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Abstract

The cut-off phenomenon is a remarkable critical phenomenon observed in the process of
convergence to equilibrium in a wide variety of Markov chains. Diaconis-Graham-Morrison [3]
established the first precise evaluation around the critical time for Ehrenfests' urn model concerning
2 urns and d balls, i.e. nearest neighbor random walks on hypercube Zd

2. They showed that
deviation from the equilibrium state is described well by using the error function. In this article,
we work out the evaluation around the critical time for simple random walks on Hamming
graphs H(d,n\ which coincide with an extended Ehrenfests' urn model concerning n urns and d
balls. In our case, not only d but also n can grow in several manners. If n/d tends to 0, the
similar result to [3] remains valid and microscopic deviation from the equilibrium state is
described by the error function. If n/d tends to a nonzero constant, however, it is shown
that the error function has to be replaced by an expression involving Poisson distributions.

§1. Introduction

The cut-off phenomenon is observed in the process of convergence to
equilibrium in a wide variety of Markov chains including certain shuffling and
diffusions. Taking a viewpoint of statistical mechanics into account, we can
regard it as a critical phenomenon owing to the huge cardinality of a state
space. Lots of articles dealing with this interesting phenomenon are available
at the present time. Among them we here refer to [2] as a concise summary
with bibliographical information.

Let us consider a Markov chain on a finite state space X with transition
matrix P and invariant probability n. Under mild conditions, we see the

Communicated by Y. Takahashi, January 20, 1997. Revised April 30, 1997.
1991 Mathematics Subject Classifications: 60J15, 60C05, 82C41, 05E30.

*Department of Environmental and Mathematical Sciences, Faculty of Environmental Science
and Technology, Okayama University, Okayama 700, Japan.



696 AKIHITO HORA

convergence to equilibrium of the chain:

-*n(y) (fc-,oo) for x,yeX.

To analyze the manner of the convergence in more detail, we consider

(1) ll(nc,-7c||var^ L !(/*)»,, -*(y)| (total variation distance)

as a quantity to measure closeness to the equilibrium at time k. In this
article, we assume some spatial symmetry of the chain, which implies n(y)=l/\X\
and (1) is independent of x. Thus we set

(2) D(k) = - £|(/^,--|= ^ I \(Pk)x,y-(E0)x,y
2j,6x \X\ 2\X\XtyeX

where E0 is the matrix whose entries are all 1/|A"|. We are interested in the
decay rate of the function D(k). Like many other critical phenomena, the
cut-off phenomenon is clearly captured through a certain infinite volume limit
of a family of Markov chains.

Let us consider a family of nearest neighbor random walks on hypercube
Jjd

2 indexed by rfeN, where each chain either moves to one of the nearest vertices
or stays at the present vertex with equal probability l/(rf+l) in one unit
time. This is the Ehrenfests urn model with 2 urns and d balls. Diaconis,
Graham and Morrison [3] showed the following exact asymptotic result. We
set D(d\k) as in (2).

Theorem 0. (Diaconis-Graham-Morrison) In a nearest neighbor random
walk on Zd

2,

D(d\\ -dlogd+Od )—>Erf(
\l_4 jy V

:1 (</-»oo) for 0eR.

//ere, Erf is the error function:

= -^- (
Jn Jo

-<2dt.

In [7], Voit derived Theorem 0 by using a different strategy from [3].
The purpose of this article is to establish an exact asymptotic result for

random walks on Hamming graph H(d,n\ which is an extended Ehrenfests
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urn model with n urns and d balls. The hypercube Z^ appears as H(d, 2). The
point here is that not only d but also n can grow. The following are our
results. We set D(d'n)(k) as in (2) for a simple random walk on H(d,n).

Theorem 1. Let i be a positive constant. For 9 e R, as d -> oo and n/d -» T,

compact-uniformly in 0, where pa denotes the Poisson distribution with
intensity a.

Theorem 2. Let n>3 (not necessarily fixed nor bounded). For 6 e R, as
d-> oo a«rf n/d—*Q,

/ 1 - 41og(n - 1 )rf+ fl)— Erf
\I_2V i/ J/ V2v/2

compact-uniformly in 9.

Remark. Restriction «>3 in Theorem 2 is to avoid periodicity of the
simple random walk. For the simple random walk on //(rf, 2) ( = Z^), (2) does
not converge to zero as k -» oo since H(d, 2) is a bipartite graph. Hence, one
needs a modification: e.g. to consider nearest neighbor random walks as in
[3] (above Theorem 0) or to treat even and odd times separately as in [7],
Theorem 1.5.

Now we supplement explanation of why the above theorems show us a
critical phenomenon and how they describe fine behavior of the Markov chain
near the critical time. Let us consider the situation of Theorem 1 or Theorem
2. Note that the limit function, say denoted by c(6), satisfies 0<c(0)<l,
c(— oo)=l and c(oo) = 0. For arbitrarily given (very small) s>0, take 0£>0
such that

f* 1-. if **-*.
;\< s if 9>9E.

We set Af'M > = (!-(! /n))(d/2)log(n-l)d and h(d>n} = (l-(l/n))d/2. Theorem 1
and Theorem 2 assure that D{d*\[_k™ + 9h(d>"^) is almost 1 for 9<-Oe and
is almost 0 for 9>9E. Note that h(dM>«k«'n>«\X(dM>\ ( = the cardinality of the
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state space =nd). In our interpretation, k(d'n) is regarded as a macroscopic
time. Then, \X(d*n)\ is almost infinite and deviation h(d'n} is macroscopically
negligible in the infinite volume limit (d,n)-» oo. Here 0 plays the role of a
microscopic time parameter. One thus sees that the value of D(d'n\k) drops
suddenly from 1 to 0 quite near the critical time k(d'n) for large (d,ri) and that
limit function c(9) describes the manner in which the chain approaches
equilibrium around the critical time in a microscopic time scale.

In [2], Section 4, Diaconis proposed a general understanding of what
causes the cut-off phenomenon. The essential role is played by high multiplicity
of the second eigenvalue of a transition matrix, which is due to some symmetry
(like Assumption in §2). In order to perform a precise proof of the cut-off
phenomenon, however, one needs more detailed information of the model
discussed. (In [5] and [6], we proposed a definition of the cut-off phenomenon
and gave some general criteria in terms of the spectrum and what is called a
Krein parameter.) It would be worth while to work out a careful evaluation
in concrete models. We also mention [8] dealing with a continuous state space.

Our plan for the proof of Theorem 1 and Theorem 2 is a prolongation of
the approach in [7]. By virtue of the very nice structure of the spectrum of
H(d,n) (see §2), continuous time simple random walks on H(d,n) are easy to
handle. Thus we first discuss the relation between a continuous time case
and a discrete time case (Theorem 3 in §3). Next the results in a continuous
time case are derived (Theorem 4 in §4 and Theorem 5 in §5). Finally we
combine them to obtain Theorem 1 and Theorem 2. §2 is devoted to
preliminary computations and a bit general discussions on transition
probabilities.

Acknowledgement. The study in this article was motivated by discussions
with Prof. M. Voit, to whom I would like to express deep appreciation. I am
grateful also to the referee for valuable comments based on careful reading.

§2o Random Walk on a Hamming Graph H(d,n)

Explicit functional calculus for a transition operator via spectral
decomposition enables us to investigate time evolution of a Markov chain in
great detail. If the transition probability enjoys a certain symmetry, one can
make use of algebraic structure associated with the state space for that
purpose. In this section we perform functional calculus for transition matrices
by using algebraic machinery because we feel that such a general treatment
would make the process of computation more transparent. After that, we
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specialize our formulas onto Hamming graphs. However, if a reader has little
interest in algebraic argument, he can skip to formula (11) which is a closed
expression of transition probabilities at an arbitrary time of the continuous
time simple random walk on a Hamming graph. Alternatively, one gets (11)
via probabilistic argument by using independence of the coordinate variables
as is done in [3], Section 2 for the continuous time Ehrenfests urn model. We
refer also to [7], Section 3 for some analytical discussions related to the
Fourier-Krawtchouk transformation.

We begin with a quick review of Hamming graphs and some related
notions. See [1], Chap. Ill for details. Let F be an «-set and X=Fd where
d,n>2. Set d(x,y) = \{i\xi^yi}\ for x = (xi), y = (yi)eX. Distance d induces a
relation on XxX by (x,y)eRiod(x,y) = i (i = Q91, • • • , d ) . Undirected graph
(X^R)) with vertices X and edges R^ is called Hamming graph H(d,n).
Adjacency matrix Ai is defined by

if (
if (

The complex linear combinations of A0 ( = identity), Al9-"9Ad form a
commutative algebra ,c/, which is called the Bose-Mesner algebra of
H(d,n). Actually, A2, ••••>Ad are expressed as polynomials in Ai since H(d,n) is
distance-regular. Set K{ = \ {y e X \ d(x, y) = i] \ (the right-hand side being in-
dependent of xeX). K± is the degree of each vertex. A0,Ai,"-,Ad are
simultaneously diagonalized by primitive idempotents E0,El,---,Edm jtf. Here
E0 denotes the matrix whose entries are all 1/|̂ |. Coefficients/?;(/) and qjj)
are determined by

d d

(3) A~ £ pi(j)Ej, \X\E~ X tfiO'Kf-
j=0 j=0

Set mt = rank Et. We have pt(G) = K{ and ^^(0) = m{.
Let us consider a Markov chain on X with transition matrix P. We

assume the spatial symmetry of P that it is constant on each orbit Rt:

Assumption. d(x, y) = 8(xr, y') => (P)x,y = (P)X',y'
or equivalently that P belongs to Bose-Mesner algebra jtf. Then the transition
probability takes the form of
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A
(4) p= V lAi where w^O, Y wf=

i = OKj i = 0

In particular, the chain is called a simple random walk when wt = 1. Pk (fceN)
and ef(p~J) (r>0) are also constant on each orbit. Let Pfc(/z) [resp. jP(f,/z)]
denote (Pk)x,y [resp. (^r(F"J))x>y] for (x,y)eRh.

Proposition 1. F

(6) na)=
1^1 j=o

. Let A°B denote the Hadamard product (viz. en try- wise product)
of matrices A, B and t(A) the sum of the entries of A. From (3) and (4),

Since i(E^A^ = Khq^(h) holds by (3)5 we have (5). Using

(8) e'O'-'^j

we obtain (6) similarly. EH

Remark 1. Proposition 1 and its proof remain valid without any
modifications for every commutative association scheme.

Let us turn to Hamming graph H(d,n). In terms of Krawtchouk
polynomial

K( }- y r_ yr _iy-*^-n/w
J = 0 \^

we have pi(j) = qi(j) = Ki(j). See [l]s III.2. In particular,
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Now we specialize (5) and (6) in a simple random walk on H(d,n)\

Since the eigenvalues of H(d, n) form an arithmetic progression and Kt(u) has
the following generating function (see [1], III.2):

; = o

we obtain

(11) P(t,h) = ±-i

nt \}d~h( ( nt hit ii I < / *i

Remark 2. (9) and (11) show that KhP(t,h) (h = Q,l,--,d) is a binomial
distribution.

The cut-off phenomenon occurs in a simple random walk on H(d, n) if n >

3 and n/d is bounded above. The critical time is given by

§3. Continuous vs Discrete Time

From (7) and (8), we have, for fceN,

^ w- \k /^ w-
^i(/')J -exp^l X -^p*

(12) 11^-^^11*5= I m,
j= l

where || • ||HS denotes the Hilbert-Schmidt norm of a matrix.

Theorem 3. Let us consider a simple random walk on H(d,n) (n>3) and
assume logn/logd is bounded. For Voce(0,1/2) and V00>0, there exists a

positive constant A=A(a,Q^ depending only on a and 00, and locally bounded,
such that, for
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(13) k = \l(l--}d(log(n-l)d+0)\ where |0|<6>0,
l_2 \ n) J

||pfc_£fc(p-i)|i <

/

Here d in (13) is large enough to satisfy log(n — i)d—00>Q for given 00.

Proof. In a simple random walk on H(d,n\ (12) with (9) yields

nJ V J , nJ(14)
(n-lX

(A reader who skipped §2 will be able to get (14) directly by using diagonalization
of symmetric matrices.)

We divide the right-hand side into Sj=1 and ^=J+i to estimate it. / is
specified later in Step 3.

(Step 1) The first sum 2/f=1 in (14) is

j
e x p f c l o g 1-—4-1 +(15) Z(«-lXQexp^-2fc^i

Let /<(rf/2)(l-(!/«)). Using -.x2<log(l-jc) + x<0 for ;c<l/2, we get, for
7=1, ••-, / and for ^ in (13),

exp*{log(l-^)+^}-l2

<k2 i . nJ \ W7
1°8 1-r^r; +r-4

«2J
\2 J2V

Then, since A;>(rf/2)(l-(l/n))(log(«-

«2/4

(15) < n-\
V '~

(Step 2) The second sumSy=J+1 in (14) is majorized by
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2j_i(n-^(d
j)(l-^)2k

 + 2j_

Putting k in (13) and using/.>^2nj j+ ( l l 2 }e~ j , we get

a
- o* V

where Kl>Q, /?>0 are absolute constants, if log/>2(|0| + l). In fact,

~ 2'

Next, using log(l— x)< — x (x<l) and dividing the sum into two, we get

Estimation of the first sum is already done above.

The second sum= > (n— l)d~l{ , J(T^—T^,— 1

rd
"d

(16) =t_Qi

2
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Here, for /=0,l,-,

if logd>2|0| + 3. (Note «>3.) We can then deduce

(16)

where K2>0, y>0 are absolute constants.
(Step 3) We have obtained, for exp2(|6>| + l)<J<(rf/2)(l -(!/«)) and

Now set /=[(rf/logrf)(1/2)-a] for given ae(0, 1/2). Then, if d/logd>exp{2(\6\
+ !)/((! /2)- a)},

Since

__ __
logd -logd \ogd

^0 as ̂  co,

we can take J^(a)>0 depending only on a such that
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•e d 2(|0|
if - >exp

This yields the desired inequality since logn/logd is assumed to be
bounded. •

§4. The Case Where n/d-n (0<T<oo)

In a continuous time Markov chain (with spatial symmetry), closeness to
the equilibrium at time t is measured by

similarly to (2). Let C(d'n\f) denote this quantity in a simple random walk
on H(d,n).

Theorem 4, Let i be a positive constant. For 6eR,asd-*co and njd-^i,

(compact-uniformly in Q\ where px denotes the Poisson distribution with intensity a.

Proof. (Step 1) Following [3], Proposition 1, we derive an expression of
C(d-n\t). (17) and (11) yield

*

h
nt \\d-hi. ( nt ^*

l+(«-l)exp — 1-exp — -1
V\ (n-W)J \ PV (n-\)d))

Note that the inside of |-| in (18) is decreasing in h. Putting t = (d/2)(l-
into (18) and setting

(19) <f>(d,n,9) =

we get
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M- I(2o) =
OJL GiHro

V d J\l

(Step 2) From (19), as d-* co and n/

is characterized by

Noting that

, (, 012 /"^YY, e~"12 V"9*1- 1+e-"2 /— — 1 -- — -0 as
V V </ / V Jjn^VJdJ

holds even if 0* e N, we obtain

~e'2 d~j

1 /I V - 1 /I e~e(2\j
/ r-(-l -e~((1/t) + (e"0/2/Vt))-I -4-- _
AT/ JUT

as d-^ao and n/d-+T.

Proof of Theorem 1. From (2) and (17),
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<r \\Pk pk(p-V\\S- \\r —e \\HS.

Hence Theorem 1 immediately follows from Theorem 3 and Theorem 4. •

§5. The Case Where n/d-+Q

In this section, let Fdtp(x) denote the distribution function of the
normalization of binomial distribution B(d,p) (so as to enjoy mean 0 and
variance 1) and F(x) that of the normal distribution A^O, 1).

Berry-Esseen Theorem. Let d, p be unfixed in B(d,p) and satisfy 0 <p < 1 — 6
for some d e (0,1). Then, there exists a positive constant C= C(S) depending only

on d such that

Sup\Fdip(x)-F(X)\<
xeR

Though d and p are unfixed, it can be proved similarly to the usual
Berry-Esseen theorem. See e.g. [4], Chap.2.

Theorem 5. For 0eR, as d-* oo and n/d-^Q,

\\ \ ie~e/2

(compact-uniformly in 6).

Proof. We have

iY(i-TY'
-* W \ nj \J

in (20). Let (I) and (II) denote the first and the second sum above respectively.

(Step 1) Setp = (l+e-912 j(n-l)/d)/n. Then,

(22)



708 AKIHITO HORA

As is shown in Step 2,

d-<f,(d,n,G)-pd 1 _g/2^zj; — > — — e
N/XI -Ptf 2

holds. Hence

fa-0(rf,/i,0)-/K/

For given 0eR, if rf is large enough,

Then, Berry-Esseen theorem ensures

(25)
_ (d-4>(d,n,&)-pd\ (d-W,n,g)-pd
fd,p I . — I -f'

/nXl+e-»'V(n-l)/rf)

From (22), (24) and (25), we get

(Step 2) We show (23). Set

-iog(i-(«-9/2M«-iy))d-(t>(d,n,6) =
log(l

=

Then,

^"^r^^^rnjrf'^VM^''

(IV) = '
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(III) _ 1 1 + (e-'"2/2^(n-\)d)+0(\/(nd))

(IV) n

I
= -<!+-

n I l+(e-vi(2-n)/2^/(n-l)d) + 0(n/d)

= - +

Hence we get

(26) d-

Combining (26) with

•UHt-*.
n V«V n

we obtain (23).
(Step 3) From (26),

d-<t>(d,n,6)-(d/n)

Hence, replacing /> by l/« in Step 1, we get

Consequently, we obtain

as d -> oo and /i/rf -»0. •

Proof of Theorem 2. Combine Theorem 3 and (21) with Theorem 5.
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