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Goursat Problem for a Microdifferential Operator
of Fuchsian Type and Its Application

By

Susumu YAMAZAKI*

Abstract

We consider a matrix of microdifferential operators of Fuchsian type with respect to several
variables and obtain the Cauchy-Kovalevskaja type theorem for the Goursat problem. Moreover,
we prove the existence theorem in the framework of microfunctions under some assumptions for
initial values and the operator.

§0. Introduction

The Goursat problem in the holomorphic (or the real analytic) category
is treated by several authors and studied in depth. Moreover, C. Wagschal
[W] extended the problem to the case of a system of integro-differential
operators and obtained the Cauchy-Kovalevskaja type (namely, the unique
solvability) theorem. However, it seems that the study of the Goursat problem
is not so satisfactory from the microlocal point of view. Therefore in this
paper, we treat a microdifferential operator of Fuchsian type with respect to
several variables and consider the Goursat problem in the framework of
holomorphic (or micro-) functions.

The notion of Fuchsian type (with respect to one variable) was introduced
by M. S. Baouendi and C. Goulaouic [Ba-G] for a partial differential
operator. This includes non characteristic type as a special case, and the
Cauchy-Kovalevskaja type theorem was proved in [Ba-G]. Seeing this result,
N. S. Madi [M] generalized Fuchsian type to several variable case by the
name of “operateurs de Goursat holomorphes a plusieurs variables Fuchsiennes”
and obtained the Cauchy-Kovalevskaja type theorem for the Goursat problem
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in the framework of holomorphic functions. We remark that Y. Laurent-
T. Monterio Fernandes [La-MF] and Z. Szmydt and B. Ziemian [Sz-Zi] gave
different definitions of Fuchsian type with respect to several variables
respectively. On the other hand, after Baouendi-Goulaouic [Ba-G], many
mathematicians have obtained almost sufficient results in Fuchsian type with
respect to one variable. For example, H. Tahara [Ta] treated a Fuchsian
system in the sense of Volevic and proved the Cauchy-Kovalevskaja type
theorem in the complex domain. Further, as an application he obtained the
existence and uniqueness theorem on an initial value problem for a Fuchsian
hyperbolic system in the framework of hyperfunctions. Moreover, he proved
the existence theorem on a homogeneous initial value problem for a Fuchsian
microhyperbolic system of microdifferential operators in the framework of
microfunctions. On the other hand, T. Oaku proved the existence theorem
on an inhomogeneous initial value problem for a Fuchsian hyperbolic
microdifferential operator in [O2] (cf. [O1]) and the uniqueness theorem under
the F-mildness condition (but without the hyperbolicity assumption) in [O4]
in the framework of microfunctions (cf. [O3]).

In this paper, we define a matrix of microdifferential operators of Fuchsian
type with respect to several variables as a natural generalization of one
variable case due to Tahara [Ta] or non-microlocal case due to Madi
[M]. Moreover, we prove the Cauchy-Kovalevskaja type theorem for the
Goursat problem in the space of holomorphic functions under the action of
microdifferential operators due to J. M. Bony and P. Schapira [Bo-Sc]. As
an application we solve the Goursat problem in the framework of micro-(or
hyper-) functions; we prove the existence theorem for sufficiently “regular”
initial data under suitable assumptions. Note that our solvability conditions
are weaker than that of M. Kashiwara and P. Schapira [K-Scl]. We hope
our results will serve as a starting point for studying the Goursat problem
for general systems in microlocal analysis.

We will show the plan of this paper.

In Section 1, we announce the main theorem on the Goursat problem in
the complex domain after some preparations.

In Section 2, we reduce the problem to a simple case.

In Section 3, we give the proof of the main theorem.

Section 4 is devoted to applications to microlocal solvability for the
Goursat problem under suitable assumptions.
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§1. Statement of Main Theorem

In this paper, we use the following notation: /N denotes the set of natural
numbers (not containing 0) and Ny:=Nu{0}. For a subset D of some
topological space, [D] denotes the closure. For natural numbers M,NeN,
and a linear space L we denote by Mat(M, N; L) the space of matrices of size
M x N whose components are in L. Further set

Mat(N; L):=Mat(M, N; L),

LY :=Mat(1,N;L),

L®N.=Mat(M, 1;L).
In addition, if L has a norm | |, for P=(P*")¥ _ eMat(M,N;L) we
set || P||:==max{||P*"|; 1<pu<M, 1<v<N}. For natural numbers d, neN,

we use coordinates t=(ty,...,7)e C? and z=(z,,...,z,)e C". Moreover for
multi-indices y=(yy,...,7,) and a=(a,,...,a,), we set

R — Yi,.. Y [ ay ., a
8,7 =0, 7 0,0, OF=0, 7 8,5,

zVi=z " g0 T*:

1 Pl=y !yl ol =0yt -ee oy,

n d
W|= Z yja Ial = z ajs
j=1 j=1

as usual. For vectors R=(R,,...,R;) and R'=(R},...,R))eR’, we define an
order relation as follows:

R'<R < R;<R; for all j,

def.

R <R< R'<R and R #R,

def.
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R'<XR < R;<R; for all j.

def.

For a vector r=(ry,...,r)eR% we set [r].:=(rJ+,....[rals), where
[r1. =max{r;,0}. We fix mV=(m{,...,m{’) and k' =(k, ...,k") e Ny* with
m k™ (1<v<N) and set m=(m"Y,...,m™) and k=FE"Y,.., k™) e(NYH".
For any N-tuple of (generalized) functions f(z, 1) =1f;(z, 1), ..., fa(z, 7)), We mean
by f=0""")

0. fle=0=0 (I1<SV<N, 1<i<d, 0<j<m{ =k —1).
Set 1,:=(1,...,1)e N*. For a vector R=(R,,...,R)eR? with 0<R, we set
B(R):={reC%;|tj|<R; (1<j<d)}.

Let V< C" be a relatively compact open neighborhood of the origin and 4,
a positive number. We set

U={(z;)eT*C";zeV, {;=1, [{j|<hy, 2<j<n)}.

We denote the sheaf of rings of microdifferential operators of finite order
(resp. of order at most v) by & (resp. £(v)) as usual.

1.1. Definition. Let P(z,7;0,,0,)=(P*"z,7;0,,0,))),~, be a matrix in
Mat(N; I{[U x B(R)]; &cn-+4)); that is, each P is a microdifferential operator
of finite order defined in some neighborhood of [Ux B(R)]. Then, P is said
to be of Fuchsian type with weight (k,m) (with respect to t-variables) if it has
the following form:

P(u,v)(z’ 7] az’ ar) — Z PL#.V)(Z, T ; 62)61,“5
0<as<m™

where each P is a microdifferential operator with holomorphic parameters
t and satisfies the following:

1. The order ord P*¥ of P# is at most |m™|—|al;
2. There exist P2*Y(z,1;0,) and P2®Y(z,7;0,) (0<a<m™) such that
ord P}*"<0 and

POz, 030,) =1l KL PLOY, 750,)

—m) + kM +1 2., .
4glemm ad+ p2(z 1;0,).
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1.2. Remark. (1) The Fuchsian property above is invariant under any
coordinate change of z-variables, or more generally an arbitrary quantized
contact transformation for (z;{)-variables.

(2) The Fuchsian type defined in Definition 1.1 is a natural generalization
of differential operators of Fuchsian type introduced by Madi [M]; that is, if
P is a differential operator of Fuchsian type in the sense of Definition 1.1,
then P is of Fuchsian type in the sense of Madi. Further if d=N=1, a
microdifferential operator of Fuchsian type is nothing but of Fuchsian type
defined by Tahara (see [Ta]).

Let TM=(T{,...,T$") (1<v<N) be indeterminates and set

T:=(T"Y,...,T™).

If P is of Fuchsian type with weight (k,m), we define the indicial polynomial
of P by

Fp(z;¢; T)i=det ( 0o(PL®Y)(z,0; 0.7 ( T‘“’))

mV) — kM g < mv)

d
where S (TV):=[] £, (T{") with
=1

J

TOTO—1) - (TO—o;41) (22 1),

241 1 o)

Let A(z,7;0,) be a microdifferential operator of finite order with
holomorphic parameters t defined in a neighborhood of [Ux B(R)]. Let ce C
and set X:={zeC";z;=c}. Let Q< V be an open convex set and assume
that Q is hy-X-flat in the sense of Bony-Schapira; that is, if zeQ, weZ and
holzj—wj|<|z; —w,| (2<j<n), then it follows that weQnX. For example, we
easily see that for any z,€X the set {we C";|w, —z,|/h+|w;—z;|<r 2<j<n)}
is h-X-flat. Let f(z,7) be a holomorphic function defined on Qx B(R). If
peN, there exists a unique holomorphic function g(z,7) on QxB(R)
such that

{azlpg(z7 T) =f(29 T)a
azljg|zl=c=0 (0<j<p—1)
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Then, we define (0,, )z f(z,7):=g(z,7); that is,

(0., P fz,7):= f:l (ZlTjWE

_1)' f(wlaz,)dwla

where z':=(z,,-+-,2,). We write

A(z,t;0,)= Z A [(z,7)0,’
vz.-?'~ljfeN 0

formally. Then, applying the argument in the proof of Théoréme 2.3.3 of
Bony-Schapira [Bo-Sc] regarding t as holomorphic parameters, we find that

Asfz)= ), Afz00.fzD+ Y Afz10,,):0, f(z7)
yeNod y1<0
Y2+, ¥n€No

is holomorphic on Q@ x B(R). Let s be a parameter with O<s<1. We fix a
point z,eQNX and set

Q,={s(z—zp)+2,€ C"; zeQ}.
We fix an arbitrary positive number ¢, and set
X, ={f2)e0Qy); | fll;:=sup{lf/(2)d(2)*; zeQ,} <o},

where O(£),) denotes the space of holomorphic functions defined on ; and

dy(z):=inf{ max |z;—w;; we C"\Q,, z,=w,}.
2<jsn

Note that X is a Banach space under the norm | f]; and that X, < X; and
1< f]ly for any O0<s<s'<1 and feX,. Moreover, by Proposition 2.4.3
of Bony-Schapira [Bo-Sc], we see that if the operator A(z,t;0,) above is of
order zero then Ay operates on X, as a bounded linear operator; that is, there
exists a constant C such that for any fe X,

sup{ll(4=/), Dls; € BR} < CI f 1.
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Consider the following condition:

|A-1].  There exist a positive constant C>0 and a neighborhood W of [U]
such that for any (z;{)e[W] and BeN,’

N
|Zp(z; 0 B+mD—kD, L B+m™ — k™) >C [T (B+1)"".
1

v=

Note that if N=1, then [A-1] is a natural generalization of Madi’s
condition which is similar to the “Fuchsian ellipticity condition” due to
Szmydt-Ziemian [Sz-Zi].

1.3. Theorem. Let P be a matrix of microdifferential operators defined
in a neighborhood of [U x B(R)]. Assume that P is of Fuchsian type with weight
(k,m) and satisfies [A-1]. Then, there exist constants r,>0 and R with 0<R<R
such that the following hold:

Take arbitrary h and r with 0<h<h, and 0<r<r, respectively. Let Q
be any h-Z-flat open convex subset of V with dia Q<r, where dia denotes the
diameter. Then, there exists a constant 8 such that for any R with 0< R<R it
follows that for any holomorphic functions f(z,7)=1fi(z,1),..., a2, 7)) and
g(z,1)=4g(2,7), ..., g(z, 7)) on Q x B(R), there exists a unique holomorphic solution
u(z,7)="u,(z2,7), ..., un(z, 7)) of the Goursat problem

(G.P) { Pru=f,
u—g=0@""),

and each u,(z,t) (1<v<N) is holomorphic on
- d
U <Qs X {‘EEB(R); l_[ It <ol —s)'""}),
0<s<1 ji=1

N d
where |m|:= Y > m{.

v=1 j=1

1.4. Remark. (1) Assume that P is a differential operator. Then
Theorem 1.3 is (essentially) obtained by Madi [M] (cf. [La-MF]).
(2) By definition (G.P.) is written as
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Pzt(ul, ...,UN)=f;

: ; I<v<N, 1<i<d,
atljuvlr.=0=anjgvlr.=0 ( SV ! >

0<j<m®—kM—1

Let us set
Qx B(R); =Qx BR) N {1;=0} (1<i<d)

and regard each Qx B(R); as an open subset of C"*9~'. Similarly we
identify QxB(R)n{t;=---=1,=0} with Q. Let g,;; (I<SV<N, 1<i<d,
0<j<m™—k{—1) be holomorphic functions on Q x B(R); with compatibility
conditions

I<v<N, 1<ii<d,
(€.C) Oc,” &vijle=0=08virjle =0 0j<m? —kM -1,
0<j' sm—k{—1

Then we see that the Goursat problem (G.P.) is equivalent to the
following problem:

{P}:t(uu o UN)=f,

0. 0ul.—o=g.;; (I<SVEN, 1<i<d, 0<j<m{’—k{—1).
Indeed, for g(z,7)="(g,(z,7), ---,gn(z, 7)) it is clear that the data
{8,,j=0.78.).,-0€ 0@ x BR)); 1<v<N, 1<i<d, 0<j<m{’ —k{"—1}
satisfy (C.C.). Conversely, for any
{8,;=0@x B(R)); 1<v<N, 1<i<d, 0<j<m{—k{—1}
which satisfy (C.C.), let us set

842 ,
1 T

gz, 1)= Z

aeN, O
where
N,:=Ny"\{oe Ny?;0=>m™ —k™}

and
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a
a‘t 1gv.lrzuIQ

atazgv,lazlﬂ (m(l‘,) - k(lv) <

gv,a(z) = atazgv.Sa;;'Q (

at&dgv,dadl.(l (

with &;:=(ty,...,0_ 1,004 1,...,0,).

J —
ar. gv'tl=0 _gv,ij

O<oy <m)—kP—1),

®y, 0<d2 S’n(z")_k(ZV)_ 1)’

m® —kP <oy ,mY —kY <y,
0<o, <mP —kP—1 ’

m®M -k <o, (1<ig<d—1),
0<a;<m{?—k§ —1 '

607

Then we easily see that each gz, 1) is
holomorphic on Q x B(R) and satisfies

(1<v<EN, 1<i<d, 0i<mM —kM—1).

Note that for example if d=2 or 3, then each g,(z,t) is written explicitly

as
m — kv — 1 mi — kM — 1
( )_ 1 1 gv.1a,(2,72) a1+ 2 2 gv,2az(z,rl) a2
&z, T)= Z TR 7 "
a1 =0 oq: =0 0y!
a
_ atl lgv.Z(zz(Z’ 0) Ta
b
0<a<mMI—kM —1, o!
or
m{) — k() — 1 - m — k() — 1
CMET T 810572, T) M TS T 8y 20,25 Ty T3) a
glz)= Y ErE— T E—C
a1 =0 oy a2=0 oy!

me) — k) — 1
+ !
az = ] Ot3.

OSal$m(l")—k(l")—l
05a2<m(z")—k(z")-—1

gv.3a3(z! Ty TZ) a3

a
arl 1gv,20zz(z9 0’T3) ay,. az
ee— T 2]

oglo,!

o
61:1 zgv,3a3(za Tl s 0) a2 a3
IS ——C T

0<az Smi —k{M —1 %play!
0<ag$m(3")—k(3“)—1
as
6!3 gv,lal(Z,Tz,O) a3, ag
— e S
oglary!

0<ay <m(l")—k(l")— 1
0Sa3$m(3")—k(3")— 1

atlalarzazgvjm(‘z’Q @

+ Y e

0<asmv) —kvM) —13

o!
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respectively.

1.5. Example. (1) Let us set m™:=(2,...,2) and k™:=(1,...,1)eNy*
(I1<v<N) and consider

d
P(Z’T;az!ar)= n (‘cjaerIN_l_Aj(Z,T;az)atj+BJ’(Z’T;az))+C(Zsr;az)'
j=1

J
Here
{A Az,7;0,), Bj(z,7;0,) e Mat(N; £(0)),
C(z,7;0,)e Mat(N ; £(2d)),

and IyeMat(N; R) denotes the identity matrix. Then, P is of Fuchsian type
with weight (&9, ..., k™), (mY, ...,m™)) and

Iz B+mD—kD L B+m™ — kM) = ﬁ det((B;+ 1)B;+ o(4,)(z,0;0)(B;+ 1)).

Hence if each eigenvalue of (04(4;)0,0; 1,0,...,0))'{’,j=1 is not in {{eZ;I<0},
we see that P satisfies the condition [A-1].

v

(2) Let us choose N=d and set m™:=(0,0, ...,0,2,0,...,0) and k™ :=(0,0,
..,0,1,0,...,00e Ny? (1<v<d). Consider
P(Z5 T, aza 61:):(1)('.‘])(2’ T, az: at))ld,_1= 1
=(Tjatj26ij+(Aij(Zir;az)+r1dBij(Z,t;az))arj
+ Cij(zs T, az)-l_ TldDij(Z’ T, az))’ij.j= 1

where A(z,7;0,), Bifz,1;0,), Ci{z,7;0,) and D,{z,7;0,) are microdifferential
operators with ord 4;;, ord C;;<0, ord B;;< 1 and ord D;;<2 respectively. Then,
P is of Fuchsian type with weight (k,...,k™), m",..,m™)) and

Ip(z; G B+mO =k, B+m® — k™) =det((B;+ 1)B,0,;+ 0o(A;)z, 05 (B +1).

Hence if each eigenvalue of ¢4(4;;)(0,0;1,0,...,0) is not in {/{eZ;/<0} and
each (oo(4;))¢;=, is an upper triangular matrix, we see that P satisfies the
condition [A-1].
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§2. Preliminaries

In this section, we will make some reductions.
Considering

{Pﬂ’:f— Psg,
u=0("""),

we may assume that g=0. Further, if P is of Fuchsian type with weight
(k,m) and k+#m, then define P, by

,rml—kl O
O My kN

Since a direct calculation shows that P, is of Fuchsian type with weight (m,m)
and Iy (z;05B, ..., )=Fp(z; ; p+mP —kD, [ B+m™ — k™), we may assume
that k=m. In this case, we can write P as

P, =P

P#M(z,1;0,,0)= ), Pr®(z1;0)170°

0<as<m™

APV ekl CLH AL

0<a<m™

and for simplicity set
Iplz; 05 B):=Ip(z: 5B, ... B)-

Moreover, P can be written as P(z,1,0,,0,)=Q0+ Q'+ A, where

D M CTAL R

0<asmM

d

Q’(I—lv") = Z Z TiQ;'fg‘v)(Z9 T 9 az)(a'lr’r)a!

0<asm™ i=1

A(lbv) - Z TldA;”.V)(Za T, az)(atr)a'

0<a<m™
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Here Q%Y, Q™Y and A®Y are microdifferential operators with ord Q¥
d

ord Q' <0 and ord A¥Y <|m™|—|a], and (9,7)* denotes II (9, ;). Further,
j=1
O satisfies [A-1]. Indeed, we have only to remark the following:
(1) We can write

d
Py #(z,150,)=Py#M(z,0;0,)+ ), 104z, 1;0,),
i=1

with ord P1®*" | ord Q7% <0.
(2) Since ord PZ%<0, we can regard t'“P%%")(z,7;0,) as included in

d
z Q02,75 0,)
=1

i=

(3) We have
{‘Ciat‘(":j u) (l 7é.]):
770, U= ..
(w0~ ) (=))
and
Tijat.j = (ar.Ti - 1) o (atzri _J)

Let O(B(R); X,) be the set of X-valued holomorphic functions defined on
B(R). Then, we easily see that

O(B(R); X)={f(z,1)€ O, x B(R); 0<VR'<R,
sup{|/(z,7) | di(2)°; €, e B(R)} <co}.

Therefore it follows that for any O0<s<1
0O(Q x B(R)) = O(B(R); X,).

Hence Theorem 1.3 is reduced to the following theorem:

2.1. Theorem. Let P be a matrix of microdifferential operators of Fuchsian
type with weight (m,m). Assume that P satisfies [A-1]. Then, there exist
constants ry>0 and R with 0<R<R such that the following hold:

Take arbitrary h and r such that 0<h<h, and 0<r<r, respectively. Let
Q be any h-X-flat open convex subset of V with diaQ<r. Then, there exists
a constant & such that for any s, and R with 0<s,<1 and 0<R<R it follows
that for any f(z,7)="f1(z7), ....fa(z: 1) € OB(R); X, )®V, there exists a unique
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holomorphic  solution u(z,7)="u,(z,7),...,un(z,7)) of the Goursat problem
(G.P) Pyu=f.

Moreover, for any s with 0<s<s,, each uz,7) (1<v<N) is holomorphic

on Q,x B(R)), where R’ is an arbitraty vector which satisfies 0<R' <R and
d

[T Rj<é(so—s)™.

j=1

In fact, if we prove Theorem 2.1, we see that u(z,t) is holomorphic on

U <Qs X {r € B(R); f[ |t <d(so —s)'""})

0<s0<1 0<s<sgo ji=1
0<R'<K

= U (ﬂsX{’EB@; I lfj|<5(1—s)""'}>
=1

0<s<1 J

by the uniqueness. Hence we obtain Theorem 1.3.

Let (T)= ), u,7* and U(T)= ), U,T* be formal power series with

aeNod aeNod
indeterminaties T'=(T,...,T,), where u,€ X; and U,>0. We say that U(T)
is a majorant of w(T) if |u,|<U, for any o. In this case, we write
u(T)y< U(T).
Define

E(B(R);Xs):z{uz Y u,T*eX,[[T]];3C>0, u(T)<<C(DR(T)},

aeNod

R.
where ®g(7) denotes [] J
=1R;—

T Then, we see the following (see Wagschal

[

[W] for details):
1. E(B(R); X,) becomes a Banach space under the norm

lullg s :=inf{C;u(T) < CO(T)};

2. if 0<R<R and O<s<s'<l, then it follows that E(B(R');X,)
< E(B(R); X;) and

lullgs<lullr.s;

3. as a set
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() EBR); X)=0(B(R); X)).

0<R'<R

Hereafter, we also use the notation

u(z,7)= Z u,(2)t*

aeNo?

for

uz, T)= Y, u(z2)T*€ E(B(R); X,).

aeNod

We prove some results about Bony-Schapira’s action on E(B(R); X))

2.2. Proposition. Let A(z,t,;0,) be a microdifferential operator of order
at most v with holomorphic parameters t defined in a neighborhood of
[Ux B(R)]. Then, there exists a constant ro>0 such that the following hold:

Take arbitrary h and r such that 0<h<hy and 0<r<r, respectively. Let
Q be any h-Z-flat open convex subset of V with diaQ<r. Then, there exists
a constant C , such that for any s' and R’ with 0<s' <1 and 0< R' < R respectively,

(1) if v>0, then for any O0<s<s and ue E(B(R);X,) it follows that

Cy

(" —s)"

(2) if v<O0, then for any 0<s<s and ue E(B(R);X,) it follows that

|IAEu”R',s< ||u”R‘,s';

”AEuHR',s< Cy ”u”R’,s"

Proof. (1) Since A is defined in a neighborhood of [U x B(R)], we can
find a relatively compact open set U’ and a vector R, such that [U]eU’,
R< R, and 4 is defined in a neighborhood of [U’ x B(R,)]. Thus, there exist
positive constants K and M such that for any j<v

sup{|4,(z,7; ))l; (z, ) e [U"], e [BR)I} <KM" ™ /(v—j)L,

where X Afz,7;{) denotes the total symbol of A(z,7;0,) and each A{z,1;{)
JSv

is homogeneous of degree j with respect to (-variables. Thus by the Taylor

expansion we can write
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Afz,0;0= Y ?PAPE;0).
PeNod
Therefore, by Cauchy’s inequality for any j<v we have

KM>~i
sup{|4¥(z; s (z;)e[UT} < 7 =
0

Set
AP(z;0,):= AP(z;0,).
JjSv
Then, we easily see that

Az,130,)= Y, PAP(z;0,),

BeNod
AP(z;0,)e ILU'T; Ecnlv)).

Note that taking 0<r,<1/M, we can assume that Bony-Schapira’s actions
of all the microdifferential operators under consideration are well-defined under
the assumption of Proposition 2.2 since we can take a constant M in common
(see the argument of the proof of Lemma 2.3 below). We remark the following
lemma:

2.3. Lemma. (cf. Oaku [O2]). There exists a constant C such that for
any 0<s<s' <1, BeNy? and ve X, , it follows that

||A(mzl’“s<—,—-C‘,v',i lvlls -
(5"—5)"R,

Proof of Lemma 2.3. Since ordd,, ~*A® <0, we have
AP5=0,%0, APy

by Proposition 2.1.2 of Bony-Schapira [Bo-Sc]. Denote the total symbol of
d,, VAP by T B®(z;() where each B_(z;() is homogeneous of degree —j

Jj=0

with respect to {-variables. Then we may assume that for any j>0
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sup{1B2z; 0z, D e [UT} < 1.
0

R

Thus by the proof of Proposition 2.4.3 of [Bo-Sc] we can find a constant
C’>0 (not depending on s and s’) such that for any zeQ, and BeNy?
KC’
0y, AP (D) < ——nv— |0l -
(@ AP < e ol
Hence, setting d(z):=inf{|z, —w,;we C"\Q,, z;=w; 2<j<n)} and z':=(z,,
...,Z,) wWe have

|azlv(az1 - vA(ﬂ))ZU(Z)l =

vl 0, VAP v(w,, 2z
§ (@., )s (W1, )dw1
2|z;—w1|=d:,(z)

2n/ —1 (wy—z,)""!

«< ; ) Vsup{|d,, " A®)g v(wy, 2); 2lz; —wi|=d22)}
di(2)

2 \"KC'V!
< == = |lvlly sup{di(wy,2) " 2lzy —w,| =d}(z)}.
<d;,(z)> 1ol supds, )% 2y —wil =/}
Setting W,:=z,+2(w,—z,) for any w with 2|z, —w,|=d}z) we have
(Wy,2)e[Q]. If 2|z;— W < d;(2) (2<j<n), then we have (z,,z +2(0 —2) e [Qy].
Therefore by the convexity of [Q,], we have (w,,W)e[Q,]. Thus it follows
that 2d,(w,,z')>d,(z). Hence

[4P50(2)| =10,,"@,, " AP)s v(2)]

PARED (ol

<——— =" o,
L@rdier Ry "

Setting ¢ :=dis(z,, C"\L2), we easily see that dis(Q, C"\Q)=c'(s'—s). Therefore
it follows that for any ze Q)

2V KCY!
AP v(2)| < ol
ds(2)(c'(s" = 5)"Ro
PARRD (o
lvlls-

<
d{(z)°(c'(s'—5))'Ry”

Hence we may take
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PARE) (ol

()
O

End of Proof of Proposition 2.2. By definition, for any u(z,7)= Y, u,(z)t"

yeNod
€ E(B(R"); X,) we have
Azu(z, )= ), (APpu)2) "
f.yeNod
formally. Hence remarking
Qo (T)PpAT) K Dgo(R)DpAT) < Dgy(R)Dg(T),
by Lemma 2.3 we have
Asu(z, T)= ), (APgu))T"*7
B.yeNod
CcT#
Y w1
peNod (5" —5) Ro yeNod
Cxy(T)
<2 ul gy OrAT)
(s"—s)
C0(R)
5 | g e PrAT).
(s 5)’
Thus we may set
C,:=Cdp (R).
Proof of (2) is similar. O

2.4. Remark. For the argument to the proof of Proposition 2.2, we may
assume that if we take r,>0 small enough, then Bony-Schapira’s actions of
finite numbers of microdifferential operators under consideration are well-defined
on Q under the following assumption:

Q is an h-X-flat open convex subset of V with diaQ<r for some 4 and
r such that 0<h<h, and O<r<r,.

Thus hereafter, we often omit the argument that Bony-Schapira’s action
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of a microdifferential operator in question is well-defined.

§3. Proof of Main Theorem

In this section, we prove Theorem 2.1. Note that our method of proof
is similar to that of [M] and [O2]. We inherit the notation and assumption
of preceding section.

First, we prove the following:

3.1. Proposition. There exists a constant ry>0 such that for any constants
h and r with 0<r<r, and 0<h<h,, the following hold:

Let Q be any h-2-flat open convex subset of V such that diaQ<r. Then
there exists a linear operator # , such that

(1) for any R, s and o such that 0<R' <R, 0<s<1 and 0<a™<m®

(I<Sv<N)
GR 0
- # 5 E(B(R); X,)®N — E(B(R)); X,)°".
0 @0

Further there exists constant C, (not depending on R', s and o) such that

(GRS ]
(3.1) - Hof
0 e

Q) Qs Ho=Hy Os=id: E(B(R); X)®" — E(B(R); X,)°".

SCQ”f“R'.s;

|
I

R',s

Proof. Take a relatively open set W’ such that [W] € W’ and Q is defined
on [W"]. Shrinking W and W’ if necessary, we may assume that for any
(z;0)e[W] and fe Ny’

N
(3-2) [Folz; G PIZC U1 (B+1)™.

There exist positive constants K and M such that for all j>0, 1<u,v<N and
0<asm®

(3.3) sup{|Q¥(z; Ol (z; ) e [W']} <KMJ,
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where '20 Q%*)(z;{) denotes the total symbol of Q¥ and each Q¥(z;() is
iz
homogeneous of degree —j with respect to (-variables. For any f(z,1),
u(z,7) € E(B(R); X)®", we write f(z, 1) =X f4(z)r* and u(z, 1) = Zuy(2)r* respectively.
I s
For any BeN,! we define 0y(z;0,)e Mat(N; I\[W'];E¢0))) by
34 OfNz;0)= Y, Q¥Vz;0,)8 (B)e I[W'T;6c0)).

0<asm)

Then, the formal calculation implies that

N
(3'5) (Q(Za T, aza at)}: M(Z, T))u = Z z QN(ﬂﬂ,v)(Z X az)E uv,ﬂ(z)rp'

peNod v=1

Thus the equation Qyu= f is equivalent to
N ~
2, O sty =Sup
v=1

for any p and B. Since det(oo(OF")z;0)=I4(z;{;p), the assumption (3.2)
implies that each Qy(z;d,) is invertible on [W']. Set Sy(z;0,):=0yz;0,)"
e Mat(N; ITLW']; € c(0))).

3.2. Lemma. There exist constants K, and M, such that for all j>=0,
1<p,v< N and BeN,y*

(3.6) sup{|S§)(z; O (z; e [W1} < M/j.

(B+1)""

Here ) SY¥(z;() denotes the total symbol of S§(z;0,) and each S§(z;{)

j=z0

is homogeneous of degree —j with respect to (-variables.

Proof of Lemma 3.2. Set Eﬂ(z ()= aO(Q,,)(z; {)~!. There exists a constant
C>0 such that for any 0<a<m®™ and feN,*

(3.7 2B <CB+1)".

Let A®*)(z;() be the (u;v)-th cofactor of ao(Qs)z;0). Then by (3.4) and (3.7)
there exists a constant C'>0 such that
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sup{|A“M(z; O (z; D e [W'1} < :H C'(B+1)™".

Hence by the assumption (3.2),

~ o
(3.8) sup{|R{(z; s (z; Qe[ W'} < ABriy™

Now, for a microdifferential operator A(z;0,) of order zero defined in a

neigh-borhood of [ W] with the total symbol Y. A_(z;0,) where each A_ (z;{)

jz0
is homogeneous of degree —j with respect to {-variables, N4 ;p) denotes
the formal norm in the sense of L. Boutet de Monvel and P. Krée [Bou-KJ;
that is,

202n) it

msup {IaziagﬂA _fz;01;(z;0e [W]}PZH'“m,

N 4;p):= )

0sj
&BeNo?
where p is a parameter.

3.3. Sublemma. There exist positive constants L, and c¢,; such that

iZ0(B+1)" ¢,

Proof of Sublemma 3.3. By Cauchy’s inequality and (3.8), we have

in DR cap  (1\ER
S“P{laz“ac”Rp(Z;C)I;(Z;C)e[W]}<C(/i+lf)'"‘“’<?) ;

where ¢’ is a some constant depending only on Wand W’. Thus it follows that

~ 2P (p\EHP ¢
NE(RE p)< ), — é,(’),) PTG
aplalBlt \e Ap+1y

(j+2n—1)(p>f 2C"
o\ J ¢/ ap+1)"”

(2,;)1‘ 22
o\c /) CB+1,)"*"

M8

<
i

1]

~e

<

J
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Thus we may set L,:=22"C’/C and c¢,;:=c'/2. O

Proof of Lemina 3.2 continued. Next, set
Ry(z;0,):=1Iy— Oyz;0,)Ry(z;0,) € Mat(N; I[W']; e — 1)),

where Iy denotes the identity matrix of size Nx N. Therefore denoting the total

symbol of R§*(z;8,) by X R{-’(z;() where each R{*(z;{) is homogeneous
ji>0

of degree —j with respect to (-variables, for any j>0 we have

Rz, 0=— ) Z ac( Y 0¥z, (ﬂ)) 8,"R4(z;0).

1 p+|y| 1= 1?' 0<as<m

There exist constants K'>0 and L'>0 such that for all j=0

(39 sup{l Y OUMz 0L )e[W I <K' MI.

0<asm™)

3.4. Sublemma. There exist positive constants L, and c, such that

y o0 p p
NPYRYEY; p)< Ly Y (—> .

p=2 \C2

Proof of Sublemma 3.4. Take We W” € W'. By (3.8),(3.9) and Cauchy’s
inequality we have

u {|@ vﬁ(u,v)(z.o‘.( .C)E[W/f]}<_L(_£>IYI
Supy|0; ) »6)1Z 5 \C(B+1d)m(u> o ’

7l
SUP{|54y< % ‘”’)(Z O (z; C)E[W"]}<V'<l) K'MIjt.

0<as<mv)

Thus it follows that for any j>0

1
sup{|R{:2Az; O (z; O e [W"]} < V‘( ) NK'L M p!
i=p+hl
>0

MV
<NK'L, . ( ),1
+1v|

Jj=p
20
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Therefore, setting L”:=2""'NK'L, we have

&+ ]
Sup{13, 78/ RED 23 0 (230 e[ W} <a'ﬁ'L”( : )’ '<(7;A)1>

Since we may assume that ¢”’ <1 and (¢")>*<2M, we obtain

@ BN |+ 7 ;
NPYREY; p)< Y, _.I;'ﬂ@__( 1 ) |<2M>]p2j+|&+ﬂ|
&> > o (& +)NIBI+)! \ e’ (c")?

" ji+7]
ST o) B )
N p=|a+f+2j22 \C (c")

2ny " o )4
2L Z( 2M )p".

n =2 (c/r)Z "

Thus we may set L,:=22"L"/n and c,:=(c")*c""/2M). |
End of Proof of Lemma 3.2. By Sublemmas 3.3 and 3.4, we see that if

po is a sufficiently small positive constant, then

2L
B+1™

1
NE)W](R%”'V) HISES N

NETKRY™: po) <
(3.10)

Since we see that S;= Y. R,R,, setting K, :=4L, by (3.10) we have
j=0

e © 1)1' 2L K,
(Sp po)\z<2 (ﬂ'l‘ﬂd)m(u) (ﬂ_l_ld)m(u)'

Thus setting M, :=2n/(p,?) we have

K, 2n
S ) Wh<—— 1
sup{|S§:z; O (z; Qe [W1 < B+ ),,,m( >J
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_ K
(B+1)""

Hence the proof of Lemma 3.2 is completed. O
End of Proof of Proposition 3.1.  Let us take ro<min{M ~!, M, '}. Then,

by Lemma 3.2 we see that Q,,z and S,,z are well-defined on Q with
N

diaQ<r,. Moreover, the equation Y. 0¢su, ,=f, , is equivalent to u, ;=

v=1

N
Y S¥Vs f,5- Thus if we set #, by
v=1

N
(HoNlzD)=Y. Y S§Vsfo 27,
V=1 PeNod
then we have

@ (A f Nz D)= Y (B+1FSEs £, 427",

PeNo?

Thus we easily see that all the properties are satisfied. O
Next, we prove the following:

3.5. Proposition. There exist constants r,>0 and R with 0< R<R such
that for any constants h and r with 0<r<ry, and O0<h<h,, the following
hold:

Let Q be any h-2-flat open convex subset of V such that diaQ<r. Then,
for any R and s such that 0<R <R and 0<s<1, the following equation is
uniquely solvable on E(B(R'); X).

(3.11) (Q+Q)gu=f.
Precisely, the operator (Q+ Q')s is invertible on E(B(R'); X)).

Proof. We use the notation of the proof of Proposition 3.1. For any
f, ue E(B(R); X,)®", we write f(z, r):%l fp(2) and u(z, r)=2ﬂ‘.u,,(z)r” respectively.

Thus, by Proposition 3.1, the equation (3.11) is equivalent to
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(3.12) U+ Qs ) Qs u=Ff.

Set v:=Qsue E(B(R); X,)®". Since
N d

@atoh= X Y Y ulik 0o,

lv=1 0<a<mD) =1

by Propositions 2.2 and 3.1, there exist constants C, and C{;” such that

N d
IQs#0ullrs<Co Y. %X X RCE Ilrs-
Lv=1 0<asm® i=1

Thus, if we choose R as small as

N d N d
Co X 3 YRCEISG Y ¥ Y RCEI<,

nyv=10<asm® i=1 pv=1 0<asm i=1
we can see that I+ Q'sH#p is invertible on E(B(R);X,). Hence we see that
Hyrg =Hy(I+Q'sHp) ™" is the inverse of (Q+ Q). O

Now, we are ready to prove Theorem 2.1. Choose R as in Proposition
3.5 and take 0<R<R. Recall that the equation under consideration is
the following:

(Q+Q +A)su=feOBR); X,)*".

First we will prove the existence of a solution u(z,7). By Proposition 3.5, the
problem is equivalent to

ut HgsgAzsu=Hy.qf,
(recall that #5, o =((Q+Q)9) " "). Set

U= {% +Q'f (r=0),

(3.13)
Hg+o(f—Asty_1) (peN).

Moreover, set
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( atr)mu) O
- Up (p=0),
0 @0
(3.14) V= 1
@™ ()
(u,—u,_1) (peN).
0 @

Then we easily see that v,e E(B(R); X,)®" and v,e E(B(R);X,)®" (peN)
for any 0<s<s, and 0<R'<R. Since each (3,7)"" % (0<a<m®) satisfies
the assumption of Proposition 3.1 in the case where N=1, we can write

(3.15) @1 =A"""%0,)™", where #™" %= H; jvr-a.

Hence for 0<a<m"™ we have (0,7)" vp’vzfm(””“v Thus it follows that

p.v’

N
(316) Up,u = (arr)m(“) Z Z ”(Q‘li)Q’tldAg,V)(zs T, 6z)Z (att)av

p—1v
Ly=1 0<as<m™

N
=@ Y T AT AN T 0) A

Lv=1 0<asm(v)

p—1.wv-

By Propositions 2.2 and 3.5 there exists a constant M, such that for any
0<s<s, and 0<R"<R’ it follows that for any ve E(B(R"); X)®"

@0 0

(3.17) Hg+oV ||

0 @ E

| { @om 0 |

| i

- | Holl+ Q370 |
O (atr)m(m ‘ R'',s

<M, |vlgs-
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We will prove that there exists a constant M, such that for any 0 <s<s,
and 0<R"<R’ we have

4 4
MM, I_[ R
L
(3.18)-p lopl R s <Ml f IR s ——J—l,,,,
(So—5)

Since v, € E(B(R'); X,)®", by (3.17) we have
ool R,s < 0ol R 5o S My Il f Nl g7 50 -

Thus we have (3.18)-0. By Proposition 2.2, for any s<s' <s, and 0 <a<m™
we have

. c
-4
(3.19) 1ALy S o S ol

where each C{"V is a constant not depending on s, s and R”. Hence we
obtain

d
o I8

j=1

1a 4(,v) o< 47 .
”T Aa }va.v”R ,s\(s,_s)'m(v)l_la‘ ”Up,v”R 50
Note the following lemma:
3.6. Lemma. The following equality holds:
A" "%, [(2,7) =f v,.,(z, a7)do,
[0,1]ImM1 - =l

.— mV|—|a
where 6:=(0 1,1, ..., 00 m—ays - 04,15+ Oam) —ag) € [0, 1]im1=lal]
d mV)—a

m) —ay m) —aq {
ot=| [] oy, ] 0ajma)anddo=]] 1] doy;.
j=1 i=1 j=1

)
i=1

Proof of Lemma 3.6. We have only to remark that for any ye N’

T’

(o1)/do= ——©—.
J&[0,1]'"'“‘“ - =l G+1)" "



GOURSAT PROBLEM

End of Proof of Theorem 2.1. Choose M, as

N
M2 > Z z Ca(!l.v)elm).
lLv=1

0<a<m™

Then, by (3.19), Proposition 2.2, Lemma 3.6 and (3.18)-0 we have

N
@™ ) Y HEPo ATz, 7;0,)p ™ g,

Lv=1 0<asm™

||U1,,¢||R",s=

N
Y Y U008

Lv=1 0<a<m®™

<M,

R",s

d
1, ”
j=1
<
1,

M=

™) —
1™ 00 Il & 5o

1 0<osmm (so——s)‘m“’""m
d

1, ”

MICaf v) H RJ-

D N e

Lv=1 0<a<m™ (so _S)lm'—lal

j vo.(z, 0T)do
[0,1]'"‘(")' = Je|

R .s0

d
. M1 Cél'” l_[ R""
s Z Z _—1_1__ ”UO,v“aR”,sodo

=
Lv=1 0<a<m®™ (So_s)II = J10,1]1mM1 = 1=l

d
M2CH T RIS v so
i=1

Lv=1 0<a<m (5o —s)lm!
d
MM [T R f ko
< im1
h (so—s)"!

R",

s

625

Thus we have (3.18)-1. Now assume (3.18)-p for a pe NV and take arbitrary s and
s’ with 0<s<s'<sy,. Then, by (3.19), Proposition 2.2 and Lemma 3.6

we have

N
O™ T Y A m A

Lv=1 0<a<m™

”Up+1,u“R”.s= p.v

N
< Ml Z Z TldAg’V)(Za T 9 az)E‘%m(V)—_avO,v

Lv=1 0<a<m™

R"”s

R,
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d
1.
. M, C&V T R
< j=1 mv) — g i
\1,;::1 0$agm“’) (s'—-—s)l'"(v)l—"l ”Jf Up,v”R ,5

d
M, CM T Ry

< k. B [
~ YR ) Ru, |
1 0Sasm (s/_s)lm( )| || £0,1]|m(\’)|— el p,vila. s

l

M=

d
M P 2MGPCEY TT RIS N e so
j=1

(V)| —
1 0<a<m» (s’.,_s)l'""l ]

N
M=

d m)—a;

(TICTI o R)P

=1 i=1
xf ! i do
[0,1]1mM1 = lal (SO —S) p

d
Ca(,l'v)Mlp+ ZMZP ( H R;-’)p+ ! ”f”R’,so

121 0<azmm (5o —8)mP(s' — g)m V1= lel(p 4 1)Im 1= lel”

<

Hence, choosing s'—s=(s,—s)/(p+1) we have

d
CEIM P 2MP (T R f lre
i a 1 2 j1=_[1 J R’,s0 p+1 |m|p
Lv=1 0<a<m (5o —s)Imitr+ = lal »

d
CEIM P2 M2 ([T R f ko
j=1

N

”Up+ 1,,;”1(".s

T
Lv=1 0<a<m™ (so_s)lml(p b

d
MM (L] R S reso
i=1

(50— )" D

<

Hence we can prove (3.18)-(p+1). Set 6:=1/(M,;M,) and take an arbitrary
d
vector R” which satisfies O0<R’'<R and [] Rj<&(so—s)™. Then it

ji=1
follows that



GOURSAT PROBLEM 627

p

d
3 o | MiMT] R
0l g s <M » o J=r
pgo l pHR . S Nk, opgo (so_s)lml

< 0.

p

Thus there exists v(z, )€ E(B(R"); X)®" such that X v; converges to v as p
j=0

tends to infinity in E(B(R"); X,)®". Set

D | O

Uu.= - v.

O . B

Then it is obvious that Pgu=f holds and u is holomorphic on

U (st {‘EEB(R'); li[ |Tj|<5(so—s)l"‘l}>-
0<s<so j=1

Hence the existence is proved. Next we will show the uniqueness. Assume
that u(z, 7)€ E(B(R"); X,)®" satisfies Pyu=0. Then, by the preceding argument
for some positive constant C we have

d p
MM, T R;
ullg <C =t
” ”R s (SO—S)‘"I‘

d
for any 0<s<so<1 and peN. Therefore, choosing M; M, IT R} <(sq—s)!"!
j=1

and letting p tend to infinity, we see that u=0 in some neighborhood of
(z,7)=(20,0). Thus the uniqueness follows. Therefore the proof is complete.

O

§4. Applications

Let M be R" x R? with its complexification X:=C’x C/=Y x C* and m,,
the canonical projection TgX —» M. Set N:=R'=Mn{t=0}c M, L:=X
A{Imz=0}=R"x C%, A:=TFX=T¥YxC?and A:=TEXnA. We denote the
sheaf of microfunctions on TX (resp. TaY) by €, (resp. €y) as usual. Further,

let €0, be the sheaf of microfunctions with holomorphic parameters on A ; that is,
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€0, = u(Ox)®or N/Y[nJ’

where p; denotes Sato’s microlocalization functor along L and ory, denotes
the relative orientation sheaf (see [K-Sc2] and [S-K-K]). The sheaf %,, of
hyperfunctions on M and the sheaf #¢; of hyperfunctions with holomorphic
parameters on L are defined by 8,,:=% |y and 0, :=%0,|, respectively. Let

p be a natural mapping NA>; TiX3(x,0;/ — 1K dx>+{n,dt))—(x; /) — 1,

dx))e T§Y. Then, we have the following canonical morphisms:

COLIA > Culas pl((ngN;f‘T}‘wX) —>%Ey.

Set po:=(0;./ —1dx,)e T¥Y and assume that P(x,t;0,,0,) is a matrix of
microdifferential operators of Fuchsian type with weight (k,m) defined in some
neighborhood of p~!(p,), then the following morphism is induced:

P: Pl((ngthl T;*Wx)po - p!((ngNAx‘ T}i,x)po,
where p(€yly 1, x)p, denotes the stalk at p,.
M

Consider the following condition:

. - N
[A-2).  det(opuo(P*"Nz, T;(,m)=1"P(z,7;{,n) for a function P (k= L k™
v=1

€ Ny which satisfies the following condition:
There exist positive constants hy, M and v; with v;>1 (1<i<d) such that
P(z,t;0,n) never vanishes on the set

@1 {(z,z;c,mec"dexc"xc“;|z|,|z1<ho, L) <holls] 2<j<n),
aA>M( > Imzj+ 3, |Im(c,~/c1)|>, e/ ¢l =vid (lstsd)}.
i=1 j=2

4.1. Example. (1) Let P be as in Example 1.5 (2) with d=2. Set
{bij(st;C):=al(Bij)(ZaT;C)a
difz,7;0)=0,(Dy)z, 75 0),
and suppose that b,,(z,7;{)=d,(z,7;{)=0. Then
det(o,(P“P)(z,7;¢,m)

Ny +15(by 11y +dyy) by, +dy, )

=T1‘E2det< 2
0 M2+ 1102212 +ds))
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=1-'1172('712+T2(b11'11 +d11))(’122+'51(b22’12 +d55)).
Hence if 1> +1,5(by4(z,7;0n +dy4(2,750) (resp. m% 414(bay(2,7; 01, +das(z,
7;{))) is hyperbolic with respect to #; (resp. #,), then we see that [A-2] is

satisfied (cf. Kashiwara-Kawai [K-K]).
(2) Condition [A-2] is satisfied if

d
(42) P(x:t;é’n)=nPi(xat;éanl»---ani),
i=1

where each P; satisfies the following condition: there exist positive constants
hy and M; (1<i<d)
such that Pyz,t;{,n,,---,n;) never vanishes on the set

{(Z,t;C,’h,---,'Ii)EC"XRdXC"+i;|2l,|t|<ho: Il <holls| R<j<n),
n n i—1
llm(ni/C1)|>Mi< lelm zj|+ Zzllm(Cj/C1)|+ Z lIm(”j/CI)l)}-
j= j= =1

4.2. Theorem. Assume that P satisfies [A-1] and [A-2). Then, for any
microfunctions with holomorphic parameters

(4.3) J06,0), g0, 0€p (€Ll w1, s

there exists an N-tuple of microfunctions

u(x,ne p!((ngNBXl TLX)I?ON

such that u is a solution of the Goursat problem

{P(-xa 150y, 0 ulx, )=f(x,1),

(G-F) u(x, ) —g(x, )= O™ *).

4.3. Remark. The uniqueness of u(x, t) in Theorem 4.2 will be discussed in
a forthcoming paper (cf. [O3] and [O4]).

Proof of Theorem 4.2. We may assume that g=0. We remark that the
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method of proof is similar to Oaku [O2].

Step 1. Set
W:={(z;0)e C*"; |zl <ho, I{}| <holi| 2<j<n)}
and choose constants 4 and ¢ such that
4.4 0<h<min{hy/(dn?), 1/2}, 0<c<min{ry, o},

where r,>0 is a constant determined by P and W by Theorem 1.3. Then,
setting

@5) {Z:={zeC";zl=«/—lc},

Q' ={zeC";|zj|+|z; —/ — lcl/ho<c/h 2<j<n)},

we see that Q' is h-X-flat, dia Q' <ry and Q' < {ze C";|z|<h}. Choose constants
@ and a, such that

4.6) O<a<a;<(2n*—1)c.

Then we have {ze C";|z|<a,} = Q' by (4.5) and (4.6). On the other hand, by
Theorem 2.2 of Kataoka-Tose [Kt-To] and the argument to the proof of
Theorem 3.8.1 of Kashiwara-Kawai-Kimura [K3], we can find holomorphic
functions F(z,7)=1F,(z,1), ..., Fy(z,7)) defined in a complex neighborhood of

(4.7)
{(z,r)eC"“;lRezL Ret|<hy, [Imt|<hy, b Y |Imzj|<2(n—l)lmzl<h’}

j=2

u{x, he R a<|x|<hy, t|<hy}

with some constants A,h,>0 and O<h,<h,; such that on p~'(p,)

sP(b(F)
s =f
Pa(b(Fy)

Here spy,:ny %, — €, denotes the spectral morphism from the sheaf of
hyperfunctions to that of microfunctions and b(F,) denotes the boundary value
as a hyperfunction of F,. Set
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D:={(x,)e R"**; |x|<hy, |t|<h,},

G={(ns)eR"*; s|<hy, h Y |y|<(n—1)p,},
j=2

J

G ={(,)eR|sl<hy, h Y yj<2n—1)y,},
j=2

ji=

Gui= ()R sl <hy, h Y ) <(a— 10, +A)).

J

Then, we have
Gy =Gy {,9)eR™; y, <h UGN G),
FeOD+./—1(G n{(,5)eR**%; y, <h})®V.

Therefore, since D+./—1G,. is a Stein open set we can decompose F into

(4.8) F=f+f",
with
{ feoD+./—1(G, nG)°®N,
(4.9) - ~
S €OD+/—1G,n{(,5)eR"; y, <h'})®N.

Since an N-tuple f” is holomorphic in a complex neighborhood of D by (4.7),
(4.8) and (4.9), we see that an N-tuple f is holomorphic in some complex
neighborhood of

(4.10) D+ /—1G)u{(x,HeR"?; a<|x|<hy, |t|<h,},

and on p~'(p,)

SPM(b(f 1)
A
SPM(b(i ~)

Step 2. Set
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g D:={xeR"; |x|<h,}
G:={yeR"; hjznzz lyil<(m—1)y,}.
| Q=0 "R+ /—1G)=Q' ~(D+./-1G).

Then, by (4.10) and (4.11) we see that Q is h,-Z-flat, dia Q<r, and an N-tuple
f is holomorphic on

4.11)

Q x B(h,1,),
(recall that 1,:=(1,...,1)e N%. Consider the following:

{Pzz?=f,

fi= 0" ",

Thus, by Theorem 1.3, there exists a constant § with 0 <d <1 such that there
exist a unique holomorphic solution # on

U <st{t€B(h21d)§ ﬁ ITj|<5(l—s)|'"’}),
0<s<1 j=1

where

Q,:={sz+(1—5)y/ — 1(c,0,...,00e C";zeQ}.

Step 3. Take any x, with a<|x,|<a,. Note that f(z,7) is holomorphic
at(z,t)=(xy,0). Hence we can choose sufficiently small constants ¢’ and T, with
0<c'<c such that

2 ’
Q"= {ze C";2)z;—xo | +—lz1 —X0,1 —+/ — 1€/| <-C—} ey
hy h

and
£ is holomorphic on Q" x {te C%;[t|< T, (1<j<d)}.
Set
Y ={zeC"; zl=x0_1+\/tic’},

then we see that Q" is hy-Z-flat and Z'nQ" < Q for some 0<s; <1. Therefore,
by the argument to Théoréme 2.5.1 of Bony-Schapira [Bo-Sc] Psgii—Ps. 1 is
holomorphic on Q" x B(6(1 —s,)™1,). Since Pyii=f is holomorphic on
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Q" x B(T,1,), Py il is holomorphic on Q" x B(min{T, (1 —so)™1,}). Thus by

~r

Theorem 1.3, there exists an N-tuple #' of holomorphic functions on a
neighborhood of Q' x {0} such that

{Pz. i =Py il
=0(™ .

By the uniqueness of #', we have #'=# on a neighborhood of (QnQ")x {0}
because x,€Q". Since {xeR"; a<|x|<a,} is compact, it follows that @ is
analytically continued to some neighborhood of

412 U= | <st{reB(hzld); f[|zj|<a(1—s)lml}>

0<s<1 ji=1

U{(z,1)eC"*?; a<|Rez|<ay, |Imz|<d, |t|<T,}

with some 7, and a’'>0.

Step 4. Fix arbitrary 0=(04,...,0,)e{—1,1}*. For simplicity, set
D' :={(z,Ne C"x R*; |[Rez|<a,, |Imz|<a’} = C"x R

Then, by the result of Step 3 we see that there exists a positive constant §, such
that # is holomorphic in some complex neighborhood of

d 1/jm| h n
(4.13) {(z, NeD'; Z lojvit|<T,,Imz,>6, (; |ajv1tj> +—1 Y |Imzj|}
j=1 n

—1;=

J

d d 1/|m| h n
u{(z,t)eD’; lojvit)<T,, Imz,>d, <H lov;t “I> +n——l Y ]Imzjl}
=1 Jj=1 -

; j=2

d
u{(z,r)eC"”; a<|Rez|<a,, Imz|<da, '21 lojv ”i<T2}
=

Choose positive constants M, and T, such that
max{|m|nM, 6,/a'} <M,
0<Ty<min{T,,1},
(4.14) exp(MTy)<2,
2nexp(M, T)M, T, "™ <h,,

a!
6, Totm <2
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and set
d
@50, 0= (M (X o)™ +nh>\/ V' +€%,
j=1
where y':=(y,,...,y,) and ¢>0. Let ¢,(T) be a real valued real analytic
function in a neighborhood of {TeR; 0<T<T,} satisfying for some A">0

@1(To)>6, Ty,
4.15) o (T)=h" for any 0<T<T,,

d
<%)(T)>O for any 0<T<T,.

Hence there exists a small constant ¢, such that if 0<T<c, or Ty—c,<T<T,,
then

(4.16) @(T)>8,THml,
Set

d
?10)=9, < ) cr,-v,-t,-),
ji=1
d
70/, )= (07,40 + 95,0/, D) exp (M 12 0;”1’1) -
j=1
Then we see easily see that

op;
ot

0,n=op;d (1<j<d),

j
where

d
A;:Mlqag(y’,t)-}—exp(Ml Y ojvjtj)
j=1

j=

d d M. [ 4 Vim =1
x<ﬂ<z ajvjtj>+ﬁ<z ajvjtj) VIV +e? ).
J Jj=1

dT

Moreover by (4.4) and (4.14) we have
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M1 d 1/|m| -1
.17 A>M, ((p‘;(y’, 0 +_|m| (Zl ojvjt]) |y’|>
i=

>M <<p:(y', 0+ 3, I.V,-l),

and

n

4.18) Y

j=2

0op;
0y;

op;
0z;

2

L |
=X5

—1 h
<n—(M1T0“|"'|+nh)exp(M1To)<3°.

By (4.10), f'is holomorphic in complex neighborhood of

d h n
(4.19) {(z,t)eD’; 0<opt; (1<j<d), ¥ opt<To, Imz,> = 3 |Imzj|}.
i=1 j=

n—1j=2

44. Lemma. Assume that i is holomorphic in a complex neighborhood

of

d
{(z, NeD’; O<opyit; (1<j<d), 0< Y oyit;<T,, Imzl>(pf(Imz’,t)}.
=1

J

Then ii is analytically continued to some complexification of

d
{(z, NeD’; 0<opit; (1<j<d), 0< Z oyit;<T,, Imzlz(pg'(lmz’,t)}.
i=1

Proof of Lemma 44. We can apply the argument to Lemma 4.3 of
Kashiwara-Kawai [K-K]. Set

d
V= {(z, NeD'; 0<oyit; (1<j<d), 0< ). ovit;<Ty, Imz; =¢](ImZ, t)}.
j=1
We regard V as a real analytic manifold of dimension 2n+d— 1 with coordinates
x:=Rez, y:=Imz and t. Let ¥ be a complex neighborhood of ¥ and set

&Z,:=H°(vy(60;7)), where v () denotes the specialization functor along V
(see [K-Sc2] and [S-K-K]). Since # is analytic on

d
{(z, NeD'; 0<oyt; (1<j<d), 0< Y apvjt;<To, Imz,>@I(Im?z, z)},
j=1
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it follows that # defines a section of o/,®" on the set

{(x ¥+~ ((C+2R (K,

"’a>))—+21 L, ‘3("‘»—

+<Im£’,~?~>—<ReC’,i>>e T,V;0eC" !, c>0}
ox' a0y’

={(x,y,t)+<\/ 1c—+~/ —+<C, +2\/ 6%

—<C—’,£_—,—2\/ —1%% a—~>>€ T, V;leC !, c>0}
Z

Indeed, for any (x,y,0)eV, {'eC" ! and ¢>0, choosing a positive constant
¢ small enough we have

Im ( — e/~ e+ 2L, ‘Z »)— g2/ +¢Im{, z)))

5%

=yukele+dImE, ) =i, = Il "">+0« ?)

=¢&'c+0((¢)*)>0.

Thus we see that each boundary value b(,) (1<v<N) as a hyperfunction is
well-defined. Hence, denoting by SS the singularity spectrum of a hyper-
function, we obtain that SS(b(i,)) = Z, where

zZ ={(x,y,t;~ /—1dz, +2<06(pf,dz’)+<ag); +/—la,dt))e T;"V;aeR"}.
z
We see that P is defined on Z, and by (4.17) we have
()
&

A>M<<p5(y', D+ Y |y,-|>=M(y1+ » 1y,-|).
ji=2

ji=2

=vd (1<i<d),

Moreover, by (4.18) we have
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Cj=126‘l’a = ?fp_i <h, (2<j<n).
cl 621 6)/1
and
{ 0(02) d¢7 :
Im{ 2 )=|Im| —2/—1 = =0 (2<j<n).
(@ (= ZE) e o

Hence by assumption [A-2], P is invertible on Z. Further by (4.19), we
have

spy(b(d,)) spy(b((Py @),)) spy(b(f1))
Pl )= s - ]=0
spy(b(iy)) spy(b((Ps @)v)) spy(b(7x))
Thus it follows that
spy(b(@,))
: =0.
spy(b(ity))
On the other hand, it is easy to see that for any 1<j<n
b(i;)
P : =0.
I\ blay)
Hence the proof is complete. O

Step 5. Set

d
(4.20) W":={(z,t)eD’; O<ovt; (1<j<d), 0< Y opt;<To,
j=1

J

d 1/|m| n
Imzl>51<z ijjt]) + Y |Imzj|}
Jj=1 =2

n——l,-

v {(z, 1)eC"*;a<|Rez|<a,,|Imz|<d,

d
0<oyit; (1<j<d), 3 opit;< To},
=1

J
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(4.21) Z2:=Z2\W°,
where
— d
Zf::{(z,t)eD’;OSajvjtj (1<j<d), 0< Z oviti<T,, Imzl=(p§’(Imz’,t)}.
i=1
Note that by (4.13) and (4.15) @ is analytic in some neighborhood of

d
Weu{(z,)eD'; I t;=0,Imz, =¢(Im 2, 7)}. Choosing ¢ sufficiently large, we
ji=1

see that Z7=0. We will show that Z7 is compact.

d d
Case 1. If 0< X ov;t;<cy or To—c;< X o;v;t;<T,, then by (4.16)
j=1 i=1
d d 1/|m| n
(p;’(lmz’,t)>(p1<z ajvjtj>+nh|Imz’l>51<Z ajvjtj) +h Y Imz].
A ji=1 j=

Jj=1 j=2

Hence (z,7)¢Z/ .
Case 2. If a<|Rez|<a,, then (z,7)¢ Z? by definition.

Case 3. Since M,a'>4d, by (4.14), we can take a” as M,a'>Ma">d,.
Therefore, if a”<|Imz'|<a’, then we have

d 1/|m|
0(Imz',)>M, (( Y ajvjtj> +nh> [Im Z/|
j=1

d 1/|m| "
>51(Z ajvjtj) +h ) [Imz).
= '

j=2

Hence (z,0)¢Z7.

Case 4. Since 2h<1 and 26,T,'™ <a' by (4.4) and (4.14), we can choose
a” such that ha' +6,T,''"™ <a” <a'. Therefore, if Imz, = @’(Im 2, 1), [Re z| <a, ,
Imz'|<a and a"Imz, <da', then

1/|m|

d h n
Imzl>a”’>51<z ojvjtj) +———1 Y, Imzj.
i=1 '

n—1j=2
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Hence (z,f)e W7; that is, (z,/)¢ Z7 .
Thus we see that Z7 is compact. Therefore, by the “sweeping-out” method
we see that # is analytically continued to

d
{(z,t)eD’; 0<op;t; 1<j<d), 0< ) opt;<T,,
=

J I
J

d
Imz, >exp(M, Y ov;t)
=1

J

d d 1/jm|
x<§01<z ojvjtj>+<M1<Z ajvjtj> +nh)|Imz’l)}.
j=1 i=1

For any ¢>0 and 7" with 0<7'<T,, we can find ¢, as ¢,(7T")<e. Thus,

we can conclude that # is analytic on some complex neighborhood of

i

d d 1/jm]|
Imzl>exp<z ajvjtj)<M1< ajvjtj> +nh>|Imz’|}.
j=1 j=1

On the other hand, there exists a sufficiently small positive constant ¢ such that

d
U":={(z,t)eD’;0<ajv (1<j<d), 0<Y opt;<T,,
ji=1

{(x++/—1,0,...,0),ne C"x R*; |x|+|t|]<e, O<s<e} = U;u ) U°

oe{—1,1}¢

Thus, by Theorem 3.1.1 of [S-K-K] Chapter 1 each boundary value b(i,)
(1<v<N) as a hyperfunction is well-defined at (x,#)=(0,0). Further, it is easy
to see that u(x,?):=1py(b(d;) ..., sP(bEIN))E P Bnly 3, )SY. This com-
pletes the proof of Theorem 4.2. O

4.5. Corollary. Let P be a matrix of an analytic differential operators of
Fuchsian type defined on a neighborhood of (x,1)=(0,0). Assume [A-1] and
the following:

. . _ N
[A-3].  det()en(P“Y)z, T, m)=7"P(z,7;{,n) for a function P (k:=) k™
€ Ny satisfying the following: =l
For any (*eR\{0}, there exists ® € GL(n;R) such that ©(1,0,...,0)=(*
and that P(z,t;00,n) satisfies the condition in [A-2].
Then, for any hyperfunctions with holomorphic parameters
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(4.22) f(x, 1), glx,))e(BOLWE"Y,
there exists an N-tuple of hyperfunctions
ulx, ) (B

such that u has t as real analytic parameters and is a solution of the Goursat
problem

(G.P) {P(x’ t;0,,0)ulx, ) =f(x, 1),

u(x, ) —g(x, )= 0™ ")

Proof. We may assume that g=0. By the flabbiness of the sheaves of
microfunctions and hyperfunctions and by (4.22), we can find a representation

flx,0)= i F{(x,0)+/ —1I;0),
i=1

where each N-tuple F;= f;-+ fi is of type (4.8). Moreover by [A-3], we may
assume that we can apply the proof of Theorem 4.2; that is, for any 1<;<J we
can find an N-tuple @; of holomorphic functions on some infinitesimal wedge-type

domain D+./—1I7;0 such that
{Paj= 3
a;=0(1"").
J
On the other hand, since an N-tuple f":= ) f; is analytic in a neighborhood
j=1
of (x,7)=(0,0) there exists a unique N-tuple #’ of analytic functions such that
{Pu’ =/,
u'=0(m"),

by the argument to the proof of Theorem 1.3 and Madi’s result [M]. Thus
an N-tuple of hyperfunctions
J

u(x, ) ="y (x, 1), .., up(x,0):= Y uf(x,0)+/—1I;0)+u(x, 1)

ji=1

is a solution and has ¢ as real analytic parameters. O
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