind Jc —- P^ fa

°^ * ,11 ariStirf A^ — C Kdtllvl A-p^ — Op./Vp- .

•

The above arguments show that

Then by considering the number of connected components of X0(r), we see
that 7r0(Jf0(r)) is less than or equal to 22g. On the other hand we have seen
in Subsection 2.4 that 7i0(X0(r)) > 22g. Hence we get the following result.

Theorem 4X n0(X0(T)) = 22g. Thus
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Tg = Hom(r,Z/2Z)\X0(r)

is a connected (6g — 6)-dimensional cell, and, in particular, contractible. H

§4.4. Semialgebraic Structure of Teichmiiller Space Tg

Now X0(T) can be written as

In the following we will rewrite the above presentation of X0(T) by using
polynomial inequalities in the Ih (/zeF).

Proposition 4.8. For a representation p = (Al9Bl9- -,Ag9 Bg)£t~ 1(S(T))
we denote by mj(p) (/=!, -~,g — 3) by nij for the sake of simplicity. Then

mj>0(j=l,.~9g-3)

if and only if

trDj+ l(trDjtrDj+ 2 + trCJ+ , trCj+ 2) - 2(trDjtrCj+2 + trCj+ 1 trDj+2)

>{(trDJ+l)
2-4}tr(DJCj+3)(j=l9:.9g-3)

where C^A^B^ (i= 1, -,g) and Dj'^C, - Cj (j= 1, .»,g- 1).

Proof. We use the notations of the proof of Proposition 4.3. We calculate
j+j (/=l,-,*-3) for p = (^1,B1, ---,^,^)e

J

j+ i»j + 2) ~ 2(Wj

|
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Otf+i- i>
,-1

,

Hence we get the following quadratic equation in —^

2

]'- I'

uj+2)-2(WjUj+2 + Uj,

YYl:
X s J

= 0 0=1, -,g- 3).

One can easily check that the coeificients of G^Y)2 and constant terms are
negative. Hence if we put w0 = l, then

^J-1

Wj+ 1 — 4

<j=l,-,g-3)

Since w?+ 1— 4>0, we have prove our assertion.

We put

Proposition 4.9. For p = (Al,B1,--, Ag, Bg)Et~ l(S'(T)) we write xtl(p) • kjp)

( f = l , - - - ? g ) by x^-kifor the sake of simplicity. Then
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if and only if

Proof. We use the notations of the proof of Proposition 4.7. We compute
tCt+J (i=l,-,*) for p = (AltBlt -,Ag,Bg)er l(S'(

- '')

= tr(A(xi,lcl)C(trCi, trCi+ 1 , tr(CtCi+ J, 1))

= fc.-\ --- f-—

trQ + 2 H

Hence we get the following quadratic equation in £;.

= 0

As the constant term is positive

The above considerations give rise to the following semialgebraic
presentation of X0(T).

Theorem 4.2. For af, /^ e F, j!?wf c^ := [ai? j5J (/' = 1, • • •, g), and dj:=cl • • • c.
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(/=!, • • • , £ • — 1). Then %£X(Y) is contained in X0(T) if and only if % satisfies
the following 4g — 6 inequalities on Ih (eF).

/„(*)<- 2 (i=l,-,g),

/,./*)< -2 (/ = 2, -,*-2),

*CkCk + i\X) "~ *Cfc + lUU ^CEfcCfc + lUCJ /; _ « x
<^ ----- I /C - 1 , ' ' • , K I,

Hence by adding 2g inequalities which consist of the sign conditions of /ai ,
Ipt (i=\,---,g), we can also describe Tg by 6g — 6 polynomial inequalities

in X(r). •
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