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A Family of Rank-2 Mathematical
Instanton Bundles on P3

By

Valery VEDERNIKOV*

Abstract

A big family of rank-2 mathematical instanton bundles on the three-dimensional complex
projective space P3 is constructed.

§1. Introduction

In their paper [1] G. Ellingsrud and S-A. Stromme have introduced a
method to construct any stable rank-2 vector bundles on P3 with even first
Chern class c1. However, the progress for the values of the Chern classes
C j = 0 and c2 = 4 was stopped by the lack of an adequate description of the
variety of all pencils without fixed points in PH°9(2), where 0 stands for any
theta-characteristic on a nonsingular plane quartic curve C, for which the
corresponding kernel splits on this quartic.

The main purpose of this paper is to show that just as in the case of
extremal bundles, defined by the canonical theta-characteristic of the plane
embedding of C, there are no pencils for which the kernel will not split. Hence,
for any theta-characteristic on a smooth plane curve C of degree n there is
defined an irreducible family of stable rank-2 vector bundles on P3. The
main step of the proof involves the definition of a singular theta-characteristic
Ks, i.e. the one supported on the double curve 2C This invertible sheaf on
2C splits off the cokernel of a trivial subsheaf 03 of S2F^ and provides the
splitting of adF on C for the kernel F of a pencil without fixed points.

The rest of the paper is straightforward because the sheaf adF is always
unstable on the defining curve C. Besides being a step towards a proof of
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the irreducibility of the moduli scheme of mathematical instanton bundles, this
paper provides an instrument to calculate h2EndE for such vector bundles on
P3 . This is done in [2], where we use on a larger scale the properties of
the singular theta-characteristic Ks.

This paper continues the research of the author started in [3] and originated
as an attempt to formulate the results of the paper [3] in the language of the
paper [1].

§2o Some Preliminaries

2.1. Let E be a stable rank-2 vector bundle over the three-dimensional
complex projective space P3 . As usual we shall denote by M2(0, n) the coarse
moduli scheme of stable rank-2 vector bundles on P3 with fixed Chern classes
c1(£) = 0 and c2(E) = n.
Tensoring any rank-2 vector bundle E with even first Chern class with
a proper line bundle one can always normalize such E so that cl(E) = 0. The
stability condition for E will then be equivalent to the vanishing of h°E for
the normalized E. Everywhere below E v = Hom(E, OY) will denote the dual
sheaf of the sheaf E on a nonsingular variety Y. The structure sheaf on P2

will be denoted by O. If other case will occur, then the structure sheaf will
be pointed out explicitly. All other notations correspond to standard
ones. For instance, we write hl(E) for the dimension of the vector space
H1(E9 Y), where E is a sheaf on a nonsingular variety Y. Note that On stands
for the direct sum of n copies of the sheaf O.

2.2. For the convenience of the reader we review here some facts from
[1]. Let E be a stable vector bundle from M2(0,«). Suppose that P3 has
such a point x e P3 that all the jumping lines of E, that pass through the point
jc, have the splitting type OP(—l)@OP(l) = EP, while Op is the general splitting
type. Here OP is the structure sheaf of a line P in P3. Then one can blow
up this point and write the following diagram of maps

X P3

, (1)
g I

The condition on the blown-up point gives a locally-free sheaf on the projective
space P2 that parametrizes the lines through the blown-up point. We put by
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definition F=R°g^f*E. We remind that in this case X is a projectivized
fibering over P2 with an isomorphism X=P(O®O(\)). The characteristic
classes of F have the following values: c1(F)=—n and c2(F) = n(n + 1)/2.
Besides, if o = g*O(\] and T=/*0P3(1), then a)g = Ox(a — 2r) is the relative
canonical sheaf for the morphism g over F2 .

The main result from the paper of Ellingsrud-Stromme [1] states that the
sheaf F splits on the support of the sheaf Rlgjf*E( — a, — T). The curve C,
which is the support of this sheaf, will be called a spectral curve of the
vector bundle E, and when it is a nonsingular curve, then the sheaf 0
= R1gxf*E( — a, — T) on C is a theta-characteristic on it, i.e. there is an
isomorphism G®2 = a)c. In this case n is the degree of C and we have an
isomorphism a)c = Oc(n — 3). It is easy to see that the curve C parametrizes
jumping lines through the blown up point in F3 . The following exact sequence
on X is of the fundamental importance

0^g*F^/*£->/z*0(2<7-T)-»0. (2)

Here h is the restriction of the morphism g on a ruled surface g~ l(C). Finally,
as we have already pointed out above, there is an isomorphism F£
-0(1)00(2).

2.3. As the main result of this paper we shall construct a big family of
such vector bundles from the moduli scheme M2(0, n) that satisfy the following
condition: h1E( — 2) = Q. Such vector bundles are usually called rank-2
mathematical instanton bundles on P3. Quite often they are defined by monads
of the following specific type:

Any information, pertaining to the structure of the moduli scheme of such
vector bundles, is very difficult to be obtained using the monadic or some
other approach. For example, it is not yet known whether the part of M2(0,w)
parametrizing the isomorphism classes of such E is irreducible or whether
h2EndE vanishes for them. On the other hand, construction (1) gives the
following resolution of the torsion sheaf Rlg^(f*E( — a, — T) on P2

This resolution was obtained in Proposition 1.9 of [1]. The matrix m can
be chosen to be a symmetric matrix consisting of linear forms on P2. We
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underline here that the process of the construction of such resolution in [1]
did not use the vanishing of the sheaf RlgjJ*E. Thus, any mathematical
instanton bundle on P3 has such resolution for the sheaf 9 = R1g^f*E( — a, — T).

2.4. The main purpose of the present paper is to prove that the kernel
of a base-point free pencil from PH°9(2) always splits on the support of 9 for
any theta-characteristic 9 on any plane smooth curve. We shall see that there
are no restrictions on C from the moduli point of view and no restrictions
on F from the cohomological point of view or, stated differently, the only
property of 9 that counts is an isomorphism 9®2 = coc. There are no
cohomological properties being involved. In particular, the result applies to
all vector bundles on P3 that have a smooth spectral curve for some point
xeP3 after applying construction (1). Therefore, there are no restrictions on
the spectrum of such vector bundles and all of them may be produced using
the methods from [1]. Tensoring exact sequence (2) by OC9 we get the
following exact sequence

0 -» Tor ,(9(2), Oc) -» Fc -» O2
C -> 9(2) -> 0.

Since Tor1(9(2), Oc) = 9(2)@Oc(-n) = 9~1(- 1) we obtain the following two exact
sequences on C:

o-*ri(_i)-*Fc-*r1(-2)-»o (3)

This paper is devoted to the proof of the following fact.

Theorem,, Let C be any nonsingular plane curve of degree n and 9 any
theta-characteristic on it. Then any pencil without fixed points from the projective
space PH°9(2) defines an exact sequence

with a rank-2 vector bundle F as the kernel and an isomorphism Fc
v =0(1)© 0(2)

on the curve C.

The extensions on C of the type (3) are classified by the elements of the
vector space HlOc(l) which is empty only if n<3. This fact was used in [1]
to prove the irreducibility of M2(0,2) and the two components of M2(0,3).



ON MODULI OF RANK-2 INST ANTON BUNDLES 577

§ Proof of the Theorem

3.1. Let us consider the kernel F of the defining pencil without fixed
points from H°G(2). We can restrict it to C by tensoring the defining exact
sequence with Oc and, tensoring the restricted vector bundle Fc with
0(1), we get the following representation for the bundle Fc®0(l) = F®0(\) on
the curve C

0 -» Oc -i F® 9(1) -» Oc( - 1) -> 0. (4)

It follows that the sheaf F(x)0(l) has a rank-1 subbundle that violates the
stability condition. According to the general classification theory for vector
bundles on algebraic curves there are precisely two types of unstable vector
bundles of rank 2 on C:

a) decomposable vector bundles;

b) indecomposable vector bundles with a uniquely defined maximal subbundle
s of the type (4).

We shall show that if C is a nonsingular curve, then Fc cannot belong to class b.

Consider the exact sequence dual to the defining exact sequence for F. The
defining pencil without fixed points from PHQ9(l) defines a trivial rank-2
subsheaf of Fv and provides an exact sequence

Tensoring it with the locally free sheaf F, we get the following exact sequence
on P2

0-»F2-»F(x)Fv -»F®0(1)-»0. (5)

The sheaf F®FV is the sheaf of endomorphisms of the vector bundle F and
it has the following standard representation

0-»0-»F®Fv -+adF-+Q,

where adF is the sheaf of endomorphisms with the zero trace. Since
(FV®F)V=FV®F we have an isomorphism F®FV =O®adF. In view of
the stability of F, which is proved below in Proposition 1, the sheaf adF has
no sections. The isomorphism A2F=O ( — n) gives an isomorphism Fv =F(n).
Thus, the decomposition of the tensor product Fv ®FV into the skew-symmetric
and symmetric parts provides an exact sequence
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Tensoring it with O( — n\ one obtains a diagram on P2

0 0 0

1 1 i
0 _» O -» F®FV -» S2Fv(-«) -» 0

I i I
0 -* O -> FfldF -» 0rfF -> 0

I 4 I
0 0 0 .

Therefore, we have an isomorphism S2Fv( — n) = adF. It is easy to note that
the unique maximal subbundle Oc of the vector bundle F®0(1) is induced by
means of the following commutative diagram

0 0 0

1 i I
0 -> O(-ri) -> O -» Oc -* 0

i I i
0 -> F2 -^ F®FV -> F®0(1) -> 0

4 1 i
0 -> G3 -» flJF -» Oc(-l) -> 0

I I i
0 0 0 .

Now to see that the induced rank-3 vector bundle G3 has no sections we need
to establish the stability of F.

3.2. Proposition 1. If 6 is a theta-characteristic on a plane smooth curve
C and F is the kernel of two sections from 6(2) without fixed points, then F is

a rank-2 stable vector bundle on P2 -

Proof. The sheaf F is not normalized. Let n be the degree of C. Then,
if n is even, we have an isomorphism Fn = F(n/2) for the normalization of
F. Therefore, there is an exact sequence
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0 -> 02(-n/2) -> Fn -» 6(-n/2) -» 0.

Because h°0(l-n/2) = h16(n/2-l)(n-3) = h16(n/2-l) it is enough to see that
deg 6(n/2 — 1) > 2g — 2, where g = (n — l)(n — 2)/2 is the genus of the smooth curve
C. This gives the vanishing of hi6(n/2 — 1). But 9 is a theta-characteristic
on C and so deg6=g— 1. The final count gives for the degree of 9(n/2 — l)
the value (n2 — 5n)/2 and since 2g — 2 = n2 — 3n the proof is complete. The
case when n is odd is treated similarly because Fn = F((n — l)/2). The proof
of Proposition 1 is finished. This result gives h°F=0 and h°adF=Q.

3.3. We restrict now exact sequence (5) to C tensoring it with Oc.
There is the following exact sequence

0->^-»Fc®Fv -»F®0(1)->0. (6)

One can easily determine the kernel K in (6). Tensoring exact sequence (4)
with / r

c®0~1(— 1), we have an exact sequence

o -> e-1®^- 1) -> FC®F-> e~\-2)®Fc -> o.
Using isomorphisms 0~1(-l)®Fc = 0"1(-l)®/;(w) = F®0(2) and 0~1(-2)®F
= F®0(1) as well as isomorphisms 0®2 = Oc(n-3) and Fv =F(n) we obtain
the next diagram on C

0 0

1 i

I 1
> FC®FV -> F®0(1) -> 0 (7)

I I

Oc Oc(-l)
1 I
0 0.

Indeed, the kernel K from (6) is isomorphic to F®0(2). So the restriction of
F®F^ to C has at least 3 linearly independent sections in accordance with
(7). Our aim will be to prove that there are such sections of this sheaf that
give the following exact sequence

0 -» Oc -» FC®F v -» ^2 -> Q,
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whose factor-sheaf R2 is torsion free on C. This means that R2 must be
locally free on C. The proof of this fact will be divided into several steps.

3.4. Proposition 2, If a locally free sheaf F on P2 is the kernel of a
pencil without fixed points from PH°9(2), where 6 is a theta-characteristic on

a plane smooth curve C of degree n (n>l), then there exists a pencil without
fixed points from PH°9(l) and its kernel Ei is connected with F by means of
the following exact sequence

Proof. It is easy to construct a pencil without fixed points from
PH°6(l). We have h°9(l)>n for n>\. Consider a section of 92(l) with an
invertible factor-sheaf. It is enough to take two sections of 9(1) without
common zeroes. We have an exact sequence

Tensoring it with 9~1(— 1) we obtain an exact sequence

The composition of projections O2 -* 0£ ~* 0(1) ~* 0 defines an exact sequence
on P2

where El is the kernel of the projection. It is obvious that El is a stable (if
n>3) rank-2 vector bundle on P2 with Chern classes cl(El)=—n9

c2(E1) = n(n — l)/2. Indeed, the stability of it is checked using the method of
Proposition 1. Restricting Ei on C we get an exact sequence

One can now easily connect vector bundles El and F. Due to A1 0 = 0 any
section of 0(1) can be lifted to a section of Fv. This gives the following
commutative diagram connecting two resolutions of a torsion sheaf 9(1) on P2
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0 0 0

1 1 I
0 -> El -» E, -» 0

1 I i
0 -> o2 -» O4 -> 02 -» 0 (8)

i I 1
0 -» O2 -» Fv -» 9(1) -» 0

1 i 1
0 0 0 .

The middle column of (8) proves the statement of the Proposition.

The following diagram on C follows from the definition of E^

0 0

1 1
9~\-2) 9(2)

I I
0 -> Elc -> O£ -» Fc

v -> 0

1 i

I i
0 0.

3.5. Proposition 3. There are imbeddings of vector bundles £\ -»F
ir cokernels can be only rank-l sheaves on a curve of degree In in P2.

Proof. According to the definition of Fv there is the following exact

sequence on P2

0 _»(£ l
 v)2 _> EI

 v ®Fv -» EL
 v ® 0(1) -> 0.

Indeed, it is enough to tensor by E^v the dual to the defining exact sequence
for F. Since the dual to the defining exact sequence of E1 is the exact sequence

0 -» O2 -»El
 v -> 0(2) -* 0

we have /z°£'1
v>2. So hQE^®F"^§ and there are non-trivial homo-
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morphisms aeHom(E1,F"/). Any such homomorphism a can be viewed either
as a map E1 —> Fv or as a map F -> El

 v. We claim that there are injective
maps among such homomorphisms. Indeed, if hQE± v(x)Fv >2h°E1

 v, then
there are sections in H°Ei

v®Fv which do not factorize through an ideal
sheaf corresponding to the factor sheaf of El by some invertible sheaf O(m). For
if we assume that such a factorization is necessary, then we get a diagram

0 0 0

1 i I
0 -> O(w) -> Fv -> V1 -» 0

1 I 1
o _> ^ -> (Fv)2 -> g3 -> o

1 1 1
0 -> J(-n + m) -> Fv -^ F2 -> 0

i 1 I
0 0 0 ,

with the induced cokernels F£, /=!, 2, ^3 atl(l ^ being an ideal sheaf. Using
the values of c2(E1) and c2(jpv) and calculating c2(Q3) in two ways by means
of the above diagram, we deduce that such a factorization is only possible for
m=—n. Hence, only sections from the canonically imbedded subspace
H°(Ei)2 in H0Ei®F" could be used to carry out such factorization. Thus,
if 2h°E? =h°E?®Fv, then h°O(n-l)<2h°E? as shows the long cohomology
sequence

0 -»H°(E?)2 -> H*(E?

and the exact sequence

0 -» OJ/i -1) -^ £t
v ® 0(1) -> Oc(«) -> 0.

However, the last inequality is impossible due to the isomorphism
HlE^=H°0(-2) which follows from the definition of Ev. We have by
Clifford's theorem for a special linear system defined by 9( — 2) an inequality
/i°0(-2)<(deg0(-2)-l)/2. Since h°0(-2)<n(n-l)/4+l we conclude that
2k1 EI never exceeds n(n + l)/2.
So there are imbeddings E1 -> Fv. Note that in case of mathematical instanton
bundles we have hlE± =0 by the definition of the resolution for 9. Hence
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our statement is obvious in case 9 has a resolution of the form as in 2.3.
It remains to remark that the cokernel of any such imbedding cannot be a
rank-2 vector bundle on a degree n curve S in P2. Indeed, denote some
cokernel by Ks. If KS®OS has rank 2 on S, then Fs

v also has rank 2 on S
and we conclude that the kernel El must have Chern classes of F in accordance
with the restriction sequence of F to S for Fv(-n) = F. But c2(F)^c2(El) by
the definition of El and, therefore, Ks must have rank 1 on its support and can
never be the restriction of F v to some degree n curve in P2. The Proposition
is proved.

3.6. Proposition 4. The support of the cokernel of any imbedding E1 —»F v

is the curve 2C in P2.

Proof. The proof will be a consequence of the following important
property of the vector bundles Ei and F: any trivial rank-2 subsheaf O2 of
Fv has as its cokernel the sheaf 0(1) on C. Stated differently it means that
any variation of a trivial subsheaf O2 in Fv cannot change the support of
the corresponding cokernel and, therefore, the map Gr(\,PH°Fv) -> PH°O(ri),

defined by assigning the support of the cokernel to any rank-2 trivial subsheaf
in Fv is a constant map. Indeed, suppose there is a subsheaf O2 of the vector
bundle Fv whose cokernel L is supported along a curve 5 of degree n in
P2 which is different from C. Without loss of generality one can assume S

to be an irreducible curve. Hence, our assumption gives Torl(Os,Oc) = Q.
Because Fv =F(n) we have the following commutative diagram

0 0

1 I ,
o _> o2 -> o2 -» o

I 1 I
0 -> Fv -> O\ri) -> Ls(«) -» 0 (9)

1 I I
0 -> 0(1) -» M(n) -» Ls(«) -» 0

i I i
0 0 0 .

Here M is the induced factor sheaf. The support of M is an algebraic scheme,
which is not integral and consists of the two curves S and C. We have for the
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value of Euler characteristic the equality y(Os®Oc) = n2 due to the assumption
Torl(Os,Oc) = 0. The middle column of (9) defines a resolution of M

So we have h°M=2. But H°M c H °LS and hence there should be sections
of M, i.e. maps OM-+ M that have a nontrivial kernel isomorphic to 0C( — n)
and that induce an imbedding Os -> M. Since hiO2( — n) = 0 such an imbedding
can be lifted to a diagram

0 0 0

1 1 I
0 -» O(-n) -> O -> 0S -> 0

I i 1
0 -> 02(-«) -» O2 -» M -> 0 (10)

i i i
0 -» 0(-/i) -> O -> Oc -> 0

I I I
0 0 0 .

We used the standard exact sequence

and the fact that suppM is not integral. The right column of (10) gives that
M has sections that factorize through Os(—n) because h°M=2. So we obtain
finally that M=OS®OC. The representation of M as the lower row of (9)
gives now a contradiction to the assumption Torl(Os,Oc) = Q. We conclude
that C=S and M=0£. Therefore, L = 0(2) and the statement is proved So
the map Gr(l,PH°Fv) -» PH°O(n) defined by choosing the support of any
trivial rank-2 subsheaf in Fv after factorization is a constant map. It is
worthwhile to point out that it is only the support that remains constant
because varying O2 in Fv we vary the epimorphisms Fv -» 0(2).

We see now that a vector bundle F defined as the kernel of a pencil of
sections without fixed points of a theta-characteristic twisted by 0(2) on a
plane nonsingular curve of degree n is isomorphic to 02 outside the unique
curve C by virtue of which it was constructed. One obtains immediately from
this fact that outside C the sheaves El and F are isomorphic. This fact already
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proves the statement of the Proposition because the cokernel of any imbedding
E1 -»jpv must now be concentrated along C (as a set). A formal procedure
of the proof is analogous to the algorithm we used above replacing this time
the left column of (9) with an exact sequence

We leave the details to the reader. The Proposition is proved.

3.7. We deduce from Propositions 3 and 4 that Ks is an invertible sheaf

on 2C, i.e. Ks®O2C = Ks an(l tne ran^ °f KS as an 02c~sheaf is 1. The
following exact sequence gives the reduction of the structure sheaf O2C

Definition 1. The cokernel of any imbedding El -» F^ is called the singular
theta-characteristic associated with 9 and denoted by Ks.

3.8. In 3.1. we have defined a vector bundle G3 which can be represented as

because F v = f[n). We have the following obvious exact sequence

0 -» E1 -> (F v)2 -> F v ®KS -> 0.

The composite map of the section of (Fv)2 from the previous exact sequence
into the sheaf Fv ®KS must be an imbedding. Indeed, if it were not so, we

would have a section of Ks. Because Ks is an 02C-sheaf the sheaf G3(n)
would contain as a subsheaf a sheaf of ideals Jw(n\ i.e. the factor sheaf of El

by O( — 2n). It is easy to see that this is equivalent to the following diagram,
where 1LW is a skyscaper sheaf,
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0

i

0 0 -» Zw -»

1 I I
0 -» Jw(ri) -* G3(n) -» F®EW -» 0

1 i i
0 -» <9(«) -» G:3VV(«) -»

I i
— » Z)^ — » 0

i
0

from which we obtain /z°G37^0. But that contradicts to the definition of G3

since h°F= 0 in view of the stability of F. Hence, the definition of G3 and the
result of Proposition 4 give the following commutative diagram

0 0

1 1
0 -» El -> Ei -* 0

1 I i
0 _> O -* (Fv)2 -» G3(/i) -* 0

i i i
0 -> O -> Fv©^s -* Ks@JY(n) -* 0

I i I
0 0 0

where /y(«) is an ideal sheaf defined by the following exact sequence

Using the above diagram we can project the sheaf (Fv)2 onto the sheaf Ks

and write the following diagram of the projection, where M4 is its kernel



ON MODULI OF RANK-! INSTANTON BUNDLES 587

0 0

1 I

o _» o -> o -» o
I 1 I

0 -> M4 -> (Fv)2 -» #s -> 0 (11)

I I 1
0 -> F3 -* G3(/i) -> ^s -> 0

I 1 I
0 0 0 .

We conclude immediately that cf(M4) = 0 for /=!, 2. Moreover, M4 must be
a reflexive sheaf on P2 since jEx^2(A[SJO) = 0. This is the reason that makes
the induced sheaf F3 to be reflexive too. Our aim now will be to prove that
V3 = O3. Consider the diagram of the composite map of M4 into Fv

0

I
Fv

I
0 -> M4 -» (Fy)2 -> ATS -> 0

I
Fv

1
0.

We see that the composite map Fv ->(FV)2-»A^ must be surjective onto
Ks. Indeed, if it is a zero map, then we have an isomorphism M4 = F" ®E1

and this provides an ideal sheaf Jw(ri) which is imbedded into G3(n). It is
enough to recall that h^E^ = 0. But such an imbedding was prohibited
above. The map Fv -+Ks cannot have as its image some O2C-subsheaf of
the sheaf Ks. In this case the assumption that the second Chern class of the
resulting factor sheaf is distinct from zero leads to a contradiction after checking
Chern classes of M4. Hence the only case that is left is when the image of
this map is some 0c-subsheaf of the sheaf Ks. Because the rank of KS®OC

is one, we obtain after factorization the exact sequence of the reduction of
the structure sheaf of Ks which is represented by the right column of the diagram
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0 0 0

1 i 4
0 -> d -> Fv -» A^ -» 0

1 i 1
0 -> M4 -> (Fv)2 -» As -» 0

4 I i
0 -» G2 -» Fv -> AS®0C -> 0

i 1 i
0 0 0 .

Here G f , i= l , 2, are the induced locally free sheaves while Kred is the kernel
of the reduction map. Counting the ranks of the kernels of the map
corresponding to the restriction of the middle column to C we obtain a
contradiction because Kred®Oc has rank-1 as an Oc-sheaf. Therefore, there
is only one possibility left and it is represented by the following commutative
diagram

0 0 0

i i 1
( ) - > £ ! - > Fv -> J^s -> 0

I I I
0 -» M4 -» (Fv)2 -» ^5 -> 0

1 1 i
0 _» Fv -> Fv -> 0

I 1
0 0.

We have here M4 = FV@E1 as it was shown above.

3.9. Proposition 50 There is an equality h1F®Ei = l.

Proof. This equality means that any non-trivial extension of the form

must be isomorphic to the bundle O4 from Proposition 2. Indeed, such
extensions are classified by the elements of the vector space H1F®E1. We
have to show that besides M4 = El@F* and M4 = O4 there are no other
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extensions in H1F®E1. In view of the equality cf(M4) = 0 it will be enough
to see that any non-trivial extension from H1E1®F is semistable. This will
provide an isomorphism M4 = O4. The dual exact sequence

gives an extension from HiF®El defined by the same cocycle. We conclude
from this that M4 must be selfdual for a nonzero cocycle. There is the
following obvious isomorphism M4 = O@V3, where the locally free sheaf F3

is defined by diagram (11). The selfduality of M4 entails the selfduality of
F3 . The two definitions of M4 provide the following commutative diagram

0 0

1 1
o _» o -> o -+ o
I i 1

0 -» El -+ M4 -» Fv -> 0

1 1 I
0 _> E! -> F3 -> /z(«) -^ 0

i I i

0 0 0 ,

where the section of the sheaf Fv is induced by the section of M4 and Jz(n)
is the induced factor sheaf. Now, if V3 is not semistable, then one must have
A°K3(-1)^0. But then /z°F3/0 too and because h°E1=Q we obtain an
induced section of the sheaf Jz(n\ which gives the following commutative diagram

0 0

1 1
0 -» O -> O -» 0

1 i I
0 -» ^ -» F3 -* /z(«) -> 0

1 i I
0 -> £t -> K2 -» L -> 0

I i I
0 0 0 .
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However, we have hlO = Q and this section of the factor sheaf Jz(n) lifts to a
section of the sheaf Fv and that gives the diagram

0 0

1 I
0 -» O -» O -> 0

i I I
0 _> O2 -> Fv -> 0(1) -» 0

I 1 1
0 -» O -> Jz(«) -> L -> 0

I I i
0 0 0 .

We obtain an isomorphism L = 6(l) using the uniqueness of the unstable curve
C proved in Proposition 4. The definition of the vector bundle El gives an
isomorphism F2 = O2 and, therefore, M4 = O4 even if F3 is not semistable. The
Proposition is proved. Using now the isomorphism M4 = O4 we see that the
locally free sheaf G3(n) has a trivial rank-3 subsheaf O3 and the corresponding
cokernel is a rank-1 02C-sheaf Ks on P2.

3.10. Proposition 6. There is the following exact sequence for the
symmetric square S2FV of the vector bundle Fv

0-»03-»S2Fv ->Ks®Oc(n-l)->Q.

Proof. Using the definition of (73 from 3.1 we have an exact sequence

0 -» G3(n) -> 52FV -* Oc(n-\) -> 0.

This exact sequence provides a trivial subsheaf of 52FV by means of the
subsheaf induced from G3(«) and that gives rise to the following commutative
diagram
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0 0

1 I
0 _> 03 _> 03 -» 0

1 i i
0 -> G3(/i) -» 52FV -> 0c(n-l) -» 0

1 I I
0 -> Ks -> M2 -»0C(«-1)->0

I 1 I
0 0 0 .

The lower row of this diagram is supported on C. It remains to determine
the rank of the sheaf M2®OC on the curve C. Since the rank of KS®OC

equals 1 the rank of M2®OC can be only 1 or 2. If its rank is 1, then M2

must be an invertible 03C-sheaf, i.e. M2(x)03C = M2, where 03C is a multiplicity
3 structure on C defined by the exact sequence

0 -> °2c(~n) -> ̂ 3c -^ Oc -> 0.

Let us assume that M2®Oc = Oc(n— 1). This isomorphism is equivalent to
the fact that M2 carries the structure of an invertible O3C-sheaf. Tensoring
the diagram defining M2 by <9C, we get the following diagram on the curve
C in P2

0 0

1 i
0 -> L2 -> L2 -» 0

1 I i I
0 -> 0^-1) -> G3(«)c -^ 52FC

V -»0c(«-l)-» 0

I I I I
0 -> <9C(-1) -> ^s(x)0c -> Oc(«-l) -> Oc(/i-l) -^ 0

I i I I
0 0 0 0 .

Here 0C(—I) = 7or1(0c(« —1), 0C) and L2 is the induced kernel. The lower
row of the diagram gives an isomorphism KS®OC = OC(— 1) and, hence, G3(ri)c

decomposes into the direct sum G3(ri)c = Oc(— 1)©L2. Tensoring the defining
exact sequence for G3(n) from 2.1 by 0C and dualizing, we have an exact
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sequence on C

0 -» Oc(l)@L2 -> (Fc)
2 -»0C-*Q.

Thus h°F£(-l)^Q. But exact sequence (3) shows that h°Fl = Q. This
contradiction shows that M2®Oc^Oc(n— 1). This means that O3C cannot
be the structure sheaf of M2. Because the rank of M2 ® Oc is 2, the only
possibility left is the splitting M2 = KS® Oc(n — 1). The Proposition is proved

3.11. Proposition 6 gives h°S2F"( — n+ 1)=1. Because F is stable we
have h0S2F^(-n) = h°adF=Q. It means that the unique section of S2Fv(-n
4-1) provides a torsion free factor sheaf R2(l —n). There is the following exact
sequence on P2

Q-»0(n-l)-»S2Fy -»/Z2-»0.

We know that h°Ks( — n + l) = Q. So one obtains the following commutative
diagram

0 0 0

1 1 1
0 -> O(~l) -* O(n-l) -> Oc(n-l) -+ 0

I 1 1
0 _> O3 -> ^2FV -> ^s0Oc(/i-l) -> 0

I I I
o -» r2 -> j?2 -* KS -> o

I I 1
0 0 0 .

Here !T2 is the induced factor sheaf which is torsion free. The diagram arises
as the result of the composite map O(n-1)-»S2FV-»J^S©Oc(n — 1).
Restricting this diagram to C we obtain a diagram
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0 0

1 I

0 -» Oc(n-l) -> Oc(n-l) -* 0

1 i i
0 -» L! -» S2FC

V -> ^S®0C©0C(«-1) -» 0

I I 1
0 -> L! -> R2®OC -> KS®OC -* 0

i i i

0 0 0 .

Here L is a rank-1 sheaf on C which should be invert! ble because it is a
rank-1 subsheaf of the vector bundle S2FC

V on the curve C. From here we
deduce immediately that the sheaf adFc = S2Fc( — ri) can be represented as the
following extension on C

0 -» Oc(- 1) -» adFc ->R2-+Q,

where the factor sheaf R2 = R2®OC is torsion free on C. In other words,
Extl(R2,Oc) = 0. We have the dual exact sequence

0 -» RZ -» arfFc -> Oc(l) -> 0.

This is equivalent to the fact that the following exact sequence is valid on C

0 -> J?V -» «JFe O -> O(l )© O -> 0.

In view of the isomorphism adFc®Oc = Fv ®FC we have obtained a surjective
map on C of the sheaf EndFc onto the sheaf Oc(l)@Oc. On the other hand,
using diagram (7) we have an inclusion Oc(l) -> 0<iFc . This inclusion determines
an inclusion OC®OC(1) -»F®FC and, therefore, the sheaf OC©OC(1) is a direct
summand of Fv(x)Fc. Upon consideration of the selfduality of FV®F we
obtain a final isomorphism Fv(g)Fc=Oc©Oc(l)©Oc(-l). Diagram (7)
becomes now the following diagram of maps on C
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02
c®Oc(l)®Oc(-\} -> FC®9(1) -> 0

The remaining part of the proof is now straightforward. Indeed, we can
choose a subbundle O^ in Fv(x)Fc. It defines an exact sequence

0 -» 01-* F v ®FC -» Oc(l)0 Oc( - 1) -» 0.

It gives the following diagram of maps on C

0

I
01

Fv(x)Fc F®0(1) -^ 0 (12)

i

I
0.

Consider the composition of maps rs\ O^-*F®Q(l). It is enough to remark
that the image of the map rs must be isomorphic to Oc . Indeed, rs cannot
map onto a rank-2 subbundle of the vector bundle F®6(1) since h°F®9(l)=l
by the definition. For the further proof, note that the map rs cannot be a
zero map because F®9(2)^Oc in view of the isomorphism A2F®9(l)=Oc(— 1).
So we have at out disposal the following commutative diagram where L is
an invertible sheaf on C, i.e. the image of rs(Oc),
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0 0 0

1 I i

0 -> Lv -» O2
C -> L -> 0

I I i
0 -> F®0(2) -» FV®FC -» F®0(1) -> 0 (13)

I 1 I
0 -> L(l) -» 0C(1)00C(-1) -> L -> 0

1 I I
0 0 0 .

Here L is the induced factor sheaf on C. The upper row of (13) gives
/z°Lv( —1) = 0. However, looking at the following diagram of maps

0

I
L

V l

0 -> Lv(-l) -» F®0(1) A L -> 0

i
L

I

0,

which corresponds to the left column of (13), we note that the composition of
maps yd:L-+L is either zero or an isomorphism. If it is a zero map, then
we have an exact sequence

0-»L-»LV(-1)->AL-»0,

with AL being some skyscraper sheaf on C. This exact sequence gives an
equality h°L = Q because h°Lv(—l) = Q. But then we would have an equality
h°Fc®0(l) = Q in accordance with the middle row of diagram (13). This is
impossible since we have an equality /z°F®0(1)^0. Therefore, the previous
diagram shows that L = L V ( — 1) and that is why the factor sheaf L should
be an invertible sheaf on C. Since h°L(— 1) = Q we obtain an equality
h°L = 1. This gives an inclusion Oc c L. On the other hand, we have h°L v / 0,
as shows the upper row of diagram (13). That is why there is an inclusion
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L c: Oc. We get an isomorphism L=OC. It means that we have obtained
an exact sequence

0 -> Oc(- 1) -> F® 0(1) -» Oc -» 0.

The Theorem is proved.

3.12. Remark 1. The invertible sheaf Ks on the double curve 2C is a
theta-characteristic on it.

We shall restrict ourselves to the case of mathematical instanton
bundles. The other cases are dealt with similarly. So there is a resolution
for 0(1)

The following diagram corresponds to the projection of the sheaf (Fv)2 onto
the sheaf Ks

0 0 0

I I I
0 _» 0 _» 04 -> O3 -> 0

i i I
0 -* 0 -» (Fv)2 -> G3(/i) -^ 0

I I 1
0 -+ Ks -* J£s -> 0

i I

0 0.

Using exact sequence

and the equality A1 0 = 0, we easily construct a resolution of F

Thus, the middle column of the above commutative diagram provides a
resolution of the sheaf Ks
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We leave to the reader to check that the matrix defining Ks can be chosen
symmetric, thus K^l) = Extl(KS9O). The statement of the remark is now
obvious.

§4. A Family of Raek-2 Mathematical Instanton Bundles

4.1. It is well known that any plane smooth curve can be represented
as the determinant of a symmetric matrix, the entries of which are linear forms
of three variables on P2 . This corresponds to the following exact sequence
on P2

in which SuppO can stand for any plane smooth curve from PH°O(n). It is
a classical fact that the number of such representations for a fixed curve equals
the number of nonzero theta-constants on that curve.

It is easy to see that the set of all such cokernels 6 is parametrized by
the set of all quadratic forms on On( — 2) with values in O( — 3). Hence, each
m is defined by an element from r(52(O"(2)(x)On(2)))(-3). We denote by M
the dense open subset of this set that consists of such m, the support of 0 for
which is nonsingular. The group Aut(On( — 2)) acts on M. We denote the
factor set by M0. Each point of M0 is a point which is the class of a
quadratic form on On( — 2) with values in O( — 3) whose support is a nonsingular
plane curve in P2 . Hence, M0 is irreducible and open. It is clear that the
dimension of M0 equals n(n 4- 3)/2. Consider now a fibering over M0 defined
as follows. The fibre over a point (8, C) will be isomorphic to Gr°(\,PH°9(2)).
Here Gr° stands for a dense open subset of the Grassmann manifold
Gr(l,PH°0(2)\ which consists of linear systems Pl c PH°0(2) without fixed
points. It is obvious that such a fibering is irreducible over M0 . We denote
it by Gl. Finally, we consider the projective space P4 = PH°(Oc®Oc(l)).
Each point of this projective space defines with the help of the exact sequence

0-»F-»02->0(2)-»0

a surjective map A:g*F-»g*0(a,T), where g is the projectivized fibering
P(O@O(1)) from 2.2. As it is known, a mathematical instanton bundle of
rank 2 up to an automorphism is defined by the given data as the kernel of
the map A, i.e. E=kerL For the details of this construction we refer to
[1]. But the projective space PH°(Oc®Oc(l)\ generally speaking, depends
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on the curve C and one should add to the already constructed fibering Gl

one more fibering with the fibre isomorphic to P4 over each point of Gj . We
denote this fibering by G0. Note that the fibre over each point is nothing
but the projective space PH°(EndFc) = P4. Therefore, any point from G0

defines an exact sequence

0-+£-*g*Fv ->A*0((7,T)->0,

whose kernel, being trivial on the exceptional divisor in X, pulls down to P3

via R°f*E. The equality h°9 = h1E( — 2) = Q ensures that we obtain a
mathematical instanton bundle. Hence, we have obtained a map

The map / defines an irreducible family of mathematical instanton bundles of
rank 2 on P3 which is the image of an open irreducible variety of dimension
n(n + ll)/2. It is clear that i cannot be an imbedding if n>4. Thus, i has
fibres of positive dimension if n > 4.
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