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The Exactness Theorem for Floer Homology

Bv

Hong-Yu WANG*

Abstract

In this article, we study a long exact sequence relating the mstanton homology of two homology

3-spheres which are obtained from each other by + 1 -surgery. We prove that the long exact

sequence, via a short exact sequence of chain complex, is the same as the sequence defined by the

exact triangle of cobordisms introduced by Floer.

One development which has attracted a great deal of attention has been
Floer's work on "instanton homology" of 3-manifolds [10], [14], [15], [19],
[20], The basic idea is to find Floer homology groups HF*(Y) associated to
an oriented 3-manifold Y by studying instantons on the tube Y X R. The
theory applies in the first instance to homology 3-sphere Y. A fundamental
question in Floer theory is the calculation of the Floer homology groups. A
great step forward here was made by Floer who found an "exact triangle" of
homomorphisms

connecting the Floer homology groups of the 3-manifold Y with those of the
3-manifolds Y', Y" obtained from Y by Dehn surgery on a knot [6], [16], [17],
[18].

This paper is based on the works of Floer, Braam and Donaldson. We
consider a long exact sequence relating the instanton homology of two homology
3-spheres which are obtained from each other by ±1 -surgery. The third term
is a Z^- graded homology of the homology Sl X S2 which is associated to a knot in
the homology 3~sphere via 0-surgery. We prove that the long exact sequence
obtained via a short exact sequence of chain complex, is the same as the
sequence defined by the exact triangle of cobordisms introduced by Floer in
[16], [17].

Suppose that, as above, Y is an oriented homology 3-sphere and X^Y is a
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knot, that is, a smoothly embedded circle in Y. We introduce two other
3-manifolds;

(1) The homo logy 3-sphere Y obtained from Y by + 1 -surgery on 31,
(2) The homology S1 X S2 Y" obtained from Y by 0~surgery on X.
There are standard, oriented, surgery cobordisms W\ from Y to Y and Wz

from Y to Y". Also there is a cobordism W3 from Y1 to Y via the composition
of Wi and W2.

Y
Wi W2

/ \
Y Wj Y".

We now consider the Floer homology of the three 3-manifolds Y', Y, Y" .
The cobordisms Wi, Wz and Wz induce the maps Ww\, ?PV2, and fV3 on the Floer
homology groups on Y , Y and Y" . We shall abbreviate Wwi, Ww2, and Ww3 to
a*, 6*, and c* respectively. Combining the works of Floer, Braam and
Donaldson, we have the following theorem:

Theorem,, Let a, b and c be the chain maps between the chain complexes mi
Y', Y and Y" induced by the cobordisms Wi, Wz and W$ respectively, as follows:

CF*(F)
a b
/ \

cF*(y') c_ CF*(F").

We have the following properties:
(1) The maps a*, b* have degree 0, with respect to the grading; but the map

c* has degree ~1, with respect to the grading.
(2) The maps a*, b* and c* induce a long exact sequence, or exact triangle.

(3) By using deformations, one may find maps

a: CF* (r)~*CF* (Y) , b: CF* (7)-^CF* (Y")

which are chain homotopic to a and b respectively. Simultaneously, CF* (Y) is
isomorphic to the direct sum of CF* (Y7) and CF* (Y") ,

(4) The composite ba is chain homotopic to zero by a homotopy H: CF$
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CF* (Y") (i.e. dR-}~Hd = b a), where d is a boundary operator of the chain
complexes. Then there is a long exact homology sequence,

where A* is induced by the short exact sequence,

and the boundary operator d of the chain complexes, and where a\ is chain
homotopic to a.
(5) The long exact sequence in (4) above, via the short exact sequence of the

chain complexes, is actually the same as the sequence in (2) defined by the
triangle of the cobordisms, that is, &*—c*.

It is worth remarking here: (1) The definition of HF* [15] suggests that
one should consider it as a homology theory, and we shall in fact refer to it as
the instanton homology. It is the purpose of the present paper to expose
further properties of HF* to justify this terminology. (2) Parts 1 to 4 of the
above Theorem are due to Floer [17] , Braam and Donaldson [6] . Part 5, A *

= c* is the main result of this paper. Here HF* (Y) ~HF^ (Y) where HP* (Y)

is the homology of the complex CF*(Y) and <Fi* = a#, b* = b* since a and b are
chain homotopic to a and b respectively. (3) Floer in [16] , [18] developed a
more general framework for the calculation scheme of Floer homology, the exact
triangle was discussed in the general setting, we shall consider this subject in a
subsequent paper. (4) This paper should be considered as a sequel to [6],
[16] and [17] , where most of the notation and the terminology were introduced.
The reader may find the expositions in [5] , [10] and [15] useful as an
introduction to the instanton homology.

This paper is organized as follows. In § 1 and 2 we give an introduction
to the relevant geometry and topology of the space of connections on a
3-manifold. In § 3, we describe the basic features of the Dehn surgery, the
grading of the chain complex and some useful computations. § 4 discusses the
deformations of instanton equations, geometric triangle and Morse-Smale type
flow. In § 5, we investigate the Floer exact triangle, compare the Floer exact
triangle with the long exact sequence described by Braam and Donaldson, and
prove the main theorem. Finally, the appendix is a review of the index
formulae.

Before turning to a detailed description, some acknowledgments are due:
The approach in this article was suggested by S. K. Donaldson, P. Braam
assisted us in understanding Floer's work and S. P. Tan, Y. L. Wong gave us
useful comments and suggestions. Further acknowledgments to the
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Mathematical Institute of Oxford University and S. K. Donaldson; and
Mathematics Department of Peking University and K. C. Chang for their
generosity, kindness and hospitality, where much of this work was carried out.

We begin by reviewing some fundamental points about the Floer homology
groups for 3-manifolds (in particular for homology 3~spheres). These
fundamentals are now widely known: More details and background can be found
in Floer's original paper [15], in the exposition of [5], the forthcoming book
[10] , and good survey of Atiyah [2] . Let Y be an oriented homology 3~sphere.
We work with the trivial SU(2) bundle and ASD connections

over the product manifold Y X M. To define Floer homology on Y, consider the
trivial SU(2) bundle P— » Y. P has connections over Y, the flat 577(2)
connections over Y may be regarded as the critical points of the Chern~Simons
functional on the connection space

t r (aAda+f-aAaAa) .
Y 3

Let R(Y) denote the critical set of Chern-Simons with equivalence. It is well
known that the homology yields an injective map

R (P)->Hom (TTI (Y) , SU (2) ) /ad (SU (2) ) .

The flat connections are therefore sometimes referred to as representations (of
the fundamental group) . Conversely, for each representation one can construct
an SU (2) -bundle with a flat connection whose homology is prescribed by the
representation [l] .

It is R(Y) which will become the set of simplexes in the instanton
homology. To understand this, recall the following construction of the relative
Morse theory (cf. [2], [5], [6], [15] and [32]).

For flat connections o,p^R(Y}, let A be an ASD connection over the tube
YX$, which is asymptotic to p and o respectively at — °° and +°°. Consider

the operator d J + d* coupled to the connection A over the tube. The virtual
dimension of the module space, M(p,o), of such ASD connections is equal to
the relative index ind (p, d) mod 8. For a generic choice of perturbation and
metric on Y the moduli space is a smooth manifold of this dimension. If a is
not equal to p, then the translations of the tube act freely on the moduli space
so we get a reduced space MQ (p, a) =M (p, a) /R.
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To define the Floer homology groups HF*(Y) on Y, one forms the
Z8-graded chain complex with groups

CFt(Y)= © Z<p>
peRt(Y)

generated by the critical points Rt(Y) where Rt is the subset of equivalence flat
connection classes over Y with grading i. Then the Floer differential

d:CFt(Y) - >CF,_i(y)

is defined by

IL, n(p,d)<a>

where n (p, o) is the number of points in the 0-dimensional space MQ (p, a) ,
counted with appropriate signs. The main result is that d2 — 0 and the
homology groups HF*(Y) of (CF*(y),9) are independent of the choice of
perturbation and metric.

These Floer homology groups allow us to extend the Donaldson's invariant
for closed 4-manifolds to 4-manifolds with boundary. Consider an oriented
4-manifold X with boundary a homology 3~sphere Y. Under suitable
conditions on X, there is a moduli space M (X\ p) of instantons, over the
4-manifold obtained by adjoining a semi-infinite tube Y x [0, °°) to X, with
limit p^R(Y), having dimension dimM(X;p) = 0. One can then consider the
element

The numbers n (X\ p) can alter as we change the various choice of mode, the
basic idea is that the corresponding Floer homology class will not change.
Hence one can show that d(px = 0 and that the equivalence homology class Wx =

[</>x] e HF*(Y) is an invariant of X, it is called the relative Donaldson
invariant.

There is also a corresponding discussion on the cobordism. If W is an
oriented cobordism between homology 3-spheres Y\ and Y2 there exists an
induced map

Ww:HFl(Yl) - >HFt+v(Y2),

where the grading shift v= — 3 (b$ (W) ~bi(W)) mod 8 is determined by W.
Actually we may define a chain map with matrix entries n (pi, £2) for
pi^CFt(Yi) and P2^CF1+V(Y2) , equal to the number of solutions — counted with
signs — of a deformed ASD equation on the manifold obtained by adjoining tubes
to W. These chain -homology maps are independent of the choice of metric.

Our discussion about Floer theory can then be summarized in the following
statements, illustrating some features of the Floer homology which is related to



718 HONG Yu WANG

4-dimensional gauge theory.
0 CF*: flat connections over Y.
0 d: 1 -dimensional moduli space of 7X R.
Q 92 = 0: 2-dimensional moduli space of
0 (px or (f)w: 0-dimensional moduli space of X or W.
o Q(px= 0 or d(/>w=Q: 1-dimensional moduli space of X or W.
0 </)x and (pw being independent of choice of metric modulo 9: -1

dimensional moduli space over X and W.
To complete these preliminaries, in the sequel we discuss the Floer

homology groups of more general oriented 3-manifold 7, the case is concerned
most is where Y has the homology of S1 X S2.

Let P be a principal bundle over the oriented 3-manifold Y with the
structure group SO (3) . Suppose g is an inner automorphism of P (covering
identity) , we can form a bundle Pg over Y x S1 by using g to glue the ends of

7T*(P) over 7 X [— oof 4- oo], It is an elementary fact that this sets up a
one-to-one correspondence between the isomorphism classes of the bundles
over 7XS1, isomorphic to P over 7X {pt.}, and the connected components of the
gauge group § (P) of P over 7. Actually, the fundamental group of the space
9 (P) is isomorphic to the set of equivalence classes of bundles over 7 X S1.
Recall that the 50(3) bundles over Y X S 1 are specified by pairs (W&Pi) with

Wl=pi, mod 4,

where W2 is the second Stief el -Whitney class, pi is the first Pontrjagin class.
The intersection matrix of 7 X S1 is even, and this implies that the possible

values of pi are just even integers since Wl — Q mod 2. Thus the 4-dimensional
characteristic class over the product detects essential loops in the connection
space. It is easy to see that these loops remain essential if we include the
reducible connections, so we get a homomorphism

Another way to detect the non-trivial loops in % (P) involves the
Chern-Simon functional (cf. [7] ) . This is a map

which can be defined in various ways. In the preceding discussion of this
section, we worked directly on the 3-manifold, and consider for simplicity the
case when the bundle P is trivial. Hence we choose a trivialization, so that a
connection becomes identified with the Lie algebra valued 1-form, and set

tr(a/\da+~a/\a/\a). (1.1)
57T J Y
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However we now consider the general case where the bundle P may be non-
trivial. One can define Chern-Simons up to integers such that the differential
of Chern-Simons is the 1-form dftd on $&(P) which assigns to a tangent vector

at a point p^d(P) the number

Then we have

d%^p+b(a) -d%dM =iT7 f tr(d,&A6) +0(b)2 (1.3)
57T J Y

by Taylor's expansion. Now we have the identity below

pa) =-^r f dtr(bAa) = 0
n2jY

by Stokes' Theorem, thus the leading term in (1.3) is symmetric in a, b so
is a closed 1-form. Similarly, by using Stokes' Theorem one sees that
vanishes on the tangent vectors a=dpt; along the *8(P) orbits, so d^^ descends
to a 1-form on the quotient S*(P). Notice that this discussion shows in
particular that the critical points, rf^j^=0, of the Chern-Simons functional on
3S(P) are the gauge equivalence classes of the flat connections on P.

It is worth remarking here that the Chern-Simons is the secondary
characteristic class. One may fix an oriented 4-manifold X with boundary Y,
and an extension of the bundle P over X (this can always be done, using the
triviality of the cobordism group in 3-manifolds.) . Then, for a given
connection a on P, choose an extension A over X, the basic formula for the
Chern-Simons [7] is

#*8 (a) =-~ f tr (FA^FA) mod Z. (1.4)
8?r2J*

In particular, if W is a cobordism between 3-manifolds Y\ and Y2 and A is a
connection over W with boundary value ol over 7,, then the difference of
Chern-Simons over both 3-manifolds Y\ and Y2 is

i) -<6A (a2) =-pr f tr (FA AFA) mod Z. (1.5)
87T2J^

Note that the principal SO (3) bundle P can not, in general, be trivialized
over W since P has the structure group SO (3) . Thus one can not give the
natural form of Chern-Simons as in the case where the structure group is

Now, considering instantons, we recall the well-known fact that the ASD
connection equation FA + * F^ = 0, together with Bianchi identity dAFA ~ 0
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Fo

Figure 1

implies that any instanton over the tube Y X R satisfies the horizontality
condition. So in a temporal gauge instantons can be identified, up to gauge
equivalence, with a subset of the paths in 9&(P). For such a path in 3B(P) to
correspond to an instanton is equivalent to it satisfying the differential equation

^=*3F^ (1.6)

where * 3 is the Hodge star operator on the 3 -man if old Y. Thus we see that
the instanton equation over Y x R can be interpreted as the gradient flow
equation for the Chern-Simons functional on 9B(P).

For every flat connection p^stfnat(P) there is a chain complex

0° (AdP)^Q1 (AdP)^Q2 (AdP)^fi3 (AdP)

with associated cohomology groups HP(Y). These cohomology groups can be
identified with the spaces of harmonic forms

HJ
P(Y)=Kei' c f p f l K e r df

where d** denotes the L2-adjoint of dp: Q^1 (AdF)~^Q; (AdP) with respect to a
Riemannian metric on Y. A connection with a discrete isotropy subgroup is
called regular, so a regular connection is an irreducible connection. A flat

connection is called nondegenerate if Hl
p (F) —0. Note that a flat connection p

is both regular and nondegenerate if and only if the extended Hessian of
Chern-Simons

-dp
Dp=

0

is nonsingular (cf. [15] , [29] ) . Here Dp is a self-adjoint operator on O1 (AdP)
0 0° (AdP) .

We remark here that the condition of every flat connection on P being
nondegenerate will in general not be satisfied. If there are degenerate flat
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connections then we perturb the Chern-Simons functional in order to ensure
nondegenerate critical points for the perturbed functional (see [6], [15] and
[29] for details) . Using the sum of the trace of the holonomy along the
generators of H\(Y\Z), Fukaya [19] found a perturbation/: $(P)— *JJ, such that
the equation with the structure group SU(2)

has only a finite number of solutions, each of which is nondegenerate. As for
the reducibility of flat connections on P, we can construct a nontrivial 50 (3)
bundle over Y such that every flat connection is regular. The proposition
below shows which bundles carry no flat reducible connections (cf. [5] ) .

Proposition 1.1. Let P~*Y be a principal SO (3) -bundle over an oriented
3-manifold. The following are equivalent:

(1) P carries no flat connection with the holonomy group contained in an S1

subgroup of SO (3) .
(2) W2 (P) ^H2(Y\ Z2] does not lift to a torsion class in H2 (Y\ Z) under the

coefficient map

H2(Y-Z) - >H2(Y;Z2).

(3) W2 (P) is not zero as a map

H2(Y;Z] - >Zz.

(4) W2(P) is not zero when evaluated on the fundamental class of an oriented
surface 2 C Y.

Now we consider the gauge transformation group. It is well known that
the gauge group is defined by smooth sections of the adjoint bundle, that is,
&(P) =T(Y\ PX AdSO(3)). Since SU(2) is the double covering of SO (3), we
may define

the group §s(P) is called the restricted group. Thus we get an exact sequence:

§s (P) - *<8 (P)~ f/1 (7; Z2)

where r] measures the obstruction to deforming a gauge transformation to the
identity over the one-skeleton of Y. It is easy to show that r\ is onto and that
^s(P) consists of the gauge transformations which lift to SU(2) -gauge
transformations. Moreover TTo (^s (P) ) = Z. Thus the component group of
§ (P) now appears as an extension
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A useful concept of a gauge transformation is its degree. We follow the
geometric definition: The degree d(ff) of a gauge transformation g^(S(P] is the
intersection number of its graph in P X AdSO (3) with the graph of the identity.
The proposition below is due to [6] and [12] .

Proposition 1.2. Let g^^(P) be such that i\ (g) lifts to an integral class.
Then

d (g) = (r] (g} U W2 (P) ) [Y] mod 2.

In general

d (g) = (i? (g) U W2 (P) +7? (g) 3) [Y] mod 2.

We now return to the Chern-Simons theory. Since the flat connections on
P appear as the critical points of the Chern-Simons functional and the 1-form
dfld is invariant and horizontal, it follows that the difference %&$ (g*p) ~
^jJ (p) is independent of the connection p and is locally independent of the
gauge transformation g. So it depends only on the component of $(P), and it
turns out that

In the remainder of this section, we assume that every flat connection on P
is both regular and nondegenerate. According to the preceding discussion
about Floer homology for homology 3~spheres, in similar way, we can define
Floer homology for the nontrivial SO (3) bundle P over a general 3-manifold.
Fix two flat connections p and a on the SO (3) bundle P and consider the space
of solutions to the following gradient flow equation:

(1-7)

and these solutions also satisfy

UmA(t)=g*p. limA(t)=g?o. (7±e§0(p) . (1.8)
f-»-oo ?-*+oo

Where §0(P) denotes the component of the identity in 2?(P), that is,

These solutions are usually termed instantons over YX$, The moduli space of
these instantons is denoted by

jjf ^ - (A (t) ^A (P) I (1.7) and (1.8) are satisfied.}
M (p, a) — m /p\ .

^0 U /

The next proposition, due to Floer (cf. [15], [17] and Section 2), summarizes
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some key properties of these moduli spaces.

Proposition 1.3. Assume that every flat connection on P is both regular and
nonde generate. For a generic metric on Y, the moduli space M (p, o) is a finite
dimensional oriented paracompact manifold for every pair of flat connections p and
(7^ £^ nat (P) . There exists a function lip : £^fiat (P)~*Z such that

dim M(p, a) ={Jt(p) —^(a) mod 4.

This function satisfies

t(p) and

In terms of flat connections on P and 1 -dimensional moduli spaces, we can
define the Floer chain complex CF# and the Floer boundary operator d. It is
similar to [15] that the homology of (CF*. 9) is an invariant of the bundle
P-*Y.

Proposition 1.4. Assume that every flat connection on the SO (3) bundle P
over 3~manifold Y is both regular and nondegenerate. Then Floer homology for P
on Y is as follows :

(1) The Floer differential d: CF*~^CF*-i satisfies 32 = 0. The associated
homology groups

are called the Floer homology groups of the pair (Y,P) .
(2) The Floer homology groups are graded modulo 4, if there exists a gauge
transformation #^§(P) of degree 1.
(3) The Floer homology groups HFk (Y\ P) are independent of the metric on Y
used to construct them.

More details about the instanton homology was discussed in [6], [10].
We devote ourselves to considering the index theory for the ASD equations on
the non-compact 4-manifolds in the next section, it is crucial for defining the
grading functions of the flat connections over 3-manifolds, and relates the
grading shift of the homomorphisms between the instanton homology groups
induced by the cobordisms.

% 2. Index Theory

We now consider an index theory for the elliptic operators over the 4-manifolds
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with the tubular ends. Thus we wish to associate an "analytical index" to
suitable "topological data" (cf. [6], [26], and [30]).

Let X be a 4-manifold with the tubular ends, as defined in Section 1. The
SO (3) bundle P on X is said to be an adapted bundle if it is a smooth bundle
with a fixed flat connection over each end. Two adapted bundles are
equivalent if there is a bundle isomorphism between them which preserves the
flat structures over the ends. Notice that an adapted bundle over X may not be
trivial as a C°° bundle. In general, it is easy to see that the equivalence classes
of the adapted bundle with given limits correspond to the invariants of a
relative characteristic number. This can be defined by choosing an adapted
connection on P, i.e., a connection A which agree with the given flat structures
over the ends. Then the integral

is an invariant of P only.
With those preliminaries in place we proceed to set up our index problem.

Let P be an adapted bundle over X with an adapted connection A as above.
We assume that each of the limiting flat connections is acyclic. The
deformation operator D = DA extends to a Hilbert space to give a bounded

operator Dj: L?— »L2. We also have a formal adjoint operator (DA) *, and the
integration-by-parts formula is valid for sections of the appropriate kind.

Notice that the domains of DA and (DA) * are quite distinct in general. In a
more detailed notations:

Dl: Ll (Qi (AdP) ) - >L2 (Qi (AdP) e Qi (AdP) ) . (2 . 1)

(Dl) *: Ll (Qi (AdP) 0 Qi (AdP) ) - >L2 (Qi (AdP) ). (2.2)

Now it need not be true that the operator DA is invertible. We shall see below,

that elliptic theory may show that DA is a Fredholm operator. This is just
what we would have over a compact base manifold. For compact manifolds one
obtains this Fredholm property by piecing together a finite number of inverses
defined in local charts, in which the operator is modeled on a constant
coefficients operator over Euclidean space [11]. For our case, we have two
kinds of models — the familiar Euclidean ones in a system of charts covering a
compact interior portion of the manifold and models over the ends (cf. [15],
[26], [28], [30] and [31]).

Proposition 2.1. For any adapted connection A over a ^-manifold X with the
tubular ends which is flat and acyclic over each end, the operator

Dt Lf (Qi (AdP) ) - »L2 (Q J (AdP} 0 Q| (AdP) )
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is Fredholm. That is :

(1) Ker DjCLf (QiUdP)) =KerDinLf (QiUdP)) is finite dimensional

(2) The image of DA is a closed sub space of finite codimension in

L2(Q°x(AdP)®Q%(AdP)).

(3) Moreover, the cokernel L2 (Q°x (AdP) 0 0| (AdP)) /Im D% is isomorphic to

the kernel of (£>J) * in Lf (Q&UdP) 0 QJ UdP))).

We would like to remark here that one may extend the theory to include
the adapted bundles over the 4-manifolds whose limits are not acyclic. Thus
one has to consider a flat connection p over a 3-manifold Y where 0 appears in
the spectrum {A} of the operator Dp. To recover a Fredholm theory one should
use the weighted function spaces. For details, refer to [26], [30].

The index invariant defined in the above has a simple formal property
which is basic to Floer's theory. Let A be an adapted connection (with limits)
on an SO (3) bundle P over a 4-manifold X with the tubular ends. Suppose

that X contains two boundary components Y, Y where Y is isomorphic to Y with
the reversed orientation; and suppose that the limiting flat connections

appearing over Y and Y are the same. Consider the family of Riemannian

4-manifolds X#(T\ depending on a real parameter T>0 obtained by identifying
the two ends of X. Similarly, there is an obvious way of constructing an

adapted bundle P# over X#(T\ using the flat structures to identify the bundles
over the encL, and the adapted connection A gives a natural connection A* on

P*. Donaldson et. al. [10] proved that the index of the operator DA# over X*(T)

is independent of T and the result is written as the following simple formula:

Proposition 2.2. If X and X* are the 4-manifolds as above, and P# is
obtained from P over X with the acyclic limits via the gluing operation, then

ind(P*)=ind(P). (2.3)

The most important case of this for us will be when X is disconnected, say
a disjoint union of two components X — X\ U Ar2, and the two ends which are
identified are contained in different components of X. Then as a direct
consequence of Proposition 2.2, one has

Corollary 2.3. In the above situation

ind(P#) =ind (Pi) +ind(P2) (2.4)

We now consider a particular case when the base manifold is a tube YXR.
For any a pair of flat connections p, a over Y we can define a relative index
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as follows: We choose an 50 (3) bundle over the tube Y x R with limits p at
~~ °° and <J at + °° respectively, then we can get

, <r)=ind(P)mod4. (2.5)

This relative index is a crucial ingredient in Floer's theory — we shall see that
this induces the grading in the Floer homology groups. It can be refined
slightly to a ^-grading function p.P on the acyclic flat connections on the SO (3)
bundle P over Y. We hope to get an addition relation for the index as follows:

dv(p, 0) =#p(p) — ̂ p(cr)mod 4. (2.6)

For convenience, here after we denote [Jip by fj, if there is no confusion.
Actually, if P is a SU (2) bundle, this definition does not depend on the bundle
P used.

The ideas we have been discussing are closely related to the index theory
for the manifolds with boundary developed by Atiyah, Patodi and Singer in
their series of papers [4] . In particular there are two concepts from this
theory — the eta invariant and the spectral flow of a family of elliptic operators.
We shall not use the spectral flow in this paper.

We now recall the Atiyah, Patodi and Singer eta invariant. Let p be a
connection on a 50 (3) bundle P over a compact 3-manifold Y and consider the
extended Hessian of Chern-Simons:

DP=\ 3 " |: Ql(AdP)®Q"(AdP)-^Q1(AdP)®Q°(AdP). (2.7)
WJF 0 /

This operator is self adjoint with a compact resolvent so its spectrum Spec. (Dp)
is real and discrete. The series

J7s(D,) = E signal-1 (2.8)

converges whenever \s\ is sufficiently large and defines a meromorphic function
of 5. In [3], [4] it was proved that 5 = 0 is not a pole and the eta-invariant of
Dp is defined by

rj(p)=r]Q(Dp). (2.9)

Let d be the corresponding operator on scalar forms and define

?(p)=i7(p)-3i?o(d). (2 = 10)

This number ff(p) is defined for every connection on P and is independent of
the metric on Y [4] . It does not depend continuously on p, discontinuities
occur whenever 0 is in the spectrum of Dp. However fj[(p) is continuous as a
function with values in R/Z.

It is well known that the eta-invariant reflects the asymmetry of the
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spectrum of Dp and may be thought of as a regularized signature, this fact
suggests us to define the grading in Floer homology by using the eta invariant.
Now we consider a nondegenerate flat connection p on P over Y and define

VP(P) = 2%d (p) -7>rJ-(p) +|dim. H*(Y- AdP) —|(l + &i(y)) (2.11)

where

bj(Y)=dim. H*(Y\9h

denotes the jth Betti number of Y. Each term occurring in the definition of
fi(p) is additive with respect to disjoint unions. Thus one has the following
lemma (see [6]):

Lemma 2A. The number fji(p) is an integer and is independent of the metric
on Y.

We would like to point out here that the integers [i(p) obtained are not
well-defined since the definition of fJt(p) depends on the choice of Chern-
Simons, thus the integer p. (p) is only depended up to mod 4, if p is in the gauge
equivalence class of flat connections over 3-manifold i.e. p. (p) mod 4 is unique.
However if the structure group is SU(2), the integer [Ji(p) defines a natural
grading of the instanton homology groups and [i (p) is unique up to mod 8.
Also if the base manifold is a homology S3 or homology S1 X $2, one may find,
for the 50(3) bundle, jj.(p) is still the natural grading of the instanton
homology groups. In any case, jJi(p] gives a relative grading of the instanton
homology groups on the 50 (3) bundle P. The following proposition gives the
formula for the dimension of the moduli space over the tube Y x U, its proof is
omitted.

Proposition 2.5. Suppose that P is a non-trivial SO (3) bundle over a
3-manifold Y. For every pair of the nondegenerate flat connections, p and 0 on P,
there exists a generic metric g on Y such that the space Mp>9 (p, a) is a finite
dimensional manifold. Moreover, if Mp,g(p, a) is nonempty then

dim. MPj(p, a) =tt(p) -fJt(a) -dim §*, (2.12)

where ^a is the isotropy group of (J,

Note that the first part of Proposition 1.3 is a direct consequence of the
above proposition. For the general case when X is a non-compact 4-manifold
with cylindrical ends the isomorphism class of the triple (p, Pt a) and the
topology of X introduce extra terms in the dimension formula. To describe
these we recall that the intersection form on the middle-dimensional cohomology
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group H2(X;R) = H2(XQ',R) is symmetric and is nondegenerate on the image of

the homomorphism H2 (AT0, dX0; R) -*H2 (X0; R). Define

X+(X)=b0(X}-b1(X)+bl(X)-bQ(Y2)+bl(Yl). (2.13)

Where Xo is a non-compact oriented Riemannian 4-manifold with boundaries Y\
and Y2, X is a non-compact oriented Riemannian 4-manifold with the cylindrical
ends obtained from A"0 by adjoining the semi-infinite tubes Y\ X (— oof Q] and
Y2 X [0, H- °°). More explicitly, we assume that Yi and F2 are compact
oriented Riemannian 3-manifolds which contain disjoint components 7if,
l< i<m and F27, l</<n respectively (see Figure 2).

Fu

Figure 2

Now suppose that P is an 50(3) bundle over X. Let A be an ASD
connection on P which has finite energy, and is in the radial gauge as A is
restricted to the infinite cylinders Ki X ( — oot 0] and F2X [0, +00). The A(t)
converges to p and a as f tends to ± °° respectively, where p and a are disjoint
unions of the flat connections (p\. • • - , pw) over ends (Yn, • • • . Yim) , and (di, • • • ,
crw) over ends (Yn, '", Y2n) respectively. By Chern-Weil theory, we define the
relative characteristic class:

k(p,A, a)=-tr(FA/\FA)-%d(p)+%s£(a) (2.14)2

This number is an integer which is a relative Pontrajin number. According to
Atiyah~Singer index theory [4] , we have the following proposition by using the
addition relation for the index:

Proposition 2.6. Under the assumption as discussed above, if p— (pi, '",
pm) and G~ (GI, • • • , 0n) are all nonde generate, then there exists a generic metric g

on X such that the moduli space, Mf (p, A, 0} , for the irreducible ASD connections
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over X is a finite dimensional manifold. Moreover, if Mf (p, A, a) is nonempty
then

dimMf(p,A, a)=2k(p,A, a) —^(X) +ti(p) -pM -dim ^;

where

dim <§a= Zdim ^,
;=i

The proof of the above proposition is given in Appendix A. We would
like to point out here that:

(1) If the structure group is SU(2) , then the index formula is

d i m M f ( p , A , a)=8k(p,A, a) ~3x+(X) +fi(p) -(JL(O) -dim %a,

where k(p, A, a) is the relative second Chern class.
(2) When we consider the self-dual connections over X which is in the
radial gauge on the cylindrical ends with A (t) converging to p and 0 as t
tends to — °° and + °° respectively, then the dimension formula for the
self-dual moduli space is

dim Mf(p, A,o)=2k(p,A, a) -ty- (X) +p.(p) -fi(a) - dim

where

X~ (X) =bo(X) ~bl (X) +b2 (X) -b0 (Yi) +61 (Y2) ,

k(p. A, a) =^7 ftr (FA/\FA) +%d (p) -<gd (a) .2Jx

and

Note that here k(p, A, a) is the relative first Pontrajin number. The Chern-
Simons, for this case, is given as follows: For a given connection p on the SO (3)
bundle P over the 3-manifold Y, choose an extension A over X which is an
oriented 4-manifold with boundary Yt the basic formula for the Chern-Simons
invariant is

<g& (p) S-^J tr (FA AFJ mod Z.

Hence the grading function fji is similar to original ASD case:

. i i 3
^(p) ^Z^j^lp) —9-77"(p) +iTdim. /r(}r; AdP) —IT

Li LJ LJ
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§ 30 Dehn Surgery Cobordism Functors

In this section, we devote ourselves to discussing Dehn surgery on a knot in a
3-manifold, and the cobordism functors induced by that surgery. First we
digress to consider the instanton homology on an SO (3) bundle over a
3-manifold.

Suppose that Y is an oriented, compact 3-manifold, P is a non-trivial
50(3) bundle over the 3-manifold Y that means that P has non-zero the second
Stief el- Whitney class W% (P) =£ 0. Suppose that every flat connection on P is
both regular and non-degenerate. As in the case whose structure group is
SU(2), let R(Y) denote the critical point set of Chern-Simons with equivalence,
then R(Y) becomes the set of the simplexes in the instanton homology.
Similarly, using the index formulae discussed in the last section, one may define
the grading JJL: R(Y)—+Z which is unique up to mod 4. Hence for any two flat
connections p, a^R(Y), the virtual dimension of M(p, a) over the tube YXR
is equal to the relative index ind (p, a) :

dim. M (p, a) =fi (p) —ft (a) mod 4. (3 . 1)

Therefore one can define a boundary operator 9 of the instanton homology on P
by using the one dimensional moduli space over the tube Y X 91. Thus one can
obtain the instanton homology on an 50(3) bundle P graded by Z*. It is
independent of the choice of metric on Y and perturbations.

These instanton homology groups allow one to extend the Donaldson's
invariants for the closed 4-manifold to the non-compact 4-manifold with the
boundary. In particular, an oriented cobordism between two 3-manifolds
induces a homomorphism of the instanton homology groups over those two
3-manifolds. Suppose that W is an oriented cobordism between 3-manifolds Y\
and y2f and P is a non-trivial 50(3) bundle over W, Let Pi, P£ denote PI =
P\YI, P2=P\Y2 respectively, then W induces maps:

Ww: HFt (Pi) - »HFt+v (P2) , (3.2)

where the grading shift

^ =2k-^(W] mod 4, (3.3)

and where

b1(Y1), (3.4)

and the integer k is the relative Pontrjagin class of P. If W is a cobordism
between two homology 3~spheres, then the grading shift is

v=2k+3(bi(W)-b$(W)) mod 4. (3.5)

When one chooses an SU(2) bundle, then k becomes a relative Chern class, thus
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the grading shift is

* =3(&i (W)- fcJ (WO) mod8. (3.6)

Recall that the homomorphism Ww is defined by the 0-dimensionai moduli space
on P. It is easy to show that the formulae for the grading shift are direct
consequence of the index theory developed in § 2.

These maps induced from the cobordism enjoy the functorial properties,
which are manifestations of the "gluing" of the instanton solutions. We would
like to point out several properties of the cobordism functors that we shall
encounter again later (cf. [10], [15]). For each (W, P) as described above,
the induced map

¥W:HF*(P1) - >HF*(P2)

depends only on the smooth cobordism W and the SO (3) bundle. It is the
identity for the product cobordism. For a composite cobordism W= UV, if the
SO (3) bundles PV-*U and PV-*V are the restrictions of the SO (3) bundle P~*
W to U and V respectively, then ¥w= ¥u° ¥v.

We now discuss Dehn surgery and the cobordism functors induced from
that surgery. It plays an important role in our exactness theorem for the
instanton homology groups on an SO (3) bundle over an oriented compact
3-manifold.

Recall the Dehn construction. Surgery in general is the process of
removing a solid torus, N = S1 x D, from a 3-manifold Y, and identifying the
boundary of the hole with the boundary of another solid torus, N', via a
homeomorphism different from the one defined by the inclusion on N in Y (often
called sewing N back differently) .

Now suppose that Y is an oriented homology 3~sphere and ^i^-Y is a knot;
a smooth embedded circle in Y. One may introduce two other 3-manifolds by
Dehn surgery:

(1) The homology 3-sphere Y obtained from Y by +1 surgery on X.
(2) The homology S1 x S2 Y' obtained from Y by 0 surgery on X.

The definitions here are standard in 3-rnanifold topology [21] , [22] . More
specifically, let N be a tubular neighborhood of X in Y and

<p: S1 x S1 - >dN

be the natural identification fixed so that ^(S1 xpt.) maps to zero in HI (N) and
<p(pt. x S1) maps to zero in Hi(Y\N) (Thus the first generator is the "meridian"
and the second is the "longitude" of the knot) . The 3-manifold Yr is obtained
by cutting out N and gluing it back using the diffeomorphism of S1 X S1 which
interchanges the two factors: in the homology the situation is the same as going
from S3 to S1 X S2 by regluing two S1 x Sl's. That is
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Y"=NU (Y\N)
fo

where ^Q:dN—*d(Y\N) is the conjugate by <p of the diffeomorphism

(ft 0)»->(0f 6)

of the torus, where (6, 0) is the coordinate of S1 X S1. The 3-manifold Y is
obtained similarly as

V=N(J (Y\N)
e+i

where ?+i: dN—*d(Y\N) is the conjugate by (p of the diffeomorphism

(ft 0)^(0-0, 0)

of the torus. We remark here that the 3-manifold Y can be regarded as

F=NU (Y\N).
id.

There are standard, oriented, surgery cobordisms Wi from Y to Y and W2 from
7 to Y" which are illustrated in the following diagram:

Y
Wi W2

/ \
Y Ws Y".

In particular, if we let W be the composite cobordism from Y' to Y", there is
an embedded 2-sphere in W with self-intersection —1 according to our
construction. This self-intersection number fixes the sign ( + 1 surgery) in the
set-up, and it is crucial that we consider this sign rather than the opposite: +1
surgery on Y yields in general a different manifold to — 1 surgery. Also, we
may define another cobordism W3 from Y" to Y' as in the above diagram. In

fact W$ is the manifold obtained from W by collapsing or "blowing down" the

embedded 2-sphere where W is the composite cobordism Vt^VTi with reversed

orientation. Hence W= W3 # CP2. In terms of the definition of Ws, one has

that H*(W3) =H*(B2 X 52 \Bf), therefore bilW3) = 0, bj \W3) = 0, moreover
b2(W3)=l.

To calculate the grading shifts of the cobordisms, we digress to consider
the intersection forms and the homology groups of the cobordisms. We have Y
and Y" obtained from + 1 surgery and 0 surgery on a knot % in a homology
3-sphere Y. By the assumption, W\ and W2 are the cobordisms from Y to Y
and Y to Y' respectively. Let us try to visualize the 2-homology of W\ and W2.

Let F be a Seifert surface of Iti in Y. Let D\ and D2 be the core 2-disk of
the 2-handles attached to Y to obtain Wi and W2 respectively. Then H2(Wi) is
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generated by F + Di with self-intersection — 1; and H2(W2} is generated by
F+D2 with self-intersection 0. So, since F is a homology 3-sphere, H2(W2Wi)
is generated by F + D\ and F 4- D2. The difference of these two homology
classes is represented by an embedded 2-sphere D2 — DI with self-intersection

— 1. So one can split out one CP2 (or CP2 if one reverses the orientation of
V72Wi) . As far as H2 is concerned, what is left can be imaged as two copies of
F glued together along their boundary (the knot ft embedded in Y) with
intersection — 1. According to the definition of W3, we claim that W3 looks like
S2XD homologically. Notice that W3 is a cobordism from Y" to Y '.

A few remarks are in order. According to our construction, the cobordism

Wi has bi(Wi) = b2(Wi) ==0, where as b2 (Wi) =1 with a class represented by
the disk, Di, capped off by a surface (Seifert surface F) in Y. Thus, Wi looks

like CP2 homologically. Similarly, W2 looks like S2 X D homologically, thus

bi (W2) = b2 (W2) = b2 (W2} =0, but b2(W2) =1 with a class represented by the
disk, Z>2, capped off by Seifert surface F in Y. Finally, W3 also looks like

S2 X D homologically, we find that bi(W3) = bl(W3) =0, b2(W3)=l.
We need the following lemma which relates the cobordism functors to be

discussed shortly.

Lemma 3.1- Suppose that W\, W& W3 are the cobordisms from Y' to Y, from
Y to Y" and from Y" to Y' respectively as in the preceding discussion. Then the

composite WzW2Wi is also a cobordism from Y' to Y', it looks like CP2 # CP2 # CP2

homologically.

Proof. According to the above discussion, the composite W2Wi looks like

W3 # CP2 homologically, here W$ is the W3 with the reversed orientation. Thus

V73VF3 looks like S2 X S2 homologically since VF3W3 is a double covering of W3

along the homology S1 X S2 Y" . Hence one may "slide a 2-handle over a

1-handle" [22] , it follows that W3W2Wi looks like S2 x S2 # ~CP2 = ~CP2 # CP2 #

CP2. The proof is complete.

Using Lemma 3.1 and the index formulae (Section 2), by the index
calculation, we can show that the surgery triangle of the knot % in the
homology 3-sphere Y is the triple

HP* ( Y') -^#F* ( Y) AtfF* ( 7" ) ̂ #F* ( y' ) (3.7)

of the surgery cobordisms, where the second Stiefel-Whitney class is trivial
relative to the boundaries and with the ends identified in such a way that its
total degree is — 1.
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Proposition 3.2. Suppose that as above, a*, b* and c* are the
homomorphisms of the Floer homology groups induced by the cobordism functors.

Then a* and b* have degree 0 with respect to the grading, and c* has degree ~ 1
with respect to the grading. Hence the surgery triangle of X is the triple

HF* (r)-^ffF* (Y)^>HF* (ro-^/^

Proof. First let us consider the degree of c*b*a*. By Lemma 1, the

composite W3W2Wi Is a cobordism from Y to T, it looks like ~CP2 # CP2 # CP2

homologically, so b% (W3W2Wi) = 1. Note that Y is a homology 3-sphere.
According our construction of Dehn surgery, the second Stief el -Whitney class
on the SO (S)-bundle over W3VK2Wi should be non-trivial, and the relative.
Pontrjagin class pi should be odd modulo 4. Hence using the index formula, the
shift of the grading induced by the composite W3W2Wi is

v =2k (WZW2W1) -3x + (WtWzWi) =2-3= - 1 mod 4.

On the other hand, the shift of the grading induced by the cobordisms W\
and W2 are always even. So the degree of a*, b* are zero modulo 4, the degree
of c* must be —1 modulo 4. The proof is complete.

Finally, we would like to point out that the extension of the framed surgery
cobordism to the SO (3) -bundle is unique up to the second Stiefel-Whitney
class between the ends. That the total degree of the composite cobordisms is
equal to — 1 modulo 4 follows from an index calculation. The construction
becomes perfectly symmetric in the three maps in (3.6) if one formulates the
surgery problems for general knots. The details are in [6], [16], [17].

§ 4o Morse-Smale Type Flow for

In this section, we give a brief discussion on the deformation equations and
Hamiltonians of the knots embedded in 3-maifolds. For more details, see [6] ,
[16], [17] and [18].

Let Y be a homology 3-sphere, % be a knot embedded in Y. By the + 1
-surgery and 0-surgery on the knot #, we obtain another homology 3-sphere Y
and a homology S1 x S2 Y" respectively. There are standard surgery
cobordisms Wi from Y"to Y and W2 from Y to Y" respectively.

To obtain an exactness theorem for the Floer homology groups of the
manifolds Y, 7, 7", we define certain perturbations of the Chern-Simons which
"simulate" the effect of the surgery. To do this, we may consider the
perturbations defined by the holonomy of connections around the knot #.
More precisely, fix a smooth compactly support volume 2-form ^ on a disc D, of
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integral 1, choose a suitable function (j> from the structure group SU(2) (or
SO (3)) to the real line 91 which is invariant under the adjoint action of SU(2)
(or 50 (3) ) . Fix coordinates to identify a neighborhood of X with X X D, and
write $(z for the obvious loop, parallel to $t by a point z ^ D. Now for each
fixed z we can construct a function @z on the space of the connections, in the
following manner:

Let P be an SU(2) bundle over Y, and T(A, #*) be the holonomy of A
around ${z, which can be regarded as an automorphism of the fiber of P over
any point of $iz. The holonomy yields a conjugacy class in SU(2), so it makes
sense to define a real number

ttz). (4.1)

Then we put

0(A)= 0&(z). (4.2)
J D

We can read off the derivative of 0 (cL [6] ) by linearity:

(4.3)

Here TA is the section of PXadSU(2) over the support of [i defined by using the
holonomy around 3(z at a point on $(z.

Thus the derivative of the perturbed Chern-Simons functional, ^^ + 0, on
the space of the connections is

and the critical points of ^ + ® the analogue of flat connections in the
deformation theory, are the solutions A of the equation

Let YQ be the common knot complement, since Y is a homology 3 -sphere we
may make a generic auxiliary perturbation in the interior of YQ such that , apart
from the trivial connection, reducible connections do not enter when we study
the flat connections over Y', Y, Y' ' , Simultaneously, for each irreducible flat
connection p over the knot-complement YQ. (1) the restriction of p to the torus
9(#XD) does not have the holonomy contained in the center ±1 of SU(2)\ (2)

the cohomology group H2(Y^ adp) is zero, so the space of the equivalence
classes of the representations of the knot complement, RYo, is of dimension 1;
(3) RYO is transverse to any of the three submanifolds intLr, intLg,, intLy at p,
where Ly, LY, LY" are three lines in the dual torus of d(tf X D) which
correspond to the three 3-manifolds Y", Y and Y" ', Then we can choose a
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suitable perturbation 0 supported in the neighborhood X X D such that the set

91 of the irreducible critical points of fld + 0 is identified, under the restriction
to the common knot complement Yo, with the union

Hence we conclude that there is a chain complex (CF#, 9) with the chain groups

generated by the set 91, and the differential is defined by the gradient curves of
^s^ -\-0~- the deformed-instanton over the tube — and the homology of this
chain complex is canonically isomorphic to the Floer homology HF* (Y) . By

the construction, the chain group CF* (Y) is identified as a group with the
direct sum

(4.5)
To obtain the chain maps

CF* (Y) - »CF* (7) - >CF (F") ,

consider the deformed instanton equation over the cobordisms W\ and W%. We
should choose the time-dependent perturbations of the instanton equation over
Wi and W2, compatible with the given data on the boundaries. As in the
undeformed case that the zero-dimensional moduli spaces of the time-dependent
perturbed instanton equation over the cobordisms W\. W2 induce the chain

maps a and b from CF* (Y) to CF* (F), and from CF* (Y) to CF* (Y")
respectively, also these induce the same maps a* and b* on the Floer homology.

Note that (CF*(F), 9) is defined by the perturbed Chern-Simons functional,

hence a and b are homotopic to a and b respectively.
Since the isomorphism (4.5) is an isomorphism of the chain complexes, the

chain maps a, b could be similar to the inclusion i\ CF*(Y)—*CF*(Y') ® CF*
(F"), and the projection it: CF*(Y) ®CF*(Y")-»CF*(Y") respectively. To get
this, one needs the "monotonicity" property of the cobordism functor with
respect to the filtration of the Floer groups, i.e., the map induced by the
cobordism decreases the Chern-Simon functional. It is well known that an
SU (2) bundle over a closed 4-manifold which admits an instanton connection
must have positive second Chern class. This follows from the fact that the
Chern-Weil integrand tr (FAF) is equal to |F|2 for an ASD connection. Hence
the map induced by the cobordism and the Floer differential will decrease the
Chern-Simons functional. The decreasing property means that we have a
filtered complex, so there exists a corresponding intrinsic filtration of the Floer
groups and the Floer homology theory has a filtration which is natural with
respect to the cobordism functor.
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As we saw, the "exact triangle" is due to the basic point that any side can
be deformed into the union of the other two. Hence we use the perturbations to
simulate the effect of surgery, the maps induced by the corresponding
cobordisms are the solutions of the time-dependent deformation. But those
maps given by the general time-dependent deformations are not compatible with
the filtration. To overcome this difficulty, we should introduce the time-
independent deformations since the whole discussion on the undeformed
equation can go over to the case of a time-independent deformation of the
instanton equations: The Floer chain groups for the deformed functionals
&fe3 -f 0 at each end have the filtration and the chain map defined by the
solutions over the cobordism is decreasing with respect to these filtration [6] .

Proposition 4.1. Let a, b be the chain maps between the filtered complexes
in (4.5). There are the deformed instanton equations over the cobordisms W\, W2

whose chain maps satisfy the following conditiwis with respect to the filtration of the

complexes CF* (7') , CF* (Y) , CF* (Y") :

(1) a= i + a, b = K-\-j$, where a, /? are strictly decreasing with respect to the
filtration, and i, K form a short exact sequence of group homomorphisms.

(2) The composite ba is chain homotopic to zero by a homotopy H: CF* (Y'}—+

CF* (Y") (i.e. dH +Hd = b a) , where H is strictly decreasing with respect to the
filtration.
(3) There is a long exact homology sequence,

and in particular the homomorphism A* is induced by the boundary operator d.

It is worth remarking here that the time independent deformations of the
instanton equations give the decreasing maps, with respect to the filtration, but
it is clear that we can not use such deformations directly, since on each of Wi,
W2 the problem is only perturbed at one end. The master-stroke in the proof

of Proposition 4.1 is to puncture the manifolds Wi, W2 to obtain manifolds W\,

W2 with an additional end, and then to compare the time-dependent deformat-

ions on the Wt with the time-independent deformations on the Wt (cf. [6]).
In the next section, we study the homomorphism A* induced by the

boundary operator 9. By using Morse type flow of knots, we prove that the
homomorphism A* coincides with the homomorphism c* induced by the
cobordism W3, and complete the proof of the main theorem.
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§ 5o Homomorphism A* Induced by Boundary Operator d

In this section, we study the homomorphism A# induced by the boundary
operator 9 and construct a cobordism such that the corresponding
homomorphism due to that cobordism is isomorphic to A*. Ultimately, we
prove that the homomorphism A* is equivalent to the homomorphism c*
induced by the cobordism W$ and complete the proof of the main theorem. We
use an idea similar to the vanishing argument used in [11], [23] and [24].

First, recall the construction of the homomorphism A^. We may puncture

the manifolds W\, W2 to obtain the manifolds Wi, W^ with an additional end,
and then compare the time-dependent deformations on the Wt(i — lt 2) with the

time-independent deformations on the Wi. Let Wi be the manifolds obtained,
from Wt by removing an interior point, which we may take to lie on the disc D*
(cf. Sect.3), and with the metric giving the manifold an additional tubular end

modeled on S 3xf%. We can find a local product region in Wt which
interpolates between the neighborhood of $( €= Y and the neighborhood of the

standard circle in S3. Introduce the time-independent deformations on WV

Then Wt can be regarded as the connected sum of Wt and Q* across S3, where
Qi is the 4~ball with a metric having one tubular end. By using the

monotonicity of the time-independent deformations on Wt, we get the chain
maps

a b

where a=i + a. b = n + $, a and j8 are strictly decreasing with respect to the
filtration, and i, TT form a short exact sequence of group homomorphisms [6].

It is easy to see that there is a right inverse, say R, to b (we shall give more
details shortly). Thus we put K — RH, where H is a homotopy by which the

composite ba is chain homotopic to zero (i.e. dH+Hd—ba).
Then

so

b(a-(dK+Kd))=Q.

Note that bd=db since the homomorphism b is induced by the cobordism W2.
We define a\ to be a — (dK+Kd). Then we get a short exact sequence

(5.2)
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Since a is chain homotopic to a\, by (5.2) we get a long exact homology
sequence,

'''^HF*(Y')^ITF*(Y)^HF*(Y"}^HF*-dY')-^-°- (5.3)

where HF*(Y) =HF*(Y) and A* is induced by the boundary operator d.
To compare A* with c* induced by the cobordism V73, let us define A* by

using the short exact sequence (5.2) and the boundary operator 9, note that

CF# (7) = CF*(y) ®CF*(Y"). According to the previous discussion, we know
that there is a homomorphism R which is the right inverse of the homomorphism

b. We may define a homomorphism A from CF# (F") to CF*_i (Y") with
grading shift —1 as follows:

A = af19£. (5.4)

It is easy to see that A is well defined and A^ is actually induced by the

boundary operator 3. Note that for any p<EHF*(Y"), dR(p) eCF*_ t(y) f in

particular dR(p) belongs to the image of the homomorphism ai since bdR(p) —

dbR(p) = d(p) = 0, and the kernel of b is equal to the image of a\. Also a\ is
an injective map which is chain homotopic to i+a, where i is the inclusion from

CF*(y') to CF*(7) ~CF*(F') eCF^(r), thus there exists a unique element
aeCF*-i(r) such that ai(a) =dR(p). Hence dai(a) =d2R(p] = 0, which
implies that ai(dff) =dai(a)=0 since a\ is chain homotopic to the
homomorphism a which is induced by the cobordism W\ and the deformed

instanton equation on Wi, and 9(7=0, that is, daildR(p) =0. So a= aTldR(p)
€HF*-i(D and A* is the homomorphism from HF*(Y"} to FF*
induced by the boundary operator 9 and the short exact sequence (5.2).

\
1

Y' Y
Figure 3

^
Y"
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Next we investigate the right inverse, R, of the homomorphism zT induced by

the cobordism W2. It is clear that R is a homomorphism from CF* (Y") to CF#
(Y) which is not induced by a zero dimensional ASD moduli space over a
cobordism. To find the corresponding cobordism, let us explain the
construction of R. We know that there are the standard, oriented, surgery
cobordisms Wi from V'to Y and W2 from Y to Y" which are illustrated in Figure
3. In this picture the dimensions have been reduced by two, so we see
2-manifolds with 1-dimensional boundaries, but it provides a fairly accurate

guide to the higher dimensional case. In particular, if we let W2 be the
manifold obtained from W2 by removing an interior point (Note that we let C
and D2 intersect at the puncture point.). Let Q2 be the ball with a metric

having one tubular end, so that we can regard W2 as the connected sum of W2

and Q2 across the S3 ends (see Figure 4). If we choose any deformation of the
instanton equation over Q2 compatible with ^^ + 0 on the end, we can glue this

to the time-independent deformation over W 2 to get a deformed instanton

equation over W2, defining a homomorphism R:CF* (Y")—*CF*(Y).
The complement W2\D2 retracts onto the boundary component Y", so any

flat connection p" over Y" automatically extends to W2 \ D2, that is, to the

complement of the product region in W2. Further more, by the construction of
0 (for more details, see [6]), this connection extends over the product region
to a deformed-flat solution, say AP", of the deformed equations. Let p" be the
restriction of AP" to Y. Using modified monotonicity of Chern-Simons, we
have that ^^(p"} = ((&j£ + 0) (p") modulo integers. Let v(p") be the param-
eter defining the restriction of AP" to the S3 boundary, let ov be the
corresponding solution of the deformed equation on S3 which is just an
extension of a reducible flat connection over S3\S1. Then we appeal to the
gluing theory extended to the deformed equations. We can now use the
following construction: For each flat connection p" over Y' let A*(p") —
AQ" # B ( v ( p " ) ) be the connection formed by gluing together the deformed-flat

solution AQ" over W2 and a reducible solution B(u(p"}} to the deformed
equation on Q2, asymptotic to ov over the end of S3 of Q2. It is similar to the
result in [6] that we get a solution with the following properties:

(1) A*(p") is irreducible (Since AP" is.).
(2) indA*(p")=l.
(3) A*(p") is a point in the corresponding smooth moduli space.
It follows first, from the index calculation (cf. Section 2), that ind A*(p")

must be one since one requires that the Floer-grading of the flat connection p"
over Yf and of the deformed solution p" over Y are the same, also the ordering
of the flat connections p" over Y" induced by the Chern-Simons functional and
the ordering of the deformed solutions p" by the deformed functional over Y are
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the same. It is easy to see that the moduli space M (p", p") of the index one

solutions over Wz interpolating between p" and p" is smooth where Wz is the
cobordism W2 with the reversed orientation, i.e., an oriented cobordism from Y"
to Y. By the construction of the moduli space Mw?(p", p"), it can be regarded

as the inverse procedure of the construction of the homomorphism b induced by
the cobordism Wz, thus the base manifold of the moduli space M (p" ', p") must

be the cobordism W2 with the reversed orientation of WL Hence the right

inverse R of b is chain homotopic to the following map:

CF*(r)3p"~ E [p"] (5.5)
dimM(p',p')=l

p"€=CF,(P

where the summation is taken over one p" from each component of the moduli

space M (p", p") over W2 with dimension one. Note that in general the moduli
space M(p" , p") is an one dimensional smooth manifold which may have
different components. But the corresponding complex map R is chain

homotopic to the inclusion from CF*(7") into CF*(Y) =CF*(Yf) ®CF*(]T),

that is, the difference between R and the inclusion from CF*(F") into CF*(Y)
is a strictly decreasing complex map with respect to the filtration of the Floer
complexes, the proof is similar to the proof for the properties of a in [6] .

In summary of the above discussion, we have the following technical lemma
whose proof is omitted:

Lemma 5.1. The right inverse R of the homomorphism b induced by the
cobordism W2 is chain homotopic to the complex map (5.5) between CF# (Y") and

CF*(Y) which is induced by the one dimensional moduli space of the deformed ASD

connections over W2.

We would like to point out here that similarly, the preimage oT1, of the
homomorphism a\ is chain homotopic to the following map which is induced by

the one dimensional moduli space of the deformed ASD connections over Wi,

where Wi is an oriented cobordism from Y to Y' with the reversed orientation
of Wi:

CF*(7)BpH* £ [p]. (5.6)

Notice that the summation is taken over one p from each component of the

deformed moduli space M (p, p) over W\ with the dimension one (cf. Figure 4) .
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Also the boundary operator 9 on the complex CF# (Y) is induced by an one
dimensional deformed ASD moduli space over the tube FX$. According to the
above discussion, we have the following proposition:

product region

YX ft ~

Y1 Y

Figure 4

Proposition 5020 The homomorphism A = aTl°d°R is chain homotopic to the
follotving map from CF* (7") to CF*_i (r) :

")3p"^ 2 [p'J. (5.7)
dimM(p',p')=3

'

Where the summation is taken over one p e CF*-i (Y} for each component of the

deformed ASD moduli space M (p'\ p'} over W2Wi with the dimension 3.

Remark that the homomorphism A = all° d ° R is just given by the 3-

dimensional ASD moduli space over W2Wi. This is based on the following
reason: The gluing of, for instance, 2, 1 and 0-dimensional ASD moduli space

over W 2, Y x $ and W\ respectively would also give a 3-dimensional ASD

moduli over W 2~W \, but it is impossible. Suppose that a component of 3-
dimensional ASD moduli space, Mw2w,(pff, p}, is obtained from ASD moduli

spaces M(p", Aw2, p"} , M(p"% AYx®, p') and M ( p ' , AW» P') over W2, YX$ and

Wi respectively. Since bl (Y") = 1, bt (W2) =0, b5 (Wj = 1 and Y, Y are
homology 3~spheres. Then by using index calculation in Section 2, we have
that
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dim M ( p " , AY*%, p") =

On the other hand, A^z, ^ 4 y x # and A^t are irreducible ASD connections.
From the monotonicity of the cobordism functor (see [6]), it follows that
k(p", AWZ, p") and k ( p ' , AW» p') must be 2. Also, we have that

dim M (p", Aw2, p"} ^1, dim M (p', A^, pO ^1.

Therefore, when dim M(p", AYx%* p") =1, then

dim M (p", AWZ, p") =1, dim M (p", A^ P') =1.

When dim M ( p " , AY\%, p'} — 0, it follows that p" = p' and A y x $ is induced by
p". For this case, we have two possibilities: (l) dim M(p", Aw2, p") =2, dim
cJ (p", AVTV p') =1. Then M (p", yl^2, p") defines the homomorphism 9°^ and

Ji (p', A v p l f p') defines the homomorphism oT1. (2) Similarly, if dim J^ (p/r,
AWZ, p") =1 and dim M (p', ̂ KV p') =2. Then J< (p", A^-2, p") defines the
homomorphism R and M ( p ' , A^lt p') defines the homomorphism a\°d. Hence,

the 3-dimensional ASD moduli space, Mw2w,(p"< p'), over W2W"i induces the

homomorphism A = a\l° d ° R. By the above discussion, we can count the

number of the components of the 3-dimensional ASD moduli space over W2Wi
with sign defined by natural orientation. Actually, we will see that there exists
a correspondence between each component of the 3-dimensional ASD moduli

space, MWZ^I (p"t p'), over WzW\ and an isolated point of the 0-dimensional ASD
moduli space, Mw3 (p", p'} , over W3. Hence, we may count the number of the

components of the 3-dimensional ASD moduli space over WzWi with sign by
counting the number of the points of the 0-dimensional ASD moduli space over
W3.

With Proposition 5.2 understood, we can now go to the proof of the main
theorem. Here we use a similar idea to the vanishing argument in [6], [11].

Proof of the main theorem. According to Proposition 5.2, the homomorphism

A = a\ldR is chain homotopic to the map which is induced from a
3-dimensional deformed ASD moduli space M (p", p'} over the composite

cobordism W2Wi from Y" to 7', where p*eCF*(K) p'eCF*-i(r). Recall the
constructions of W\ and W2, it is easy to see that there is an embedded

2-sphere 2 in the composite cobordism W2Wi from Y" to Y\ with self-

intersection + 1. The boundary of a tubular neighborhood of 2 is a 3-sphere,
and we can write
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where W3 is another cobordism from Y" to Y which induces the homomorphism

Y11 W2Wl =

Figure 5

Note that the homomorphism A = aTl° d ° R is induced by counting the
number of the components of the 3-dimensional ASD moduli space over the

composite cobordism W2VKi with sign. Since & = aTl°d°R is the composite
homomorphism. Thus we may assume that A is independent of the metric on

W2Wi. We consider a family of metrics g*t A—^0 on W2Wi, that is, the neck of

the connected sum (cf. Figure 5, W2Wi=Ws# CP2) is made very small, or what
is conformally the same, the manifolds are joined by a very long tube. Then we
claim that for small X the relevant 3-dimensional moduli space of ASD
connections comes from the moduli spaces over W3 and %!P2. Informally, such

instantons over W2Wi are made up by gluing an SO (3) -instanton AW5 over W3

to an SO (3) -instanton, with non-zero second Stiefel- Whitney class, ACp^ over
WP2. The instanton AW?, is irreducible, since it is already irreducible on the
boundary, hence its deformation index, say ind (AW3) , is non-negative. The
instanton over CP2 must be irreducible since the second Stiefel- Whitney class
is non-zero. The addition rule for the index tells us that a connection AW,W> =

AW3#Acp" made by gluing these together has the index

(5.8)

so in particular such instantons induced the homomorphism A are constructed
by the instantons with index zero over W3 and $P2. More precisely, the
indices are given as follows:

ind (A )?1,v,) = 2k (p", A^t, p') -3x + ( WtWj +fi (p) -p (p)

= 2k (p", Aw,wt, p')-
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= 2k (p", AW&, P') ""5,
ind (A CP>) = 2k (A CP*) ~ 6,
ind (A*,,) = 2k(p",AW3,p')-3x+(W3)+v(p"}-v(p'}

= 2k(p",AW3,p')-2.

Hence, we may take k(p", AWXW^ p') —4, k(ACp^ —3 and k(p", AWz, p') =1 such
that ind (Aw>w3 =3, ind UCp2) =0, ind (AW3) =0.

In the above inequality (5.8) , the number 3 means the dimension of the
gluing parameters, in fact, the gluing parameters are 50 (3) . On the other
hand, it is well known that the zero dimensional ASD moduli space with the
structure group SO (3) over CP2 is a single point (see 4.1.4 in [11]). Hence it
is clear that there exists a correspondence between the three dimensional ASD

moduli space over the composite cobordism W %W \ and the zero dimensional
ASD moduli space over the cobordism VF3. Therefore the homomorphism A =

a\ldR induced by the three dimensional ASD moduli space over W2W\ is chain
homotopic to the homomorphism c induced by the zero dimensional ASD moduli
space over W%. Thus &*=c*. The proof of the main theorem is complete.

A. Index Formulas

In this appendix, give a proof of Proposition 2.6. Assume that p and a are
regular and nondegenerate flat connections over the 3-manifolds Y\ and ¥2
respectively. A is an irreducible ASD connection over a 4-manifold X which is
of the radial gauge on the cylindrical ends with A (t) converging to p and a as t

tending to — °° and +00 respectively. The key point is that the operator DA is
closely related to the twisted signature operator

dA+dS: Q'eQ^Qi - 'Q'eS^eQ*. (A.I)

One easily checks that the signature operator is given by

( $ . y . Q > — » ( d $ r ] . d A t + d K , d l r ) ) . (A. 2)

Thus in terms of the operators

Di=dZ®d%: Q1 - »Q°eQ2
±, (A. 3)

the twisted signature operator can be expressed as

(DA o
:Q°®Ql®Q2

+ >Q°0Q1eQi. (A.4)
0 (Di)*

Note that it follows from [4] that

(p) -i)(a) (A.5)
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and

=- f e(X)Ch(A). (A. 6)
j x

We find

U ) + r ? ( a ) - f ] (p), ( A . 7 )

where

Ch (A) = dimSO (3) + ~pr (FA S\FA) . (A . 8)
87T2

In terms of (A.6) and (A. 7) , we have

(FA AFA) -+e CO +r, (a) - (p) . (A . 9)

Now we can prove Proposition 2.6 by using the formulae discussed above.

Proof of Proposition 2.6. Under the assumption, the cylindrical ends p and
o need not be acyclic. Thus 0 may appear in the spectrum of the operators

DA=jf+Dp and DA=JF+Da over the tubular parts of X, and there are kernels of

the positive dimension. To recover a Fredholm theory we use the weighted
function spaces (cf . [26] . [28] and [30] ) .

Now we digress to discuss the operator DA over the weighted Sobolev
space. We can now set up the index theory over a general 4-manifold X with
tubular ends Yt x (0, °o) . We have to choose a weight af for each end Yi X
(0, °°) . To be more precise we define the weighted L2 norm on the sections of
r(AdP®T*X) over X by

/I2, (A. 10)

where w is a non-vanishing function on X which is equal to eatt on the tubular

ends Ytx (0, oo). That is: II/IL-HU/IU Similarly we define the weighted L?
norm by

II/IL;«HU/1U (A. 11)

Different choices of w with the same weight vector a = (oti, a.?., • • • ) give
equivalent norms. Hence we can consider the operators on the weighted
Sobolev spaces

Dla=dla+d%: Ll'a(AdP®T*X) - »L2'a (AdP] ®L2>a(AdP® /\2±T*X) . (A. 12)

Here d*,a is the L2>a-adjoint of dA- The operators DA,a are Fredholm as long as
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OL\ does not lie in the spectrum of the operator Dpt over Yt. Also one can show
that the index of the operator does not change if a is varied in such way that af

avoids the spectrum of Dpt over Yt. Conversely, the index will change if 0.1 is
moved across an eigenvalue (cf. [26] , [28] and [30] ) .

We return to the proof of Proposition 2.6. Under the assumption, p — (p\,
•", pni) and cr= (0i, • • • , ffn) are nondegenerate flat connection vectors over the
3-manifold vectors YI= (Yn, • • • , Yim) , Y2 — (Y2i, *", Y2n) respectively. Thus

one may choose the two weight vectors a1— (a{, • • • , a«) and a2= (a\, • • • , a%)

such that Q<al<6l, for l<i<m and Q<af<dJ, for l<j<n where <5?, l<i<m

and <5f, l<j<n are the minimum absolute values of the non-zero eigenvalues of
Dpt, 1 <i <m and Da,, I ^j <n respectively. Also one chooses a positive
function w which is equal to e~att over the tubular ends Y\t x (— oof Q) and

equal to ea'f over the tubular end Y2j X (0, °°) respectively. Then -D£ai,a2 is a
Fredholm operator and there exists a generic metric g on X such that the

moduli space M*ai.az(p,P,ff) is a finite dimensional smooth manifold.

Formally the tangent space to M*aitaz (p, P, ff) at [A] consists of elements in

the kernel of D£ai,a2 which satisfy a suitable decay condition. Hence the

moduli space M*ai,a2(p,PiG) consists of the ASD connections on P which, on

the cylindrical ends, agree with p and (7, modulo the gauge group ^l.o (P) • The

associated group §1,0 (P) consists of those sections g of the adjoint bundle AutP
such that

Recall that

Sign(X)=b}-b2=fx^+?](Y2)-r](Yl). (A. 13)

and the index of the operator DA^,^ [4] is given by

ind Dl,aw=-^fjr (FA AFj — 1/^+«) +\n (°) ~\r\ (p) (A . 14)

Where 17 ("Ki), 17 (Y^ are eta invariants of the corresponding operators on the
scalar forms over the 3-manifolds Y\ and Y2 respectively. Combining (A.9),
(A.13) and (A.14) together, in terms of the definitions of r), ^, k (a, A, p) in
§ 2, one has
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_ -j
dim Mg,ai,az(p,P, ff)=

-f [Sign (X) +*(*)] +7rr? (a) -fr

2* (p, A, a) +/Kp) -tt(ff) - [Sign Cr) + * (*)]

Now the exact sequence of (X 9AT) with SZ^ Y= YI U 72 yields the identity

thus.

Sign (X) +x(X}= bj (X) - b2 (X)+b0 (X) + b2 (X)

4- (60 (X) ~bi (X) +bl (X) +bz (X)
-i-bs (X) -b* (X) -bo(Y) +bi (Y) }

= 2b$ (X] +2bQ(X] -2bi (X) -b0(Y)+bi(Y)

= 2b2~ (X) +2b0(X) -2bl (X)
-b0 (Y,) -b0 (Y2) +bi (Y!) +bi(Y2) .

Therefore, one has

dim Mg,a^,a^(p, P, o) —2k(p, A, a) -\-fi(p) —fj.(a) -fdim ^p

-3[b^(X)+b0(X)-bl(X)-bQ(Y2)+b1(Y1}].

Hence,

dim Mg,ai,a2(p, P, a)=2k(p. A, a) +^(p) -/M(O-) +dim gP-3%+(X). (A. 15)

According to the definitions of Mf(p, P, a) and ^^.^(p, P, a), one has

Mf (p, P, a) = M%aw (p, P, a) /<3P x »,. (A . 16)

Therefore, combining (A. 15) and (A.16) together, we find the dimension of Mf
(p, P, a) :

dim Mf(p, P, a) ^2^(p, P, a) +0(p) -^(a) ~3x+(^) -dim <§a. (A. 17)
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Thus, the proof of Proposition 2.6 is complete.
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