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Monodromy at Infinity and Fourier Transform

By

Claude SABBAH*

Abstract

Let f:U— C be a regular function on a smooth quasi-projective variety U. We compute
the limit mixed Hodge structure (when ¢t — o0) of the cohomology of the fibers f=¢ in terms of
the Fourier transform of the Gauss-Manin system associated to f.

Introduction

Let f:U— C be a regular function on a smooth quasi-projective variety
U. For teC, the cohomology spaces H*(f!(#), Q) underly a natural mixed
Hodge structure (cf. [6] for ¢ generic and [7] if f~!(¢) is singular). Steenbrink
and Zucker [26] (see also [8]) have constructed a limit mixed Hodge structure
when ¢ — 0.

This mixed Hodge structure can also be obtained [24] by compactifying
fasamap F: & — P! with 2 smooth, and by constructing a mixed Hodge module
structure on the nearby cycles at 1= co of the sheaf R, Qy, if x: U g & denotes
the inclusion: one obtains the Steenbrink-Zucker limit by taking the global de
Rham complex of this mixed Hodge module on F~!(c0).

This paper proposes to recover this limit mixed Hodge structure using
Fourier transform techniques. The main object is the 2,[7]{d,)-module
k.86, where & % is Oy[t] equipped with the natural 2,[t]{d,)-action
twisted by e~ %/, and « still denotes the inclusion U x Spec C[t] 5 & x Spec C[7].
This module is holonomic but not regular in general, so does not
enter in the frame of mixed Hodge module theory. However, as k , (¢, is regular
on Z (Grothendieck comparison theorem), x,.& % is regular along t1=0, so
one may compute the vanishing cycles along t1=0 of its de Rham complex
using the Malgrange-Kashiwara filtration and apply a procedure analogous
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to the one of [23].

In §1 some known facts concerning Fourier transform with parameters of
sheaves are recalled. In §2 Fourier transform with parameters of holonomic
2-modules is introduced and a proof of a comparison theorem between both
kinds of Fourier transforms is given, in the case of regular holonomic modules
and their de Rham complex (such a theorem is also proved in [5] in a more
general situation and the case without parameters is treated in [14]).

The main result of §3 is that one may apply the theory of
Malgrange-Kashiwara filtration to Fourier transforms of regular holonomic
2-modules to compute the nearby and vanishing cycles along t=0.

Section 4 is dedicated to Hodge theory of vanishing cycles at 1=0 of the
Fourier transform relative to f of x, 0y (and also the nearby cycles), namely the
Dq-module ¢™% &~/ A filtration naturally defined in terms of a natural
filtration on x,& % is put on this object (following the method developed by
M. Saito [23] using the Malgrange-Kashiwara filtration) and it is shown that
the isomorphisms of §§1, 2 identify this filtered module with the mixed Hodge
module of nearby cycles at infinity A}, ,(Rx ,Qy) defined by M. Saito.

In §5 applications are given to the computation of the limit mixed Hodge
structure of Steenbrink and Zucker in terms of the Fourier transform of the
Gauss-Manin system of f.

The reader is referred to the appendix for the notation which is not defined
in the main course, in particular for the conventions used concering perverse
functors.

I thank B. Malgrange for simplifying and clarifying some statements and
proofs of a previous version of the paper.

§1. Sheaf-theoretical Fourier Transform

We review here some variants of well-known facts concerning the Fourier
transform of non-necessarily homogeneous sheaves (see [14] and the references
given there, see also e.g. [11, chap. III] for the Fourier-Sato transform of
homogeneous sheaves on a vector space and [4, 12] for the [-adic analogue).

Some notation. In the following, A' will denote the affine line with
affine coordinate 7 and A! the affine line with coordinate 7. In this section they
will come equipped with their analytic topology. Let P'=A'U{o0} be the
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projective line and let &:P' — P! be the real oriented blowing-up of P! at
. We have P!=A'US! and we denote O=args the coordinate on
S, Consider the following diagram

Aleslé PruAl 4 At

I lexId [
Al x A! é Pl x Al é»f&‘

lp lr

Al £ p

Denote i: {0} 5 P! (resp. i:S! g P!) the complementary inclusion of k
(resp. k); denote similarly i:{0} c A! and £:A'—{0} A the complementary
inclusions in the space A'. We keep the same notation after taking the product
with A' (for i and 7) or with A! (for i, k).

Denote L'* the closed set of S'xA! defined by Re(e?r)>0 and let L™
be its complement in P! x A! (L~ contains A' xA! as an open set). Notice
that the fibre of L't over t=0 is equal to S!, so the corresponding fibre of
L™ is empty.

Let Q,.. be the constant sheaf on the closed set L'* extended by 0 on
P'x AL

Let @,- be the constant sheaf on the open set L~ extended by 0 on
P!xA'. In particular, the restriction of Q.- to P'x {0} is equal to the
extension by O of the constant sheaf Q4.

We hence have a triangle of D(Qp:, x:)

+1

Q- 2 Qprxx: = Qp+ —.

Fourier transform. Let & be an analytic manifold. We use the same
notation for the diagram obtained from the previous one after taking the
product with &. We will use the two following functors of triangulated
categories

(1.1) Fz:D"(Qgxa) = DT (Qg 1), Fo(F)=Rq Rk p ' F[11®Qg «1-)
(12) Fr:D"Quxa) > D (Qqxx),  FHF)=RG Rk, p™'FRQqyr-)
which come in a triangle of D*(Qg, x1)

(1.3) iR F - FUF) - FolF) D
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where 7 (resp. %) denotes the projection of % x A! (resp. & xA') onto Z.

Remark. Denote a:A' xA' g L™ the open inclusion and ¢~ :L~ — A!
the restriction of 4 to L™, and keep the same notation after taking the product
by #. The formula for §, can also be written

(1.4) §o(F) =R Ra,p~ ' Z[1].

1.5. Fourier transform relative to a meromorphic function. Let F: & — P!
be a meromorphic function on %. Consider the following diagram
of maps (and the same one after taking the product by Al):

X ’&F # 5 pr
I el O le
Frraysy s o £ p

where & is the fibre product # x p:P! and X denotes the restriction of &

over Al,
Let Ly < & xA' be the inverse image of L~ < P! xA' by FxId. The

Fourier transform relative to F is the functor
(1.6) Fe:D*Qx) > D Qgxar)  FelF)=Re (Rhp,p™ ' F[110Q.).
Considering the following diagram

xxA' 2 o Bk &gk

i | IO ! I

axA'xA' & axL & axPxA & o xA
where i, is the composition of the graph embedding X c Xx A! (xA!) and
kg, one has F(F)=R(eo fr)Rap p~ '#[1] and one shows that
8r =8z Rip,.

We also put Firt %o Rir, so that the triangle (1.3) becomes

(1.7) 7 Rhp T — FoF) » Fo(F) .
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Let j: U X be a Zariski open set (in the analytic sense). Put Kd-—e-fkp oj
and K=kpoj. One has

(1.8) 8r(Rj 4 "Qu) =Re (RK . "Qu « k1 ®QL;) =R(e° Bp)R(tr )« "Qux At -

1.9. Nearby and vanishing cycles. We will consider the functor of
vanishing cycles at t=oo shifted by —1 (see §A.2 for the conventions made
in this paper) which we denote #y,,. This is a functor from the category
D%Qy « x:) (bounded complexes with constructible cohomology) to the category
DYQLT, T~ "]y) (bounded complexs with constructible cohomology as sheaves
of Q-vector spaces and Q[ 7,7 ~!]-modules). Here, T denotes the monodromy
along a positively oriented circle in the variable 1/t. We will also denote
T,=T""' the monodromy along a positively oriented circle of big radius in
the variable 1.

Denote # the local system on A'*=A'—{0} with fibre Q[7,7 '] and
monodromy (in the first sense) given by the multiplication by T. We keep
the same notation for its inverse image on a product space like & x A'*  For
an object # of D%(Qgy A1) We have (see e.g. [4])

Py, F =i 'Rk (F R Z).
Identifying the constant sheaf on A'* with % /(T—1).%, the natural morphism
iT'Rk F[—1]1- %, F

is obtained from the morphism of complexes

g I7lg
Id | !
¥ - 0

We will also consider the functors Ay, and %), of nearby and vanishing
cycles at 1 =0, as functors from D%(Qy  x:) to DXQ[T, T~ '],). They are defined
using the local system Z on A!—{0} (see eg. [4, 11]).

(1.10) Theorem. Let & be a smooth complex analytic manifold.

1. The functors Fq and F5 send DY(Qy , a1) in DY(Qy « x1) and induce exact
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functors from the abelian category Perv(Qgq « 1) to Perv(Qg x x1)-

2. There are isomorphisms between
(@) the functor Py, of nearby cycles along t=oco and the composed
Sunctor Py .o ¥y from DYQg.a1) to DYQLT, T~ '],) after the
identification T=T,
(b) the functors i"'Rk, and i"'§y from DYQg.a1) to DYQy),
which are compatible with the canonical morphisms of functors
i" 'Rk F[—1]> %, F and i 'FHF) —1]1 > W, FoF).

3. The variation var:%p_ o Fs — Aj o FL is an isomorphism.
Let now F: & — P! asin §1.5 and let & be in D%(Qy). Property (3) above
is equivalent to i'F(F)=0, so from (1.7) we get
I'F( PN ] =i 'Rkp 7 [2]=Rkg, 7

as 7 is smooth. In particular, when Z is in Perv(Qy), the object I'F(F)[1]
is in Perv(Q,). In such a situation we have two exact sequences in

Perv(Qy)

(1.11) 0%, 10 FelF) > W, o FoF) = ' FoF)[1] -0
(1.12) 0— Py 5 Ry F = EpF — Rhp F -0

where Ep is the Beilinson functor (see e.g. [24, §(2¢)] and below).

(1.13) Corollary. There exists a functorial isomorphism of D%Q[T,
T ')

pl/’l/FRkF*y:Ihst&F(y) for F in DS(QX)

and for the eigenvalue 1 of monodromy and for F e€Perv(Qy) it is part of a
Sfunctorial isomorphism between the two exact sequences above.

Proof. For the first part, according to the theorem, it is enough to
prove that the morphism (1.3) induces an isomorphism ?p, o s — %, o F,. This
follows from %p (%~ 1%)=0 for ¢ in DYQ,).

Consider now the cartesian square
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I x Al <]f-, I x P!
T i T ip
X ]gf x

where ip is the graph embedding relative to F and iy as in §1.5. Let jr be
the inclusion complementary to ir and, for # in DY%Qy), put 9=
k™ Yipjr 'n " 'Rkp F[1] with n: & x P! > Z. We have a triangle of D(Qy  41)

(1.14) RizF - % -1 'Rky F[1]1°2>

with now n:%Z x A' > . By definition, 24 ="}, ¥, so from the theorem
we get

(1D =Ap 0, (1.14) =", , o F(1.14).

We now use the following commutative diagram, where the morphisms come
from (1.7) or (1.14):

%10 FeF) D Wy o FoF)
! |

pd’:,l ° 3‘}«5(3/7) plpr,l ° ?S’ar(g)
var || 7

p‘/’:,l ° %}Tr(y—) - pl//r,1 ° 2};({4)

The right upper vertical arrow is an isomorphism because for #' in DY(Qy)
the Fourier transform o (n~'%") is supported on & x {0} = ' x A! and the
lower one is an isomorphism because Rn,%=0. Both facts are left to the
reader. O

Proof of Theorem 1.10. It is enough to prove the first part of the
theorem over the field C. It is then a consequence of the comparison Theorem
2.2 of the next section and of the Riemann-Hilbert correspondence [9, 15] (see
also [3]). The third part follows from

(1.15) Lemma. We have i '§{F)=i"'Rk F and i'FLF)=0 (which is
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equivalent to F5(F)=Rk k' Fi(F)).

Proof. Notice first that we have
Rk p 'F=p 'Rk, F and Rkp '#=p 'Rk, 7

indeed, these equalities are obtained from [11, Prop. 2.6.7] by duality, since
p is smooth. The first point is then easy, denoting = (resp. #) the projection
of & x P! (resp. & x P!) on &

iIT'RG (RE p ' F®Qqy:+)
=R 'Rk ,p~ 'FR®Qqgx+) (d proper)
=R IRk p~'F (the fibre of L'* at t=01is S*)
=Ri i 'Rk ,F (previous remark)
=Rn i 'Rk, 7 =i"'Rk 7

To prove the second point, it will be convenient to consider also the real

blowing up of A! at t=0._ Put A1 $* x [0, + oo[ and let 0 be the coordinate
on §'. We denote now 7:S' & A and & its complementary inclusion in Al
(and 31m11arly after taking a product with & or & x PY).
-, Let L' < S'xA' be defined by the equatlon cos(0+6)>0 We have
L =Zx[0,00[ with Z< S'x$! Let F L' —L'* be induced by the real
blowing up of 7=0. Then the natural morphism Q,.. — RF,Qf:* is an
isomorphism: indeed, it is enough to verify this above =0 (because 7 is an
isomorphism above r¢0) the assertion comes from the fact that the fibre of
¥ above (0, 0) is the set of g satisfying cos(0 + 0)> 0, hence is a closed interval.

It fol]ows from this remark that we may compute (%) using Z x P! x A‘
and ¥ xL’ with a formula analogous to (1.2). After a little manipulation,
we see that it is enough to show the following, taking for ¢ the inverse image
of the complex i~ 'Rk ,# by the natural map & x Z —» % x S' induced by the
first projection:

Given any R-constructible complex 4 on ¥ x Z, consider its inverse image
n"'% by the projection n: % x Zx[0, + o[ » X xZ. Then 7’11"1?=O.

By duality it is enough to verify that ?_ln’g =0 for any such 4. But
for an open set of the form W=V x[0,e[ in & x Z x [0, + o[, we have Ry, Qy, =0
since the cohomology with compact support of a semi-closed interval is equal
to 0. Hence
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RT(W,1'%)=RT(V, Ry R Hom(Qy,n'Y))
=RT(V,R#sm(R1Qy, %) (eg.[11, Prop.3.1.10])
=0

and this concludes the proof of the lemma. OdJ

Let us now sketch the proof of the second point of the theorem. Using
notation of §1.9 we have

W FHF) =1 'Rk [k~ ' FHF)Q L)

We will compute this complex using & x A! and the projection formula for
the direct image #:% XSL—» %. First, the local system .# extends naturally
to a local system # on A'. We then have

W FHF)=Ri P (Rk,,Jf 'FUHOD).

Denote i the functor defined as in (1.2) using X! instead of A'. The proof
of Lemma 1.15 shows that { (’5- H(#)=0, so

Fo(F)=RE L 'FuF) and nFUF)=Ri] (FUF)®P)

Using the projection formula for % xP! xA! 5> & xA' and denoting
g, ¥ x Z - % the projection, we get

B FHF) =Ry (p~ ' REF® L ®Qq ).

On the other hand, with analogous notation, we have for an object &
of DYZ x A

WiF =i 'Rk (F ®F)
=R i 'Rk (F @k~ 12)
=Ri i '[Rk, FRZ]
=Rn, i [Rk, 7 RZ]
=Rn, [p” 'Rk F®ZR®Qy 7]

where r:Z xZ — % x S' denotes the projection, and using the isomorphism

Id 5 Rr ™', proved as for 7.
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The assertion follows now from the identification on Z of the two local
systems .# and Z: denote y (resp. y) the generator of S! corresponding to T
(resp. the one of S corresponding to 7°); the fundamental group of Z is the
free group generated by ¢ and the inclusion Z g §' x $! maps d to yy.

The compatibility of the canonical morphisms claimed in 1.10{2) is a
direct consequence of the previous proof and the description of these morphisms
given in §1.9. O

§2. Fourier Transform of Regular Holonomic Z-modules
and a Comparison Theorem

In this section & denotes a smooth quasi-projective variety equipped with
its Zariski topology, or an analytic manifold. The lines A' and A! will be
equipped with their Zariski topology, so for instance 2, , ,:-modules will be
D4 [t]<0,y-modules.

We consider the Zariski topology when dealing with @ or 2-modules and
the analytic topology when dealing with constructible sheaves.

2.1. Fourier transform of 9-modules on the affine line. Recall the
notion of Fourier transform (or better Laplace transform, the kernel being
e ") of a holonomic C[£]d,y-module (see [14] for details). Let M be a left
C[1]€d,>-module of finite type. Identify the two rings C[¢]{d,y and C[7]{d,)
via the isomorphism t+— —3_, d,—>1. Denote M the module M when viewed
as a left C[7]<0,)-module via this isomorphism. Then ﬁ is the Fourier
transform of M.

Assume that M has only regular singularities, even at infinity. Then X/}
has singularities at t=0 and t=oo0 only, the singularity at =0 being
regular. The singularity at T=oo0 is not regular if M has singularities at ¢#0,
oo. Recall the notation of projections

Al x A!

p/ \15
Al Al

Let M[t]=M®cC[t]=p* M be the inverse image of M on A' x A! with
its natural structure of C[z,1]<d,,0,>-module and M[t]®e™* be the same
C[t,t]-module with the following twisted action of d, and 4., for me M[1]:
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0m®e™")=[(0,—m]@e™", I(m®e ")=[(0.—m]@e™ "

The direct image p, (M[t]®e™") is the complex
0,—1
M[z] — M[]

where the right hand term has degree 0, and this complex has cohomology
in degree O only, the cokernel of d,—7 being identified with M by the map

Mlt]-M
Y mai—oY oim;.

We shall write 1{/}=15+(M[r]®e‘") =p.(pTM®e™™).
Analogous results hold for a bounded complex M ° with regular holonomic

cohomology (regularity is used here only to analyse the singularities at finite
distance of M"°).

Relative Fourier transform. We denote &4 the Dy, ao1xx1-module
Qg « a1 xae” " and we usually forget the subscript.

Let .# be a holonomic P4 , o:-module (or a bounded complex with such
a cohomology). Its Fourier transform is the object

Bl ) = 5 (p* MRET)

of D2 (P4 «x:1). When  is a single holonomic Z,[£]{3,>-module, F,(A) is
the single holonomic 2,[1]{d,)-module obtained from .# as in §2.1.

Let F: % — P! be a rational function and still denote F its restriction
Fix:X— A'. For ./ holonomic on X, define F(M)=kp. (p* M @), with
ETF=(Fixx1d)* ¢ =0y x1e”F. We have Fu(M)=Tqliz, ).

For j: U s X the inclusion of a Zariski open set, we denote f=Fyoj=Fy,
and we have Fp(j,O0p)=K,& 7 with k=kpoj and & 7 =0y, 5.e7 7.

(2.2) Theorem. Let # be a holonomic D4 . s1-module or an object of
Db (D « A1) Such that k . M has Dy  p1-regular holonomic cohomology. We have
a functorial isomorphism

PDR*"F (M)~ Fo DR*(M)  in DYCqn).
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2.3. Remarks.

1.

It is possible to extend this theorem to the case where & is ana-
lytic. One needs to define the Fourier transform as a functor from
holonomic P4 , pi-modules which are also Dy, p:[*(Z % 00)]-modules
to holonomic 9,4, pi-modules which are also Dy, pi[#(& x 00)]-
modules. These tools have been developed in [1].

This theorem is proved (but not stated explicitely, and for the solution
complex instead of the de Rham complex) in [5, §§3.3, 3.4, 3.5] under
a weaker assumption: k,.# should be “l-specializable” along
t=o00. This is an assumption of regularity along t=0c0. We will give
below another proof by reduction to dimension 1 in the regular
holonomic case, analogous to the one of [22, th. 5.1].

When considering f: U — A' and the 2,-module Oy, this comparison
theorem gives a rational structure on ?DR*(x,& %) by the
isomorphism

PDR*Fe(j+ Op)~ %F(Rj*”QU)%C.

The Fourier functor commutes with direct image for morphisms 2 — %
of smooth projective varieties. In particular, the Fourier transform
of the Gauss-Manin system f, (0 is equal to p, x,& %/, if p denotes
here the projection & x Al — Al

The weight filtration. Assume now that X—U is a divisor with
normal crossings in X. Then the perverse complex Rj,fQy is
filtered by perverse subobjects W.Rj ’Qy in the category of perverse
sheaves on X ([6] and [2]). This filtration corresponds to the filtration
by the number of polar components on the regular holonomic
Dy-module j, Oy =0Ox[«X—U)], via the functor FDR*".

The Fourier transform of #'F, (W.j,0y) is equal to #p (W, 0y
®¢& ), and, by functoriality, the Fourier transform of the filtration

W.Hf,0, S image #F (Wi, 0p) — H'f, 0y

is equal to the filtration
7 g def ix : —F ix p—tf
W' f, Oy = image H'p, (Woj,O0y®@E ") > A, .

Notice also that when U is quasi-projective, such a filtration does not
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depend on the choice of a quasi-projective compactification X — A® of
f because this is the weight filtration of the mixed Hodge module
associated with f, Oy [24].

Proof of Theorem 2.2.

(I) As PDR*" commutes with direct image by p (see e.g. [19, I1.5.5]),
it is enough to find a functorial isomorphism

PDR*k ,(p* M®E™™) S Re (Rk ,p~ 'PDR*™ (M) 1]®Qq x1-)-

We first lift the LHS as a complex DR™% (p* M ®E™™) on & x P! x A!
such that

2.4 Re FDR™%  (p* M RE~™)="DR*%k ,(p* MRE ™).
It will then be enough to find a morphism
(2.5) PDR™% , (p* M RE ™) — Rk .p~ ""DR*(M)[1]® @y 1.-

and to prove that it is an isomorphism.

Let /P9 x: be the sheaf on P! x A! of functions which are holomorphic
on A' x A' and have moderate growth along S! x A!, where S'=¢"!(c0). This
is a flat module over ¢ O3 . x: (the proof is identical to the one of Prop. 2.8
in [21]). This sheaf comes also equipped with a natural ¢~ !9 , x:;-module
structure. Let F be the projection of Z xP!'xA! on P!'xA'. Then
FlofBd xi®,-1p- 0, X ¢~ has a natural structure of a left ¢~ ' D%, p1 x 41~

x Ay
module if /# is a left @%‘xplx ai-module. Moreover we have

(2.6) Re AP 5= 0%  xu[*({o0} x AV)]

(see [14, Lemma 3.4] in dimension 1 and the proof of Th. 5.1 in [22] for the
case considered above).
We put for a 2=, p1xx:-module A

pDRmud./V‘ R%Oma 1@(8 10 F 1MF1XA1 1F‘1%ﬂ ,/V‘)
1x Al

which satisfies Re FDR™ A" =PDR**(k .k* A") by the projection formula and
(2.6).

(2) Let y:L'* o P'xA(x %) be the closed inclusion complementary to
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p (see §1.5). To obtain the morphism (2.5) it is enough to prove that
2.7) y PDR™Y%  (pT M RE ™) =0.

This is a local problem on %®". If this is proved, one has, putting
f=pDRm0dk+(p+=/ﬂ®g_ﬂ),

H < BB A - BRuo B A =B Ra k™ A ~BRa,p” '"DR*™(M)

and this last term is exactly the RHS in (2.5). Now, the fact that this morphism
is an isomorphism is also a local problem on %"

(3) When & =pt, (2.7) and the fact that (2.5) is an isomorphism is essentially
proved in [14, §V.3]. As k,.# is regular and as the problem is local on
S x A, one first reduces to the case where (k,.#)*" is a rank one meromorphic
connection near oo, and locally on S!xA' one may reduce to the trivial
meromorphic connection ([ xo0] because #* defines a local invertible section
of &#/™4,  Let =1/t be the local coordinate on a disc near co. The statement
is then equivalent to PDR™ YO, x:e~"")=C,-[2], or in other words, the single
complex made with the following double complex

e @ -
AP 3 AP

2. | 13,

gy O g
.,Qlﬁidgle T/t 3 ,52{%‘;";;2 T/t

has cohomology in degree O only, if the upper left corner has bidegree (0,0).
O

(4) We will now reduce the problem to the case & =pt by taking a local
direct image by the projection F: Z x P! - P!, Let D be a small disc around
oo P! and B(x° p) the closed ball of radius p>0 (for some metric) centered
at x°eZ and denote F,o,:B(x° p)x D — D the restriction of F. Recall (see
Th. 9.4.1 and Cor. 9.4.2 in [10]) that, given a regular holonomic module or
bounded complex 4", the local direct image Fyo,,A™" has Zp-regular
holonomic cohomology for p and D small enough. Remark also that, if
N =4[t 1], each cohomology module N is a meromorphic connection
on D with pole at oo, ie. is equal to N[#~']. It follows that for .# as
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above, the cohomology modules of
Fropo(p ko MRE ™" =(p* Fro o (ko MP™Y@®E

(where p* is taken in the analytic sense in the RHS) are meromorphic
connections on D x A! with poles along #7=0. Notice that step (3) gives the
isomorphism (2.5) for F,o ,. (k. .#)™.

As F,o , is proper and according to the description of (2.5) given in step
(2), it is then enough to find an isomorphism

RF o ,"DR™(p*k  MRE ™) S PDR™F,  (p k, MRE ).

This is done as for the analytic de Rham complex (see eg. [19, §IL.5.5]).
O

§3. Regularity of §(j, ) along 1=0

We keep notation of Section 2. We shall show in this section that the
Dyg xx1-module Fp(j.Op) (and more generally Fq(A) for A holonomic on
Z xA' and k. regular on & x P?) is strongly regular along t=0. To this
end, we first recall the main properties of the Malgrange-Kashiwara V-filtration
of a holonomic 9-module along 1=0 as well as a criterion of regularity along
t=0, which allows one to express the nearby and vanishing cycles
Py PDR*™F R+ Op) and % FDR*"F(j, Oy) as de Rham complexes of holonomic
P 4-modules computed in terms of the V-filtration.

Remark however that Fx(j,Op)=x,& 7 is not a regular 2-module, but
its irregularity is concentrated along F~!(c0)xA! in a neighbourhood of
1=0. The nontrivial part of the monodromy of Ay PDR*"Fr(j, Oy) comes from
the monodromy around t=0 of the irregularity sheaf of F(j,Oyp).

3.1. The Malgrange-Kashiwara filtration of a holonomic 9-module. Let
Z be a smooth algebraic or analytic variety and let 9, be the corresponding
sheaf of differential operators on %. Let V.Z2,[1]<{d,) be the increasing
filtration indexed by Z such that

Vo2 o100 =Dy [t]{10.),
Vidal[t)K0>=V,—1+0. Vi for k>1,
Vi@ [11K0.> =1 V@4 [11€0,>  for k<O.
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Let .# be a holonomic 2,[1]<d,>-module. There exists a unique increasing
filtration V..#, called the Malgrange-Kashiwara filtration of .#, which is indexed
by a finite number of lattices a+Z < C (in general one has to fix a total
order on C, but, for our purpose, it will be enough to assume that the lattices
are contained in Q, i.e. that the roots of the corresponding Bernstein polynomial
are rational) which satisfies the following properties:

1. For each a, the filtration V,,,#, (keZ), is good with respect to
V°@ﬂ"[r]<at>9

2. for every B, there exists locally on % an integer J, such that

(v0.+PYeVyM < V .y M, where V<ﬂ=gu,q V.
<

We shall denote gry.# the quotient V,#/V_g#. This is a holonomic
9 4-module equipped with a nilpotent endomorphism N induced by the action
of 70, +p.

Remark. In [20] or [23] the filtration denoted V is the previous
filtration shifted by 1. The choice made here will be convenient for our purpose.

The moderate nearby or vanishing cycle functor Y™ or ¢™¢ for holonomic
2-modules is defined by

YrA M =T M =gry M with a€]0,1[ and A=exp(2ina)#1
VM =gro M, TV M=gri M

lp:nnd‘/” @ !p;n;dﬁ ¢mudﬂ @ ¢mod

1eC* AeC*

which is a functor from holonomic 2,[1]{8,>-modules to 2,[T, T ~']-modules
which are 9g-holonomic, where T=Aexp(—2inN): Yyl —» ™M or
T M - 7M. There are morphisms

can: YoM — ¢TM  and  var: pTPM - YA

—18,)" ! and var =1, such that can o var=T—1Id

defined by can=—9, )’ (2m)

n>1 n'
and varocan=T—1Id. For 1#1 we also define can=T—1d: ¢y — Y73 M
and var=Id.
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Assume that & is algebraic and let Z°" be the underlying analytic
manifold. For a D,-module #, let M =0 R, M. The two possible
V-filtrations on 4" coincide:

(3.2) Lemma. For .# holonomic over 9,[11{3,), we have

Txkt @ Vel =V.M*"

Og x X1

Proof. By flatness of 0% x: over (g, x: one verifies that the LHS is
a good filtration of .#*" (with respect to V.23, x1), satisfying the same properties
as the RHS, so we get the lemma using the uniqueness of such filtration.

O

In particular, we have for all §,

(gry My = gry M.

Regularity along a smooth hypersurface. Let us keep notation as
above. Let K:Z xAY g & xA! and 1% x {0} c & xA! denote the comple-
mentary inclusions. Following Mebkhout [18], we say that .# is regular
along ¥ x {0} if one of the following two equivalent conditions is satisfied:

1. the natural morphism ’DR*'(k ,k*.#) — Rk J~'"DR*(.#) is a quasi-
isomorphism;

2. the natural morphism i~ ’DR*(Z)[1] - ?’DR>(*.#) is a quasi-
isomorphism.

Remark. The first definition can be used to define regularity along
a nonnecessarily smooth hypersurface.

For AeC*, let ./, be the rank one meromorphic connection on % x A!
with poles along Z x {0} generated by t*, where e*™*=1 (such a connection
depends only on A and not on the choice of «).

We shall say that .# is strongly regular along ¥ x {0} if 4@ A, is regular
along Z x {0} for any 1eC*.

Remarks.

1. Tt is not known if both conditions (regularity and strong regularity
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along % x {0}) are equivalent, but this is a reasonable conjecture.

2. Regularity (or strong regularity) of .# along % x {0} is equivalent to
regularity (or strong regularity) of the localized module [t~ '].

One can define in an analogous way the notion of regularity or
strong regularity for a bounded complex with holonomic cohomology.
Thanks to the theorem of Mebkhout [18], saying that the irregularity
complex along 2 x {0} of a holonomic 2-module is a perverse complex,
the regularity (or strong regularity) of such a bounded complex is
equivalent to the regularity (or strong regularity) of each of its cohomology
modules (for the strong regularity statement, one uses the fact that 4", is (-flat).

Regularity or strong regularity is stable under direct image by
(g x1d), of D4, x:-modules, if g: & — 2’ is proper and (in the analytic case)
if A is generated by a coherent (4[t]-module. We have (see e.g. [20], [17,
§41, [13])

(3.3) Theorem (Comparison theorem for nearby and vanishing cycles).
Let M be a holonomic D4[110,y-module. Assume that M is strongly
regular along 1=0. Then there are functorial isomorphisms in DYC[T, T '],)

PDR*(YT™M) S WY PDR™(M) and PDR™HT5.M) > %, ,"DR™(A)
compatible with the morphisms can and var. O

(3.4) Proposition. Let 4 be a holonomic Dy, s1-module such that
kM is aregular Dy pi-module. Then Fq (M) is strongly regular along t=0.

(3.5) Corollary. The complex FDR*"¢p™F(j,Oy) admits a natural
Q-structure:

PDR*™GTF (] + Op) =% [Fr(R} ' Qu)]®C

(and the same result holds for Yy™* and #)_,). Moreover, for different
compactifications, the Q-structures are compatible in a natural way. O

Proof of Proposition 3.4. 1t is equivalent to prove the result for §q(.#),
if F: 2 — P! is a meromorphic function and .# a holonomic 2y-module. Using
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resolution of singularities and a standard “dévissage”, we may assume that
M =1, N, where A is O-locally free on a Zariski open set U of X, and that
Z —U is a divisor with normal crossings. Moreover the question is local on

def
% and the result is true in a neighbourhood of each point of X=F~!(A!)

=% —F }o0). So it is enough to prove the result for the 2[1t]{d,y-module
Cl{x,y,z}[x ™1y~ 1, 1] xYPe ™™ where (Xq, -+, X, V15 Vgr 215+ 2,) (p=0) are
local coordinates on C"*!, m=(my,---,m,) e N—{0})P*', a=(ay,---,a,) e CP*,
b=(by,--,b)eC% p+q+r=n and 2=C{x,y,z}<{d,,0,,0,> denotes the ring of
germs of differential operators on (C"*',0). Moreover, the strong regularity
being a local analytic property and depending only on the localized module
along =0, it is enough to consider C{x,y,z, t}[x Ly~ v 1]xy’-e " We
shall now forget the coordinates y, z and put p=n (it is easy to reduce to
this situation). After a sequence of blowing-up of C"*2, we are reduced to
prove the following: if z=(z',z") are coordinates on C"*?, then C{z}[z™']-
z¢~ 17" is strongly regular along {f(z")=0} where f is any monomial in the
variables z”. In this situation, the holonomic module is the external product
of a strongly regular holonomic module (in the variables z”) along f~!(0) with
a holonomic module in the variables z'. It is not difficult to conclude in
this case. O

§4. Fourier Transform and Hodge Filtration

We now come back to the situation considered in the introduction, namely
a regular function f: U — A' on a smooth quasi-projective variety U. We fix
a projective compactification & of U such that

(1) there exists a rational function F:% — P! extending f,
(20 ¥—U=DuUF (o) is a divisor with normal crossings.

We keep notation of §1.5. Remark that Rj PQy is a perverse sheaf on X
and j,0Oy=04[+D] is a single holonomic Zy-module.

Fourier transform for j,(O,. Let us summarize the results of the
previous sections for j,@,. Recall that ip denotes the graph embedding of
F. 1In the following, we forget for simplicity the symbol ir, or Rip, and we
use Ay, instead of Ay, .. We have constructed an isomorphism in Perv(Qy)
compatible with the monodromy action

(4.1) % Fr(Rj JQu) = W 1,(Ric,"Qu)
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where we view the RHS as an object on & after taking its direct image by the
inclusion F~*(00) ¢ . This isomorphism is strict with respect to the filtrations

def

Wahy 1R FQy) = Ay /t(RkF R} FQy)

Wb Fr(R)"Qu) = % Fr(WeRj,"Qu)
where W.Rj PQy is the weight filtration of Rj 7Qy in Perv(Qy) (recall that A,
and % &y are exact functors from Perv(Qy) to Perv(Qy)).
We also have a diagram of isomorphisms in Perv(C,)

R Cy)  ENEC (R Cy)
T 1)
PDR* $7*4F (), O) PDRY T, 0,)

where the left vertical arrow is given by Theorems 2.2 and 3.3 and the right
one by Theorem 3.3. By construction, the isomorphism PDR*"¢p™¢F(j, Oy)
~PDR*™ 704k . Op) that we get is compatible with the Q-structures of both
terms.

According to the Riemann-Hilbert correspondence saying that PDR*"
is an equivalence between Mod, (24) and Perv(Cy), we get an isomorphism

T+ Op) YT O)

which is compatible with the monodromy action, so for any 1€ C* we have an
isomorphism

(4.2) PTIF( + Op) 2 YT 1 Op)

compatible with the action of the nilpotent endomorphism N defined in
§3.1.

We still denote W. the filtration induced by W.j, Oy on k. Oy, YTk 1 Op),
8 U+ 0p) and @T9FH(j.Oy). By exactness, we have Wi, Oy)
=y Trd(Wek . Oy), etc., and (4.2) is strictly filtered with respect to W..
By [24] the relative monodromy filtration M.(N, W.) exists for N:y/T2% . Oy
- Y%, Oy so it does exist for N:¢pTFe(j, Op) = TF i+ Op)
Analogous results hold for y™*Er(j,Oy) using the Beilinson functor E
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and [24, §2.¢] instead of YTp°.

Filtrations. Denote # .k , Oy the weight filtration of k , Oy = O [ «(F — U)]
and consider the increasing filtration F. by the order of the pole (functions

with a pole of order <1 are in F, and F_,=0). This is a filtration

def
by 04-coherent submodules. Denote Ffx, 0,=F.[—dy]x,0; the Hodge

filtration, with dy=dim U. We will also put n=dy—1.

We will also need the filtration F, counting only the order of the pole
along D: this is a filtration by O4[ F~'(c0)]-coherent submodules.

The D4, a1-module ip,k, 0y comes also equipped with an increasing
filtration F. in a natural way. Let V.ip, k.0, be the Malgrange-Kashiwara
filtration along % x{o0}. Then F.ip, k.0, induces on each grlip k0
(xe[0,1[) an increasing filtration F.yTpd%(c, Op) with A=exp(2ina). There we
put FE=F.[—n]. In the same way the module Zq(x,0,) comes equipped
with a Hodge filtration FHEq(x,Oy) (see [24, §2.€]).

On the other hand, let G.2,[7]<d,) be the increasing filtration by “degree
of operators in D, +degree in 17, so that G,D4,[t]{0,>=0[0.].
We put

Ger 692 S G718 (FL0,IHT — UYle™)

q+r<p
This filtration induces on each gr¥(x,& %) (xe[0,1]) a filtration denoted
G753 Fr(j + Op) (A=exp(2ina), 2€]0,1]) or GTSFr(j+Oy) (2=0).

(4.3) Theorem. We have isomorphisms compatible with the monodromy
action

W30+ Op), FIT, MUN, W), % (R ,FQu)]
~[¢7Fr(j+ Op), G[ —n], Mo(N, W)[n], % Fs(Rj Qu)]
[Exlic+ Op), F', Mo(N, W)[n+1], EfRx ,FQy)]
~ Y S+ Ov), Gol — (n+ 1)1, Mu(N, W)[n+ 11, %1 Fe(Rj /Qu)]

which makes the RHS a mixed Hodge Module, and the following sequence is
an exact sequence of mixed Hodge Modules isomorphic to [24, (2.22.1)] for
e/”= K+(QU:
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0

l
[753°F e + Ov), Go —n], Mo(N, W)[n, %, 1 Fx(R/ ,"Qu)]
!
WS e+ Ov), Go[ — (n+ 1)1, Mo(N, W)[n+11, % 1 Fr(R) FQu)]
l
[K+COU9F'Ha Wa RK*pQU]

|
0

We will give the proof for ¢4, letting the proof for Y™ to the reader. To

prove the theorem we will compute locally the V-filtration for the modules
involved and will show first that there exist locally strict isomorphisms between
both terms in (4.2). To show that the isomorphism (4.2) is indeed strict, we
will use a trick due to M. Saito [23] (see §4.21).

Let us analyse the structure of the V-filtration of x,& % along 1=0 in
an analytic neigbourhood of a point on F~!(c0). So we choose local coordinates
(x,y,z) on " compatible with the divisor DU F~!(0c0), where X=(Xg, " Xp),
y=01,¥Yg z=(z4,--+,2,), such that p,q,r>0 and p+g+r=nIn these
coordinates we have D={Il%_,y;=0} and we may also assume that
Kx,y,z)=1/x", with m=(m,,---,m,) and m;>0 for all i=0,---,p.

We shall denote 2 the ring of differential operators with coefficients in
C{x,y,z} and & the free rank one C{x,y,z}[x~*,y~!,7]-module generated by
e~ "™ with its natural structure of a P[7]{d,>-module. We will also use

—t/x™m —t/x™m

ore=—° (we put y; ---y,=1 if g=0) as a generator
xO---x" xo-..xn'yl---yq

of & as a C{x,y,z}[x"',y~!,7]-module and ¢ as a generator of & as a

P[7]<0,>-module.

e

e=

Let G.2[1]<0,> be the increasing filtration by “total degree in d,, d,,
0,+degree in t” and let G.& be the increasing filtration of & induced by the
filtration of C{x,y,z}[x~',y~*,7] by “total pole order in y+degree in t” (here,
the pole order is taken in the sense of [6, §3.1.10], i.e. with a shift). For a
multiinteger b we will denote [b|=2X;max(b;—1,0). Hence

G_16={0}, Go&=C{x,y,z}[x ']€,
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and more generally, for k>0,

GSE= Y C{xyzj[x ']y "te
veNg,leN
Iv|+i<k

The following is easy to prove:
4.4) Lemma. We have G.&=G.2[1]{0,)€. O

Hence G.4 is a good G.2[t]{0,y-filtration.
We denote W.& the increasing filtration of & by the number of polar
components along D:

W& = Y C{x,y,z}[x Ly; ', t]-e .

Je(1,-.qh 8T =k

(4.5) Proposition. For all «e[0,1],

1. the monodromy filtration of N:grl& — grl & relative to W.grl & exists
and we denote it M(grl &, N, W),

2. for all i, k and I, the morphism gr¥gr¥er’ & — grM ,.et¥erV & induced
by N' strictly shifts by i the filtration induced by G.& on each term.

Remarks.

We denote W.grl& (resp. G.grl&) the filtration induced by W.& (resp.
G.&) on grl&, namely W,grl & =W, NV (&)W, NV _ (&) (resp..). Note that
V.& induces on W,& the Malgrange-Kashiwara filtration V(W,&).

The filtration induced by G.& on grMgrler?
induced on each graded term.

The definition and the properties of the relative monodromy filtration are
given in [26]. Recall that N shifts it by —2 and that for each i>0 the
induced morphism N':grM, .gr¥ — grM er? is an isomorphism.

Part one of Proposition 4.5 is in fact a consequence of [26] or [24] if
one uses the isomorphism (4.1) for a€]0,1] and its analogue with Z; for
a=0. The computation that we need to do will show it also.

& is the filtration successively

Computation of the V-filtration. In order to prove Proposition 4.5, we
shall give an explicit presentation of gré.
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(4.6) Lemma. Let ¢ as above. Then € is a generator of & as a
D[]0, )-module, which satisfies the following equations:

r@,e’=—ime’
x
, m; 1 P
0,=——\10,+— )¢ i=0,---,p
Xi m;
’ el .
O,€=—— Jj=1l9q
Vi

0,=0 k=1,---r

r(ﬁ 6;'2'>’e'= —(—m)'"( ﬁ |:16r—1+£j|>'16t-e'. O
i=0 i=0 k=1

m;
Consequently the order of e’ with respect to the V-filtration of & is <0, so
we have Vy(2[1]1€0.)) € < V(&)

1

We shall now introduce a family of polynomials of one variable s indexed
by a rational number o and a multiindex a=(ay, --,a,)e Z**'. For aeQ we put

Po=ceall I (s+i)

i=0 [ma]<l<a, m;

where / is an integer, [m;a] denotes largest integer <ma and we take the
convention that the product indexed by the empty set is 1. The constant c,, is
chosen so that P, (—a)=1.

ForaeZP*! and aeQ, put P, . (s)=P, 4(s) for f<a and B close to «. Let
[m,.oc]dg—[—mioc] be the smallest integer bigger than or equal to ma. We

hence have

Pa,<a(s)=*]£[ IT <s+i)
m

i=0 [mal<l<a, i

where * is a nonzero constant. There exists J,,€N and a nonzero constant
* such that P, _(s)=x(s+a)’P,,(s). We have

dao=#{ilmaeZ and a;>mgo}
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hence we have J,,<p+1<n+1.
We define a correction term Q,(s) by

1 if >0

Qa(S)={ =
ss—1)--(s—k+1) if keN* and e[ —k, —k+1[.

The following properties are easily verified:

(4.7) Lemma.

1. The family (P,,Q,) of ideals of C[s] is increasing (with respect to the
usual partial ordering of (—Z)Y*'xQ), ie. P,,0, is a multiple of
P, O, if —a;<—a; for all i and a<do'.

2' Pa,a(s)Qa(s)=qaz(s)' Pa+m.a+ 1(5*‘ 1)Qa+1(s— 1) Where qa is a constant lf
=0 and g, (s)=const-s (conste Q¥) if a<O.

3' ng(Pa,a(s)Qa(s)’ Pa—m,a(s + I)Qa(s + 1)) = Pa,r1+ 1(S)Qa+ 1(5)' D

In order to compute the V-filtration, we shall use another presentation of &:

(4.8) Lemma. & is the C{x,y,z}[x ',y ! 10,]-module generated by
e~ " and, as such, is free of rank one. The filtration G.& is the filtration by

“total pole order in y+degree in 10,”.

Proof. One considers the map C{x,y,z}[x ',y™',70,] > C{x,y,z}[x "},
y~1,7] defined by

sz(x, ¥,2)(t0,) -+ (16, —k+1)—> Zf,,(x,y, z) ( _)_:;> .

One verifies that this is an isomorphism of C{x,y,z}[x !,y~']-modules,
which gives the result. U

(4.9) Lemma. For aeQ, let

U= Y C{xpz}[y 1,10,] x P, (t0,)0,(10,) €.

aeZpr+1

Then U.8 is equal to the Malgrange-Kashiwara filtration V.8.
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Remark. We can replace ¢’ with e=y, ---y,e’ in the previous expression
of U,. Using the fact that e"""=x,--- x,," €, the previous expression can be
written

V"‘gz z C{X,J’aZ}D’_I,Taz]'x_a a—l,a(rar)Qa(tat)'e_r/xm.

aeZr+1

Proof. Remark first that, thanks to Lemma 4.7, U.& is an increasing
filtration which is in fact discretely indexed, t- U, = U,_, with equality for
o <0 (this follows from 4.7-(2)), and U,+0,U,=U,, (4.7-(3)). Let us show
that each U, is stable under the action of V,2[1]<0,> =2[1]{t0,). The only
point which is not completely evident is the stability under J,,. We have

ax.(x_a a.a(rat)Qa(Tat) : el) =—X e Ii(mirat + ai + I)Pu,a(rar)Qa(Tat) : el

(4.10) = (ma—a— Dx~"" P, 4, (10)0(x0)- ¢

and the last term is clearly in U,8.

There exists d, such that (10,4+«)’-U,<c U., and we may choose
0,<n+1 for a¢—N and §,<n+2 for ae —N.

It is then enough to show that some U, is of finite type over
9[71]{z0,y to conclude that U.& is a good filtration which moreover
satisfies the same properties than V.8 does, hence both filtrations
coincide. But a simple computation shows that Uy,=V,2[1]<{d,) ¢ O

Proof of Proposition 4.5. Put [ma]=—[—ma]. For aeZ?*' such that
a>[ma] (ie. a;>[mpo] for all i) we put I(a)={i|a;=[m]} and x;_ = (X)icr.(@ -
For beN? put J(b)={j|b;=0} and define y,, in an analogous way.

For ae[0,1], it will be convenient to denote

S if xe]0,1]
6““ +1 = ) .
A+ {5,,,a+1 if a=0.

(4.11) Lemma, Let ae[0,1].

1. Every element ¢V, & can be written in a unique way

[ X XX ga,b,}.(xla(a)’yJ(b)’z)'x_ay_b'(Tar-l'a)lPa—l,a(rar):l'e_r/xm

a>[ma] b>0 A>0
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where, for all a, b, 1, 8,41 € C{X1()> V5, 2} and g, ;=0 or g, ,(0,0,2)
#0.

2. We have se V_,& if and only if (g, ,70=>A>0,_1,(+1)).

3. We have

ordge= max |bj4+A+degP,_y,
{(a.b,2)|ga.b,2 %0}

ordye= max #J(b).

{(a.b,2)|ga,b,4# 0}

Proof. We consider on the set of tuples Z?*! x Z4x N the lexicographic
order. This allows one to define on C{x,y,z}[x"',y~*,10,+«] (hence on &)
a filtration % indexed by ZP*! x Z4x N: an element ¢ has order (a,b,d) if a,
is the pole order along x,=0, then a, is the pole order along x; =0 of the
coefficient of x™, efc. and d is the degree with respect to 10, +a.

Remark also that we have P aya—1.1ma-1)0=Pa—1.- Hence each element
of V,& can be written

8=[ 2 ha(-x,y’y_15za16r+“)x_apa—l,a(’cat):|'e_r/xm

a>[mal

and if we decompose the 4, we obtain an expression

8:[ 2 ik ”avb(x,y,Z,r6f+a)x‘"y“bP,._l.a(raJ]'e—r/xm

a=[ma] b>0

with h, ,e C{x,y,z}[10,+«]. We will show that the dominant term &u¢,) ) .de)
of ¢ with respect to & can be written

—_— _.b A . - m
G @i "y @0 A ) OPy_ (10) e

with d(e) € A(e) +deg Pyyy—1,4, SO in particular is in V,&. In other words, we
will have ee V,& if and only if this is s0 for €, peae) 3N &= Eue).be).de) -

For this, consider first term of highest pole order ay(e) along x,=0. It
is also the dominant term of the previous sum indexed by the (a,b)
such that ag>ay(e). This sum can hence be written H(xqy,x',y,z,70,+)
'x()_“O(e)Pao(a)- 1.a(00) ¢~ with x' = (x, s Xp)and Pog g, =Cg,- l,un[moa]<l£ao—-l
(t0,+1/my). Moreover, H admits a similar expression with one variable less
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and we have H(0,x',y,z,70,+a)#0 so that in this case we may replace H with
HO,x",y,z,70.,+2)#0 in order to compute the dominant term. We then get
the result by induction on the number of variables x and y.

We deduce from this fact the existence and uniqueness of the decomposition
4.11—(1), as well as the fact that ee V_,& if and only if 1>6,_5 (+1) if g,, ,#0
(i.e. 4.11-(2)).

For ¢e V,& we have at our disposal two Newton polyhedra: the first one
N(e) is attached to any ¢€ &, using the unique decomposition

3‘—’[ Z Z Z P X 1oays Yaeys D)X~ Y hb(’-'ar)d]'e—t/xm
azTmal b>0 d>0
with h,, ,#0=h,, /0,0,2)#0; then N(¢) is the convex hull of the points
(a,b,d)—(N?*! x N?x N) for which h,, ,#0; the second one N,(e) is defined
in the same way using the decomposition 4.11-(1) of &. One shows by induction
on (a,b,d) that both polyhedra coincide. The filtrations G and W being
defined only in terms of the polyhedron N, we see that on V, both filtrations
can be defined in terms of N,, which gives the third point of the lemma.

O

We deduce from the lemma that if [¢] denotes the class of ¢ in grl&, then
[e] has a canonical representative ¢ defined by the formula

.y—ay—b. A .o T/X™
[ gn,b,}.(xla(a)syl(b)sz) X"y (10, + ) Pa—l,a('[ar)] e ™
a>[mal b>0 0<A<d8q-1,0(+1)

and that if [¢]#0 we have

ordg[e] =ordgé= max b+ A+deg P14
{(a,b,A)|ga,b,2#0 and A <dg—,(+ 1)}

ordy[e]=ordyé= max $J(b).
{(a,b,A)|ga,b,a#0and 1<dg—-y,(+ 1)}

Denote M.=M'(N). the monodromy filtration of N=10,+a on grlé&
centered at 0. Then using the fact that the order of N* with respect to the
filtration M;C[N]/N? is equal to §—1—24, we have [¢]e M/grl & if and only
if the only possible nonzero terms in & are such that 0<A<d,_q,(+1) and
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Oa-1{+1)—1-2A<1.
We deduce easily from this remark the following consequences, hence 4.5—(1):

1. For all /[eN, the morphism N':gr’& — gr/& is strict with respect to
the filtration W.grlé.

2. The relative monodromy filtration M.=M.(grl &, N, W) exists and is
equal to the convolution (M{* W.)grl & (see [26, Prop. (2.11)]).

3. We have grifgrfgrl & =grM grl¥gr’ & (see [26, Cor. (1.6)]).

One verifies in the same way that £ € V,& has a nonzero class in grMgry gr’ &
if and only if there exists (a, b, 4) such that a>[ma], #J(b)=k, 0<A<d,_1(+1),
Oq—1{+1)—1-21=]—kand g,, ,#0. The order of the class of ¢ with respect
to the filtration induced by G is the order of the canonical representative,
namely the max of |b|+1+degP,_;, on such tuples (a,b,4). This gives
immediately the second point of 4.5. O

From this description we also deduce

(4.12) Proposition. On k.6, the filtrations V., W. and G. are
compatible.

Proof. This means that for all k£, d, « we have
4.13) Wn[GinV,+V_ . <[ WnGinV ]+ V.,

and this implies that the possible tri-graded objects obtained by permuting the
filtrations are all equal. In order to show (4.13), remark that, for ee V,&, we
have ee G, V,+ V_, if and only if the canonical representative £ is in G,. The
same equivalence holds for W,nV,+V_,, so we see that ee[G;nV,+V_,]
N[WnV,+V_,] if and only if £ G;n W,, hence the result. O

Computation of the primitive part. Let ae[0,1] and consider the
following filtered 9 4,-module, denoted

Of[*(F~*(0)UD)]-“F~® or also O *(F~ (c0)uD)],.

This is the free On[*(F '(c0)uD)]-module of rank one with one generator
“F™*, and the structure of 2,-module is obtained by twisting by F™* the
usual one on O,[*(F !(c0)uD)]. This module comes equipped with the
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following filtrations:

© W. is the filtration by the number of components.of D along which
a local section has poles;

o if ¢ is a local section of O,[*(F~ (co)u D)], we say that @-“F~* has
a pole along a component of F~(co0) if F~* has an integral multiplicity
along this component and if @F ~* has a pole along this component;
then #"; counts the number of components of F~!(co) which are polar
for “F~* and # . is the convolution of #” and W,

® the filtration F. is defined by

ordg(¢“F ~*") = ord ((x™¢p)

where the RHS is the pole order in C{x,y,z}[x"',»™'] as in
[6, §3.1.10].

(4.14) Proposition. For ae[0,1] we have local filtered isomorphisms
(P gri(s 1)8tk 812 €, Go) = (8174 181% O [+(F ™ '(c0)U D)],, F.).
In the LHS, we put {(+1)=/if a€]0,1] and {+1)=/+1 if «a=0.

Proof. We keep notation as above. From 4.5-2) follows that the
filtration G.grMgrgr’& is compatible with the Lefschetz decomposition.
Assume that ¢ has multiorder (/, k, «) with respect to the filtration MWV.- Then

the class of ¢ in grMgrfgr/& is in the primitive part

Perlgrfgrlé < Ker N'™** igrligrlerl & — gl grlé
if and only if the canonical representative of this class is

—_ .-.b . p— / m
Z Z ga,b.O(qu(a)’yJ(b)sz)x Y TOP,_1,,(T0) e
b>0 a>[ma]
8J(b) =k Sa-r,u(+1)=1—k+1

Now, each element he C{x,y,z}[x~*,y '], has a unique decomposition

h= Z Z ha,b('xl,(a)yyj(b), Z)x‘“y"’

a>[ma] b>0
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with h,,#0=>h,,(0,0,z)#0. The filtrations on C{x,y,z}[x" ',y '], can be
expressed as follows:

® ordyh=max, ﬁO#J(b);

® ord,.h=max, b,éo(é,,_,,a) and ord, h=max, b¢0(50—1,a+§f(b));

e ordph=max, b¢0|a—[moﬂ|+|b|.

The filtrations W. and #°. are filtrations by C{x,y,z}{0,,0,,0,)-
submodules: this is well known for W. so it is enough to verify this for #7.,

and it is enough to show that if 4, ,x "y ~"e ¥ and h,, satisfies the previous
properties, then

(4.15) [ax‘ +mo/x (g px ™y )= ax.(ha,b)x_ay Pt (mo— ai)hu,bx— t 1')3’ b

isin#";. Butwehaved,.y,—1,=0,-1,.1fa;#m, hence each termisin #7;.

It is also easy to verify that F, is a good filtration with respect to the
usual filtration F.C{x,y,z}<0,,d,,0,) by the total degree in 0,,0,,0,.

If h has W-order k and # -order [+1, its class in gr}; grf C{x,y,z}[x~!
y~ '], is nonzero if and only if the canonical representative

b

h= Z Z Do (X1 oiays Vroys Z)x 7P
b>0 a=[mal
$I(b)=k da-y.u=1—k+1
of this class is nonzero. The F-order of this class (with respect to the filtration
successively induced by F) is then the F-order of the canonical representative .

Proposition 4.14 will follow from

(4.16) Lemma. Let ae[0,1]. For every k, | the map which sends

z Z ha,b(xlu(a)ayJ(b)a Z)x—ay—b
> [ma]
#J(b) k da-1, u—l k+1

to

Z Z a.b(xlm(a)a yJ(b)aZ)x—ay—bpa—l.a(‘[at)'e—r/xm

>0 >[ma]
#J(b) k da- lm—‘l k+1

induces a strict isomorphism of filtered (C{x,y,z}{0,,0,,0,),Fs)-modules
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(gr;ﬂ-fl- 1gr/’¢VC{X,J’s Z}[x_ 1,y— 1]a9F°) :) (P gr;‘(l-% l)grzvgrrg’, G‘)'

Proof. Once Z-linearity is proved, bijectivity comes from the uniqueness
of the decomposition, and the fact that this isomorphism is strictly
filtered comes from the fact that for a>[ma], we have degP,_y ,=|a—[ma]|.

First, one easily see that this mapping is C{z}-linear.

The main point to be shown to obtain C{x,y,z}-linearity is the fact that
if aeZ?*! and beN? are fixed, with a>[mu], and if peC{x,y,z}, then the
image of the class of ¢-x~“y~" is the class of @ x"y PP, g, """

We can decompose
@-x"y =} Pup XY

[ma]<a’<a 0<b’'<b
with @, , € C{X1 ); Vso), 2} and @, 4 #0= ¢, ,(0,0,2)#0. The image of the
class of @-x~% " is then equal to the class of

(4.17) > Y Par X Y U Pyg e

[ma]<a’<a 0<b’'<b
On the other hand we have for [ma]<a'<a the equality
Pa— l.a(Tat) = Pa' - l,a(Tat) : qa,a'(‘cat)

with g,,(—a)=1. So the class of ¢-x"% " in gr)f, , gry gr, & is equal to

S Y Gur Y Py aali) e

[mal<a’<a 0<b'<b
and its projection in the primitive part is then equal to (4.17).
0,-linearity for instance is obtained by comparing (4.15) with a formula
analogous to (4.10). O
(4.18) Corollary. For a€[0,1] any local isomorphism of 2D 4,-modules
Pgris 18ty 81,6 = 114181 Og[HF ~}(c0)U D)],

is strictly filtered with respect to the filtrations G. and F..

Proof. Let {0,---,p}, = {0,---,p} be the set of indices i such that
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moaeZ. For I<{0,--,p}, with #I=I4+1—k and J < {1,---,q} with #J=k,
put ErnD;=(NiE)N(Nje,D;). Then the formula above for h shows that (at
least locally) (gr}; gty Oy HF~'(0)uD)],, F.) is equal to the filtered
direct sum (over I, J as above) of the largest submodules M, ; supported on
E;nD,, equipped with the induced filtration F..

Any automorphism of grf; gry Ou[«F ~'(c0)uD)], preserves this de-
composition, hence it is enough to verify, thanks to Proposition 4.14, that any
automorphism of M;; is strictly filtered, and showing that any such
automorphism is a constant multiple of the identity will be enough.

One can verify that PDR*"M/, is equal, up to a shift, to the direct image
by the inclusion E;nD; g % of the following sheaf: on E;’mD,défE,mD,

—( U E,-), this is the rank one local system with monodromy exp 2inm;o
i#(0. . p}t

around E;nE;nD, for i¢{0,---,p},; it is extended by 0 on E;n D, (this is
also the maximal extension). Any automorphism of this sheaf is a constant
multiple of identity, so we can conclude using the full faithfulness of PDR®".

O

Local comparison with the nearby cycles of f at infinity. The local
computation made in [26] for the nearby cycles at infinity (in the case of
unipotent monodromy) can be made using arguments as above. We shall
sketch it below.

Consider on & the complex Rk, ’Qy and let ¥, x(Rx Q) be the nearby
cycle complex on F~*(c0). It depends only on Rj ”Q, and not on the extension
to & that we have chosen. So we denote it ¥/, (R}, 7Qy).

We denote ¢’ the coordinate at infinity on A'. Consider on & x D', where
D’ is a disc centered at co in P! with coordinate #, the 2 ganp-module
M=, 0p)*"[0,] 6(t —F') with F'=1/F. This is a regular holonomic module
on *" x D’ and PDR*"./# is the direct image of the sheaf Rj ?Cy by the inclusion
of the graph of F’. In the same way, if /: F~*(c0) ¢ & denotes the inclusion,
we have Ri'2)s(Rj,’Cy) ~"DR*™2°UM).

This module .# comes equipped with a filtration F..# good with respect
to the usual filtration FoDgan,p by the order of the operators: this is the
filtration of (j, Oy)*"[0, ] (' — F’) by the degree in J,.. It comes also equipped
with a filtration W. (number of components of D along which a section has
a pole).

The analogue of Proposition 4.5 is true for y/™9.4 : this is proved in [26]
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or [24] (in proving the proposition below we shall recall the proof, which is
completely analogous to the one of 4.5).

(4.19) Proposition. For all a€[0,1[ and k,IeZ we have local filtered
isomorphisms

(Pgrgry gry M, Fo) S (grls gty Og[ {F ~(0)U D)],, Fo).

Proof. Let us recall the local computation of V..# analogous to the
one of V.& made above. Denote 9'=C{x,y,z,1}<0,,0,,0,,0,>. Then, in the
local setting of the previous section, # < C{x,y,z,¢'}[x"',y~1,8,]-0(f —F") is

def 1
equal to the 2'-submodule generated by ¢'=
Yy yq

o(t'—F"). This generator

satisfies

. 1
08 =x"8,  8,0'=—1(3,), 8,0=——10
X; .

Vi

p p m—1 k
(fiw) oo (T 2o
i=0 i=0 k=0 m;

Hence ¢’ has order < 1 with respect to Ve.#. It canbeshown that,fora<1,

Va'/%= Z C{x5y9z}[y_lat,at’]xm_a_lpa,a(tlat')'6’

acZp+1

= Y Clayz}y L t0,0x P,y 1'0,) (1'0)

aeZprt1

= ; 1C{xsy,2}[y‘l,t’0r]x_“ a—1,4{1'0¢) " (£'0)
with 6=0(¢ —F'). We then get a canonical representative of any local section
of V,# and the proof of the analogue of 4.5 can be done as above. The
only difference comes from the shift (+1) for «=0 which does not apppear
here (in fact a shift (— 1) would appear at a=1, but it will not matter here).
Now the proof is exactly the same as the one of Proposition 4.14. [J

In the same way one deduces from this proposition
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(4.20) Corollary. For oe[0,1[ any local isomorphism of De-modules
Pgrifery gty M = gl gty Og[{F ~}(c0)U D)],

is strictly filtered with respect to the filtrations F.. O

4.21. Proof of Theorem 4.3. As the isomorphism (4.2) is strict with
respect to W, and is compatible with the monodromy, it induces an isomorphism
between the corresponding PgrMgry. From Cor. 418 and 4.20 we deduce
that this one is strict for G. and F.. According to Prop. 4.5+(2), G. (resp.
F.) is compatible with the Lefschetz decomposition, hence we conclude that
gr¥gr? (4.2) is strict for G. and F., and so is (4.2). This gives the first part
of 4.3 for ¢™9. Analogous arguments give it for y™¢.

From the definition of k& ° and its filtration G., we have an exact
sequence of filtered holonomic 2,[1]{d,>-modules

0 (k,67,G0) > (k2 87, Gu[~1]) > (i, O, F.[ - 1]) > 0

which induces the exact sequence of the theorem after taking the graduation
by the V-filtration. Let us show that it is strict with respect to the Hodge
filtrations:

In an analytic neighbourhood of a point of X=% —F (), an easy
computation shows that ¢™%x, &~ )=0 and the statement is clear. In an
analytic neighbourhood of a point of F~!(o0), the strictness follows from the
local computation of Lemma 4.11.

From the first part and Cor. 1.13 it follows that this sequence is iso-
morphic (with filtrations and rational structure) to the exact sequence (2.22.1)
in [24], so is an exact sequence of mixed Hodge modules. O

§5. Hodge Properties of the Gauss-Manin System
and Its Fourier Transform

We keep assumptions and notation of §4. We will now conside/rl—@ge
properties of the nearby or vanishing cycles of the Fourier transform R f,7Q, at
t=0. Remark first that, since the functors %,, Ay, and~— “preserve

i A T~ ’ e
perversity, the cohomology spaces H'%$ (R f,PQy) are equal to % R’ f,FQ (and
the same equality for A, ), where ’R'f, denotes the ith perverse cohomology
sheaf of Rf,.
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We hence have on these spaces a filtration W.:
W.H' (RS /Qp) =image [ (RF,W.(Rj/Qu) - 7R [,7Q;]
T
=" (W.R' [,"Qy)

where W.R'f,’Qy=image ["R'F ,W.(Rj,’Qy)— R'f,’Q,] and the image is
taken in the perverse sense. The same description holds for Ay, ,. This
filtration is identified with the one coming from R'F, (.7 (R} ,PQy), W) as
follows from Remark 2.3.4.

(5.1) Proposition. On H "”qﬁr(m) and H ip\ﬁr,1(m) the mono-
dromy filtration of the nilpotent endomorphism N relative to W. exists.

Proof. According to Th. 2.2 and Cor. 1.13 we have H i"d),(m):
By, "R f,PQy and the assertion for %, is a consequence of [26]. For R, ;
one may use [24, §2e]. O

The spaces H i”q‘),(@) and H i”lﬁ,,l(m) come equipped naturally
with an increasing filtration G.: the filtration G.¢™%x,& /) introduced
previously can be used to filter the complex PDR¢™ (&~ *); the ith term
of the complex G’ DR@™% k&%) is

(5.2) Q" @G 7k E7).

O
We hence get a filtration on the hypercohomology of this complex in a natural
way. The same construction holds for Aj, ;.

Remarks.

1. The filtration G. could depend on the choice of a compactification
Z of f such that £ —U is a divisor with normal crossings in Z. It
is a consequence of the theorem below that it does not.

2. By the very construction of G.¢p™%(x,& %), the filtration G.H%p,
(R/f*’FU) is compatible with the decomposition %, =@ %, ,, in other
words it is invariant by the action of the semi-simple part of the
monodromy. Moreover, the nilpotent endomorphism N shifts it by
one.
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From [24, §2.c] and Theorem 4.3 we get, after a Tate twist by n with
dim U=n+1:

(5.3) Theorem. For all ieZ the objects
LH (RF"Co), Go, Mu(N, W)[i—n]., H% (Rf Q0)(n)]
LH . (RS PCg), G, Mu(N, W)[i—(n+1)]., H%, (RS PQg)n+1)]

are mixed Hodge structures. Moreover the filtration W, is a filtration by mixed
Hodge substructures. O

Remark. Since the Hodge filtration is usually decreasing, we use the
convention G°=G_. to obtain a decreasing filtration from an increasing
one. The notation (k) corresponds to the Tate twist (2in)*. More precisely,
the first object is isomorphic to the Steenbrink-Zucker limit 7y, /R’ f,7Qy after
a twist by n.

The spectrum of f at infinity. Following J. Steenbrink [25], we define, for
a finite dimensional vector space H= @ ;H, (where the direct sum is indexed by
the roots of 1) equipped with an increasing filtration F.H= @ ,F.H,, spectral
polynomials in Q[S]
def

SPI[I(H’ F' >S) = n H (S+a+p)hexp2mu.p

peZ ae[0,1]

SPUH, Fo;S) = [T [] (S+0+p)eswrines

peZ a€]0,1]

with 4, ,=dimgr;H,. The polynomial SPy is obtained from SP, by replacing
the terms (S+p) with (S+p+1) without changing their exponents.

The spectral rational fraction of f at infinity is obtained by using the Hodge

filtration on the nearby cycles at infinity H'(F ~'(c0), %, ,,"Cy)=H"™, (R f,7Cy)
as defined by J. Steenbrink and S. Zucker [26], F. Elzein [8] or M. Saito [24]:

SPL (Y1 (Rf,"Co); S) = [[SPYH ™Y (Rf,ICo), Fe; Y~V e Q(S)

with =1y or »=¢.
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We define in an analogous way SP*(”qB,(m); S) by using the filtration
G..

(5.4) Corollary. For *=y or x=¢ we have
—

SP(Wy (RS "Cu); S)=SP, (" (Rf,"Cy); S). O
5.5. Remark. In fact, the spectral fraction of f at infinity following
[25] is equal to the rational fraction SPy(?,(RfFCy);S—1) as defined
above. Indeed, consider on the space HXF (o), ¢, {Rj,Cy)) (i.e. the limit
of H*(f~'(z),C) when t — o0) the Hodge filtration Fj, as constructed in [26]
or [24], and the monodromy T, (see §1.9). For fe]—1,0] such that
exp(—2inf) is an eigenvalue of T, let v, , be the dimension of grf, of the

corresponding generalized eigenspace and put SP(S)=[1,]]se-1.0(8+
B+n—p)#+r. The spectral rational fraction constructed in [25] is then

SP(S) =[] SPy(S)" "%,

Let us show that SP(S)=SPy(*y (R f,’Cy);S—1). We have
HY(F ™1 (00), /(R L)) = H*"(F = }(c0), W /(Rj ,FC))

and the mixed Hodge structure with filtration F. that we use differs from Fy
by a Tate twist (n). Hence we have

FRH(F ™ (00),Yr1,(Rj o)) =F, H""(F ™ (00), A, (R} ,"Cy))-

To define SPy(*y, (Rf,’Cy);S) we use ae]0,1] such that exp(2inx) is an
eigenvalue of 7' and this explains the shift by 1.

Appendix: Convention and Notation

We refer to [2] or to chapter 10 in [11] for general results on perverse
sheaves.

A.l. Filtrations
To an increasing filtration F. we associate a decreasing filtration

def

F°=F_,.
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The shift is analogous to the one defined by M. Saito, namely
F.[k]=F._,
Welk]=F°**
A.2. Perverse Notation for Constructible Sheaves

Perversity, cohomology and duality. We denote Perv(Qy) the abelian
category of Q-perverse sheaves on the manifold X. Letf:X — Y be a morphism
between complex analytic manifolds. Put J6,=dimX-—dimY and PQy
=Qyx[dim X]. This is a perverse sheaf. Let Dy be the Verdier duality functor
on the category D%(Qy). We have

D*Qy= RHomgy, (PQx, Qx[2dim XT)~PQy.

If # is an object of D%Qy), we denote #'# the jth cohomology group of
F (this is a sheaf on Y) and P#7# the jth perverse cohomology group (this
is a perverse sheaf on Y, hence a complex in general). We have

Dy HIF = H Dy F .
Inverse image. The inverse image is modified as follows:
Ul=f""06,]
If f'is smooth or if fis a closed immersion we have ?f ~'?Q, ="Q,. We also put
pfl =f![_5f] =Dxpf_1DY-

If £ is smooth, we have #f'=#f"1,

Direct image. The direct images Rf, et Rf, are unchanged. We put

Rify=H"Rfy et "RIf,="H'Rf,

with #=% or »=1!,

Nearby and vanishing cycles. Let f:X— C. The nearby and vanishing
cycles functors are modified in the following way:
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Compatibilities and exact sequences. We have
pf! =Dy~ 1DY
Afog) t=tg o~
nfog) =%
Rfi=DyRf Dy
R'f,=Dy'R'f Dy
R(f-g),=Rf,Rg, *==xor!
D, oy ;=" Dy with f:X— C smooth
D, oo =" Dy idem
Ry P =PP) . idem
pd,fpxu' =P’}fjp¢f idem
g f
Rg Mgy ="bsRg,, X—>Y—C, g proper
Rg Mg, =" Rg, idem.
Triangles (with i: f~1(0) ¢ X):

i ny, Py FL

var g +1
p¢f—> P(//f——— p[l —

Ifi:Ys X is a closed immersion and j: X— Y g X is the complementary

'=j~'=#'=;", we have triangles

open immersion (we then have 5~
[RTy=Ri,i'=Ri F[5]]e— o — Rj,j ‘e -+

P PR} < p—1 +1

Rjje— 6 — [Ri i '=Ri 5 '[—0;]]e —

If moreover Y has codimension one in X, we have triangles
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o— Rj,j 'e— Ri e ">

Ri,'i™ o~ Rjjlo—r 0 1

Adjunction:
Rf(FRf'9)=Rf(F ®Y
Rf(F ®Y ~'9)=RA\F ®Y[,].
A.3. Z-modules

Here, the category is either the algebraic category or the analytic category,
and the objects correspond each other with the functor “an”, e.g. O and 0% .

de Rham. We have R# omgy (Ox, Dx)=wx[—dim X]. We put

L
PDR(M)=RH o, (C, M)[dim X =y @ .
2x

We define in the same way the relative de Rham complex for a projection.

Duality. The duality functor (denoted D or Dy) is centered in such
a way that it preserves holonomic modules.

Direct image. We put

L
f+//l=Rf*<@Y‘—X®=/ﬂ)-

Px

Notice that 2, y=wy, and consequently for f:X —pt we have f, .4/
=RT(X,’DR.#). In the case of a projection f:XxY—Y we have
f+M=RfFDR M.

We define

ﬁ—ﬂ=Dyf+Dx.//l.

For f proper we have fi=f, since in this case f,D =Df,.

L
Inverse image. We put f* N = Dy,y ® f A and fTN
f19x
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=Dyf*DyN with Dy ,y=0x® ;-10,f 'Dy, so that as a Oy-module, [~
L

corresponds to Lf* (ie. Oy ® ). If f is smooth we have f*=fT.
i)

-10y

Moderate nearby and vanishing cycles. We have triangles (for f: X - C

smooth)

p +1
lT lpr}wd ¢?od -

. 1
¢1jx_wd . !/,rfnod l+ + .

Compatibilities. These are the same as for sheaves, via the following

correspondence:

J+oRf,, fi—=Rf,, DoD
AR/ A AR/ A (e B A ()

The correpondence is given by ?DR.

(1]
(21
£31]
[4]
(3]
(6]

[7]
(81

Adjunction (f analytic and proper or algebraic):
L L
f+(./%{®f+JV)=f+./lf®./V
Ox Oy

L L
MBI N =f MBN
Ox Oy
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