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Monodromy at Infinity and Fourier Transform

By

Claude SABBAH*

Abstract

Let/:C/-*C be a regular function on a smooth quasi-projective variety U. We compute
the limit mixed Hodge structure (when t —>• oo) of the cohomology of the fibers /= t in terms of
the Fourier transform of the Gauss-Manin system associated to /

Introduction

Let /: U -»C be a regular function on a smooth quasi-projective variety
U. For teC, the cohomology spaces H'(f~l(t),Q) underly a natural mixed
Hodge structure (cf. [6] for t generic and [7] \if~l(i) is singular). Steenbrink
and Zucker [26] (see also [8]) have constructed a limit mixed Hodge structure
when t -> oo.

This mixed Hodge structure can also be obtained [24] by compactifying
/as a map F: 3C -> P1 with 9C smooth, and by constructing a mixed Hodge module
structure on the nearby cycles at t = oo of the sheaf RKjQv, if K : U c> 9C denotes
the inclusion: one obtains the Steenbrink-Zucker limit by taking the global de
Rham complex of this mixed Hodge module on F~l(vti).

This paper proposes to recover this limit mixed Hodge structure using
Fourier transform techniques. The main object is the ^^[T]<5T>-module
K + (f~T/, where <f~T / is ^[T] equipped with the natural ^[i]^)-action
twisted by e~tf, and K still denotes the inclusion C/x SpecC[i] c; $T x SpecC[r].
This module is holonomic but not regular in general, so does not
enter in the frame of mixed Hodge module theory. However, as K + GV is regular
on 3E (Grothendieck comparison theorem), K+(f~ T / is regular along i = 0, so
one may compute the vanishing cycles along i = 0 of its de Rham complex
using the Malgrange-Kashiwara filtration and apply a procedure analogous
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to the one of [23].
In §1 some known facts concerning Fourier transform with parameters of

sheaves are recalled. In §2 Fourier transform with parameters of holonomic
^-modules is introduced and a proof of a comparison theorem between both
kinds of Fourier transforms is given, in the case of regular holonomic modules
and their de Rham complex (such a theorem is also proved in [5] in a more
general situation and the case without parameters is treated in [14]).

The main result of §3 is that one may apply the theory of
Malgrange-Kashiwara nitration to Fourier transforms of regular holonomic
^-modules to compute the nearby and vanishing cycles along i = 0.

Section 4 is dedicated to Hodge theory of vanishing cycles at i = 0 of the
Fourier transform relative to/of K+GV (and also the nearby cycles), namely the
^-module (j)™odK+£'~'cf. A filtration naturally defined in terms of a natural
filtration on K+$~rf is put on this object (following the method developed by
M. Saito [23] using the Malgrange-Kashiwara filtration) and it is shown that
the isomorphisms of §§1, 2 identify this filtered module with the mixed Hodge
module of nearby cycles at infinity I\l/l/F(RK^Qu) defined by M. Saito.

In §5 applications are given to the computation of the limit mixed Hodge
structure of Steenbrink and Zucker in terms of the Fourier transform of the
Gauss-Manin system of/

The reader is referred to the appendix for the notation which is not defined
in the main course, in particular for the conventions used concering perverse
functors.

I thank B. Malgrange for simplifying and clarifying some statements and
proofs of a previous version of the paper.

§1. Sheaf-theoretical Fourier Transform

We review here some variants of well-known facts concerning the Fourier
transform of non-necessarily homogeneous sheaves (see [14] and the references
given there, see also e.g. [11, chap. Ill] for the Fourier-Sato transform of
homogeneous sheaves on a vector space and [4,12] for the /-adic analogue).

Some notation. In the following, A1 will denote the affine line with
affine coordinate t and A1 the affine line with coordinate T. In this section they
will come equipped with their analytic topology. Let P1=A1u{oo} be the
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project! ve line and let e.-P1-*?1 be the real oriented blowing-up of P1 at
oo. We have P1=\1<uSi and we denote 0 = arg£ the coordinate on
S1. Consider the following diagram

A ' x A 1 I FxA 1 I A1

II J e x l d ||

A^A1 | P 'xA 1 i A1

I P I P

A1 | P1

Denote /:{oo} c; P1 (resp. i:Sl <^ P1) the complementary inclusion of k
(resp. £); denote similarly f:{0} c; A1 and £: A1 — {0} c; A the complementary
inclusions in the space A1. We keep the same notation after taking the product
with A1 (for i and T) or with A1 (for f, /c).

Denote L'+ the closed set of Sl x A1 defined by Re(^0i)>0 and let L~
be its complement in P1 x A1 (L~ contains A1 x A1 as an open set). Notice
that the fibre of L'+ over i = Q is equal to S1, so the corresponding fibre of
L~ is empty.

Let QL,+ be the constant sheaf on the closed set L'+ extended by 0 on
P 'xA 1 .

Let QL- be the constant sheaf on the open set L~ extended by 0 on
P1xA1 . In particular, the restriction of QL- to P1 x {0} is equal to the
extension by 0 of the constant sheaf QAi .

We hence have a triangle of ̂ (QpixA1)

QL- -*QpixAi-»QL'+ ~» •

Fourier transform. Let 2£ be an analytic manifold. We use the same
notation for the diagram obtained from the previous one after taking the
product with X. We will use the two following functors of triangulated
categories

(1.1) &r:-0+(QrxA1)^£+(Q^x

(1.2) aft:D+(Q JrxA i)-»^+(Qjrx

which come in a triangle of £>+(

(1.3) n-iRn^
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where n (resp. n) denotes the projection of ^"xA1 (resp. ^xA1) onto 9C.

Remark. Denote a : A 1 x A 1 c ; L ~ the open inclusion and q~'.L~-*Kl

the restriction of q to L~, and keep the same notation after taking the product
by 9E. The formula for 5^ can also be written

(1.4)

1.5. Fourier transform relative to a meromorphic function. Let Fm.3F -> P1

be a meromorphic function on 9C. Consider the following diagram
of maps (and the same one after taking the product by A1):

x | £ £ P1

I I U D I B

where $ is the fibre product ^"xpiP1 and X denotes the restriction of &
over A1.

Let Lp <= ^x A1 be the inverse image of L~ c: P1 x A1 by Fxld. The
Fourier transform relative to F is the functor

(1.6) 5F:D+(Q*)-D+(Q^xAO,

Considering the following diagram

XxA 1 ?f LF- fe

i D

(I

where zj? is the composition of the graph embedding X c; Xx A1 (x A1) and
fcF, one has e5F(J

r) = J?(eoj8F),/?aFjit/7~1J*r[l] and one shows that

We also put 5F = 5^o^/F* so that the triangle (1.3) becomes

(1.7)
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Let j\ U <+ X be a Zariski open set (in the analytic sense). Put K=kF°j

and K = £Foj, One has

(1.8) 5F(^
pQi/) = ̂ *(^^^

1.9. Nearby and vanishing cycles. We will consider the functor of
vanishing cycles at t=ao shifted by —1 (see §A.2 for the conventions made
in this paper) which we denote p^1/f. This is a functor from the category
Db

c(Q% x £1) (bounded complexes with constructible cohomology) to the category
£>c(Q[jT, jT"1]^) (bounded complexs with constructible cohomology as sheaves
of Q-vector spaces and Q[T, T~ ^-modules). Here, T denotes the monodromy
along a positively oriented circle in the variable \/t. We will also denote
Tao = T~1 the monodromy along a positively oriented circle of big radius in
the variable t.

Denote £ the local system on A1* = A1-{0} with fibre Q^I^1] and
monodromy (in the first sense) given by the multiplication by T. We keep
the same notation for its inverse image on a product space like & x A1*. For

an object 3F of £>c(QsrxAi) we have (see e.g. [4])

Identifying the constant sheaf on A1* with <£?/(!"— !)<£?, the natural morphism

is obtained from the morphism of complexes

_y
 T-\ „

Id I 1
& -* 0

We will also consider the functors p\//r and p$t of nearby and vanishing

cycles at T = 0, as functors from /JftQ* x lO to Db
c(Q[f, f~ l^). They are defined

using the local system $ on A1 — {0} (see e.g. [4, 11]).

(1.10) Theorem. Let & be a smooth complex analytic manifold.

1. The functors g^ and g^ send Db
c(Q^xAi) in ̂ (Q^xAO an^ induce exact
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functors from the abelian category Pen^Q^-xAi) to

2. There are isomorphisms between
(a) the functor p\l/m of nearby cycles along t=ao and the composed

functor tytog£ from />c
&(Q^xA1) to D^e(Q[T9T-^ff) after the

identification f=T,

(b) the functors i~lRk^ and T1^ from Dc
b(Q^XAi) to ^(Qa-)»

which are compatible with the canonical morphisms of functors
ll-+yitP and

3. The variation var : P<£T o g j -» *tyrt o g£ /j a« isomorphism.

Let now F:3T -> P1 as in §1.5 and let & be in Db
c(Qx). Property (3) above

is equivalent to f!g^(^r) = 0, so from (1.7) we get

as TI is smooth. In particular, when 3F is in Perv(Qx), the object
is in Perv(Q^). In such a situation we have two exact sequences in

(1.11) 0 -» "</»t)1 o g^) - V,i ° SF(^) -» rgf(^)[l] -» 0

(1.12) 0 -> p^nF,iRkF^ -» S^ -* MF^ -» 0

where !5F is the Beilinson functor (see e.g. [24, §(2e)] and below).

(1.13) Corollary. There exists a functorial isomorphism of I>*(Q[r,

T'1^)

Vi/F^F^-^rSr^) for * in Db
c(Qx)

and for the eigenvalue 1 of monodromy and for 3F e Perv(Qx) it is part of a
functorial isomorphism between the two exact sequences above.

Proof. For the first part, according to the theorem, it is enough to
prove that the morphism (1.3) induces an isomorphism P0T o fj j -» p(j)T o g^. . This
follows from l^t(7c"1») = 0 for ^ in D^Q^).

Consider now the cartesian square
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^TxA 1 £

t f, t <F

V r* 3T-/I. *-> iA>

where /F is the graph embedding relative to F and i'F as in §1.5. Let jF be
the inclusion complementary to iF and, for J*" in D^Q^), put <& =
fc~ VFL/F" ITC~ ̂ ^^[l] with TC : ̂  x P1 -» ̂ . We have a triangle of Db

c(Q^ x Ai)

with now n:&x A1 ->^". By definition, EF& = p\l/i/t4^, so from the theorem
we get

We now use the following commutative diagram, where the morphisms come
from (1.7) or (1.14):

var

The right upper vertical arrow is an isomorphism because for 3F1 in
the Fourier transform ^^(n'1^') is supported on #"x {0} cz 5Tx A1 and the
lower one is an isomorphism because Rn^f = 0. Both facts are left to the
reader. D

Proof of Theorem 1.10. It is enough to prove the first part of the
theorem over the field C. It is then a consequence of the comparison Theorem
2.2 of the next section and of the Riemann-Hilbert correspondence [9, 15] (see
also [3]). The third part follows from

(1.15) Lemma. We have i~i%%(&r) = rlRk^ and il&£(&) = Q (which is
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equivalent to ^(^r) =

Proof. Notice first that we have

l3?=p~lRk^ and Rfcj>- 1 & =p

indeed, these equalities are obtained from [11, Prop. 2.6.7] by duality, since
p is smooth. The first point is then easy, denoting n (resp. n) the projection
of ^xP1 (resp. ^TxP1) on 3T:

,+) (q proper)

(the fibre of Lf+ at r = 0 is S1)

(previous remark)

To prove the second point, jt will be convenient to consider also the real
blowing up of A1 at t = 0. Put A^ = 51 xj]0, + oo[ and let 9 be the coordinate
on §l. We denote now r.S1 ^ A1 and & its complementary inclusion in A1

(and similarly after taking a product with 3C or ^xP1).
_ Let L'+ c SlxAl be defined by the equation cos(0 + 0)>0. We have
Lf+ =Zx [0, oo[ with Z c Sl xS1. Let f:T'+ ->L'+ be induced by the real
blowing up of T = 0. Then the natural morphism QL,+ -^Rf^.Qi'+ is an
isomorphism: indeed, it is enough to verify this above i = 0 (because f is an
isomorphism above r^O); the assertion comes from the fact that the fibre of
f above (0, 0) is the set of 6 satisfying cos(0 + 6) > 0, hence is a closed interval.

It follows from this remark that we may compute ^(^) using 9£ x P1 x A1

and ffxL' with a formula analogous to (1.2). After a little manipulation,
we see that it is enough to show the following, taking for ^ the inverse image
of the complex f ~ lRk^ by the natural map X x Z -» SE x Sl induced by the
first projection:

Given any R-constructible complex $ on $C x Z, consider its inverse image
t1~l($ by the projection r\ : % x Z x [0, -f oo[ -> X x Z. Then ~l\~l(3 = ®.

By duality it is enough to verify that I rjl<g = Q for any such ^. But
for an open set of the form W= Fx [0,e[in ^ x Z x [0, +oo[,
since the cohomology with compact support of a semi-closed interval is equal
to 0. Hence
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RT( IV, rfy) = RT( V, Rri ̂ Rjf#*n(Qw, ^))

= RT(V9Rjfo»t(RrilQW9g)) (e.g. [11, Prop. 3.1.10])

= 0

and this concludes the proof of the lemma. D

Let us now sketch the proof of the second point of the theorem. Using
notation of §1.9 we have

We will compute this complex using ^xA 1 and the projection formula for
the direct image 71 : X x 5^-> 5T. First, the local system & extends naturally
to a local system $ on A1. We then have

Denote §<r the functor defined as in (1.2) using A1 instead of A1. The proof
of Lemma 1.15 shows that 7* §£(#") = 0, so

and ^

Using the projection formula for ^xP1 x A1 ->^x A1 and denoting
nz:%'xZ-+%' the projection, we get

On the other hand, with analogous notation, we have for an object
of

where r:&xZ-+%'xSi denotes the projection, and using the isomorphism

r~l
9 proved as for f.
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The Assertion follows now from the identification on Z of the two local
systems $ and 2?: denote y (resp. y) the generator of S1 corresponding to T
(resp. the one of S1 corresponding to T); the fundamental group of Z is the
free group generated by d and the inclusion Zc; S1 xSl maps d to yy.

The compatibility of the canonical morphisms claimed in 1.10-(2) is a
direct consequence of the previous proof and the description of these morphisms
given in §1.9. D

§2Q Fourier Transform of Regular Holonomic ^-modules
and a Comparison Theorem

In this section 9C denotes a smooth quasi-projective variety equipped with
its Zariski topology, or an analytic manifold. The lines A1 and A1 will be
equipped with their Zariski topology, so for instance ^x^-modules will be

We consider the Zariski topology when dealing with G or ^-modules and
the analytic topology when dealing with constructible sheaves.

2.1. Fourier transform of Si-modules on the affine line. Recall the
notion of Fourier transform (or better Laplace transform, the kernel being
e~tx) of a holonomic C[r]<3r>-module (see [14] for details). Let M be a left
C[f]<dt>-module of finite type. Identify the two rings C[f]<3r> and C[i]<at>
via the isomorphism t\—> — dx, dt h-» T. Denote M the module M when viewed

xA
as a left C[T]<5T>-module via this isomorphism. Then M is the Fourier
transform of M.

Assume that M has only regular singularities, even at infinity. Then M
has singularities at r = 0 and T=OO only, the singularity at t = 0 being
regular. The singularity at T = 00 is not regular if M has singularities at £^0,
oo. Recall the notation of projections

A ' x A 1

'/ V
A1 A1

Let Af[r] = M®cC\_t~\ =p + M be the inverse image of M on A1 x A1 with
its natural structure of C[r9T]<3r,5T>-module and M\_i~]®e~tr be the same
C[£,T]-module with the following twisted action of dt and 3t, for weM[r]:
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dt(m ®e-*) = [_(dt - i)m] ® e ~ f \ dr(m ®e~*) = [(3t - t)m~] ®e~l\

The direct image />+(M[Y]®e~tr) is the complex

where the right hand term has degree 0, and this complex has cohomology
in degree 0 only, the cokernel of dt — t being identified with M by the map

M[t] -» M

We shall write ==/M
Analogous results hold for a bounded complex M" with regular holonomic

cohomology (regularity is used here only to analyse the singularities at finite
distance of M9).

Relative Fourier transform. We denote <f^'T the ^xAi x^i-module
^xAixA^" ' 7 and we usually forget the subscript.

Let M be a holonomic @%xAi-module (or a bounded complex with such
a cohomology). Its Fourier transform is the object

of £>Li(^rxAi)- When M is a single holonomic ^[fKc^-module, ^x(Jf) is
the single holonomic ^ar[T]<5r>-module obtained from M as in §2.1.

Let Fi^-^P1 be a rational function and still denote F its restriction
F^X:X^> A1. For ^ holonomic on X, define gF(,^) = /cF+(p + ̂ ®<f ~tF), with
<?-*F = (Flxxld) + g-« = COXx^e-*F. We have 8fX^ = SW'F+-*).

For j: U c> Jf the inclusion of a Zariski open set, we denote f=F\x°j = F\v,
and we have gF(/'+^E/) = K: + (f~T/ with K = kFoj and ^"t/ = ffi/xAi^~T/.

(2.2) Theorem. L^f Ji be a holonomic *3) % x ̂ -module or an object of

Dhoi(@% x AI) ̂ w<:^ ^fl^ k^Ji has <&x x ̂ -regular holonomic cohomology. We have
a functorial isomorphism
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2.3. Remarks.

1. It is possible to extend this theorem to the case where 3C is ana-
lytic. One needs to define the Fourier transform as a functor from
holonomic ^xPi-modules which are also ^xPi[*(^x oo)] -modules
to holonomic ^x pi-modules which are also @}x*pi\*(9Cx oo)]-
modules. These tools have been developed in [1].

2. This theorem is proved (but not stated explicitely, and for the solution
complex instead of the de Rham complex) in [5, §§3.3, 3.4, 3.5] under
a weaker assumption: k+J( should be "1-specializable" along
t=co. This is an assumption of regularity along t=co. We will give
below another proof by reduction to dimension 1 in the regular
holonomic case, analogous to the one of [22, th. 5.1].

3. When considering/: U -* A1 and the ^^-module @v, this comparison
theorem gives a rational structure on pDRan()c+(f ~r/) by the
isomorphism

4. The Fourier functor commutes with direct image for morphisms & -> ®f
of smooth projective varieties. In particular, the Fourier transform
of the Gauss-Manin system f+(9v is equal to p + K + $~xf, if p denotes
here the projection ^'xA1-»A1 .

5. The weight filtration. Assume now that X— U is a divisor with
normal crossings in X. Then the perverse complex Rj/Qv is
filtered by perverse subobjects W«Rj^pQu in trie category of perverse
sheaves on X ([6] and [2]). This filtration corresponds to the filtration
by the number of polar components on the regular holonomic
^-module ; + ̂ l/ = ̂ x[*(lr-C/)], via the functor pDRan.
The Fourier transform of ^F^W.j+O^) is equal to ^p^W.j+Ou
®(f ~tF), and, by functoriality, the Fourier transform of the filtration

W.Jfif+Ou
 d= image

is equal to the filtration

W.&f^j d= image ^

Notice also that when U is quasi-projective, such a filtration does not
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depend on the choice of a quasi-projective compactification X -* A1 of
/ because this is the weight filtration of the mixed Hodge module
associated with f+6v [24].

Proof of Theorem 2.2.

(1) As pDRan commutes with direct image by p (see e.g. [19, II.5.5]),
it is enough to find a functorial isomorphism

We first lift the LHS as a complex *DRmod/c+(p + .Jf®<f-rf) on
such that

(2.4)

It will then be enough to find a morphism

(2.5)

and to prove that it is an isomorphism.
Let j/gftAi be the sheaf on P1 x A1 of functions which are holomorphic

on A1 x A1 and have moderate growth along S1 x A1, where Sl =s~l(oo). This
is a flat module over e '^fSxAi (the proof is identical to the one of Prop. 2.8
in [21]). This sheaf comes also equipped with a natural e'^fRx^i-module
structure. Let F be the projection of ^xP^A1 on P^A1. Then

F-ljff?*fr®e-1F-i0 e~lJ£ has a natural structure of a left £~l^\P^^-
module if M is a left ^XPix£i-tnodule. Moreover we have

(2.6) Rs^i Al = 0{R x AI[*({°O} x A1)]

(see [14, Lemma 3.4] in dimension 1 and the proof of Th. 5.1 in [22] for the
case considered above).

We put for a ^-^n
xPixAi -module JV

x A1

which satisfies Rs^DRmod^ = pDRan(k+k + ̂ ) by the projection formula and
(2.6).

(2) Let y:L'+ c; P1 x Al(x&) be the closed inclusion complementary to
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/? (see §1.5). To obtain the morphism (2.5) it is enough to prove that

(2.7) y-lpDRmodk+(p + J?®£'-Tt) = Q.

This is a local problem on ^an. If this is proved, one has, putting

Jf ^^jr^jW^a-1^

and this last term is exactly the RHS in (2.5). Now, the fact that this morphism
is an isomorphism is also a local problem on ^an.

(3) When 3£ = pt, (2.7) and the fact that (2.5) is an isomorphism is essentially
proved in [14, §V.3]. As k+J? is regular and as the problem is local on
S1 x A1, one first reduces to the case where (k+J?)an is a rank one meromorphic
connection near oo, and locally on 51xA1 one may reduce to the trivial
meromorphic connection (P[*oo] because f defines a local invertible section
of j/mod. Let t'=\/tbe the local coordinate on a disc near oo. The statement
is then equivalent to pDRmod(^nxA^~t/f') = CL-[2], or in other words, the single
complex made with the following double complex

^ I

has cohomology in degree 0 only, if the upper left corner has bidegree (0,0).

D

(4) We will now reduce the problem to the case 5T = pt by taking a local
direct image by the projection F: % x P1 -* P1. Let D be a small disc around
oo eP1 and B(x°,p) the closed ball of radius p>0 (for some metric) centered
at X°G^ and denote Fx0<p : B(x°, p) x D -» D the restriction of F. Recall (see
Th. 9.4.1 and Cor. 9.4.2 in [10]) that, given a regular holonomic module or
bounded complex Jf™, the local direct image F^o^ + J^30 has ^D-regular
holonomic cohomology for p and D small enough. Remark also that, if
N ™ = j/r™\t' ~1], each cohomology module ^ is a meromorphic connection
on D with pole at oo, i.e. is equal to N\t'~l~\. It follows that for M as
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above, the cohomology modules of

P n r _ n*x°,p + \P K-+tS0iyy@ ) — \p r xo „ +\

(where p+ is taken in the analytic sense in the RHS) are meromorphic
connections on DxA 1 with poles along fi = 0. Notice that step (3) gives the
isomorphism (2.5) for Fxoip+(k + J?yn.

As Fxo.p is proper and according to the description of (2.5) given in step
(2), it is then enough to find an isomorphism

mod/ „ + 1,
\p K +

This is done as for the analytic de Rham complex (see e.g. [19, §11.5.5]).

D

§3. Regularity of gfC/'+fl^) along i = Q

We keep notation of Section 2. We shall show in this section that the
@%x&i-module $F(j+@v) (and more generally %X(J{) for Jt holonomic on
^xA 1 and k+M regular on & xP1) is strongly regular along r = 0. To this
end, we first recall the main properties of the Malgrange-Kashiwara F-filtration
of a holonomic ^-module along i = 0 as well as a criterion of regularity along
T = 0, which allows one to express the nearby and vanishing cycles
p\l/,pDRan%F(j+@v) and p<^pDRangF(y+tfy as de Rham complexes of holonomic
^-modules computed in terms of the F-filtration.

Remark however that $F(j+@u) = K + £>~xf is not a regular ^-module, but
its irregularity is concentrated along F'^ooJxA1 in a neighbourhood of
T = 0. The nontrivial part of the monodromy of p^/DRangF(y'+0f;) comes from
the monodromy around i = 0 of the irregularity sheaf of

3.1. The Malgrange-Kashiwara filtration of a holonomic ^-module. Let
3E be a smooth algebraic or analytic variety and let £^ be the corresponding
sheaf of differential operators on SE. Let F«^[T]<3T> be the increasing
filtration indexed by Z such that

f o r A : > l ,

for
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Let M be a holonomic ^r[T]<3T)-module. There exists a unique increasing
filtration V«Jl, called r/ie Malgrange-Kashiwara filtration of Ji, which is indexed
by a finite number of lattices a + Z c C (in general one has to fix a total
order on C, but, for our purpose, it will be enough to assume that the lattices
are contained in Q, i.e. that the roots of the corresponding Bernstein polynomial
are rational) which satisfies the following properties:

1. For each a, the filtration Fa+fe^, (&eZ), is good with respect to

2. for every /?, there exists locally on 9E an integer dp such that

(ci V < f j f , where V<p= u V f . .

We shall denote grJJ^ the quotient VftJ(/V<ftJf. This is a holonomic
^-module equipped with a nilpotent endomorphism N induced by the action
of idT + p.

Remark. In [20] or [23] the filtration denoted V is the previous
filtration shifted by 1. The choice made here will be convenient for our purpose.

The moderate nearby or vanishing cycle functor ty™ od or 0™od for holonomic
^-modules is defined by

^M = $?£M = &\Jl with ae]0,l[ and A = exp(2/rca)/l

./.mod M _
—

AeC* ' AeC*

which is a functor from holonomic ^[T]<5T>-modules to 2X\T, T~ ^-modules
which are ^-holonomic, where T=kex$(-2mN)\\lj™fJ{^\l/™AJg or

0™Sd^fr -> 0Hd^- There are morphisms

can : ij/ffJt -> 0™fd^r and var : $™?Jt -* ^^?d^

defined by can = — <9T V - • ( — idT)n ~ 1 and var = T, such that can o var = T— Id
n>i nl

and var ° can = T- Id. For A / 1 we also define can = T- Id : ij/ffiJf -» ty^Ji
and var = Id.
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Assume that 3C is algebraic and let $"an be the underlying analytic
manifold. For a ^-module Jt, let Jt™ = (9™®G M. The two possible
K-filtrations on Jt™ coincide:

(3.2) Lemma. For M holonomic over ^^[T]<3T>, we have

Proof. By flatness of (P^nxAi over £°rxAi one verifies that the LHS is
a good filtration of ̂ an (with respect to K.®S?X AI), satisfying the same properties
as the RHS, so we get the lemma using the uniqueness of such filtration.

D

In particular, we have for all /?,

Regularity along a smooth hypersurface. Let us keep notation as
above. Let £: X x A1* q; X x A1 and f : X x {0} q; ̂  x A1 denote the comple-
mentary inclusions. Following Mebkhout [18], we say that Jt is regular
along % x {0} if one of the following two equivalent conditions is satisfied:

1. the natural morphism pDR™(k +k+ Jf) -> RicJc~lpDRan(Jt) is a quasi-
isomorphism;

2. the natural morphism r lpDRa%Jf)[l] -> pDRan(i^ J£) is a quasi-
isomorphism.

Remark. The first definition can be used to define regularity along
a nonnecessarily smooth hypersurface.

For /leC*, let Jf \ be the rank one meromorphic connection on
with poles along $"x{0} generated by ia, where e2in* = h (such a connection
depends only on A and not on the choice of a).

We shall say that M is strongly regular along 9C x {0} if Jt® Jf A is regular
along ^x{0} for any AeC*.

Remarks.

1. It is not known if both conditions (regularity and strong regularity
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along 3C x {0}) are equivalent, but this is a reasonable conjecture.

2. Regularity (or strong regularity) of Jf along 9C x {0} is equivalent to
regularity (or strong regularity) of the localized module

One can define in an analogous way the notion of regularity or
strong regularity for a bounded complex with holonomic cohomology.
Thanks to the theorem of Mebkhout [18], saying that the irregularity
complex along #" x {0} of a holonomic ^-module is a perverse complex,
the regularity (or strong regularity) of such a bounded complex is
equivalent to the regularity (or strong regularity) of each of its cohomology
modules (for the strong regularity statement, one uses the fact that Jf \ is $-flat).

Regularity or strong regularity is stable under direct image by
(gxld) + of ^xAi-modules, if g:2£ -+S£' is proper and (in the analytic case)
if M is generated by a coherent ^[T] -module. We have (see e.g. [20], [17,

§4], [13])

(3.3) Theorem (Comparison theorem for nearby and vanishing cycles).,
Let Ji be a holonomic ^^{i}^^ -module. Assume that Ji is strongly

regular along r = 0. Then there are functorial isomorphisms in D*(C[T, T"1]^)

and

compatible with the morphisms can and var. D

(3.4) Proposition. Let M be a holonomic Q) % x ̂ -module such that
k + Jt is a regular 0)% x ̂ -module. Then ^$%(Jt} is strongly regular along T = 0.

(3.5) Corollarye The complex lDRan0™odgf|!(y+(PI7) admits a natural
Q-structure:

(and the same result holds for \l/™d and pi//T^). Moreover, for different

compactifications, the ^-structures are compatible in a natural way. Q

Proof of Proposition 3.4. It is equivalent to prove the result for
if F: % -» P1 is a meromorphic function and Jt a holonomic ^-module. Using
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resolution of singularities and a standard "devissage", we may assume that
M = K+Jf, where Ji is 0-locally free on a Zariski open set U of X, and that
9E — U is a divisor with normal crossings. Moreover the question is local on

def -13£ and the result is true in a neighbourhood of each point of X=F (A1)

= 9C — F~l(ca). So it is enough to prove the result for the ^[Y]<(dT>-module

C{x,y,z}[x~\y~\i]-xaybe-*lxni where (x O J "^* P >> ' i , - ' ' J JV z i ' ' ' ' > z r ) ^^°) are

local coordinates on Cn+1, m = (m0, ••-,mp)6(N-{0})/7+1, a = (a0, -•,ap)eCp+1,
b = (bl,--,bq)eCq, p + q + r = n and ^ = C{x,j>,z}<3x,3y53z> denotes the ring of
germs of differential operators on (Cn + *,()). Moreover, the strong regularity
being a local analytic property and depending only on the localized module
along t = 0, it is enough to consider C{x,y,z,?}[x~i,y'~1,T~1~]xayb'e~T/xrn. We
shall now forget the coordinates y, z and put p = n (it is easy to reduce to
this situation). After a sequence of blowing-up of CM + 2, we are reduced to
prove the following: if z = (z',z") are coordinates on C" + 2, then Cfz}^"1]-

zCg-i/Z 'M js strongly regular along |/(z") = 0} where/is any monomial in the

variables z". In this situation, the holonomic module is the external product
of a strongly regular holonomic module (in the variables z") along/"*(()) with
a holonomic module in the variables z'. It is not difficult to conclude in
this case. D

§4. Fourier Transform and Hodge Filtration

We now come back to the situation considered in the introduction, namely
a regular function/: U-+ A1 on a smooth quasi-projective variety U. We fix
a projective compactification $T of U such that

(1) there exists a rational function F:2£ —^P1 extending/

(2) 2£—U=D\jF~i(ao) is a divisor with normal crossings.

We keep notation of §1.5. Remark that Rj/Qu is a perverse sheaf on X

and j+®v = ®x\.*D~} *s a single holonomic ^-module.

Fourier transform for j+(9v. Let us summarize the results of the
previous sections for j+&v. Recall that iF denotes the graph embedding of
F. In the following, we forget for simplicity the symbol iF+ or RiF^ and we
use p\l/l/t instead of pil/i/F. We have constructed an isomorphism in Perv(Q^)
compatible with the monodromy action

(4.1)
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where we view the RHS as an object on % after taking its direct image by the
inclusion F~ 1(co) ̂  9£. This isomorphism is strict with respect to the filiations

where W&Rj^pQv is the weight filtration of Rj/Qv in Perv(Q^) (recall that p\l/l/t

and p$te5F are exact functors from Perv(Q^) to Perv(Q^)).
We also have a diagram of isomorphisms in Perv(C^)

where the left vertical arrow is given by Theorems 2.2 and 3.3 and the right
one by Theorem 3.3. By construction, the isomorphism pDRan0fodgF(/+0t/)
^TORan^Sd(K: + 0tf) that we get is compatible with the Q-structures of both
terms.

According to the Riemann-Hilbert correspondence saying that pDRan

is an equivalence between Modhr(S^) and Pen^C^), we get an isomorphism

which is compatible with the monodromy action, so for any A e C* we have an
isomorphism

(4-2) <t>™Mj+ ®v) ̂  ^/U(K + 0u)

compatible with the action of the nilpotent endomorphism TV defined in
§3.1.

We still denote W» the filtration induced by W.j+Gv on K + 0U9 ^T/fC^ + ̂ i/X
KfftiUM and ^Mj+Ov). By exactness, we have W.^jfo + Gv)
= \l/f?t

d(W»K+0u), etc., and (4.2) is strictly filtered with respect to W«.
By [24] the relative monodromy filtration M»(N, W.) exists for N: ty^K+Qv

-*^K + ®V so it does exist for N^^M+QJ^t^M+Ov).
Analogous results hold for ils™d$F(j+®u) using the Beilinson functor EF
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and [24, §2.e] instead of ^™°d.

Filtrations. Denote W«K + Ov the weight filtration of K + Ov = (9^[_*(%- UJ]
and consider the increasing filtration F« by the order of the pole (functions
with a pole of order <1 are in F0 and F_l=G). This is a filtration

def
by (9^-coherent submodules. Denote F.K + Ou = F9[^ — du]K + (9u the Hodge

filtration, with dv = dimU. We will also put n = dv— 1.
We will also need the filtration F'. counting only the order of the pole

along D: this is a filtration by ^[^"H00)]-coherent submodules.
The ^^xAi-module iF+K+@v comes also equipped with an increasing

filtration F. in a natural way. Let F«/F+K: + ̂ L7 be the Malgrange-Kashiwara
filtration along ^x{oo}. Then Fdp+K+Ou induces on each g^iF+K + (9u
(ae[0,1[) an increasing filtration F^^^K^OU) with A = exp(2z'7ia). There we
put F^ = F.[ — ri]. In the same way the module HF(7c + 0L;) comes equipped
with a Hodge filtration F"EF(K + 0V) (see [24, §2.e]).

On the other hand, let G.^M^) be the increasing filtration by "degree
of operators in <$% 4- degree in T", so that G0®5r

We put

This filtration induces on each gr^(K+^'~t/) (<xe[0, 1]) a filtration denoted

]) or G.

(4.3) Theorem. PFe Aave isomorphisms compatible with the monodromy
action

L^t
d(K+Cov), F» , M.(N, W)\n\, Vllt(R

~ Wr^U + Ov), G. [ - «], M.(N, W)[n], ty

IEF(K + &v), F» , M.(N, W)\n +1], EF(RK /Q^)]

1], V.

w/z/c/z makes the RHS a mixed Hodge Module, and the following sequence is
an exact sequence of mixed Hodge Modules isomorphic to [24, (2.22.1)] for
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0

I

i
1 M.(N, W)[n +1],^i^W/Qt/)]

I
[K+0V9F?9i^9RK^Qv]

I
0

We will give the proof for <^od, letting the proof for ^£Jd to the reader. To

prove the theorem we will compute locally the F-filtration for the modules

involved and will show first that there exist locally strict isomorphisms between

both terms in (4.2). To show that the isomorphism (4.2) is indeed strict, we
will use a trick due to M. Saito [23] (see §4.21).

Let us analyse the structure of the F-filtration of K + $~lf along r = 0 in

an analytic neigbourhood of a point on F ~ 1(oo). So we choose local coordinates
(x,y,z) on 5Fan compatible with the divisor />u/r~1(oo), where x = (x0, "-,xp),

y = (yi>'">yj> z = (zi»"'?zr)?
 such that p,q,r>0 and p + q + r=n. In these

coordinates we have D = {Hq
j=iyj = ®} and we may also assume that

F(x,y,z)=l/xm.> with m = (m0,-",mp) and mt>0 for all i = 0, ---,/?.

We shall denote ® the ring of differential operators with coefficients in
C{x,y,z} and g the free rank one C{x,j5z}[jc~1,j~1,T]-module generated by
e~t/xm with its natural structure of a ^[T]<3T>-module. We will also use

g-t/x™ e~^x™
e = or e' = (we put y1 --y =1 if q = Q) as a generator

^o'"^ii x0"'Xn'yi"-yq

of & as a C{x,y,z}[x~ i
9y~ l

9 t; ']-module and er as a generator of & as a

®[<l<3t>-module.

Let G«^[T]<3t> be the increasing filtration by "total degree in dx, dy,

3Z +degree in T" and let G*$ be the increasing filtration of $ induced by the
filtration of C{x,y,z}[x~l,y~1,t'j by "total pole order in j + degree in T" (here,
the pole order is taken in the sense of [6, §3.1.10], i.e. with a shift). For a

multiinteger b we will denote \b\ = Ejma.x(bj—l,Q). Hence
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and more generally, for fc>0,

Gk£= £ C{x,y,z}\x-l-\-y-V •€-«*".
veN<UeN
\v\+l<k

The following is easy to prove:

(4.4) Lemma. We have G.<? = G.0[T]<3t>-e'. D

Hence G.S is a good Ge^[T]<3T>-filtration.
We denote W.S the increasing filtration of $ by the number of polar

components along D:

(4.5) Proposition. For a// a e [0,1],

1. £/ze monodromy filtration of N'.gr^$ -> gr^<f relative to W.^S exists
and we denote it M(gr,&, N, W)\

2. for all i, k and /, the morphism grf^grfgr^ ^ grfl2igr^gr^<f induced
by Nl strictly shifts by i the filtration induced by G«$ on each term.

Remarks.
We denote W.gr^f (resp. G.gr^S) the filtration induced by W.S (resp.

Ge^) on grX namely W&\«=Wkr\V^IW^V<J$) (resp...). Note that
V*$ induces on WkS the Malgrange-Kashiwara filtration V(Wk<S\

The filtration induced by G«$ on grf^gr^gr^ is the filtration successively
induced on each graded term.

The definition and the properties of the relative monodromy filtration are
given in [26]. Recall that N shifts it by —2 and that for each z>0 the
induced morphism JV'igrjJ^j-gr^-^gr^fgr^ is an isomorphism.

Part one of Proposition 4.5 is in fact a consequence of [26] or [24] if
one uses the isomorphism (4.1) for oce]0, 1] and its analogue with 5F for
a = 0. The computation that we need to do will show it also.

Computation of the V-filtration. In order to prove Proposition 4.5, we
shall give an explicit presentation of gr^*?.
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(4.6) Lemma. Let e' as above. Then e' is a generator of $ as a
\y-module, which satisfies the following equations:

tdre'= —-e'

,_jn{( 1

*A r Wj,

V—£ y_!,..,,

az/=0 k = l,-,r

( n it; = o fc = i

Consequently the order of e' with respect to the F-filtration of $ is <05 so
we have K0(®[T]<3t»• e' <= F0((f).

We shall now introduce a family of polynomials of one variable s indexed
by a rational number a and a multiindex 0 = (a0, • • -, ap) e Zp + *. For a e Q we put

p /

where / is an integer, [mt-a] denotes largest integer <mt-a and we take the
convention that the product indexed by the empty set is 1. The constant caa is
chosen so that Pa^( — a)=l.

For aeZp+1 and a 6 Q, put Pfl> <(X(s) = Paj(s) for /3 < a and £ close to a. Let

[>i.a~|= — [_m^a] be the smallest integer bigger than or equal to m^a. We

hence have

n
where * is a nonzero constant. There exists (5 f l aeN and a nonzero constant
* such that Pa><(X(s)=*(s + oi)da<<xPaia(s). We have

and ^>mfa}
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hence we have daaL<p+l<n + \.
We define a correction term Qx(s) by

fl if oc>0
J4?-l) •••(£-&+!) if fceN* and oce[-fc, -fc+l[.

The following properties are easily verified:

(4.7) Lemma.

1. The family (Pa^Q^ of ideals of C[s] is increasing (with respect to the
usual partial ordering of ( — Z)p+1xQ), i.e. Pa^Q^ is a multiple of
pa',x'Q*' If ~ai^ —a'ifor all i and a<a'.

2. Pa,^)QM = qM'Pa+m,z+i(s-l)Q«+i(s-l) where <2* is a constant if
a>0 and qj(s) = const • s (const eQ*) //a<0.

3.

In order to compute the F-filtration, we shall use another presentation of $ :

(4.8) Lemma. $ is the C{x,y,z][x~l,y~l,id^\-module generated by
e-r/x™ an^ as sucn^ is free of rank one. The filtration G.$ is the filtration by

"total pole order in y + degree in id".

Proof. One considers the map C{x9y9z}\_x~l,y~1
9i;dr]-*C{x,y9z}[x~'L9

y~l,t~] defined by

One verifies that this is an isomorphism of C{x,y,z}\_x'l,y~ ^-modules,
which gives the result. D

(4.9) Lemma. For aeQ, let

Then U*$ is equal to the Malgrange-Kashiwara filtration V.&.
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Remark. We can replace e' with e=yl --yqe
f in the previous expression

of E/a. Using the fact that e~T/xrn = x0 --xm-e, the previous expression can be
written

Proof. Remark first that, thanks to Lemma 4.7, U»$ is an increasing
filtration which is in fact discretely indexed, T - C / a c Ua,l with equality for
a<0 (this follows from 4.7-(2)), and UK + dTUa=U(X+1 (4.7-(3)). Let us show
that each £/a is stable under the action of F0^[T]<dt> = ^[T]<Tdt>. The only
point which is not completely evident is the stability under 8Xi . We have

and the last term is clearly in C7a<f.
There exists 8K such that (T5T + oc)<5a- Ua c (7<a and we may choose

dx<n + l for a^-N and ^a<« + 2 for ae -N.
It is then enough to show that some Ua is of finite type over

^[i]<T5t> to conclude that Uo$ is a good filtration which moreover
satisfies the same properties than V.S does, hence both filtrations
coincide. But a simple computation shows that £/0= F0^[i]<3r>-^. Q

Proof of Proposition 4.5. Put |~wa~|= — [— ma]. For aeZp+i such that
a > [mal (i.e. at > \mp\ for all i) we put /» - {/ 1 af - \mp\} and x/a(fl) = (xt)ieIM .
For 6eNg put J(b) = {j\bj = 0} and define yj(&) in an analogous way.

For ae[0,l], it will be convenient to denote

i fae]0 , l ]

5 a4-l if a = 0.

(411) L^r a e [0,1].

1. Every element 86 Ka<? CG^I be written in a unique way

r z z i ̂ (^^(^
L«>rwal b>0 A>0 J
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where, for all a, b, A, gfl,fca
eC {*/(«) >X/(fe)> z}> and ga.b^ = Q or gaM(Q, 0, z)

/O.

2. ^e /wve eeF<a<f i/ am/ only */ (ga,M
3. FF

= max

ord^e = max #J(b).
b, A

We consider on the set of tuples Zp+1 x Z € x N the lexicographic
order. This allows one to define on C{x,y9z}[x~l,y~l

9T;dr + ai] (hence on S)
a filtration 3F indexed by Zp+1 x Z ^ x N : an element (/> has order (a,b,d) if a0

is the pole order along x0 = Q, then a1 is the pole order along ^c1=0 of the
coefficient of x~a°, etc. and d is the degree with respect to T3t + a.

Remark also that we have Fmax(a-ijma]-i),a — ̂ a-i,«- Hence each element
of Fa(f can be written

and if we decompose the ha we obtain an expression

I Z AB.d(^J'.z.^ + a)x--j;-6Pa_1

with /zflfreC{x,j,z}[T^t + a]. We will show that the dominant term
of s with respect to 3F can be written

with (^(eje^ej + deg^^^j a, so in particular is in V^S. In other words, we
will have eeFa^ if and only if this is so for e(fl(e)fl,(eM(e)) and e - e(fl(e)>Wid(e)).

For this, consider first term of highest pole order a0(e) along jc0 = 0. It
is also the dominant term of the previous sum indexed by the (a, b)
such that fl0><20(e). This sum can hence be written H(xQ,xf,y9z, T(3t + a)

•*0fl°(£)^«o(a)-l,«^^

(idl + l/m0). Moreover, H admits a similar expression with one variable less
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and we have H(Q9x',y9z,Tdr + a)^Q so that in this case we may replace H with
#(0,:x;',j/,z,TdTH-a)^0 in order to compute the dominant term. We then get
the result by induction on the number of variables x and y.

We deduce from this fact the existence and uniqueness of the decomposition
4.1 HI), as well as the fact that ee F<0/ if and only if A>(5 f l_ l j a(+ 1) if &,,M^0

(i.e. 4.1 H2))-

For e e V$ we have at our disposal two Newton polyhedra: the first one
N(s) is attached to any ee<f, using the unique decomposition

«= Z Z Z h^Xl
L«>rmal fc>0 d>0

with A f l>&.rf/0=>A f l f [Mi(0,0,z)^0; then N(s) is the convex hull of the points
(a5M)-(Np + 1xN«xN) for which /zfl,&<d/0; the second one JVa(e) is defined
in the same way using the decomposition 4.1 HI) of e. One shows by induction
on (a,b,d) that both polyhedra coincide. The filtrations G and W being
defined only in terms of the polyhedron N, we see that on Fa both filtrations
can be defined in terms of Na, which gives the third point of the lemma.

D

We deduce from the lemma that if [s] denotes the class of e in gr^, then
[e] has a canonical representative e defined by the formula

Z Z
rmal fc>0

and that if [e]^0 we have

max

ord ̂ [e] = ord^e = max
{(«,*, A)|^«.bl A * 0 and A <da - , ,«(+!)}

Denote M'« = M'(N)* the monodromy filtration of 7V=i3T + a on grJX
centered at 0. Then using the fact that the order of Nx with respect to the
filtration MiC[N~]/N* is equal to S-1-2A,, we have [e]eM/gr^<f if and only
if the only possible nonzero terms in e are such that 0<A<(5 a_ l f ( X (+ 1) and
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We deduce easily from this remark the following consequences, hence 4.5-(l):

1. For all /eN, the morphism TV1 : grjf(f -» grjf<f is strict with respect to
the filtration W.gr^g*.

2. The relative monodromy filtration M* = M.(grJ^, N, W) exists and is
equal to the convolution (M1.* W.)%tl<$ (see [26, Prop. (2.11)]).

3. We have grf grfgr^ = grf^grfgr^ (see [26, Cor. (1.6)]).

One verifies in the same way that e e Fa<f has a nonzero class in grf^gr^gr^
if and only if there exists (a,b,l) such that a>[ma], %J(b) = k, 0< h<da_l a(+ 1),

^a-i , a(+l)— 1— 2A = /— k andgfl>M/0. The order of the class of s with respect
to the filtration induced by G is the order of the canonical representative,
namely the max of |fc| + A + degPa_ l a on such tuples (a,b,X). This gives
immediately the second point of 4.5. D

From this description we also deduce

(4.12) Proposition. On K + ̂ ~xf, the filtrations V., W. and G. are

compatible.

Proof. This means that for all k, d, a we have

(4.13) ^fcn[Gdn Fa + F<a] c [*FfcnGdn FJ + F<a

and this implies that the possible tri-graded objects obtained by permuting the
filtrations are all equal. In order to show (4.13), remark that, for ee Fa(f, we
have e 6 Gd n Fa + F<a if and only if the canonical representative s is in Gd . The
same equivalence holds for Wkr^V^+V<aL, so we see that ee[Gdn Fa+ F<a]
n[PF f cnFa+F<J if and only if sEGdnWk, hence the result. D

Computation of the primitive part. Let ae[0, 1] and consider the
following filtered ^-module, denoted

^[*(^~1(oo)u/))]-"F-a" or also ^[*(F

This is the free (^[^F'^ooJuDfl-module of rank one with one generator
"F~a", and the structure of 2 ^-module is obtained by twisting by F~a the
usual one on &$:[*(F~1(co)vD)~]. This module comes equipped with the
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following filtrations:

0 Wo is the filtration by the number of components . of D along which
a local section has poles;

© if cp is a local section of (P5r[*(F~1(oo)uD)]? we say that (p'"F~"" has
a pole along a component of F~ l(co) if F~* has an integral multiplicity
along this component and if (pF~* has a pole along this component;
then W0 counts the number of components of F'^oo) which are polar
for cp"F~*" and i^0 is the convolution of W and W\

© the filtration F* is defined by

where the RHS is the pole order in C{.x3j9z}[.x~1
5j>~1] as in

[6, §3.1.10].

(4.14) Proposition., For <xe[0, 1] we have local filtered isomorphisms

OP gtf+ Dgrfgr^ G.) Z (&r+ lgrf^[*(F- 1(cx))uD)]a9F0).

In the LHS, we put /(+!) = / if ae]0,l] and /(+!) = /+! if « = 0.

Proof. We keep notation as above. From 4.5-(2) follows that the
filtration Gogr^grjfgrjcf is compatible with the Lefschetz decomposition.
Assume that e has multiorder (/,&., a) with respect to the filtration MWV. ' Then
the class of e in grf^grf grjf<f is in the primitive part

' '-4+ ' : gr

if and only if the canonical representative of this class is

I IL^ L^i
b>0 a> fma]

Now, each element heC{x,y,z}[x I
9y

 1]a has a unique decomposition

h= Z Z MJC/.(
a>\m<x] b>0
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with /zfl,6/0=>/ifl5&(0,05z)^0. The filtrations on C{x,y,z}{x~\y~1^ can be
expressed as follows:

• ordwh = maxft ^ Q$J(b)\

(5a - 1 and o r d / z =

The filtrations W® and *W. are filtrations by C{x,y,z}(dx,dy,dzy-
submodules: this is well known for H^« so it is enough to verify this for W. ,
and it is enough to show that if ha^bx~ay~b£i^'l and hab satisfies the previous
properties, then

(4.15) [3,f + /H,a/*J(Afl^^

is in >W\. But we have (5fl + 1[_1 >a = 5 f l_i ,a if a^m^ hence each term is in T^J.

It is also easy to verify that F0 is a good filtration with respect to the
usual filtration F.C{x,y,z}(dx,dy,dzy by the total degree in 3x,3y,32.

If h has border k and if-order /+!, its class in grnji+igr^rC{x9y,z}l_x~i,
y~^a is nonzero if and only if the canonical representative

h= V V h (x v z)x~ay~b

b>0 a> [mal

of this class is nonzero. The F-order of this class (with respect to the filtration
successively induced by F) is then the F-order of the canonical representative K.

Proposition 4.14 will follow from

(4.16) Lemma. Let ae[0,1]. For every k, I the map which sends

Z Z
b>0 a> jmtx]

$J(b) = k da-i,« = l-k

to

I I
b>0 a > [ma]

induces a strict isomorphism of filtered (C{x,y,z}(dx,dy.>dzy,Fo)-modules
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,y, z}\x~ l,y-^., F.) ̂  (P gr^^gr^, G.).

Proof. Once ^-linearity is proved, bijectivity comes from the uniqueness
of the decomposition, and the fact that this isomorphism is strictly
filtered comes from the fact that for a>|~ma], we have degP f l_ l a = |a — fma]|.

First, one easily see that this mapping is C{z}-linear.
The main point to be shown to obtain C{jc,j,z}-linearity is the fact that

if aeZp+1 and beNq are fixed, with a>[ma~], and if cpeC{x,y,z}, then the
image of the class of (p-x~ay~b is the class of (pnx~ay~bPa_lt(X-e~'clxm.

We can decompose

rmal<fl '<a Q<b'<b

with <pa>tb>eC{xUa,},yj(b.)9z} and <pfl,&,^0^(pfl^(0,0,z)^0. The image of the
class of cp-x~ay~b is then equal to the class of

(4.17) £ I <P.VX-a'y-b'P,-i*e-"*".
\mai\<a' <a 0<b'<b

On the other hand we have for \mu\<a! <a the equality

Pa ~ 1 .cM) = Pa' - 1 ,a(^r) ' *«.a'(^t)

with qata>( — a)=l. So the class of (p-x~ay~b in gr^+ 1}gr^gr^(f is equal' to

I Z ^.b'-^'^'^-'-i.A.-'^j^-^
fmal<fl '<a 0<b'<b

and its projection in the primitive part is then equal to (4.17).
dx-linearity for instance is obtained by comparing (4.15) with a formula

analogous to (4.10). D

(418) Corollary,, For a €[0,1] any local isomorphism of ^ ^-modules

Pgr%+ Dgrfgr^ ^ gr^ .gr^MF' '(ooJufl)].

is strictly filtered with respect to the filiations G* and F0 .

Proof. Let {0, ••-,/?}„ c {0, --,p} be the set of indices / such that
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m faeZ. For la {0, ••-,;?}« with $1=1+1—k and / c z{ l , - - - , g} with %J=k,
put EIriDj = (nieIEi)n(njeJDJ). Then the formula above for h shows that (at
least locally) (gr^1grf6^[*(F~1(oo)u/))]a,Fo) is equal to the filtered
direct sum (over /, / as above) of the largest submodules MI j supported on
EjC\Dj, equipped with the induced filtration F«.

Any automorphism of gri^grjf6^5r[*(F~1(oo)uD)]a preserves this de-
composition, hence it is enough to verify, thanks to Proposition 4.14, that any
automorphism of Ml j is strictly filtered, and showing that any such
automorphism is a constant multiple of the identity will be enough.

One can verify that pDRanM7j is equal, up to a shift, to the direct image

by the inclusion EInDJ<5%' of the following sheaf: on 1

— ( u E i ) , this is the rank one local system with monodromy exp linm^

around E^Ejr^Dj for /<£{03 ••-,/>}«; it is extended by 0 on EjC^Dj (this is
also the maximal extension). Any automorphism of this sheaf is a constant
multiple of identity, so we can conclude using the full faithfulness of pDRan.

D

Local comparison with the nearby cycles of f at infinity. The local
computation made in [26] for the nearby cycles at infinity (in the case of
unipotent monodromy) can be made using arguments as above. We shall
sketch it below.

Consider on 3E the complex RK/QV and let ^i/F(RK^pQu) be the nearby
cycle complex on F~ 1(oo). It depends only on Rj^Qu and not on the extension
to 3F that we have chosen. So we denote it ^i/F(Rj^pQu)-

We denote t' the coordinate at infinity on A1. Consider on 3C x D', where
D' is a disc centered at oo in P1 with coordinate t', the 3}x*n x ̂ '-module
Jt = (j+0u)*

n[dt,'] • 6(t'-F') with F' = l/F. This is a regular holonomic module
on ^an x D' and pDRan^ is the direct image of the sheaf Rj/Cv by the inclusion
of the graph of F'. In the same way, if i':F~1(co) c^ 3£ denotes the inclusion,
we have Ri'^^Rj^v)~^R™\li?oA(Jt).

This module M comes equipped with a filtration F«Jt good with respect
to the usual filtration F.3}xm*D, by the order of the operators: this is the
filtration of (/+$i/)an[<?,'] " o(tr — F') by the degree in dt,. It comes also equipped
with a filtration W. (number of components of D along which a section has
a pole).

The analogue of Proposition 4.5 is true for i/^od^: this is proved in [26]
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or [24] (in proving the proposition below we shall recall the proof, which is
completely analogous to the one of 4.5).

(419) Propositioiio For all a£[0, 1[ and kJeZ we have local filtered
isomorphisms

Proof. Let us recall the local computation of VoM analogous to the
one of Fo<f made above. Denote & = C{x,y,z, £'}<3x,3y,3z,<3t,>. Then, in the
local setting of the previous section, Jt a C{x,y,z,t'}[x~l,y~l,dt^] • d(t' — F') is

def 1
equal to the ^'-submodule generated by 6' = - 8(t' — F'). This generator

yi—yq
satisfies

' '

( P m , - i r(n n k^
\i = 0 fc = 0 L

Hence d' has order < 1 with respect to V0Jt. It can be shown that, for a < 1,

062*+ '

a > f ma]

with (5 = 5(r'— F'). We then get a canonical representative of any local section
of V^Jt and the proof of the analogue of 4.5 can be done as above. The
only difference comes from the shift (+1) for a = 0 which does not apppear
here (in fact a shift (—1) would appear at a=l, but it will not matter here).

Now the proof is exactly the same as the one of Proposition 4.14. D

In the same way one deduces from this proposition
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(4.20) Corollary. For a e [0, 1 [ any local isomorphism of & %-modules

P grfVfgr^ ^ gr£ &?<Sx\i{F- '(oo) u />)].

is strictly filtered with respect to the filtrations F0 . D

4.21. Proof of Theorem 4.3. As the isomorphism (4.2) is strict with
respect to W« and is compatible with the monodromy, it induces an isomorphism
between the corresponding Pgr^grjf . From Cor. 4.18 and 4.20 we deduce
that this one is strict for G* and F.. According to Prop. 4.5-(2), Go (resp.
F.) is compatible with the Lefschetz decomposition, hence we conclude that
grf^grf (4.2) is strict for G« and F* , and so is (4.2). This gives the first part
of 4.3 for </>^ot}. Analogous arguments give it for ^™d.

From the definition of K+S'~Z and its filtration G. , we have an exact
sequence of filtered holonomic ̂ [i]^) -modules

which induces the exact sequence of the theorem after taking the graduation
by the F-filtration. Let us show that it is strict with respect to the Hodge
filtrations:

In an analytic neighbourhood of a point of X=3£—F~l(cQ), an easy
computation shows that $™d(K + £>~i:f) = Q and the statement is clear. In an
analytic neighbourhood of a point of F~\co)9 the strictness follows from the
local computation of Lemma 4.11.

From the first part and Cor. 1.13 it follows that this sequence is iso-
morphic (with filtrations and rational structure) to the exact sequence (2.22.1)
in [24], so is an exact sequence of mixed Hodge modules. D

§5. Hodge Properties of the Gauss-Manin System
and Its Fourier Transform

We keep assumptions and notation of §4. We will now consider Hodge
properties of the nearby or vanishing cycles of the Fourier transform Rf^Qu at
T = 0. Remark first that, since the functors P$T, *tyT>1 an d^"^ preserve
perversity, the cohomology spaces Hip^r(Rf^p^v) are equal to ̂ ^//Qt; (an^
the same equality for p^Tjl), where PR1/^ denotes the /th perverse cohomology
sheaf of Rf .
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We hence have on these spaces a filtration W*\

where WMif^pQu = image [^F^W^Rj^u) -+!Rif*pQu] and the image is

taken in the perverse sense. The same description holds for Vt.i- This
filtration is identified with the one coming from pRip^(p(l)t^

r
F(Rj,/Qu).> W*) as

follows from Remark 2.3.4.

(5.1) Proposition. On Hip(l)x(Rf/^j) and H^^Rf/Qu) the mono-
dromy filtration of the nilpotent endomorphism N relative to W» exists.

Proof. According to Th. 2.2 and Cor. 1.13 we have L
Vi/^/s/Qtf and the assertion for P0r is a consequence of [26]. For P\l/Tii

one may use [24, §2e]. D

The spaces Hip^T(Rf^Cv) and Hip^^(Rf^Cv) come equipped naturally
with an increasing filtration Ge: the filtration G.0™od(K;+#~T/) introduced
previously can be used to filter the complex lDR0™od(K: + <f ~T-0; the ith term

of the complex (7.l'DR0™od(K+^ ~Tf) is

We hence get a filtration on the hypercohomology of this complex in a natural
way. The same construction holds for p^r>1.

Remarks.
1. The filtration G* could depend on the choice of a compactification

3E of/such that $"— U is a divisor with normal crossings in $T. It
is a consequence of the theorem below that it does not.

2. By the very construction of Ge(/>fod(fc+^~T/), the filtration G*Hip(j)x

(Rf^Cy) is compatible with the decomposition p<^t = ®/^ tA, in other
words it is invariant by the action of the semi-simple part of the
monodromy. Moreover, the nilpotent endomorphism N shifts it by
one.
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From [24, §2.c] and Theorem 4.3 we get, after a Tate twist by n with
dimU=n + l:

(5.3) Theorem. For all /eZ the objects

^, G.,M.(N,

^), G, , M.(N, W)\i-(n + 1)]. , H^^Rf^^n + 1)]

are mixed Hodge structures. Moreover the filtration W» is a filtration by mixed
Hodge substructures. D

Remark. Since the Hodge filtration is usually decreasing, we use the
convention G* = G_« to obtain a decreasing filtration from an increasing
one. The notation (k) corresponds to the Tate twist (2in)k. More precisely,
the first object is isomorphic to the Steenbrink-Zucker limit p^i/t

p^lf^pQu after

a twist by n.

The spectrum of fat infinity. Following J. Steenbrink [25], we define, for
a finite dimensional vector space H = @jfJ^ (where the direct sum is indexed by
the roots of 1) equipped with an increasing filtration F9H=®)iF.Hx, spectral
polynomials in Q[5]

SP^(/f,F.;S)=f 0 FI
peZ ae[0,l[

SPtftf, F. ; S) d= [I El
peZ ae]0,l]

with hA p = dim %tF
pH A . The polynomial SP<^ is obtained from SP^, by replacing

the terms (S+p) with (5+/7 + 1) without changing their exponents.

The spectral rational fraction of /at infinity is obtained by using the Hodge
filtration on the nearby cycles at infinity H\F~l(x)),p\l/1/f

pCu) = Hip\l/1/t(Rf/Cu)
as defined by J. Steenbrink and S. Zucker [26], F. Elzein [8] or M. Saito [24]:

v), F. ; Sriy e 0(5)
i

with *=^ or *=0.
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We define in an analogous way SP^^Rf^Cu) ; S) by using the filtration

G..

(5.4) Corollary. For *=ij/ or *=$ we have

v) ; 5) = SPiWtfffo) ; S). D

5.5. Remark. In fact, the spectral fraction of / at infinity following
[25] is equal to the rational fraction SPtftyu^Rf +*€„); S-i) as defined
above. Indeed, consider on the space Hk(F~l(oo),il/lff(Rj^Cu)) (i.e. the limit
of Hk(f~l(t\C} when f-> oo) the Hodge filtration F^ as constructed in [26]
or [24], and the monodromy T^ (see §1.9). For j5e] — 1,0] such that
exp( — 2m/?) is an eigenvalue of J^, let Vp+p be the dimension of gr£H of the
corresponding generalized eigenspace and put SPfe(5') = f|pf|^e]_1,0]

P + n—p)V(i + p. The spectral rational fraction constructed in [25] is then

Let us show that SP(5) = SP^1/f(J?//Cr/);5
f-l). We have

and the mixed Hodge structure with filtration FQ that we use differs from F%
by a Tate twist («). Hence we have

Fijy*(F-Hcx>),^1/x^cl,))=FB.^k-^-Hoo),^

To define SP^(pi/f1/t(^//Cu);5) we use ae]0, 1] such that exp(2ma) is an
eigenvalue of J^1 and this explains the shift by 1.

Appendix: Convention and Notation

We refer to [2] or to chapter 10 in [11] for general results on perverse
sheaves.

A.I. Filiations

To an increasing filtration F0 we associate a decreasing filtration

°
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The shift is analogous to the one defined by M. Saito, namely

A.2. Perverse Notation for Constructible Sheaves

Perversity, cohomology and duality. We denote Perv(Qx) the abelian
category of Q-perverse sheaves on the manifold X. Let/ :X-> Y be a morphism
between complex analytic manifolds. Put 5f = dim X— dim 7 and PQX

= Qx[dimX~]. This is a perverse sheaf. Let Dx be the Verdier duality functor
on the category D*(QX). We have

DpQx = R^»*nQx(
p®x, Qx[2 dim X]) ^ PQX .

If 3F is an object of Db
c(Qx), we denote ^OF the yth cohomology group of

J^ (this is a sheaf on Y) and p3tf'33F the yth perverse cohomology group (this
is a perverse sheaf on F, hence a complex in general). We have

Inverse image. The inverse image is modified as follows:

f - ^ r ^ S f ]
If/is smooth or if/is a closed immersion we have pf~ ipQY = pQx • We also put

Pf=f\-?>f]=®XPf-l®Y.

If /is smooth, we have *f = *f~l.

Direct image. The direct images Rf\ et Rf# are unchanged. We put

RJf^=jelRf^Qt *R*f+=WjRf+

with -^=* or * = ! .

Nearby and vanishing cycles. Let f:X^>C. The nearby and vanishing
cycles functors are modified in the following way:
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-Y] and

Compatibilities and exact sequences. We have

*=* or !

with f\X-*C smooth

idem

idem

idem

g f
Rg ̂ gof = p^fRg * X -» Y -»C, g proper

Rg **VW — ̂ f^g * idem.

Triangles (with i : f ~ l ( 0 ) c; X):

P'-I pi Cal1 pJL +^

var ., +1

If i:Yc^ X is a closed immersion and j:X— Y^ X is the complementary
open immersion (we then have pj~i=j~l =pf'=f'\ we have triangles

1 +1

If moreover Y has codimension one in X, we have triangles
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1 _ r» • n-f _ "T 1

/ft/r1® — »RjJl» — -•-ii

Adjunction:

A.3. ^-modules

Here, the category is either the algebraic category or the analytic category,
and the objects correspond each other with the functor "an", e.g. Ox and @a

x .

de Rham. We have RjP^ax(0x,&x) = cox[-dimX]. We put

We define in the same way the relative de Rham complex for a projection.

Duality. The duality functor (denoted D or Dx) is centered in such
a way that it preserves holonomic modules.

Direct image. We put

Notice that ^pt4_x = cox, and consequently for f:X-+pt we have f+Jl

= RT(X,PDR^). In the case of a projection f:Xx Y-+ Y we have

We define

For /proper we have/t=/+ since in this case/+Z) =Df+.

L
Inverse image. We put/+</T - Q)x^ ® f~lJf and f

-
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= Dxf
+DY^ with @x-*Y = @x®f-lGYf~l^!Y-> so that as a 0

L
corresponds to Lf* (i.e. @x ® ). If f is smooth we have /+:

Moderate nearby and vanishing cycles. We have triangles (for f:X
smooth)

ft

Compatibilities. These are the same as for sheaves, via the following
correspondence:

/+«->*/*, /t «->*/!, ^~^>

/+ <-> y1, /f «-> pr \ ^rd(^rd)
The correpondence is given by PDR.

Adjunction (/ analytic and proper or algebraic):
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