Analytic Discs Attached to Manifolds with Boundary

By

Luca Baracco* and Giuseppe Zampieri*

§1. Introduction

Let X be a complex manifold of dimension n, M^+ a closed half-space with boundary M, A an analytic disc of X "attached" to M^+ , tangent to M at some point z_0 of $\partial A \cap M$, and intersecting \mathring{M}^+ in any neighbourhood of z_0 . Then holomorphic functions extend from \mathring{M}^+ to a full neighborhood of z_0 . This theorem refines the results of [1] where the boundary ∂A (instead of the whole A) was supposed to intersect \mathring{M}^+ . The argument of the proof consists in constructing a (closed) manifold with boundary W, contained in the envelop of holomorphy of \mathring{M}^+ and such that $A \subset W$ but $A \not\subset \partial W$. In this situation it is easy to find a new small disc $A_1 \subset A$ with $\partial A_1 \not\subset \partial W$. We are therefore in a situation similar to [1], and get the conclusion by exhibiting a disc transversal to ∂W at z_0 .

Extension of holomorphic functions by the aid of tangent discs attached to M and of "defect 0" is a particular case of a general theorem of "wedge extendibility" of CR-functions by A. Tumanov; the new part of our theorem is that no assumptions on "defect" are made.

This paper is tightly inspired to the results and the techniques by A. Tumanov [7]. We also owe to A. Tumanov a great help during private communications.

§2.

Let X be a complex manifold of dimension n, M a real submanifold of

Communicated by K. Saito, January 6, 1997.

¹⁹⁹¹ Mathematics Subject Classification(s): 32

^{*} Department of Math., Univ. of Padova, V. Belzoni 7, 35131 Padova, Italy

X, M^+ one of the two closed half-spaces with boundary M, $A = A(\tau)$, $\tau \in \Delta$ an analytic disc of X, $z_0 = A(1)$ a point of $\partial A \cap M$, $\{B\}$ the system of spheres of center z_0 . Let $C^{k,\alpha}$ be the functions whose derivatives up to the order k are α -Lipschitz continuous. We assume M to be $C^{2,\alpha}$ and A to be $C^{1,\alpha}$ up to the boundary and small. We recall the result by [1].

Theorem A. ([1, Theorem 1]) Assume

(i)
$$\partial_{\tau} A(1) \in T_{z_0}^{\boldsymbol{c}} M,$$

(ii)
$$\partial A \subset M^+$$
,

(iii) there exists
$$z_1 \in \partial A$$
 with $z_1 \in \mathring{M}^+$.

Then for any $B \supset A$ there is $B' \subset B$ such that holomorphic functions extend from \mathring{M}^+ to B'.

It is essential in the previous statement that $z_1 \in \partial A$ (in addition to $z_1 \in \mathring{M}^+$). As for the case $z_1 \in \operatorname{int} A$, we can reduce to the former case when we strengthen (ii) to " $A \subset M^+$ ". In this case extension from $B \cap \mathring{M}^+$ to a suitable B' holds provided that B contains z_1 ([1, Corollary 4]).

What happens when $z_1 \notin \partial A$ and $A \not\subset M^+$? Holomorphic extension seems not to take place. However it holds when a sequence converging to z_0 of such points $z_1 \notin \partial A$ does exist.

Theorem 1. Let M be $C^{3,\alpha}$, and assume that ∂A is a $C^{2,\alpha}$ curve with $A(1) = z_0$. Suppose

- (i) $\partial_{\tau}A(1) \in T_{z_0}^{\mathbf{C}}M$
- (ii) $\partial A \subset M^+$
- (iii) $A \cap \mathring{M}^+ \cap B' \neq \emptyset \forall B'$.

Then if $B \supset A$ there exists B' such that any holomorphic function extends from $B \cap \mathring{M}^+$ to B'.

Proof. When $\partial A \not\subset M$, the statement is the same as in Theorem A. For completeness, we shall treat it at the end of the proof. Assume therefore $\partial A \subset M$.

(a) Construction of a manifold with boundary W such that $W \supset A$. We

assume M is described by $y_1=h(x_1,z'),\ z'\in C^{n-1}=T^{\mathcal{C}}_{z_0}M,\ h(0,0)=0,\ \partial h(0,0)=0.$ Set $v_2=i\partial_{\tau}A(1)\ (\in T^{\mathcal{C}}_{z_0}M),$ choose $v_1\in T_{z_0}M$ transversal to $T^{\mathcal{C}}_{z_0}M,$ e.g. $v_1=e_1$, and write:

$$T_{z_0}M = Rv_1 \oplus Cv_2 \oplus C^{n-2}$$
.

Let $w' = z' \circ A$ take $w_0'' \in \mathbb{C}^{n-2}$, $s \in \mathbb{R}$ and consider the equation

(1)
$$u(\tau) = -T_1(h(u(\tau), w'(\tau) + (0, w''_0)) + s \qquad \tau \in \partial \Delta$$

in the unknown u. Note that for s=0, $w_0''=0$, the " x_1 -component" u of A satisfies (1). We need the following technical tool.

Lemma 2. Let h be $C^{k,\alpha}$. Then for any w' in $C^{k-1,\alpha}$ small, there is an unique solution to (1) $u(\tau) = u_{s,w'_0}(\tau)$, $\tau \in \partial \Delta$, which belongs to $C^{k-1,\alpha}|_{\tau,s,w'_0}$.

Proof. For $j \le k-1$, let

$$F: C^{j,\alpha}(\partial \Delta, \mathbf{R}) \times \mathbf{C}^{n-2} \times \mathbf{R} \to C^{j,\alpha}(\partial \Delta, \mathbf{R})$$

$$(u, w_0'', s) \mapsto u + T_1(h(u, w' + (0, w_0''))) - s.$$

Let $v = h(u, w' + (0, w''_0))$ in $\partial \Delta$, and define

$$D_{w'_0,s} = (u + iv, w' + (0, w''_0))$$
 in $\partial \Delta$.

We have:

 $D_{w_0',s}$ extends holomorphically to Δ with $D_{w_0',s}(1) = s$

if and only if

$$F=0$$
.

If h is $C^{k,\alpha}$, then F is C^1 (as application between functional spaces) and we have

$$F'(\dot{u}, w_0'', s) = \dot{u} + T_1(\partial_x h \dot{u} + \partial_{w''} h w_0'' + \partial_{\bar{w}''} h \bar{w}'') - s.$$

We have

$$\begin{cases} F(0,0,0) = 0 \\ F'(\dot{u}) = \dot{u} + T_1(\partial_x h \dot{u}). \end{cases}$$

Thus the equation F=0 has solution u in $C^{j,\alpha}(\partial \Delta, \mathbf{R})$ (and this depends $C^{k-1-j,\alpha}$

on data w, x, ζ and on w''_0 , s. (Cf. [5])).

Q.E.D.

In particular, since h is $C^{3,\alpha}$ and A is $C^{2,\alpha}$ up to the boundary, then setting $w' = z' \circ A$, (1) has an unique solution

$$u = u_{w''_0,s}(\tau) \in C^{2,\alpha} |_{\tau,w''_0,s}$$
.

With $v = T_1(u) + h(s, w_0)$, define $D = D_{w_0'', s}$ as in the proof of Lemma 2. Clearly for s = 0 and $w_0'' = 0$, D equals the initial disc A. Note also that for any s and w_0'' , D is attached to M.

We have that

$$D: C_{w_0''}^{n-2} \times \Delta_{\tau} \times R_s \to C^n$$

$$(w_0'', \tau, s) \mapsto D_{w_0', s}(\tau)$$

verifies

$$\operatorname{rank}^{\mathbf{R}} \partial_{w_0^{\prime\prime}\tau,s} D = 2n - 1$$

and therefore the range of D is a manifold S of class $C^{1,\alpha}$ with boundary $\partial S = D(C^{n-2} \times \partial \Delta_{\tau} \times R_s)$ in a neighborhood of $z_0 = D_{0,0}(1)$. Note that ∂S is generic and $\partial S \subset M$. Note also that $A \subset S$. Define

$$W = \bigcup_{\zeta_1} -ie_1\zeta_1 + S.$$

It is clear that any holomorphic function extends from \mathring{M}^+ to $W \cup \mathring{M}^+$. In a neighborhood B_1 of $z_0 = 0$, possibly smaller than B, we can describe W by:

(2)
$$y_1 = g(x_1, x_2 + i\zeta_2, z'') + \zeta_1 \quad \zeta_1 \le 0, \zeta_2 \le 0,$$

and

$$S: W \cap \{\zeta_1 = 0\}.$$

(b) Perturbation of W and of A such that $\partial A \neq W$. We perturb g for $\zeta_2 > \varepsilon$ to a new function $\tilde{g} \ge g$ such that $\{y_1 < \tilde{g}\} \subset W \cup \mathring{M}^+$ and such that the initial disc A = (u + iv, w) verifies in a point $\tau_1 \in \Delta$:

$$(4) v(\tau_1) < \tilde{g}(u(\tau_1, w(\tau_1)).$$

We also suppose $z_1 = A(\tau_1)$ close to z_0 . Let us still write g instead of \tilde{g} and

denote by S and W the manifolds with boundary defined by (2) and (3) for this new g. Thus (4) is equivalent to

$$z_1 \in A \cap \mathring{W}$$
.

Take $\tilde{\Delta} \subset \Delta$ such that $\tau_1 \in \partial \tilde{\Delta}$ and $\partial \tilde{\Delta} = \partial \Delta$ at 1. Set $\tilde{A} = A \circ \Phi$ where Φ is an analytic diffeomorphism $\Delta \to \tilde{\Delta}$. Let us write (2) as

(5)
$$\begin{cases} y_1 = g(x_1, x_2, z'') + \zeta_1 \\ y_2 = \zeta_2 \end{cases}$$

with ζ_1 , $\zeta_2 \le 0$. In these coordinates S is defined by $\zeta_1 = 0$ and ∂S by $\zeta_1 = \zeta_2 = 0$. Note that $\partial \tilde{A} = \partial A$ at z_0 and that $\partial A \subset \partial S$; it follows that $\zeta_1 = 0$, $\zeta_2 = 0$ at $\tau = 1$. We shall now use only the new disc \tilde{A} , and call again A.

(c) Construction of a transversal disc. Let $\zeta_1(\tau), \zeta_2(\tau)$ be defined by (5) over A_1 . Consider the system:

(6)
$$\begin{cases} u_1 = -T_1(g(u_1(\tau), u_2(\tau) + i\zeta_2(\tau), w''(\tau)) + (1 - \eta)\zeta_1(\tau)), & \tau = e^{i\theta} \\ u_2(\tau) = -T_1(\zeta_2(\tau)), & \tau = e^{i\theta}. \end{cases}$$

There exists an unique solution $(u_1, u_2) = (u_{1\eta}, u_{2\eta})$ in $C^{1,\alpha}|_{\theta}$. Moreover if we set $v_1 = T_1(u_1)$, $v_2 = T_1(u_2)$, and

$$A_{\eta} = (u_{1\eta} + iv_{1\eta}, u_{2\eta} + iv_{2\eta}, w'')$$

we have that

(7)
$$\partial_{\tau}A_{\eta}$$
 is $C^{1}|_{\eta}$.

In fact $\partial_{\eta}u_{2\eta} \equiv 0$, whereas $\partial_{\eta}u_{1\eta}$ is a solution of:

$$\partial_{\eta}u_{1\eta}+T_{1}(\partial_{x_{1}}g\partial_{\eta}u_{1\eta}-\zeta_{1})=0.$$

Since ∂g and ζ_1 are $C^{2,\alpha}$, then $\partial_{\eta}u_{1\eta}$ is $C^{1,\alpha}(\partial \Delta, \mathbf{R})$; in particular, with $\tau = e^{i\theta}$, $\partial_{\theta}\partial_{\eta}u_{1\eta}$ exists and is continuous.

As for $\partial_{\theta}\partial_{\eta}v_{1\eta}$, we begin by remarking that

$$v_{1n} = g(u_{1n}, u_2 + i\zeta_2, w'') + (1 - \eta)\zeta_1$$
 on $\partial \Delta$.

It follows that

$$\partial_{\eta} v_{1\eta} = \partial_{x_1} g(u_{1\eta}, w) \partial_{\eta} u_{\eta} - \zeta$$
 belongs to $C^{1,\alpha}(\partial \Delta, \mathbf{R})$.

We derive with respect to θ and obtain:

$$\begin{split} \partial_{\theta} \partial_{\eta} v_{1\eta} &= \partial_{\theta} (\partial_{x_1} g(u_{1\eta}, w) \partial_{\eta} u_{\eta} - \zeta) \\ &= \partial_{x_1}^2 g \partial_{\theta} u_{1\eta} \partial_{\eta} u_{1\eta} + \partial_{x_1} g \partial_{\theta} \partial_{\eta} u_{1\eta} - \partial_{\theta} \zeta_1 \,. \end{split}$$

It is easy to check that all the terms on the right have at least class C^0 ; thus also $\partial_{\theta}\partial_{\eta}v_{1\eta}$ is C^0 . Finally Cauchy-Riemann equations yield:

$$\partial_{\theta}(u_{1n}+iv_{1n})=ie^{i\theta}\partial_{\tau}(u_{1n}+iv_{1n})$$

and we are done. It follows from (7):

(8)
$$\partial_{\tau} A_{n} = \partial_{\tau} A + \eta \partial_{\tau} \partial_{n} A_{n} |_{n=0} + o(\eta).$$

Set $r = y_1 - g$. We prove now that

(9)
$$\Re e \langle \partial r \circ A, \partial_{\tau} \partial_{\eta} A_{\eta} \rangle |_{\tau=1} < 0.$$

In fact one finds a real function λ on $\partial \Delta$ such that $\lambda \partial r \circ A$ extends holomorphically to Δ and notice that then:

$$\langle \lambda \partial r \circ A, \ \partial_{\eta} A_{\eta} \rangle = \langle \lambda \partial_{1} r \circ A, \ \partial_{\eta} A_{\eta} \rangle$$

is a holomorphic function. The real part φ of this holomorphic function verifies $\varphi|_{\partial\Delta} = -\zeta\lambda$ whence: $\varphi|_{\partial\Delta} \ge 0$, $\varphi(1) = 0$, $\varphi(\tau_1) > 0$. (Here τ_1 is such that $A(\tau_1) = z_1$.) Then Hopf Lemma implies (9). Plugging together (8) and (9) we get

(10)
$$\Re e \langle \partial r, \partial_{\tau} A_n \rangle (1) < 0.$$

(d) Construction of a dihedron. We denote again by ζ_1 , ζ_2 , w'' the components of this new disc A_{η} and solve the equations:

(11)
$$\begin{aligned} u_1 &= -T_1(g(u_1(\tau), u_2(\tau) + i\zeta_2(\tau), w''(\tau) + w''_0) + \zeta_1(\tau)) + s \\ u_2 &= -T_1(\zeta_2(\tau)) \\ v_1 &= -T_1u_1 + g(s, 0, w''_0) \\ v_2 &= T_1(u_2). \end{aligned}$$

Let $A = A_{s,w_0^{"}}$ be defined by (11). Note that

(12)
$$\begin{cases} \partial A \subset W \text{ and } \partial A \subset S \text{ at } z_0 \\ A \text{ is transversal to } M \text{ (for } s, w'' \text{ small).} \end{cases}$$

Define

(13)
$$S_1 = \{ A_{s,w_0'}(\tau); \tau \in \Delta, s \text{ and } w_0'' \in \mathbb{R} \times \mathbb{C}^{n-2} \}.$$

We have

(14)
$$\begin{cases} \partial S_1 & \text{generic} \\ \partial S_1 = \partial S & \text{at } z_0 \text{ (hence } \partial S_1 \subset M) \end{cases}$$

where the latter of (14) follows from the former of (12). By using S_1 and M one gets a dihedron V with non-proper tangent cone, such that any f holomorphic on $\mathring{M}^+ \cap B$, for $B \supset A$, is extended to V at z_0 .

(e) Conclusion of the proof in the case $\partial A \subset M$. The dihedron V has generic edge ∂S_1 . We approximate V by an increasing sequence V_{ν} of domains with C^2 boundary such that

$$V_{\nu} \subset V, \ \partial V_{\nu} \supset \partial S_1 \quad \forall \nu.$$

It is obvious that for large ν , V_{ν} has at least one Levi-pseudoconcavity. Then germs of holomorphic functions extends from V_{ν} to a full neighborhood of z_0 (according to a famous theorem by Hans Lewy).

(f) The case $\partial A \neq M$ (cf. [1]). In this case the proof is simpler. Let M be defined by $y_1 = h(x, z')$ ($z' = (z_2, z_3, \cdots)$) with h(0) = 0, $\partial h(0) = 0$, write A = (u + iv, w'), and put $\zeta_1 = v - (h \circ A)$. Solve

(15)
$$u_{\eta} = -T_{1}(h(u_{\eta}(\tau), w'(\tau) + (1 - \eta)(\zeta_{1}(\tau))).$$

This produces a family of discs $A_{\eta} = (u_{\eta} + iv_{\eta}, w')$ $(v_{\eta} = T_1(u_{\eta}))$ which verify by the same argument as above:

$$\Re e < \partial r \circ A$$
, $\partial_r A_n > |_{r=1} < 0$

for any sufficiently small η . Let ζ_1 , w' still denote the components of A_{η} and solve

(16)
$$u(\tau) = -T_1(h(u(\tau), z'(\tau) + w'_0) + \zeta_1(\tau)) + s.$$

By taking the union of the discs $A_{s,w_0}(\tau)$ one gets a manifold S_1 such that $\partial S_1 \subset M^+$ and $S_1 \cap M$ is a generic manifold. We thus get a dihedron V with edge $S_1 \cap M$ and such that functions extend from $\mathring{M}^+ \cap B$ to V at z_0 $(B \supset A)$. The conclusion is the same as above. Q.E.D.

References

- [1] Baracco, L. and Zampieri, G., Analytic discs attached to half-spaces of Cⁿ and extension of holomorphic functions, *Preprint* (1996).
- [2] Boggess, A., CR Manifolds and the tangential Cauchy-Riemann complex, Stud. Adv. Math. CRC Press (1991).
- [3] Baouendi, M. S., Rothshild, L. P. and Trepreau, J. M., On the geometry of analytic discs attached to real manifolds, J. Diff. Geom., 39 (1994), 379-405.
- [4] Trepreau, J. M., Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe C² dans Cⁿ, Invent. Math., 83 (1986), 583-592.
- [5] Tumanov, A., Connections and propagation of analyticity for CR functions, Duke Math. J., 731 (1994), 1-24.
- [6] ——, On the propagation of extendibility of CR functions, "Complex Analysis and Geometry", Lect. Notes in Math., Marcel-Dekker (1995), 479-498.
- [7] ———, Extending CR functions from manifolds with boundaries, Math. Res. Letters, 2 (1995), 629-642.