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Goursat Problem for a Microdifferentlal Operator
of Fuchsian Type and Its Application

By

Susumu YAMAZAKI*

Abstract

We consider a matrix of microdifferential operators of Fuchsian type with respect to several
variables and obtain the Cauchy-Kovalevskaja type theorem for the Goursat problem. Moreover,
we prove the existence theorem in the framework of microfunctions under some assumptions for
initial values and the operator.

§0. Introduction

The Goursat problem in the holomorphic (or the real analytic) category
is treated by several authors and studied in depth. Moreover, C. Wagschal
[W] extended the problem to the case of a system of integro-differential
operators and obtained the Cauchy-Kovalevskaja type (namely, the unique
solvability) theorem. However, it seems that the study of the Goursat problem
is not so satisfactory from the microlocal point of view. Therefore in this
paper, we treat a microdifferential operator of Fuchsian type with respect to
several variables and consider the Goursat problem in the framework of
holomorphic (or micro-) functions.

The notion of Fuchsian type (with respect to one variable) was introduced
by M. S. Baouendi and C. Goulaouic [Ba-G] for a partial differential
operator. This includes non characteristic type as a special case, and the
Cauchy-Kovalevskaja type theorem was proved in [Ba-G]. Seeing this result,
N. S. Madi [M] generalized Fuchsian type to several variable case by the
name of "operateurs de Goursat holomorphes a plusieurs variables Fuchsiennes"
and obtained the Cauchy-Kovalevskaja type theorem for the Goursat problem
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in the framework of holomorphic functions. We remark that Y. Laurent-
T. Monterio Fernandes [La-MF] and Z. Szmydt and B. Ziemian [Sz-Zi] gave
different definitions of Fuchsian type with respect to several variables
respectively. On the other hand, after Baouendi-Goulaouic [Ba-G], many
mathematicians have obtained almost sufficient results in Fuchsian type with
respect to one variable. For example, H. Tahara [Ta] treated a Fuchsian
system in the sense of Volevic and proved the Cauchy-Kovalevskaja type
theorem in the complex domain. Further, as an application he obtained the
existence and uniqueness theorem on an initial value problem for a Fuchsian
hyperbolic system in the framework of hyperfunctions. Moreover, he proved
the existence theorem on a homogeneous initial value problem for a Fuchsian
microhyperbolic system of microdifferential operators in the framework of
microfunctions. On the other hand, T. Oaku proved the existence theorem
on an inhomogeneous initial value problem for a Fuchsian hyperbolic
microdifferential operator in [O2] (cf. [Ol]) and the uniqueness theorem under
the F-mildness condition (but without the hyperbolicity assumption) in [O4]
in the framework of microfunctions (cf. [O3]).

In this paper, we define a matrix of microdifferential operators of Fuchsian
type with respect to several variables as a natural generalization of one
variable case due to Tahara [Ta] or non-microlocal case due to Madi
[M]. Moreover, we prove the Cauchy-Kovalevskaja type theorem for the
Goursat problem in the space of holomorphic functions under the action of
microdifferential operators due to J. M. Bony and P. Schapira [Bo-Sc]. As
an application we solve the Goursat problem in the framework of micro-(or
hyper-) functions; we prove the existence theorem for sufficiently "regular"
initial data under suitable assumptions. Note that our solvability conditions
are weaker than that of M. Kashiwara and P. Schapira [K-Scl]. We hope
our results will serve as a starting point for studying the Goursat problem
for general systems in microlocal analysis.

We will show the plan of this paper.
In Section 1, we announce the main theorem on the Goursat problem in

the complex domain after some preparations.
In Section 2, we reduce the problem to a simple case.
In Section 3, we give the proof of the main theorem.
Section 4 is devoted to applications to microlocal solvability for the

Goursat problem under suitable assumptions.
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§1. Statement of Main Theorem

In this paper, we use the following notation: N denotes the set of natural
numbers (not containing 0) and jY0:=/Vu{0}. For a subset D of some
topological space, [D] denotes the closure. For natural numbers M.N^N,
and a linear space L we denote by Mat(M,7V;L) the space of matrices of size
MxN whose components are in L. Further set

Mat(7V; L) := Mat(M , N; L),

In addition, if L has a norm || ||, for P = (P(f*>v))^v=1eMat(M,N;L) we
set ||P||:=max{||F(^v)||; 1 </x<Af, 1 ̂ v^N}. For natural numbers d, neN,
we use coordinates T = (T l 5 ...,Td)eCd and z = (zl,...,zn)eCn. Moreover for
multi-indices y = (yl9 ...,yn) and a = (a1,...,arf), we set

N:= Z aj'

as usual. For vectors R = (Ri9...,Rd) and R' = (R'1,...,R'd)eRd, we define an
order relation as follows:

for ally,
def.

oR'^R and J?V^,
def.
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R'^RoR^Rj for ally.
def.

For a vector r = (r1,...,rd)eRd, we set [r]+ :=([rj + ,..., [rj+), where
[rj + = max{rj? 0}. We fix m(v) - (m^, . . ., H#>) and fc(v) - (*£>, . . ., fcj0) e /V0

d with
w(v)^fc(v) (Kv^JV) and set m = (m(l\ ...,m(jv)) and &-(fc(1), ...,^(]V))e(/V0T.
For any TV-tuple of (generalized) functions /(z, T) = '(/i (z, T), ...,/N(Z,T)), we mean

Set ld:=(l,...,l)eM For a vector R = (R^ ...,Rd)ERd with 0<^, we set

Let F c C" be a relatively compact open neighborhood of the origin and h0

a positive number. We set

We denote the sheaf of rings of microdifferential operators of finite order
(resp. of order at most v) by g (resp. ff(v)) as usual.

1.1. Definition,, Let P(z^\dz,dT) = (P(^v\z^\dz,d^v=l be a matrix in
Mat(Nir([UxB(R)']',g>

Cn+d))i that is, each P(fi'v) is a microdifferential operator
of finite order defined in some neighborhood of [_UxB(R)']. Then, P is said
to be of Fuchsian type with weight (k,m) (with respect to t-var tables) if it has
the following form:

where each P^'v) is a microdifferential operator with holomorphic parameters
T and satisfies the following:

1. The order ordP^v) of P(^} is at most |m(v)|-|a|;
2. There exist Pj[^v)(z, T ; 3J and P^v\z,T',dz) (0^a^m(v)) such that
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1.2. Remark. (I) The Fuchsian property above is invariant under any
coordinate change of z-variables, or more generally an arbitrary quantized
contact transformation for (z ; Q-variables.

(2) The Fuchsian type defined in Definition 1.1 is a natural generalization
of differential operators of Fuchsian type introduced by Madi [M]; that is, if
P is a differential operator of Fuchsian type in the sense of Definition 1.1,
then P is of Fuchsian type in the sense of Madi. Further if d=N=l, a
microdifferential operator of Fuchsian type is nothing but of Fuchsian type
defined by Tahara (see [Ta]).

Let J(v) = (r}v),...,rjv)) (l^v^N) be indeterminates and set

If P is of Fuchsian type with weight (fc, m\ we define the indicial polynomial
of P by

) := det

where </a(r
(v)):= f] J?aj(TJv)) with

Let A(z,i;dz) be a microdifferential operator of finite order with
holomorphic parameters T defined in a neighborhood of [UxB(RJ]. Let ceC
and set Z:={zeCw;z1=c}. Let O c F be an open convex set and assume
that O is /z0-E-flat in the sense of Bony-Schapira; that is, if zeQ, weZ and
h0\Zj — Wj\^\Zi—Wi\ (2^j^ri), then it follows that weOn!). For example, we
easily see that for any z0eZ the set {wECni\wl—z1\/h + \wj — zj\<r (2^j^n)}
is /z-Z-flat. Let /(z, T) be a holomorphic function defined on O x B(R). If
peN, there exists a unique holomorphic function g(z,t) on O
such that
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Then, we define (d2l~
p)E/(z,T):=g(z,T); that is,

where z':=(z2,---,zn). We write

formally. Then, applying the argument in the proof of Theoreme 233 of
Bony-Schapira [Bo-Sc] regarding T as holomorphic parameters, we find that

yeN0
d

is holomorphic on Qx /?(/?). Let j be a parameter with 0<j<l . We fix a
point z06OnE and set

Os:={^(z-z0) + z0eCn; zeO}.

We fix an arbitrary positive number CQ and set

*,:={/(z)60(nj; ||/||,:= sup{|/(zM(zr; zeOs}<cx)},

where ^P(OS) denotes the space of holomorphic functions defined on Os and

d&z):=inf {max \Zj-Wj\-, weCn\Qs9 z1=w1}.

Note that Xs is a Banach space under the norm ||/||s and that Xs> a Xs and
ii/L^II/L' f°r anY 0<j<j '<l and/eXs, . Moreover, by Proposition 2.4.3
of Bony-Schapira [Bo-Sc], we see that if the operator A(z,i;dz) above is of
order zero then A^ operates on Xs as a bounded linear operator; that is, there
exists a constant C such that for any/el^,
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Consider the following condition:

[A-lJc There exist a positive constant C>0 and a neighborhood W of [[/]
such that for any (z ; () e [ W} and ft e N0

d

|^z;C;/J + m(1)-*(V.,/J + ww^^
v = l

Note that if N=l, then [A-l] is a natural generalization of Madfs
condition which is similar to the "Fuchsian ellipticity condition" due to
Szmydt-Ziemian [Sz-Zi].

1.3. Theorem,, Let P be a matrix of microdijferential operators defined
in a neighborhood of\_Ux B(R)~]. Assume that P is of Fuchsian type with weight
(k, m) and satisfies [A-l]. Then, there exist constants r0 > 0 an d R with Q-^R^R

such that the following hold:

Take arbitrary h and r with 0</z</z0 and 0<r<r 0 respectively. Let O
be any h-^-flat open convex subset of V with dia O^r, where dia denotes the

diameter. Then, there exists a constant 8 such that for any R with Q-<R^R it

follows that for any holomorphic functions f(z,T) = t(f1(z,r),...,fN(z,i)) and
g(z, T) = ̂ (2,1),..., gN(z, i)) on Q, x B(R), there exists a unique holomorphic solution

u(z, T) = f(wi(z5 T)? • • • > UN(Z> T)) °f tne Goursat problem

and each MV(Z,T) ( l^v^TV) is holomorphic on

0<s

N d

where \m\ := ̂  ]T m^.
V = 1 j = 1

1.4. Remark. (1) Assume that P is a differential operator. Then
Theorem 1.3 is (essentially) obtained by Madi [M] (cf. [La-MF]).

(2) By definition (G.P.) is written as
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Pt\Ul,...,UN)=f,

Let us set

Q x £(£),. :=Q x B(R)n {^ = 0} (1

and regard each Q,xB(R)i as an open subset of Cn+d~l. Similarly we
identify £lxB(R)n{i;1 = ---=T;d = Q} with O. Let gVmij (l^v^N, 1^/<J,
0^yXw|v) — ̂ [v) — 1) be holomorphic functions on £lxB(R)i with compatibility
conditions

(CC)

Then we see that the Goursat problem (G.P.) is equivalent to the
following problem:

Indeed, for g(z,T) = '(g1(z,T), •••,gAr(z,i)) it is clear that the data

satisfy (CC). Conversely, for any

. = tf x

which satisfy (CC), let us set

where

ATv - /V0
d\{a e N0

d; a ̂  m(v)

and
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a1

*

with aI-:=(ai,...,a,-_1,5,aj+1,...,a,,). Then we easily see that each gv(z,i) is

holomorphic on fi x 5(.R) and satisfies

Note that for example if d=2 or 3, then each gv(z,i) is written explicitly
as

W<v> - ik<v> - 1 „ (-7 T \ lfl<v) - Jk<v> - 1 „ (r, >r \

or

.T '

+m 'v)"yv>~1 '
a3!

/ ^ ai a2
t i L 91 Z

a
2 3

-^
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respectively.

1.5. Example. (1) Let us set m(v):=(2, ...,2) and k(v):= (1, ..., l)eNQ
d

and consider

7 = 1

Here

r;*(0)),

and /jveMat^W;/?) denotes the identity matrix. Then, P is of Fuchsian type
with weight ((k(l\...,k(N\ (w(1), ...,mw)) and

Hence if each eigenvalue of (tToC^^O; 1,0, ...,0))fJ=1 is not in
we see that jP satisfies the condition [A-l],

(2) Let us choose N= d and set m(v) := (0, 0, . . ., 0, 2, 0, . . ., 0) and Jt(v) := (0, 0,
v

. . ., 0, 1, 0, . . ., 0) e N0
d (1 < v ̂  d). Consider

where J^z,!;^), ^//z, T ; 3Z), C0-(z, T ; 3Z) and D^z,!;^) are microdifferential
operators with ord Atj , ord C0- ̂  0, ord Btj ^ 1 and ord Dtj ̂  2 respectively. Then,
P is of Fuchsian type with weight ((k(l\ ...,k(N)), (m(l\ ...,/w(N))) and

^zjf^ + ̂ -tfV.^

Hence if each eigenvalue of a0(Aij)(0,0; 1,0, ...,0) is not in {/eZ;/^0} and
each (cr0(^fj))f,j=i i§ an upper triangular matrix, we see that P satisfies the
condition [A-l].
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§2. Preliminaries

In this section, we will make some reductions.
Considering

we may assume that g = 0. Further, if P is of Fuchsian type with weight
(k,m) and fc/w, then define Pl by

mi-ki |TJ

j| ^.mjv - kN

Since a direct calculation shows that P± is of Fuchsian type with weight (m,m)

and J^Pl(z;4;^, ...,^) = J^P(z;C;j5 + 7i7(1) —^ (1\ ...,j? + m(JV) —fc(N)), we may assume

that k = m. In this case, we can write P as

and for simplicity set

Moreover, P can be written as P(z,i,dz,dr) = Q + Q' + A, where

e'("-v)= I
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Here Q(^\ g'^v) and A(^v} are microdifferential operators with
d

ord 2f« v) ̂  0 and ord A(^ ^ |m(v)| - |a|, and (5Ti)a denotes O (^T/'. Further,
j = i

2 satisfies [A-l]. Indeed, we have only to remark the following:
(1) We can write

with
(2) Since ordP^!'v)^0, we can regard ildP^\z,i\dz) as included in

(3) We have

JT^CT-M)
TiiidTu = < J

I J t l [(TA.-lX^ii) (i=Jl

and

Let @(B(R) ; 1^) be the set of 1^-valued holomorphic functions defined on
B(R). Then, we easily see that

0(B(R) ; Xs) = {/(z, T) 6 (P(Q, x

sup{|/(z, T) I d's(zr ; z e 0, , T e ̂ ( '̂)} < oo}.

Therefore it follows that for any 0<5-<1

Hence Theorem 1.3 is reduced to the following theorem:

2.1. Theorem. Let P be a matrix of microdifferential operators ofFuchsian
type with weight (m,m). Assume that P satisfies [A-l]. Then, there exist
constants r0>0 and R with Q<R^R such that the following hold:

Take arbitrary h and r such that Q<h<h0 and 0<r<r0 respectively. Let
Q be any h-l^-flat open convex subset of V with diaO^r. Then, there exists
a constant 6 such that for any s0 and R with 0<s0<l and Q-<R^R it follows
that for any f(z,i) = \fi(z,i),...J^z9i))E0(B(R)iX80)®

N, there exists a unique
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holomorphic solution w(z,i) = f(w1(z,T), ...,WN(Z,T)) of the Goursat problem

(G.P.) P*u=f.

Moreover, for any s with Q<s<s0, each wv(z, T) (l^v^N) is holomorphic
on £lsxB(R), where R' is an arbitraty vector which satisfies O^R'^R and

In fact, if we prove Theorem 2.1, we see that u(z, i) is holomorphic on

/ f - _ Ml\

0 < s o < 1 0 < s < s o \ I j = 1 J /

0 < s < l

by the uniqueness. Hence we obtain Theorem 1.3.

Let u(T)= £ war
a and U(T)= ^ UJ* be formal power series with

ae/V0
d <xeN0

d

indeterminaties r=(7T
1,...,rd), where u(XEXs and C/a>0. We say that U(T)

is a majorant of u(T) if ||wa||^C7a for any a. In this case, we write
u(T)«U(T).

Define

;*,:= 11 = Wa
ae/Vod

d R
where $>R(T) denotes J~[ - - — . Then, we see the following (see Wagschal

j=iRj-Tj
[W] for details):

1. E(B(R)iXs) becomes a Banach space under the norm

2. if Q~<R^R' and 0<s^s'<l, then it follows that E(B(R')\XS)
c:E(B(R)iXs) and

3. as a set
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Hereafter, we also use the notation

for

We prove some results about Bony-Schapira's action on E(B(R)iXs):

2e2c Proposition. Let A(z, T, ;3Z) 6e a microdijferential operator of order
at most v with holomorphic parameters T defined in a neighborhood of
{UxB(R)\. Then, there exists a constant r0>0 such that the following hold:

Take arbitrary h and r such that Q<h<h0 and 0<r<r 0 respectively. Let
O be any h-T^-flat open convex subset of V with diaO^r. Then, there exists
a constant CA such that for any s' and R' with 0 <s' < 1 andQ^R' ^ R respectively,

(1) if v>05 then for any 0<s<sf and u e E(B(R) ; Xs) it follows that

(S S)

(2) if v^O, then for any Q^s<s' and uzE(B(R)\Xs) it follows that

Proof. (1) Since A is defined in a neighborhood of [UxB(RJ]9 we can
find a relatively compact open set U' and a vector R0 such that [C/]€t/',
R-<R0 and A is defined in a neighborhood of l_U' xB(R0)'j. Thus, there exist
positive constants K and M such that for any j^v

supp/z, T ; 01; (z, 0 e [ t/1 T e Wo)]} < ̂ Mv ̂ (v -»!,

where 1Z A fa t ; Q denotes the total symbol of A(z, T ; 3Z) and each A fa T ; 0
j^v

is homogeneous of degree j with respect to (-variables. Thus by the Taylor
expansion we can write
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Therefore, by Cauchy's inequality for any j^v we have

j

(v-j)l.V
Set

Then, we easily see that

Note that taking 0<r0<l/M, we can assume that Bony-Schapira's actions
of all the microdifferential operators under consideration are well-defined under
the assumption of Proposition 2.2 since we can take a constant M in common
(see the argument of the proof of Lemma 2.3 below). We remark the following
lemma:

2.3. Lemma, (cf. Oaku [O2]). There exists a constant C such that for
any 0<s<s'<l, j8e./V0

d and veXs,, it follows that

Proof of Lemma 2.3. Since ord5zl~M (^^0, we have

by Proposition 2.1.2 of Bony-Schapira [Bo-Sc]. Denote the total symbol of

32l~M{/?) by X B(^j(z\Q where each B_j(z\Q is homogeneous of degree —j
j z o

with respect to (-variables. Then we may assume that for anyj'^0
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Thus by the proof of Proposition 2.4.3 of [Bo-Sc] we can find a constant
C'>0 (not depending on s and s') such that for any zeOs and

1(3
o

Hence, setting Js*(z):=inf{lzi~M'il;M'eC"1\fis. , z — W; (2<y<«)} and z':=(z2,
...,zn) we have

I —El £
 v + * '—dwi

«f

Setting wi:=z1+2(wi—zl) for any w with 2|z! — wj^rf^z) we have
(#! , z') e [Qs^]. If 2|z7- - Wj\ ^ d's{z) (2 <y ̂  n\ then we have (z1 , z' 4- 2(w' - z')) e [Os,].
Therefore by the convexity of [Os,], we have (w1,w')e[Qs,]. Thus it follows
that 2^;(w1?z')^j;(z). Hence

2v+c°KC'vl

Setting c' := dis(z0 , C"\fi), we easily see that dis(^s, C"\OS.) ̂  c'(s' — s). Therefore
it follows that for any zeOs

2v+c°KC'vl

^dfrnw-s
Hence we may take
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2v+c°KC'vl
C !— .

n

End of Proof of Proposition 2.2. By definition, for any w(z, T) = £ wy(z)Ty

");Ar
s.) we have

formally. Hence remarking

by Lemma 2.3 we have

Z 7r~77 Z
P

Thus we may set

CA:=C9Ro(R).

Proof of (2) is similar. D

2.4. Remark. For the argument to the proof of Proposition 2.2, we may
assume that if we take r0>0 small enough, then Bony-Schapira's actions of
finite numbers of microdifferential operators under consideration are well-defined
on Q under the following assumption:

O is an /j-H-flat open convex subset of V with diaO^r for some h and
r such that Q<h<h0 and 0<r<r 0 .

Thus hereafter, we often omit the argument that Bony-Schapira's action
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of a microdifferential operator in question is well-defined.

§3= Proof of Main Theorem

In this section, we prove Theorem 2.1. Note that our method of proof
is similar to that of [M] and [O2]. We inherit the notation and assumption
of preceding section.

First, we prove the following:

3.1. Proposition, There exists a constant r0 > 0 such that for any constants
h and r with 0 < r < r0 and Q<h<h0, the following hold:

Let Q be any h-lL-flat open convex subset of ¥ such that diaO^r. Then
there exists a linear operator J^Q such that

(1) for any R', s and a such that 0-<R'^R, Q<s<l and

: E(B(R') ; XS)®
N -> E(B(R') ; Xs)®

 N.

0 '
Further there exists constant CQ (not depending on R', s and a(v)) such that

(3.1)

R',s

(2) 2i • ^Q = ̂ Q • 2x = id : EW) ; XS)®
N -> E(B(Rf) ; XS)®

N.

Proof. Take a relatively open set W such that [ W] C W and Q is defined
on [W'~\. Shrinking W and W if necessary, we may assume that for any

' and

(3.2) |^Q(z;C;/

There exist positive constants K and M such that for ally^O, 1 ̂ /x, v^N and

(3.3) sup{|e^'_v)/z ; 01; (*; 0
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where E e^_v)/z;() denotes the total symbol of g<f'v) and each 2^_v)/z;0 is
j>0

homogeneous of degree —j with respect to ^-variables. For any /(Z,T),

u(z, T) e E(B(R) ; ̂ s)
e * we write /(z, T) - S/^(Z)T^ and t/(z, T) - Ew^z)^ respectively.

P P
For any j8e/V0

d we define Q/z^JeMat^;^^];^^))) by

(3.4) Qf-*\z ; 5 J := £ fi?'v)(^ ; SJ
0^a^m(v)

Then, the formal calculation implies that

Thus the equation QIu = fis equivalent to

N

for any \L and j8. Since det((T0(g^'v))(z;0) = ^Q(z;C;j8), the assumption (3.2)
implies that each Qp(z;dz) is invertible on [W'~\. Set Sp(z ; 3Z) := Qp(z ; 3Z) ~ A

3.2. Lemma. T/zer^ exw/ constants Kl and M1 such that for all j^O,
and

(3.6) supflStfL'fc ; 01; (z ; C) e MIP + *d)

Here X S^^<z;0 &/ioto the total symbol of S(jf'v\z ; 5Z)
j^o

w homogeneous of degree —j with respect to ^-variables.

Proof of Lemma 3.2. Set /^(z ; Q := o"o(6/?)(z J 0~ ^ There exists a constant
C>0 such that for any 0^a^m (v ) and peN0

d

(3.7) W«l<A]8 + Um(v).

Let A("-v)(z;Q be the (^;v)-th cofactor of a0(Qp)(z ; Q- Then by (3.4) and (3.7)
there exists a constant C">0 such that
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sup{|A<"->(z; Ql; (z; 0 e [ &"]} ^ Yl C'(P + M""'"-

Hence by the assumption (3.2),

(3.8)

Now, for a microdifferential operator A(z;dz) of order zero defined in a

neigh-borhood of [_W~\ with the total symbol £ >4_/z;3z) where each ^_7{z;Q

is homogeneous of degree — / with respect to (-variables, N^\A ; p) denotes
the formal norm in the sense of L. Boutet de Monvel and P. Kree [Bou-K];
that is,

2{2n) 7'

where /o is a parameter.

3.3. Sublemma. There exist positive constants Ll and Cj such that

Proof of Sublemma 3.3. By Cauchy's inequality and (3.8), we have

\c

where c' is a some constant depending only on W and W . Thus it follows that

2C"
«

'" ; / \c'1
22"C«
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Thus we may set Ll:=22nC/C and c^^c/2. D

Proof of Lemma 3.2 continued. Next, set

Rfe; 3Z) := IN - Qp(z; dz}R^(z; 3 J e Mat(7V; F([ W]; <f <.( -1))),

where IN denotes the identity matrix of size NxN. Therefore denoting the total

symbol of R^v\z\dz) by "L ̂ >/z;0 where each R^faQ is homogeneous
j > o

of degree —j with respect to (-variables, for any y>0 we have

There exist constants K'>0 and L'>0 such that for ally:

(3.9) sup{| ̂  £ e£-v)/z; 01: (z; 0 e [ HH} < *'*/>/!.

3.4. Sublemma. There exist positive constants L2 and c2 such that

vM"I - •

Proof of Sublemma 3.4. Take M^€ ^" C PF'. By (3.8), (3.9) and Cauchy's
inequality we have

cy'

\

I G?-vi (^ ; 01; (* ; 0
a^m(v) /

Thus it follows that for anyy>0

1 \M/ 1 \
I ^7^2
P + |y| \(c ) /

p ^ O

p ^ O
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Therefore, setting Lff:=2n~1NKrLl we have

fSfcljtz ; C)|; (z ; Q e [ FT|} < o!0L" - — 7! .
\c / \(c

Since we may assume that c'" ̂  1 and (c")2 ̂  2Af , we obtain

L"
«—

22nL" « / 2M V« y I 1 /)P

Thus we may set L2:=22nL"/n and c2:=(c")2c"7(2M). D

of Proof of Lemma 3.2. By Sublemmas 3.3 and 3.4, we see that if
pQ is a sufficiently small positive constant, then

(3-10)
ATOr'^oK.

Since we see that 5^= £ RpRpj, setting Kl :=4L, by (3.10) we have
y=o

Thus setting Ml:=2n/(p0
2) we have
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Hence the proof of Lemma 3.2 is completed. D

End of Proof of Proposition 3.1. Let us take ro^mmlM'^Mj"1}. Then,
by Lemma 3.2 we see that Qp and Sft are well-defined on Q with

diafi<r0 . Moreover, the equation Z Q(^v)i:uv,p=fn,p *s equivalent to u^ =
v = l

N

Z Sf'^s/v,/*- Thus if we set JPQ by
v = l

v = l

then we have

Thus we easily see that all the properties are satisfied. Q

Next, we prove the following:

3.5. Proposition. There exist constants r0>0 and R with Q^R^R such
that for any constants h and r with 0<r<r0 and 0</z</z 0 , the following
hold:

Let O be any h-^-flat open convex subset of V such that diaO^r. Then^
for any R and s such that Q^R'^R and Q<s<l, the following equation is
uniquely solvable on E(B(R');XS):

(3.11)

Precisely, the operator (2 + 2')i is invertible on E(B(R')iXs).

Proof. We use the notation of the proof of Proposition 3.1. For any

/, ueE(B(R)iXs)®
N, we write f ( z , T) = ^fp(z)^ and u(z, T) - ^up(z)^ respectively.

Thus, by Proposition 3.1, the equation (3.11) is equivalent to
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(3.12) (I+

Set v:=QIueE(B(R);Xs}®N. Since

I Z
l . v = l O^a^m*1) i = l

by Propositions 2.2 and 3.1, there exist constants CQ and C/£v) such that

ii(e'^y/o*£cQ Z z I JWIKII*'..-
! ,v=l O^a^mW i=l

Thus, if we choose ^ as small as

CQ z z ZW/^QZ z zA-c/-v)<i ;

we can see that I+Q'^Q is invertible on E(B(R');XS). Hence we see that
l is the inverse of (Q + Q')*. D

Now, we are ready to prove Theorem 2.1. Choose R as in Proposition
3.5 and take Q-<R^R. Recall that the equation under consideration is
the following:

First we will prove the existence of a solution M(Z,T). By Proposition 3.5, the
problem is equivalent to

U =

(recall that ^ + Q'=((2+6')z:) )• Set

(3.13) uf.

Moreover, set
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> 0
«o

0
(3.14) V= •{

0
Then we easily see that v0€E(B(Rr);XSo)®

N and t>pe £(£(#) ;^s)
eiv (peJV)

for any 0<s<s0 and 0-</?'<;^. Since each (dtr)m<v)~°I (0<«<w(v)) satisfies
the assumption of Proposition 3.1 in the case where N=l, we can write

(3.15) (atT)" = «?rn(v)-°'(atT)m(v', where jr"(v)-«:=^trw-..

Hence for 0^a<w (v ) we have (dri)"vI,tV = 3>?"n™-'LvptV. Thus it follows that

(3.16) !>,.„= -(atTr(l" Z Z
/ , v = l 0<a^m(

By Propositions 2.2 and 3.5 there exists a constant Mt such that for any
s0 and Q-<R"^R' it follows that for any veE(B(R");Xs)®

N

(3.17)

1 0 (5tTf

,, s m n
(drf U

0 (dTT)"

R",s
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We will prove that there exists a constant M2 such that for any Q<s<s0

and Q<R"^R' we have

(3.18)-^

Since v0eE(B(R');XSo)®
N, by (3.17) we have

Thus we have (3.18)-0. By Proposition 2.2, for any s<s'<s0 and

we have

(3.19)

where each C^'v) is a constant not depending on s, s' and R". Hence we

obtain

Note the following lemma:

3.6, Lemma8 The following equality holds:

where a:=(a^, . . . ,<T1 ? m«v )_ a i , ...,odtl,...,ad^^ J6[0, l]lm ( v ) l-W

Proof of Lemma 3.6. We have only to remark that for any yeN0
d

[0,1]MV>|-|«I

n
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End of Proof of Theorem 2.1. Choose M2 as

M ^ y y c(i'v)e|m|.

Then, by (3.19), Proposition 2.2, Lemma 3.6 and (3.18)-0 we have

N

N

Z _x|»«v)|-|«|
( , v = l 0«a<ml1') 0~J"

N

= Z Z

Z I
( , v = l 0^a<m

N

; Z Z
J , v = 1 (Xa<m

7 = 1

Thus we have (3.18)-1. Now assume (3.18)-p for ape/Vand take arbitrary s and
s' with 0<,s<5'<50. Then, by (3.19), Proposition 2.2 and Lemma 3.6
we have

\v.p+l,H\\R".s~

N

(3.T)""0 z
!,v = 1 03

N

"i Z Z
J , v = l 0^a<^

Z -^(li,l) r\d A(l,v)( 7~- fl \ ^m(v>-a,,
^ Q + Q' ^a vz' L ' uz)l.^' up,v

a<m< v )

Tld^^'v)(z, T ; d2k^m(v)~ai;o,v
|(V)

^",5

R",s
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Z I ,, J^-Mi , v = i o««<m<*> (s —sy ! ' '

N

Z Z

N

Z Z

Nz z
Hence, choosing s'—s=(s0—^)/(^ + l) we have

da

Hence we can prove (3.18)-(/7 + l). Set d:=i/(MlM2) and take an arbitrary
d

vector /T which satisfies Q-<R"^Rr and f] /?;<5(j0-j)H. Then it
j = i

follows that
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l l l / l l l T s X

<oo.

Thus there exists v(z,i)EE(B(R");Xs)®
N such that E ^- converges to v as p

j=o
tends to infinity in E(B(R")',XS)®

N. Set

o #**
Then it is obvious that P^u =f holds and u is holomorphic on

, . f f
y I O S X < T 6 ,

<s<so \ I0 < s < s o \ I j=l

Hence the existence is proved. Next we will show the uniqueness. Assume
that u(z, T) e E(B(R") ; Xs)®

 N satisfies PEu = Q. Then, by the preceding argument
for some positive constant C we have

for any 0<5<50<1 and /?e7V. Therefore, choosing M1M2H R'j<(s0— s)\m\
j= i

and letting p tend to infinity, we see that u = Q in some neighborhood of
(Z,T) = (ZO,O). Thus the uniqueness follows. Therefore the proof is complete.

D

§4. Applications

Let M be Rn
x x Rd

t with its complexification AT:=Q x C?= Yx Cd and nM

the canonical projection r^JT^M. Set N:=Rn^Mn{t = Q] <z M, L:=X
n (Im z = 0} = fl" x Cd, JJ := TL*^^ T$Yx Cd and /I := T£Xn A. We denote the
sheaf of microfunctions on T$X (resp. T$Y) by ̂ M (resp. ^N) as usual. Further,

be the sheaf of microfunctions with holomorphic parameters on A ; that is,
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where \IL denotes Sato's microlocalization functor along L and orN/Y denotes
the relative orientation sheaf (see [K-Sc2] and [S-K-K]). The sheaf &M of
hyperfunctions on M and the sheaf 0$(9L of hyperfunctions with holomorphic
parameters on L are defined by 38 M :=^M\M and 38 QL :=(%(9L\L respectively. Let

p be a natural mapping NX T^X3 (x, 0 ; >/— !«£, dx) 4- <jj, rfr») i— » (x ; >/— 1<£,

$Y. Then, we have the following canonical morphisms:

M
^x) ~~* N •

Set p0:=(Q;^/—Idx^eT^Y and assume that P(x,f,dx,dt) is a matrix of
microdifTerential operators of Fuchsian type with weight (&, m) defined in some
neighborhood of p~l(pQ\ then the following morphism is induced:

where pffiM^xi* x)po denotes the stalk at/?0 .

Consider the following condition:

[A-2]. det(a|m(v)|(F^'v))(z5 T ; C, if)) = i*P(z9 T ; C, 17) for a function P (K:=

e A^Q^) which satisfies the following condition:
There exist positive constants h0, M and vf with v^l (l^i^d) such that

P(z, t i ^ r j ) never vanishes on the set

(4.1)

\lmzj\+
j= l j=2

4.1. Example. (1) Let P be as in Example 1.5 (2) with </=2. Set

and suppose that 621(z, T;0 = fif2i(
z>T;0 = 0- Then
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Hence if >h2 + T2(&11(z,T;O/1 +</11(z,r;0) (resp. ^2
2 + *i(M^;C>?2 + ̂ 22fe

i;C))) is hyperbolic with respect to rjl (resp. *72), then we see that [A-2] is
satisfied (cf. Kashiwara-Kawai [K-K]).

(2) Condition [A-2] is satisfied if

(4-2) P(x, f ; & ff) = ft n*> f>t>1i>-> 1&
i = l

where each Pt satisfies the following condition: there exist positive constants
A0 and Mt (l^i^d)

such that /^(z, / ;£,*/!,- • • j j f j ) never vanishes on the set

/ X llm ZJ\ + E llmKj/Ci)! + 'l |Im(^-/C
V / = l j = 2 j=l

4.2. Theorem. Assume that P satisfies [A-l] and [A-2]. Then, for any
micro functions with holomorphic parameters

(4-3) /(*, 0, «(^ 0

« N-tuple of microfunctions

u is a solution of the Goursat problem

x, t;8x, Bt) u(x, f) =f(x, t\(G p }

4.3. Remark. The uniqueness of u(x, t) in Theorem 4.2 will be discussed in
a forthcoming paper (cf. [O3] and [O4]).

Proof of Theorem 4.2. We may assume that g = Q. We remark that the
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method of proof is similar to Oaku [O2].

Step 1. Set

and choose constants h and c such that

(4.4) Q<h<min{h0/(4n2), 1/2}, 0<c<min{r0,A0},

where r0>0 is a constant determined by P and W by Theorem 1.3. Then,
setting

(4.5)

we see that O' is /z-Z-flat, dia Q' < r0 and Q' cz {z e C" ; |z| < A}. Choose constants
£ and #! such that

(4.6) Q<a<a1<(2n2-l)c.

Then we have {zeCni\z\<al} c O7 by (4.5) and (4.6). On the other hand, by
Theorem 2.2 of Kataoka-Tose [Kt-To] and the argument to the proof of
Theorem 3.8.1 of Kashiwara-Kawai-Kimura [K3], we can find holomorphic
functions F(z,i) = \Fl(z,i\ ...,FN(z9i)) defined in a complex neighborhood of

(4.7)

"
(z,T)eC"+d;|Rez|, |ReT|</z l 5 | ImT|<A2 , h £ |Imzj|<2(«

j=2

l } t\<h1}

with some constants h',h2>Q and Q<h0<h1 such that on p~~l(p0)

\spM(b(FN)) /

Here ^M'-^M^^M ~^^M denotes the spectral morphism from the sheaf of
hyperfunctions to that of microfunctions and b(Fv) denotes the boundary value
as a hyperfunction of Fv . Set
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D:={(x,t)eR"+d; \x\<hlt |f|<M,

G:={(y,s)eR"+d; \S\<h2, h £ \y)<(n-\)yi},
j = 2

G'~{(y,S)eRn+d-\S\<h2, h £ \yj\<2(n-l)yi},

Then, we have

Therefore, since D + ̂ /—lGh. is a Stein open set we can decompose F into

(4.8)

with

(4.9)

Since an A^-tuple /' is holomorphic in a complex neighborhood of D by (4.7),
(4.8) and (4.9), we see that an TV-tuple / is holomorphic in some complex
neighborhood of

(4.10) (D + ̂ lG)u{(x,t)€R"+d; a^x}^, \t\<h,},

and on P~I(PO)

\

Step 2. Set

spM(b(/,)) \: H*(/»)) /
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D:={xeRni \x\<hi}

(4.11)
j=2

O := fl' n (Rn 4- yf^lG) = O' n (D + ,/^G).

Then, by (4.10) and (4.11) we see that Q is A0-S-flat, dia °<ro and an AT-tuple
/is holomorphic on

(recall that ld:=(l,..., l)eNd). Consider the following:

Thus, by Theorem 1.3, there exists a constant 6 with 0<(5<1 such that there
exist a unique holomorphic solution u on

0<s<

where

3. Take any ;c0 with a^ lxol^a j . Note that/(z,t) is holomorphic
at (z, T) = (%0 5 0). Hence we can choose sufficiently small constants d and Tl with

such that

and

/is holomorphic on fl" x {T e C1 ; |Tf| < 7\

Set

then we see that O" is /z0-Z-flat and S' nO" c OS1 for some 0 <51 < 1. Therefore,
by the argument to Theoreme 2.5.1 of Bony-Schapira [Bo-Sc] P^u — P^u is
holomorphic on O" xi?((5(l— 5'1)'

m|ld). Since P^u=J is holomorphic on
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^y, P^u is holomorphic on Q" xB(mm{Tl9S(l-s0)Wld}). Thus by
Theorem 1.3, there exists an TV-tuple u' of holomorphic functions on a
neighborhood of Q' x {0} such that

, a = P u

By the uniqueness of u', we have u' = u on a neighborhood of (QnQ")x{0)
because jc0eQ". Since {xeRn\ a^\x\^a^} is compact, it follows that u is
analytically continued to some neighborhood of

(4.12) u,:= U
0 < s < l

with some T2 and

Step 4. Fix arbitrary or = (a l3 ...,crd)e{ — 1, l}d. For simplicity, set

D':={(z,t)€CnxRd; |Rez|<fl l9 \lmz\<a'} c Cn xRd.

Then, by the result of Step 3 we see that there exists a positive constant dl such
that u is holomorphic in some complex neighborhood of

( d / d \l/ |m| L n

(4.13) \(z,t)ED'; X \ffjVJtJ\<T29Imzl>dl( % \VjVjtj\\ + - - % \lmzj\
I j=l \ j=l / / l - l j = 2

d / d \ l / |m| /, n

X |<77v^<r2, Imz^aJ [1 I^VJ ) + - 7 X llmz
j=i \ j=i / n-lj=2

u
7 = 1

Choose positive constants Ml and r0 such that

max(|/w|/iAf, 51/a'}<M1,

0<r0<min{r2,l},

(4.14) exp(M1r0)<2,
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and set

7 = 1

where y':=(y2, • ••>J ;
n) and £>0. Let (^(r) be a real valued real analytic

function in a neighborhood of {TeR; 0<7Xr0} satisfying for some h">0

(4.15) for any 0<7Xr0,

— ) > 0 f o r a n y

Hence there exists a small constant ct such that if 0 < T< cl or T0 — c1< T< T0,
then

(4.16)
Set

7 = 1

/ ' \

9l(yr, 0 := (9*1 £(0+<p2 £0'5 0) exP Mi L a/V/ •
V 7=1 /

Then we see easily see that

where

/ «* \
y;, 0 + exp Af t ^ ^/7-

\ j=i /
i /M-i

Moreover by (4.4) and (4.14) we have
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/ Mjd Y/M-i \
(4.17) A>M t tf (,/,0 + 7-7 I <VA I/I

\ M V/=i / /

>M

and

«
(4.18) £

?im°T e

Cfc.-

" 1\ "*

j = 2 2

fl a
TE

dy i
n-l

^ 2 2

By (4.10),/is holomorphic in complex neighborhood of

(4.19)

4.4. Lemma. Assume that u is holomorphic in a complex neighborhood

of

d

(z,t)eD'; Q<ajvjtj (l^j^d), 0< ^ crjvjtj<T0, Im
j = i

Then u is analytically continued to some complexification of

(z,t)eDf', (KVjVjtj (!</<£/), 0< Z vjvjt
;=i

6>/ Lemma 4.4. We can apply the argument to Lemma 4.3 of
Kashiwara-Kawai [K-K]. Set

f d

V:=<(z, £)€&', Q<ajVjtj (l^j^d), 0< £ ajvjtj
(. j=i

We regard Kas a real analytic manifold of dimension 2n + d— 1 with coordinates
x:=Rez, j:=Imz and t. Let F be a complex neighborhood of V and set
j/F:=//°(vF(0p)), where VF(*) denotes the specialization functor along F
(see [K-Sc2] and [S-K-K]). Since u is analytic on

, 0< ^ vjvjtj<T0,
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it follows that u defines a section of J/V®N on the set

, 1 , c > 0
dy

dz1 ' v C'dz,

' dz' dz' dzi

Indeed, for any (x,y9t)eV, C'eC""1 and c>0, choosing a positive constant
E' small enough we have

Tm I 7 —F'( / — Mr 4- 2<T _LiM — m^v'^-p'Tmr A)J.111 I ^ 11 o ^-v/ A^C (^ Z.\<3 , /^ u/e INK i^ G ililL, , Ijj

rM> + 0((e')2)

Thus we see that each boundary value b(wv) ( l^v^TV) as a hyperfunction is
well-defined. Hence, denoting by SS the singularity spectrum of a hyper-
function, we obtain that SS(b(#v)) a Z, where

Z:={(x^/;V^fe1 + 2<^,<^> + ̂
L dz dt }

We see that P is defined on Z, and by (4.17) we have

Moreover, by (4.18) we have
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and

%Im
.Ci

^ u*r£

~dZj

Im -2^f-
dz Sx

= 0 (2 </<»).

Hence by assumption [A-2], P is invertible on Z. Further by (4.19), we
have

= Q.
I 1 ' .. I

\ spF(b((PEwy)

Thus it follows that

-0.

On the other hand, it is easy to see that for any

4™} =o.
HW

Hence the proof is complete. D

Step 5. Set

a ( ;< -
. - jz3 re , ^(7^- ^7^ , <LI°J

VJ'J< o,

/ ** \ i/H
Imz^dA X (j^,

\ j=i
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where

d
f\ ^ X""1 + ̂  T

J = l

Note that by (4.13) and (4.15) u is analytic in some neighborhood of

Wa u {(z, t)ED'; H tj = 0, Irn zl — (p*(Im z', t)}. Choosing s sufficiently large, we

see that Z° = 9. We will show that Z£
ff is compact.

d d

Case 1. If 0< £ ajvjtj<c1 or T0-c1< I, 0jVjtj<T0, then by (4.16)

d \ / d \ I /M

Hence (z, t)^Z£
CT.

2. If a < |Re z| < a1, then (z, T) £ Z/ by definition.

3. Since Mla'>dl by (4.14), we can take 0" as Mia>Mia
ft>di.

Therefore, if a" <\Imz'\<ar, then we have

// d \ i /H \
z', 0 > M, X (7^0 + /iA |Im z'|

\v=i / /

Hence (z,

1/H "+/z Z i lmzji-
j=l

4. Since 2A<1 and 2(51r0
1/lwl|<a' by (4.4) and (4.14), we can choose

a"' such that ha' + d^ r0
1/|m| < 0'" < a1. Therefore, if Im z1 = (p°(lm z', t),\Rez\<al9

\Imz'\<a' and a'"Imzl<a', then

d \l/ |m| t n

I d,vA +— - I |Imz/
=i / n-lj=2
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Hence (z, t) e W° ; that is, (z, t) £ Z/ .
Thus we see that Zf is compact. Therefore, by the "sweeping-out" method

we see that ft is analytically continued to

j(z, 0 e D'; 0 ̂  (7,-v/; (1 </X </), 0 < £ ^v/,. <:
I 7=1

7 = 1

d \ / / a \ I /H
Z a,vA + MJ Z vjvjtj) +nh

7=1 / \ \J=1 /

For any e>0 and T' with Q<T'<T0, we can find <p1 as (p1(T')<e. Thus,
we can conclude that u is analytic on some complex neighborhood of

jz ,f e , .̂v/,. ^7^ , <_L ^j

/ d \ / / d \ I /H
Imzj >exp( J] OjVjtj)( ^i I Z a j v j t j }

\7=1 A \7=1 /

On the other hand, there exists a sufficiently small positive constant e such that

{(jc + x/—1(^,0, ...,0), OG C" x/?d; |x| + |^|<6, 0<5'<e} c: {/! u (J C/CT.

Thus, by Theorem 3.1.1 of [S-K-K] Chapter I each boundary value b(wv)
(l^v^N) as a hyperfunction is well-defined at (x,t) = (Q,Q). Further, it is easy

to see that u(x,t):=\sp^ti1)),...9sp^tiN)))Epffi This com-

pletes the proof of Theorem 4.2. D

4.5. Corollary. Let P be a matrix of an analytic differential operators of

Fuchsian type defined on a neighborhood of (x, t) = (0,0). Assume [A-l] and

the following:

N

[A-3], det(cr|m(v)|CP(M'v))(z, T ; (, *?)) = T*P(z, T ; (, rj) for a function P (k\= £ /c(v)

v= 1

e/V0) satisfying the following:

For any £ * e jR\{0}, £/?ere exists & e GL(w; 1?) swc/z f/zdtf 0(1,0,..., 0) = £ *
f/zotf P(z, ̂ ; ©Cj ̂ ?) satisfies the condition in [A-2].
77ze«, for any hyperfunctions with holomorphic parameters
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(4.22) f(x,t),g(X,t)e(@VL\M)®N

there exists an N-tuple of hyperfunctions

such that u has t as real analytic parameters and is a solution of the Goursat
problem

{G p v , t;dx, dt) u(x, t) =/(*, t\

Proof. We may assume that g = Q. By the flabbiness of the sheaves of
microfunctions and hyperfunctions and by (4.22), we can find a representation

where each TV-tuple Fj=Jj+fj is of type (4.8). Moreover by [A-3], we may
assume that we can apply the proof of Theorem 4.2; that is, for any l^j^J we
can find an TV-tuple Uj of holomorphic functions on some infinitesimal wedge-type

domain /J + ^LTO such that

j
On the other hand, since an N-tuple f := ̂  fj is analytic in a neighborhood

j = i
of (x9 1) = (0, 0) there exists a unique A^-tuple u' of analytic functions such that

by the argument to the proof of Theorem 1.3 and Madi's result [M]. Thus
an 7¥-tuple of hyperfunctions

j
u(x, t) = \Ul(x, t\ . . ., UN(X, t)) := X K/(X, 0 + ̂ IF'j 0) + i/(x, t)

j= i

is a solution and has t as real analytic parameters. D
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