Publ. RIMS, Kyoto Univ. 33 (1997), 751-764

An Upper Bound for the Characteristic Variety of an Induced \mathcal{D} -Module

By

Carlos MENEZES*

Abstract

We generalise the $\operatorname{Car}_Y^{\mathbb{Z}}(\mathfrak{M})$ upper bound of Laurent & Schapira [LS87] for the characteristic variety of the induced system of a coherent \mathfrak{D}_X -module \mathfrak{M} on a hypersurface Y of X, to the case where Y is a smooth submanifold of X of arbitrary codimension

Contents

- 1. Introduction
- 2. Definition of $Car(\mathfrak{M}_{Y}^{\bullet})$
- 3. Differential operators on a holomorphic vector bundle
- 4. Definition of $Car_Y^{\mathbb{Z}}(\mathfrak{M})$
- 5. The case where \mathfrak{M} is the module defined by one operator
- 6. The case where \mathfrak{M} is the module defined by a coherent ideal
- 7. Main Theorem
- References

1. Introduction

Given a complex analytic manifold X and a smooth submanifold Y of X, let $T^*X \rightarrow X$ be the cotangent bundle of X, $T^*Y \rightarrow Y$ the cotangent bundle of Y. T_YX $\xrightarrow{\lambda} Y$ the normal bundle of Y in X, $T_Y^*X \xrightarrow{\lambda^*} Y$ the conormal bundle of Y in X, and let ρ and $\overline{\omega}$ be the maps cannonically associated to the immersion $Y \xrightarrow{\prime} X$:

1991 Mathematics Subject Classification: 58G7; Secondary 58G20.

Communicated by M. Kashiwara, November 21, 1995. Revised March 4, 1997.

Key words and phrases: D-modules, Characteristic Variety.

Partially supported by Centro de Matematica da Universidade do Porto and Projecto Analıse Microlocal e Teoria das Singularidades PBIC/C/MAT/2153/95.

^{*}Dept. Mat. Pura, Fac. Ciencias Univ. Porto, Praça Gomes Teixeira, 4050 Porto, Portugal, and. Centro de Matemática da Univ. Portugal.

E-mail address: cmmenez@fc1.fc.up.pt

$$T^*Y \stackrel{\rho}{\longleftarrow} Y \times_X T^*X \stackrel{\bar{\omega}}{\longrightarrow} T^*X.$$

Let \mathcal{O}_X be the structural sheaf of X, \mathscr{J}_Y the defining ideal of Y, $\mathcal{O}_Y = \mathcal{O}_X/\mathscr{J}_Y$ the structural sheaf of Y, \mathcal{D}_X the sheaf of holomorphic differential operators of finite order in X, $\mathcal{D}_{X|Y}$ the restriction of \mathcal{D}_X to Y, and let

$$\mathcal{D}_{Y \to X} = \mathcal{O}_Y \bigotimes_{\mathcal{O}_X} \mathcal{D}_{X|Y} = \mathcal{D}_X / \mathcal{J}_Y \mathcal{D}_X$$

be the transfer bimodule from Y to X. Given a coherent \mathscr{D}_X -Module \mathfrak{M} , let $\mathfrak{M}_Y^\circ = \mathscr{D}_{Y \to X} \bigotimes_{\mathscr{D}_\lambda} \mathfrak{M}$ be the induced \mathscr{D}_Y -Module in Y. Define

$$\mathfrak{M}_{Y}^{k} = \mathbb{H}^{-k}(\mathfrak{M}_{Y}^{\circ}) = \mathbb{T}_{OF_{k}}^{\mathfrak{D}_{k}}(\mathfrak{D}_{Y \to X}, \mathfrak{M}).$$

Kashiwara [Ka83a] proved that, if \mathfrak{M} is non-characteristic for Y, then • the cohomology of the complex $\mathfrak{M}_{Y}^{\mathfrak{P}}$ is concentrated in degree 0;

 $\circ \mathfrak{M}^{0}_{Y}$ is a coherent \mathcal{D}_{Y} -module;

 $\circ Car(\mathfrak{M}^0_Y) = \rho \overline{\omega}^{-1} Car(\mathfrak{M}).$

Consider now in $\mathcal{D}_{X|Y}$ the Kashiwara [Ka83b] *V*-filtration associated to the

embedding $Y \xrightarrow{j} X$ and defined in degree k by

$$F_Y^k \mathcal{D}_X = \{ P \in \mathcal{D}_{X|Y} : P \mathcal{J}_Y^l \subset \mathcal{J}_Y^{l-k} \quad \forall l \in \mathbb{N} \},$$

and let $F_Y^k \mathcal{D}_{Y \to X} = \frac{F_Y^k \mathcal{D}_{X|Y}}{\mathscr{J}_Y \cap \mathscr{D}_{X|Y}}$ be the degree k of the corresponding $F_Y \mathcal{D}_{Y \to X}$ quotient filtration.

Let \mathfrak{M} be an arbitrary coherent \mathfrak{D}_X -module not necessarily non characteristic for Y. In [LS87] Laurent & Schapira proved that

• \mathfrak{M}_Y^k is a union of an increasing sequence of coherent \mathfrak{D}_Y -modules.

So they could define the notion of characteristic variety of \mathfrak{M}_{Y}° , $Car(\mathfrak{M}_{Y}^{\circ})$. Moreover by [Sch85] the sheaf of graded rings $gr_{Y}(\mathfrak{D}_{X})$ is isomorphic to the subsheaf $\lambda_{*}\mathfrak{D}_{[T_{Y}X]}$ of rings of holomorphic differential operators of finite order on $T_{Y}X$ that are algebraic in the fibers, and if $F_{Y}\mathfrak{M}$ is a $F_{Y}\mathfrak{D}_{X}$ -good filtration on \mathfrak{M} then the graded module of \mathfrak{M} for this filtration, $gr_{Y}(\mathfrak{M})$, is a $gr_{Y}(\mathfrak{D}_{X})$ -coherent module. Denoting by $\widehat{C}_{T_{Y}X}(\mathfrak{M}) \subset T^{*}T_{Y}X$ the formal microcharacteristic variety of \mathfrak{M} along Y, i.e. the characteristic variety of $\mathfrak{D}_{T_{Y}X}\otimes_{\lambda^{-1}gr_{Y}(\mathfrak{M}),$ it was proved in [LS87] that

 $\circ Car(\mathfrak{M}_Y^{\circ}) \subset T^*Y \cap \widehat{C}_{T_{Y}X}(\mathfrak{M}).$

Moreover, when Y is smooth embedded hypersurface of X, in [LS87] was defined a new subset of T^*Y , denoted $Car_Y^Z(\mathfrak{M})$, and it was proved that

 $\circ Car(\mathfrak{M}_Y^{\circ}) \subset Car_Y^{\mathbb{Z}}(\mathfrak{M}) \subset T^*Y \cap \widehat{C}_{\mathcal{T}_{YX}}(\mathfrak{M}),$

providing a better upper bound for $Car(\mathfrak{M}_{\mathbf{Y}}^{\circ})$.

The aim of this work is to generalize the construction of the $Car_Y^{\mathbb{Z}}(\mathfrak{M})$ of [LS87] to the case where Y is a smooth embedded submanifold of X of arbitrary codimension.

To finish this introductory section some of the above globally defined objects are computed in a special coordinate system.

The above objects in local coordinates. Let $(y, t) = (y_1, ..., y_{m-q}, t_1, ..., t_q)$ be a local coordinate system in X such that $Y = \{(y, t): t=0\}$. Then:

$$T_Y X = \{ (y, \tau) : y \in \mathbb{C}^{m-q}, \tau \in \mathbb{C}^q \},$$

and

$$\mathcal{D}_{Y\to X}\simeq \frac{\mathcal{D}_X}{t_1\mathcal{D}_X+\cdots+t_q\mathcal{D}_X}.$$

Let $\delta^{\alpha} = \delta^{(\alpha_1,...,\alpha_q)}$ be the image of $\partial_{t_1}^{\alpha_1},..., \partial_{t_q}^{\alpha_q} \in \mathcal{D}_X$ by the canonical projection $\mathcal{D}_X \rightarrow \mathcal{D}_{Y \rightarrow X} = \frac{\mathcal{D}_X}{t_1 \mathcal{D}_X + \cdots + t_q \mathcal{D}_1}$. Then

$$F_Y^k \mathscr{D}_{Y \to X} \simeq \bigoplus_{|\alpha| \le k} \mathscr{D}_Y \delta^{\alpha},$$

and

$$\mathscr{D}_{Y\to X}\simeq \bigoplus_{k\geq 0|\alpha|=k} \mathscr{D}_Y \delta^{\alpha}.$$

Acknowlegments. I want to thank Professor T. Monteiro Fernandes for her continuing support and encouragement during the preparation of this paper. I also want to thank Professor M. Kashiwara for some discussions about the results of this paper.

2. Definition of $Car(\mathfrak{M}_Y^{\bullet})$

Proposition 2.1. [LS87]. Let (X, \mathcal{O}_X) be a complex analytic manifold and let Y be a smooth submanifold of X. Let \mathfrak{M} be a coherent \mathfrak{D}_X -module. Then the \mathfrak{D}_Y -modules \mathfrak{M}_Y^k may be locally written as a union of an increasing sequence of coherent \mathfrak{D}_Y -modules.

Proof. Consider a local finite type free resolution of \mathfrak{M} :

(1)
$$0 \longrightarrow \mathscr{D}_X^{m^p} \xrightarrow{A_{p-1}} \cdots \xrightarrow{A_0} \mathscr{D}_X^{m^0} \longrightarrow \mathfrak{M} \to 0$$

where $A_i (i=0, ..., p-1)$ is a $m_{i+1} \times m_i$ matrix of differential operators that acts on the right of $\mathcal{D}_X^{m^{i+1}}$. Tensoring (1) on the left by $\mathcal{D}_{Y \to X} \otimes \mathcal{D}_X$ we get the complex

 $(\mathcal{D}_{Y \to X}) \xrightarrow{m^{p}} \cdots \longrightarrow (\mathcal{D}_{Y \to X}) \xrightarrow{m^{0}}$

which is quasi-isomorphic to $\mathfrak{M}_{Y}^{\mathfrak{d}}$. Then

$$\begin{split} \operatorname{Ker}\left(A_{t-1}\right) &= \bigcup_{k \in \mathbf{N}} \operatorname{Ker}\left(F_{Y}^{k} \mathcal{D}_{Y \to X}^{m^{t}} \longrightarrow \mathcal{D}_{Y \to X}^{m^{t-1}}\right) \\ &= \bigcup_{k \in \mathbf{N}} \operatorname{Ker}\left(F_{Y}^{k} \mathcal{D}_{Y \to X}^{m^{t}} \longrightarrow F_{Y}^{k+l} \mathcal{D}_{Y \to X}^{m^{t-1}}\right) \end{split}$$

for a big enough $l \ge 0$. Setting

CARLOS MENEZES

$$K_{\iota}(k) = \operatorname{Ker}\left(F_{Y}^{k}\mathcal{D}_{Y \to X}^{m^{i}} \to F_{Y}^{k+l}\mathcal{D}_{Y \to X}^{m^{i-1}}\right)$$

we have that $K_i(k) \subset K_i(k+1)$ and that $K_i(k)$ is a coherent \mathcal{D}_{Y} -module. This proves that Ker (A_{i-1}) is a union of an increasing sequence of coherent \mathcal{D}_{Y} -modules. On the other hand we have:

$$\operatorname{Im}(A_{t}) = \bigcup_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \operatorname{Im}(\mathcal{D}_{Y \to X}^{m^{t+1}} \to \mathcal{D}_{Y \to X}^{m^{t}}) \cap F_{Y}^{k} \mathcal{D}_{Y \to X}^{m^{t}}$$
$$= \bigcup_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} i \in \mathbb{N}}} \operatorname{Im}(F_{Y}^{l} \mathcal{D}_{Y \to X}^{m^{t+1}} \to \mathcal{D}_{Y \to X}^{m^{t}}) \cap F_{Y}^{k} \mathcal{D}_{Y \to X}^{m^{t}}.$$

Setting

$$I_{\iota}(k) = \bigcup_{l \in \mathbb{N}} \operatorname{Im} \left(F_{Y}^{l} \mathscr{D}_{Y \to X}^{m^{l-1}} \to \mathscr{D}_{Y \to X}^{m^{l}} \right) \cap F_{Y}^{k} \mathscr{D}_{Y \to X}^{m^{l}},$$

we see that $I_i(k)$ is a union of an increasing sequence of coherent sub- $\mathcal{D}_{Y^{-1}}$ modules of the coherent $\mathcal{D}_{Y^{-m}}$ module $F_Y^k \mathcal{D}_{Y \to X}^{m'}$. Being \mathcal{D}_Y a noetherian sheaf of rings, $I_i(k)$ is a coherent $\mathcal{D}_{Y^{-m}}$ module. Finally we have $\operatorname{Im}(A_i) = \bigcup_{k \in \mathbb{N}} I_i(k)$ and $I_i(k) \subset I_i(k+1)$. Hence it follows that $\operatorname{Im}(A_i)$ is also a union of an increasing sequence of coherent $\mathcal{D}_{Y^{-m}}$ modules.

Now let \mathfrak{N} be a left \mathfrak{D}_{Y} -module, locally a union of an increasing sequence of coherent \mathfrak{D}_{Y} -modules $(\mathfrak{N}_{k})_{k\in\mathbb{N}}$. Then the subset

$$Car(\mathfrak{N}) := \bigcup_{k \in \mathbb{N}} Car(\mathfrak{N}_k)$$

does not depend on the sequence $(\mathfrak{N}_k)_{k \in \mathbb{N}}$ and is called the *Characteristic Variety* of \mathfrak{N} .

If $0 \longrightarrow \mathfrak{N}' \longrightarrow \mathfrak{N}' \longrightarrow 0$ is an exact sequence of \mathscr{D}_{r} -modules of the preceding type then

$$Car(\mathfrak{N}) = Car(\mathfrak{N}') \cup Car(\mathfrak{N}'').$$

Definition 2.2. If \Re° is a bounded complex of \mathcal{D}_Y -modules such that the cohomology groups are \mathcal{D}_Y -modules of the preceding type the characteristic variety of the complex \Re° is defined to be the following subset of T^*Y :

$$Car(\mathfrak{N}^{\circ}) = \bigcup_{j \in \mathbb{Z}} Car(\mathbb{H}^{j}(\mathfrak{N}^{\circ})).$$

In particular if \mathfrak{M} is a coherent \mathfrak{D}_X -module, then the characteristic variety of \mathfrak{M}_Y° is the following subset of T^*Y

$$Car(\mathfrak{M}_{Y}^{\circ}) := \bigcup_{j \in \mathbb{N}} Car(\mathbb{H}^{-j}(\mathfrak{M}_{Y}^{\circ})).$$

3. Differential Operators on a Holomorpic Vector Bundle

Given a holomorphic vector bundle of rank q over the complex analytic manifold Y,

CHARACTERISTIC VARIETY

$$\Lambda \xrightarrow{\lambda} Y,$$

let $\theta = e_{\lambda}$ be the Euler-vector field of Λ . Given an integer k let

$$\mathcal{O}_{[\Lambda]}[k] = \{ f \in \mathcal{O}_{\Lambda} : \theta f = kf \}$$

be the sheaf of holomorphic functions on A that are homogeneous of degree k in the fibers, and let

$$\mathcal{D}_{[\Lambda]}[k] = \{ P \in \mathcal{D}_{\Lambda} : [\theta, P] = -kP \}$$

be the sheaf of holomorphic differential operators on Λ that are homogeneous of degree k in the fibers. The following proposition is clear:

Proposition 3.1. [LS87] The map $\lambda_* \mathcal{O}_{[\Lambda]}$ [0] $\xrightarrow{\rho} \mathcal{O}_Y$, $f \mapsto f_{|Y}$ is an isomorphism of \mathcal{O}_Y -modules.

The sheaf $\lambda_* \mathscr{D}_{[A]}[0]$ acts on the left of $\lambda_* \mathscr{O}_{[A]}[0]$ and so also on \mathscr{O}_Y . This defines a morphism of sheaf of rings $\lambda_* \mathscr{D}_{[A]}[0] \xrightarrow{\rho} \mathscr{D}_Y$.

If (y, t) is a local trivialization of Λ such that $\lambda(y, t) = y$, then the differential operators $P \in \mathcal{D}_{[\Lambda]}[k]$ are those that may be written in that coordinate system in the form:

$$P = \sum_{|\alpha| - |\beta| = k} P_{\alpha,\beta}(y, \partial_y) t^{\alpha} \partial_t^{\beta}$$

In particular the differential operators $P \in \mathcal{D}_{\Lambda}[0]$ are those that may be written in the form:

$$P = \sum_{|\alpha| = |\beta|} P_{\alpha,\beta} (y, \partial_y) t^{\alpha} \partial_t^{\beta}$$

and we have

$$\rho(P) = P_{0,0}(y, \partial_y).$$

Thus, locally, $\lambda_* \mathcal{D}_{[\Lambda]}[0]$ is identified to

 $\mathcal{D}_{Y}\langle\theta\rangle := \mathcal{D}_{Y}[\theta_{11}, \theta_{12\dots}, \theta_{1q}, \dots, \theta_{q1}, \dots, \theta_{qq}] / \{\text{commutation relations}\}$

where, by definition, $\theta_{ij} = t_i \partial_{tj}$, and the commutation relations between the variables θ_{ij} are the following ones:

(2)
$$[\theta_{ij}, \theta_{kl}] = [t_i \partial_{ij}, t_k \partial_{ll}] = \begin{cases} 0 & \text{if } j \neq k \text{ and } i \neq l \\ \theta_{ij} & \text{if } j = k \text{ and } i \neq l \\ \theta_{ii} - \theta_{jj} & \text{if } j = k \text{ and } i = l \\ -\theta_{kj} & \text{if } j \neq k \text{ and } i = l \end{cases}$$

In particular, locally, ρ is identified to $\rho(P(y, \partial_y, \theta_y)) = P(y, \partial_y, 0)$ If \mathfrak{N} is a coherent $\lambda_* \mathcal{D}_{\text{LM}}[0]$ -module the coherent \mathcal{D}_Y -module $\rho(\mathfrak{N})$ is

defined by "extension" of scalars:

$$\rho(\mathfrak{N}) = \mathscr{D}_{Y} \bigotimes_{\lambda \ast \mathscr{D}_{\mathsf{LAI}}[0]} \mathfrak{N},$$

thus having a characteristic variety $Car(\rho(\mathfrak{N}))$ in its own right, which is an involutive analytic subset of T^*Y .

Proposition 3.2.

(a) If $0 \longrightarrow \mathfrak{N}' \longrightarrow \mathfrak{N} \longrightarrow \mathfrak{N}' \longrightarrow 0$ is an exact sequence of coherent $\lambda_* \mathfrak{D}_{[\Lambda]}[0]$ -modules then

$$Car(\rho(\mathfrak{N})) = Car(\rho(\mathfrak{N}')) \cup Car(\rho(\mathfrak{N}')).$$

(b) If \mathscr{J} is coherent ideal of $\lambda_* \mathscr{D}_{[\Lambda]}[0]$ and if $\mathfrak{N} = \lambda_* \mathscr{D}_{[\Lambda]}[0]/\mathscr{J}$ then $Car(\rho(\mathfrak{N})) = \{y^* \in T^*Y : \forall P \in \mathscr{J} \ \sigma(\rho(P)) \ (y^*) = 0\}$

Proof. The problem being of local character we can set

$$\lambda_* \mathcal{D}_{[A]}[0] = \mathcal{D}_Y \langle \theta \rangle$$

Let I be the left ideal of $\mathcal{D}_{Y}\langle\theta\rangle$ generated by $\theta_{11}, \theta_{12}, ..., \theta_{1q}, ..., \theta_{q1}, ..., \theta_{qq}$. Then:

$$\circ \mathcal{D}_{Y} \simeq \frac{\mathcal{D}_{Y} \langle \theta \rangle}{I}$$

$$\circ \theta_{ij} \in I \quad \forall i, j,$$

the commutation relations (2) give

$$\circ \theta_{ij} \in I^{k} \text{ if } i \neq j$$

$$\circ \theta_{ij} = \theta_{ij} \in I^{k} \quad \forall i j = j$$

$$\circ \ \theta_{ii}^{\kappa} - \theta_{jj}^{\kappa} \in I^{\kappa} \ \forall \ i, j \ \forall \ k \in \mathbb{N}$$

Let $F\mathcal{D}_Y \langle \theta \rangle$ be the non-separated filtration on $\mathcal{D}_Y \langle \theta \rangle$ defined by

$$F_k \mathcal{D}_Y \langle \theta \rangle = \begin{cases} \mathcal{D}_Y \langle \theta \rangle & \text{if } k \ge 0\\ I^{-k} & \text{if } k < 0 \end{cases}$$

The properties of $\mathfrak{D}_{Y}\langle\theta\rangle$ listed above imply that the graded ring of $\mathfrak{D}_{Y}\langle\theta\rangle$ for this filtration is isomorphic to the ring of polynomials $\mathfrak{D}_{Y}[\overline{\theta}]$ in one variable $\overline{\theta}$ and with coefficients in \mathfrak{D}_{Y} , where $\overline{\theta}$ is the image of all the $\theta_{ii} \in I^{1}$ (i=1, ..., q) in the quotient I^{1}/I^{2} .

As $gr\mathcal{D}_Y \langle \theta \rangle \simeq \mathcal{D}_Y[\overline{\theta}]$ is a noetherian graded ring and

$$F_0 \mathcal{D}_Y \langle \theta \rangle = \mathcal{D}_Y \langle \theta \rangle$$

is a noetherian filtered ring, proposition 1.1.8 of Chap. II of [Sch85] implies that the filtration $F\mathcal{D}_Y\langle\theta\rangle$ is a noetherian one.

Now let $gr\mathcal{D}_Y \langle \theta \rangle$ be filtered by the order of holomorphic differential operators in Y.

If \mathfrak{N} is a coherent $\mathfrak{D}_{Y}\langle\theta\rangle$ -module equipped with a good $F\mathfrak{D}_{Y}\langle\theta\rangle$ -filtration the graded module of \mathfrak{N} for this filtration, $gr(\mathfrak{N})$, is a graded coherent

756

and

 $\mathscr{D}_{\mathbf{Y}}[\overline{\theta}]$ -module whose characteristic variety $Car(gr\mathfrak{N})$ is an analytic subset of $T^*(Y) \times \mathbb{C}$.

By Proposition 1.3.1 of Chap. II of [Sch85], the characteristic variety *Car* $(gr\mathfrak{N})$ is independent of the choice of the good filtration on \mathfrak{N} and the map that sends \mathfrak{N} to $Car(gr\mathfrak{N})$ is an additive map, that is, if $0 \longrightarrow \mathfrak{N}' \longrightarrow \mathfrak{N} \longrightarrow \mathfrak{N}'' \longrightarrow 0$ is an exact sequence of coherent $\mathfrak{D}_{r} \langle \theta \rangle$ -modules then $Car(gr\mathfrak{N}) = Car(gr\mathfrak{N}') \cup Car(gr\mathfrak{N}'')$.

Hence, to prove the first part of the proposition it is enough to prove that $Car(gr\mathfrak{N}) = Car(\frac{\mathfrak{N}}{r\mathfrak{N}}) \times \mathbb{C}.$

Suppose that \mathfrak{N} is a coherent $\mathscr{D}_Y \langle \theta \rangle$ -module. Then the filtration on \mathfrak{N} defined by

$$\mathfrak{N}_k = \begin{cases} \mathfrak{N} & \text{if } k \ge 0 \\ I^{-k} \mathfrak{N} & \text{if } k < 0 \end{cases}$$

is a good filtration, and the graded module of $\mathfrak N$ for this filtration is

$$g_{\mathcal{T}}(\mathfrak{N}) = \bigoplus_{k \ge 0} = \frac{I^k \mathfrak{N}}{I^{k+1} \mathfrak{N}}$$

So, for all $k \in \mathbb{Z}$, $\frac{l^{k_{\mathfrak{N}}}}{l^{k+1_{\mathfrak{N}}}}$ is a coherent \mathscr{D}_{r} -module and we have a surjective morphism of coherent \mathscr{D}_{r} -modules

$$\frac{\mathfrak{N}}{I\mathfrak{N}} \xrightarrow{\overline{\theta^{k}}} \frac{I^{k}\mathfrak{N}}{I^{k+1}\mathfrak{N}}$$

Thus

$$Car\left(\frac{I^k\mathfrak{N}}{I^{k+1}\mathfrak{N}}\right) \subseteq Car\left(\frac{\mathfrak{N}}{I\mathfrak{N}}\right) \subseteq T^*Y$$

and

$$Car(gr\mathfrak{N}) = \left(\bigoplus_{k\geq 0} Car\left(\frac{I^k\mathfrak{N}}{I^{k+1}\mathfrak{N}}\right)\right) \times \mathbb{C} = Car\left(\frac{\mathfrak{N}}{I\mathfrak{N}}\right) \times \mathbb{C}.$$

Part b) of the proposition follows from $\rho(\mathfrak{N}) = \frac{\mathfrak{D}_{Y}}{\rho(\mathfrak{f})}$ where

$$\rho(\mathscr{J}) = \{ P(y, \partial_y, \theta_{11}, \theta_{12}..., \theta_{1q}, ..., \theta_{q1}, ..., \theta_{qq}) |_{\theta_{tr}=0} : P \in \mathscr{J} \}.$$

Notation. For $k \in \mathbb{Z}$ the module $\mathcal{D}_{[A]}[k]$ is a coherent $\mathcal{D}_{[A]}[0]$ -bimodule (in fact it is locally free). Therefore, given a coherent $\lambda_* \mathcal{D}_{[A]}$ -module \mathfrak{N} , we may consider the coherent \mathcal{D}_{Y} -module

$$\mathfrak{N}_{\mathbf{Y},k} = \mathfrak{D}_{\mathbf{Y}} \bigotimes_{\lambda_{*} \mathfrak{D}_{(1)}[0]} (\lambda_{*} \mathfrak{D}_{[\Lambda]}[k] \bigotimes_{\lambda_{*} \mathfrak{D}_{(1)}[0]} \mathfrak{N}) \\ = \rho \left(\lambda_{*} \mathfrak{D}_{[\Lambda]}[k] \bigotimes_{\lambda_{*} \mathfrak{D}_{(1)}[0]} \mathfrak{N} \right).$$

 \square

Example 3.3. Let $P \in F_k^Y \mathcal{D}_X$ and let $\mathfrak{N} = gr^0(\frac{\mathfrak{D}_X}{\mathfrak{D}_X P})$, where $\frac{\mathfrak{D}_X}{\mathfrak{D}_X P}$ is equipped with the induced filtration $F^Y \mathfrak{D}_{Y \to X}$. Then

$$\begin{split} \mathfrak{N}_{Y,k} &= \mathfrak{D}_{Y} \bigotimes_{\lambda \ast \mathfrak{D}_{(A)}[0]} \left(\lambda \ast \mathfrak{D}_{[A]}[k] \bigotimes_{\lambda \ast \mathfrak{D}_{[A]}[0]} gr^{0} \left(\frac{\mathfrak{D}_{X}}{\mathfrak{D}_{X}P} \right) \right) \\ &= \mathfrak{D}_{Y} \bigotimes_{\lambda \ast \mathfrak{D}_{(A)}[0]} \frac{gr^{k}(\mathfrak{D}_{X})}{gr^{k}(\mathfrak{D}_{X}) \sigma_{0}(P)} \\ &= \frac{gr^{k}(\mathfrak{D}_{Y \to X})}{gr^{k}(\mathfrak{D}_{Y \to X}) \sigma_{0}(P)}. \end{split}$$

Example 3.4. Given $k \ge 1$ let $P \in F_k^Y \mathcal{D}_{X|Y} \setminus F_{k-1}^Y \mathcal{D}_{X|Y}$. Then, in the special local coordinate system chosen in the introductory section,

$$P = Q + \sum_{|\beta|=k} \partial_t^{\beta} Q_{\beta}.$$

where $Q \in F_{k-1}^{Y} \mathcal{D}_{X}$ and $Q_{\beta} \in F_{0}^{Y} \mathcal{D}_{X}$. Thus, locally,

$$gr^{0}\left(\frac{\mathscr{D}_{X}}{\mathscr{D}_{X}P}\right)\simeq \frac{gr^{0}\mathscr{D}_{X}}{\bigoplus_{|\alpha|=k}gr^{0}(\mathscr{D}_{X})\tau^{\alpha}\sum_{|\beta|=k}\partial_{\tau}^{\beta}\widehat{\sigma}(Q_{\beta})}$$

Since

$$\mathcal{D}_{Y} = \frac{gr^{0}\mathcal{D}_{X}}{gr^{0}\mathcal{D}_{X}(\tau_{1}\partial_{\tau_{1}}, ..., \tau_{1}\partial_{\tau_{q}}, ..., \tau_{q}\partial_{\tau_{1}}, ..., \tau_{q}\partial_{\tau_{q}})},$$

it follows that

$$\mathfrak{N}_{Y,0} = \mathfrak{D}_{Y} \bigotimes_{gr^{0}\mathfrak{D}_{X}} gr^{0} \left(\frac{\mathfrak{D}_{X}}{\mathfrak{D}_{X}P} \right)$$

$$= \frac{gr^{0}\mathfrak{D}_{X}}{gr^{0}\mathfrak{D}_{X} (\tau_{1}\partial_{\tau_{1}}, ..., \tau_{q}\partial_{\tau_{q}})} \bigotimes_{gr^{0}\mathfrak{D}_{X}} gr^{0} \left(\frac{\mathfrak{D}_{X}}{\mathfrak{D}_{X}P} \right)$$

$$= 0.$$

Proposition 3.5. [LS87]

(i) Let \mathfrak{M} be a coherent $\lambda_* \mathfrak{D}_{[\Lambda]}$ -module and let \mathfrak{N} be a coherent sub- $\lambda_* \mathfrak{D}_{[\Lambda]}[0]$ -module of \mathfrak{M} that generates \mathfrak{M} over $\lambda_* \mathfrak{D}_{[\Lambda]}$. Then

$$\mathfrak{S}(\mathfrak{M}) := \bigcup_{k \in \mathbb{Z}} Car(\mathfrak{N}_{Y,k})$$

is a subset of T^*Y which does not depend on the choice of \mathfrak{N} . (ii) If $0 \longrightarrow \mathfrak{M}' \longrightarrow \mathfrak{M}' \longrightarrow \mathfrak{M}'' \longrightarrow 0$ is an exact sequence of coherent $\lambda_* \mathscr{D}_{|\Lambda|}$ -modules then

$$\mathfrak{S}(\mathfrak{M}) = \mathfrak{S}(\mathfrak{M}') \cup \mathfrak{S}(\mathfrak{M}'')$$

Proof. (i) Let \mathfrak{N} and \mathfrak{N}' two coherent $\lambda_* \mathfrak{D}_{[\Lambda]}[0]$ -modules that generate \mathfrak{M} . As \mathfrak{N} is a generator of \mathfrak{M} we have

$$\mathfrak{N}' = \sum_{k \in \mathbf{Z}} \left(\lambda_* \mathcal{D}_{[\Lambda]} \left[k \right] \mathfrak{N} \right) \cap \mathfrak{N}'$$

and so $\mathfrak{N}' = \bigcup_{k \in \mathbb{N}} \mathfrak{N}'^{(k)}$ where

$$\mathfrak{N}^{\prime(k)} = \sum_{-k \leq j \leq k} (\lambda_* \mathcal{D}_{[\Lambda]}[j] \mathfrak{N}) \cap \mathfrak{N}^{\prime}.$$

The sequence $(\mathfrak{N}'^{(k)})_{k\in\mathbb{Z}}$ is a sequence of coherent $\lambda_*\mathcal{D}_{[\Lambda]}[0]$ -modules of \mathfrak{N}' , and being \mathfrak{N}' of finite type this sequence must stabilize. Let k_0 be an integer such that $\mathfrak{N}' = \mathfrak{N}'^{(k_0)}$ and let $\mathfrak{N}'' = \sum_{-k_0 \leq j \leq k_0} (\lambda_*\mathcal{D}_{[\Lambda]}[j]\mathfrak{N}).$

Then

$$\bigcup_{k\in\mathbf{Z}} Car(\mathfrak{N}'_{Y,k}) \subset Car(\mathfrak{N}'_{Y,k}) = \bigcup_{k\in\mathbf{Z}} Car(\mathfrak{N}_{Y,k}).$$

Reversing the roles of $\mathfrak N$ and $\mathfrak N'$ we get the first part of the proposition.

(11) It is enough to prove that if $0 \longrightarrow \mathfrak{N}' \longrightarrow \mathfrak{N}' \longrightarrow \mathfrak{N}' \longrightarrow 0$ is an exact sequence of coherent $\lambda_* \mathscr{D}_{[\Lambda]}[0]$ -modules then

$$Car(\mathfrak{N}_{Y,k}) = Car(\mathfrak{N}'_{Y,k}) \cup Car(\mathfrak{N}'_{Y,k}).$$

But this is an immediate consequence of Proposition 3.2 and of the flatness of $\lambda_* \mathscr{D}_{[\Lambda]}[k]$ over $\lambda_* \mathscr{D}_{[\Lambda]}[0]$.

4. Definition of $Car_Y^{\mathbf{Z}}(\mathfrak{M})$

Now let $\Lambda = T_Y X \xrightarrow{\lambda} Y$ be the normal bundle of Y in X. Let \mathfrak{M} be a coherent \mathfrak{D}_X -module and let $F_Y \mathfrak{M}$ be a good filtration on \mathfrak{M} . Then the graded module for this filtration, $gr_Y \mathfrak{M}$, is a coherent $\mathfrak{D}_{[\Lambda]}$ -module and $\mathfrak{N} = gr_Y^0(\mathfrak{M})$ generates \mathfrak{M} over $\mathfrak{D}_{[\Lambda]}$. Thus we can associate to $gr_Y(\mathfrak{M})$ the subset $\mathfrak{S}(gr_Y\mathfrak{M})$ of T^*Y . By Proposition (3.5), the functor $\mathfrak{N} \mapsto \mathfrak{S}(\mathfrak{N})$ is an additive one. By Proposition 1.3.1. of Chap. II of [Sch85], $\mathfrak{S}(gr_Y\mathfrak{M})$ is independent of the choice of the good $F_Y\mathfrak{D}_X$ -filtration and the functor $\mathfrak{M} \mapsto \mathfrak{S}(gr_Y\mathfrak{M})$ is an additive one. Therefore we have the following proposition

Proposition 4.1. Let \mathfrak{M} be a coherent \mathfrak{D}_X -module and let $F_Y\mathfrak{M}$ be a good $F_Y\mathfrak{D}_X$ -filtration on \mathfrak{M} . Then

(i) $\mathfrak{S}(gr_Y\mathfrak{M})$ is a subset of T^*Y and does not depend on the choice of the good $F_Y\mathfrak{D}_X$ -filtration on \mathfrak{M} .

(ii) if $0 \longrightarrow \mathfrak{M}' \longrightarrow \mathfrak{M} \longrightarrow \mathfrak{M}' \longrightarrow 0$ is an exact sequence coherent \mathfrak{D}_{X} -modules then

$$\mathfrak{S}(gr_Y\mathfrak{M}) = \mathfrak{S}(gr_Y\mathfrak{M}') \cup \mathfrak{S}(gr_Y\mathfrak{M}'').$$

This proposition enables us to make the following definition, as in [LS87]:

Definition 4.2. Let \mathfrak{M} be a coherent \mathfrak{D}_X -module and let $F_Y\mathfrak{M}$ be a good $F_Y\mathfrak{D}_X$ -filtration on \mathfrak{M} . We define

$$Car_Y^{\mathbb{Z}}(\mathfrak{M}) := \mathfrak{S}(gr_Y\mathfrak{M}) = \bigcup_{k \in \mathbb{Z}} Car(\mathfrak{N}_{Y,k})$$

where $\mathfrak{N}_{Y,k} = \mathfrak{D}_Y \bigotimes_{\lambda_* \mathfrak{D}_{[\Lambda]}[0]} \lambda_* \mathfrak{D}_{[\Lambda]}[k] \bigotimes_{\lambda_* \mathfrak{D}_{[\Lambda]}[0]} gr_Y^0(\mathfrak{M})$.

The goal of the remaining sections is to prove that $Car_{Y}^{\mathbb{Z}}(\mathfrak{M})$ is an upper bound for $Car(\mathfrak{M}_{Y}^{\circ})$.

5. The Case Where \mathfrak{M} is the Module Defined by One Operator

Let $P \in \mathcal{D}_{X|Y}$ and $\mathfrak{M} = \mathcal{D}_X/\mathcal{D}_X P$. Then

$$0 \longrightarrow \mathcal{D}_X \xrightarrow{P} \mathcal{D}_X \longrightarrow \mathfrak{M} \longrightarrow 0$$

is a free resolution of \mathfrak{M} . So, in the derived category,

$$\mathfrak{M}_{Y}^{\circ} \cong \mathfrak{D}_{Y \to X} \xrightarrow{P} \mathfrak{D}_{Y \to X} \cong \frac{\mathfrak{D}_{X}}{\mathscr{J}} \xrightarrow{P} \frac{\mathfrak{D}_{X}}{\mathscr{J}}$$

and

$$\mathfrak{M}_Y^0 = \mathbb{K}$$
er P , $\mathfrak{M}_Y^1 = \mathbb{C}$ oker P .

Let $P \in F_Y^0 \mathcal{D}_X$. Then $(F_Y^k \mathcal{D}_{Y \to X})$. $P \subset F_Y^k \mathcal{D}_{Y \to X}$. Hence we can define

$$F^k_Y \mathcal{D}_{Y \to X} \xrightarrow{\widehat{\rho}_k(P)} F^k_Y \mathcal{D}_{Y \to X}$$

where $\widehat{\rho}_k(P)$ is the restriction of P to $F_Y^k \mathscr{D}_{Y \to X}$.

Consider now the action of P on the vectors δ^{α} of the base $(\delta^{\gamma})_{|\gamma| \leq k}$ of $F_Y^k \mathcal{D}_{Y \to X} = \bigoplus \mathcal{D}_Y \delta^{\gamma}$. If P is locally formally written as

 $|r| \leq k$

$$P = \sum_{|\alpha| \ge |\beta|} P_{\alpha,\beta} (y, \partial_y) t^{\alpha} \partial_t^{\beta}$$

then

$$\delta^{\gamma} P = \sum_{|\alpha| \ge |\beta|} P_{\alpha,\beta}(y, \partial_y) \frac{\gamma!}{(\gamma - \alpha)!} \delta^{\gamma - \alpha + \beta}$$

Let $A(\gamma, \theta)$ the coefficient of δ^{θ} in the expression of $\delta^{\gamma}.P$. Then

$$A(\gamma, \theta) = \sum_{0 \le \alpha \le \gamma} P_{\alpha, \theta - \gamma + \alpha}(y, \partial_y) \frac{\gamma!}{(\gamma - \alpha)!}.$$

Ordering the base $(\delta^{\gamma})_{|\gamma| \le k}$ in such a way that all the δ^{γ} with $|\gamma| = i$ have orders lower than the δ^{γ} with $|\gamma| = i + 1$, it follows that the matrix A(k) of $\hat{\rho}(k)$ in such a base is block-lower-triangular:

$$A(k) = \begin{pmatrix} A_{00} & 0 & \cdots & 0 \\ A_{10} & A_{11} & \cdots & 0 \\ \vdots \\ A_{k0} & A_{k1} & \cdots & A_{kk} \end{pmatrix},$$

where A_{ij} is the matrix $A(k)(\gamma, \theta)_{|\gamma|=i,|\theta|=j}$. Clearly that A(k-1) is the matrix A(k) with the last row and last column of blocks omitted. Thus

$$Car\left(\frac{F_{Y}^{k}\mathcal{D}_{Y \to X}}{F_{Y}^{k}\mathcal{D}_{Y \to X}\widehat{\rho}_{k}\left(P\right)}\right) = \bigcup_{j=1}^{k} \{y^{*} \in T^{*}Y: det\left(A_{jj}\right)\left(y^{*}\right) = 0\}$$

where det is the determinant of Sato-Kashiwara [SK75].

But $\{y^* \in T^*Y: det (A_{kk}) \ (y^*) = 0\}$ is precisely $Car\left(\frac{gr_Y^k(\mathfrak{D}_{Y \to X})}{gr_Y^k(\mathfrak{D}_{Y \to X})}\right)$ where $gr_Y^k(\mathfrak{D}_{Y \to X}) \xrightarrow{\rho_k(P)} gr_Y^k(\mathfrak{D}_{Y \to X})$ is the linear morphism whose matrix in base $(\delta^{\gamma})_{|\gamma|=k}$ is A_{kk} . Observe now that $\rho_k(P)$ is the morphism $gr_Y^k\mathfrak{D}_{Y \to X} \xrightarrow{\sigma_0(P)} gr_Y^k\mathfrak{D}_{Y \to X}$. Then, from example (3.4) it follows that

•
$$P \in F_Y^0 \mathscr{D}_{X|Y} \Longrightarrow Car\left(\left(\frac{\mathscr{D}_X}{\mathscr{D}_{X,P}}\right)_Y^o\right) = \bigcup_{k \in \mathbb{N}} \rho\left(\lambda_* \mathscr{D}_{[A]}[k] \otimes_{\lambda_T \mathscr{D}_{[A]}[0]} gr_Y^0 \frac{\mathscr{D}_X}{\mathscr{D}_{X,P}}\right).$$

and thus the following property is true:

•
$$P \in F_Y^0 \mathcal{D}_{X|Y} \Rightarrow \begin{cases} Car(\mathfrak{M}_Y^{\mathfrak{S}}) \subset Car_Y^Z(\mathfrak{M}) \\ Car_Y^Z(\mathfrak{M}) = \bigcup_{k \in \mathbf{Z}} \{y^* \in T^*Y : det(\rho_k(P))(y^*) = 0\} \end{cases}$$

From example (3.3) and from definition of $Car_{Y}^{Z}(\mathfrak{M})$ it follows that

• k > 0 and $P \in F_Y^k \setminus F_Y^{k-1} \mathcal{D}_X \Longrightarrow Car_Y^{\mathbb{Z}}(\mathfrak{M}) = T^*Y.$

Hence we have proved the following proposition

Proposition 5.1. Let $P \in \mathcal{D}_{X|Y}$ and $\mathfrak{M} = \frac{\mathfrak{D}_{X}}{\mathfrak{D}_{X}P}$. Then

- (a) $Car(\mathfrak{M}_Y^{\mathbf{e}}) \subset Car_Y^{\mathbf{Z}}(\mathfrak{M}).$
- (b) Moreover if $P \in F_Y^0 \mathcal{D}_X$ then

$$Car_Y^{\mathbf{Z}}(\mathfrak{M}) = \bigcup_{k \in \mathbf{Z}} \{ y^* \in T^*Y: det(\rho_k(P))(y^*) = 0 \}.$$

6. The Case Where \mathfrak{M} is the Module Defined by a Coherent Ideal

Let \mathscr{I} be a coherent ideal of \mathscr{D}_X ; then $gr_Y(\frac{\mathscr{D}_X}{\mathscr{I}})$ is generated by $gr_Y^0(\frac{F_Y^*\mathscr{D}_X}{\mathscr{I}^0})$ where $\mathscr{I}_0 = \mathscr{I} \cap F_Y^*\mathscr{D}_X$. Therefore

(3)
$$Car_{Y}^{Z}\left(\frac{\mathscr{D}_{X}}{\mathscr{J}}\right) = \bigcup_{k \in \mathbb{Z}} Car\left(\left(\mathscr{D}_{Y} \otimes_{\lambda_{*}\mathscr{D}_{[\Lambda]}[0]} \lambda_{*}\mathscr{D}_{[\Lambda]}[k]\right) \otimes_{\lambda_{*}\mathscr{D}_{[\Lambda]}[0]} gr_{Y}^{0}\left(\frac{F_{Y}^{0}\mathscr{D}_{X}}{\mathscr{J}_{0}}\right)\right)$$

CARLOS MENEZES

(4)
$$= \bigcup_{k \in \mathbb{Z}} Car \left(gr^k \mathscr{D}_{Y \to X} \bigotimes_{\lambda_* \mathscr{D}_{[\Lambda]}[0]} \frac{\lambda_* \mathscr{D}_{[\Lambda]}[0]}{gr_Y^0(\mathscr{J}_0)} \right)$$

(5)
$$= \bigcup_{k \in \mathbf{Z}} Car \left(\frac{gr^k \mathcal{D}_{Y \to X}}{gr_Y^0(\mathcal{J}_0)} \right)$$

Let P be an element of \mathscr{J} and let $\sigma_0(P)$ be the image of P in $gr_Y^0(\mathscr{J}_0)$. Then

$$\frac{gr^k \mathcal{D}_{Y \to X}}{gr^k \mathcal{D}_{Y \to X} \sigma_0(P)} \longrightarrow \frac{gr^k \mathcal{D}_{Y \to X}}{gr^k \mathcal{D}_{Y \to X} gr_Y^0(\mathcal{J}_0)} \longrightarrow 0,$$

is an exact sequence of $gr^0 \mathcal{D}_{Y \to X}$ -modules. Thus, taking into account equation (3),

$$Car_{Y}^{\mathbf{Z}}\left(\frac{\mathscr{D}_{X}}{\mathscr{J}}\right) \subset \bigcap_{P \in \mathscr{J}} Car_{Y}^{\mathbf{Z}}\left(\frac{\mathscr{D}_{X}}{\mathscr{D}_{X}.P}\right)$$

i.e.

$$Car_{Y}^{Z}\left(\frac{\mathscr{D}_{X}}{\mathscr{I}}\right) \subset \bigcup_{k \in \mathbb{Z}} \{y^{*} \in T^{*}Y: det\left(\rho_{k}\left(P\right)\right)\left(y^{*}\right) = 0 \quad \forall P \in \mathscr{I}\}.$$

The following proposition shows that the above inclusion is in fact an equality.

Proposition 6.1. Let \mathscr{J} be a coherent ideal of \mathscr{D}_X . Then

$$Car_{Y}^{Z}\left(\frac{\mathscr{D}_{X}}{\mathscr{J}}\right) = \bigcup_{k \in \mathbb{Z}} \{y^{*} \in T^{*}Y: det\left(\rho_{k}\left(P\right)\right)\left(y^{*}\right) = 0 \quad \forall P \in \mathscr{J}\}.$$

Proof. For each $k \in \mathbb{Z}$ let us denote by \mathcal{L}_k the following \mathcal{D}_{Y} -module:

$$\mathcal{L}_{k} = \mathcal{D}_{Y} \bigotimes_{\lambda_{*} \mathcal{D}_{[\lambda]}[0]} \lambda_{*} \mathcal{D}_{[\lambda]}[k] = \begin{cases} \bigoplus_{|\alpha|=k} \mathcal{D}_{Y} \partial_{t}^{\alpha} & \text{if } k \ge 0 \\ \\ \bigoplus_{|\alpha|=-k} \mathcal{D}_{Y} t^{\alpha} & \text{if } k \le 0 \end{cases}$$

Then we have a commutative diagram of ring homomorphisms

$$\lambda_* \mathcal{D}_{[A]}[0] \longrightarrow End_{\mathcal{D}_Y}(\mathcal{L}_k)$$

$$\uparrow \qquad \qquad \swarrow^{\rho_k}$$

$$\mathscr{J}_0 = \mathscr{J} \cap F_Y^0 \mathcal{D}_X$$

We denote by \mathcal{N}_k the \mathcal{D}_{Y} -module $\mathcal{L}_k \rho_k(\mathcal{J}_0)$. With this notation, we see that, to prove the proposition, it is enough to prove that, for all $k \in \mathbb{Z}$,

$$Car\left(\frac{\mathscr{L}_{k}}{\mathscr{N}_{k}}\right) \supset \bigcap_{\mathcal{Q} \in \rho_{k}(\mathfrak{F}_{0})} Car\left(\frac{\mathscr{L}_{k}}{\mathscr{L}_{k}Q}\right).$$

Let $e_1, ..., e_s$ be a basis of the free \mathscr{D}_Y -module \mathscr{L}_k and we write $\mathscr{L}_k = \bigoplus_{i=1}^s \mathscr{D}_Y e_i$. We denote by \mathscr{A}_k the ring of \mathscr{D}_Y -endomorphisms $End_{D_Y}(\mathscr{L}_k)$. Then \mathscr{L}_k is a

left-right $(\mathcal{D}_{Y}, \mathcal{A}_{k})$ -bimodule and the functor

$$\mathfrak{M}_{od} (\mathcal{D}_Y) \xrightarrow{\operatorname{Hom}(\mathscr{L}_k)} \mathfrak{M}_{od} (\mathscr{A}_k)$$
$$\mathfrak{M} \longmapsto \operatorname{Hom}_{\mathscr{D}_Y} (\mathscr{L}_k, \mathfrak{M})$$

is an equivalence of categories. The correspondence

$$\mathfrak{M}od \ (\mathcal{A}_k) \xrightarrow{\mathscr{L}_k \bigotimes_{\mathscr{A}_k}} \mathfrak{M}od \ (\mathcal{D}_Y)$$
$$\mathcal{Q} \longmapsto \mathscr{L}_k \bigotimes_{\mathscr{A}_i} \mathcal{Q}$$

is a left adjoint functor. This gives a correspondence

$$\begin{array}{cccc} \mathscr{L}_{k} & \longleftrightarrow & \mathscr{A}_{k} \\ \cup & & \cup \\ \mathscr{N}(submodule) & \longleftrightarrow & \mathscr{I}(ideal) \end{array}$$

between submodules of \mathscr{L}_k and ideals of \mathscr{A}_k . Thus one has a bijective correspondence

$$\frac{\mathscr{L}_k}{\mathscr{L}_k} = \mathscr{L}_k \bigotimes_{\mathscr{A}_k} \left(\frac{\mathscr{A}_k}{\mathscr{I}} \right) \longleftrightarrow \frac{\mathscr{A}_k}{\mathscr{I}}$$

For each $(u_1, ..., u_s) \in \mathscr{L}_k^{\oplus s}$ let $\phi(u_1, ..., u_s) : \mathscr{L}_k \longrightarrow \mathscr{L}_k$ be the homomorphism of free \mathscr{D}_Y -modules defined by $\phi(u_1, ..., u_s)(e_i) = u_i$. Then $\mathscr{L}_k^{\oplus s} \longrightarrow \mathscr{A}_k, (u_1, ..., u_s)$ $\mapsto \phi(u_1, ..., u_s)$ is an isomorphism. Now $\mathscr{J} \simeq \mathcal{N}_k^{\oplus s}$. Hence we have

$$\bigcap_{P \in \rho_k(j_0)} Car\left(\frac{\mathscr{Q}_k}{\mathscr{Q}_k,P}\right) = \bigcap_{(u_1,\dots,u_s) \in \mathcal{N}_k^{\oplus_s}} Car\left(\frac{\mathscr{Q}_k}{\sum\limits_{i=1}^s \mathscr{D}_Y u_i}\right)$$

Suppose now that $p \in T^*Y \setminus Car(\frac{\mathscr{D}_k}{\mathscr{D}_k})$. Then there is some $Q \in \mathscr{D}_Y$ such that $Qe_i \in \mathscr{D}_Y$ $\mathcal{N}_k (1 \le i \le s)$ and $\sigma(Q)(p) \ne 0$. Setting $u_i = Qe_i (i=1, ..., s)$ it follows that $\frac{\mathcal{L}_i}{\sum_{i=1}^{s} \mathcal{D}_{ru_i}}$

is isomorphic as a \mathcal{D}_{Y} -module to $\bigoplus_{i=1}^{s} \frac{\mathcal{D}_{Y}}{\mathcal{D}_{YQ}}$, implying $p \notin Car(\frac{\mathcal{L}_{k}}{\Sigma \mathcal{D}_{Yu_{i}}})$.

Main Theorem 7.

Now everything is prepared for the statement and proof of the main theorem.

Theorem 7.1. Let X be a complex analytic manifold, Y a smooth submanifold of X and \mathfrak{M} a coherent \mathfrak{D}_X -module. Then

$$Car(\mathfrak{M}_Y^{\bullet}) \subset Car_Y^{\mathbb{Z}}(\mathfrak{M}).$$

Proof. Let θ be a point in $T^*Y \setminus Car_Y^Z(\mathfrak{M})$. Given a section u of \mathfrak{M} let $\mathscr{J} \subset \mathscr{D}_X$ be the annihilator of u. By proposition (6.1) there exists a $P \in \mathscr{J}$ such that $det(\rho_k(P))(\theta) \neq 0$ for all $k \in \mathbb{Z}$. In fact, if this was not the case, then we would have $\theta \in Car_Y^Z(\frac{\mathfrak{D}_X}{\mathfrak{f}})$ and, since $\mathfrak{D}_X/\mathfrak{f} \longrightarrow \mathfrak{M}$, $P \mapsto P.u$ is an injective morphism, one would conclude by proposition (4.1) that $\theta \in Car_Y^Z(\mathfrak{M})$.

As the module \mathfrak{M} is locally of finite type there is a local system of generators $(u_1, ..., u_s)$ of \mathfrak{M} and for each u_i one operator P_i , such that $P_i u_i = 0$ and $det(\rho_k(P_i))$ (θ) $\neq 0$ for all $k \in \mathbb{Z}$ and $1 \le i \le s$.

Let us denote $\mathscr{L} = \bigoplus_{i=1}^{s} \frac{\mathscr{D}_{X}}{\mathscr{D}_{X} \cdot P_{i}}$ and let $\mathscr{L} \xrightarrow{\phi} \mathfrak{M}$ be the morphism that sends u_{i} to the class of 1 modulo \mathscr{D}_{X} . P_{i} . Let \mathscr{N} be Ker (ϕ) . Then there is an exact sequence of left \mathscr{D}_{X} -modules:

$$0 \longrightarrow \mathcal{N} \longrightarrow \mathscr{L} \longrightarrow \mathfrak{M} \longrightarrow 0.$$

Applying the functor $\mathscr{D}_{Y \to X} \bigotimes_{\mathscr{D}_{\lambda}}$ to the above exact sequence we get a long exact sequence of cohomology

(6)
$$\cdots \longrightarrow \mathcal{N}_Y^k \longrightarrow \mathcal{L}_Y^k \longrightarrow \mathfrak{M}_Y^k \longrightarrow \cdots \longrightarrow \mathfrak{M}_Y^0 \longrightarrow 0.$$

As the theorem was already proved for modules of type $\frac{\mathfrak{D}_{x}}{\mathfrak{D}_{\lambda}P}$ and there exists a $k_0 \in \mathbb{Z}$ such that $\mathcal{N}^{k_0} = 0$, one may assume, as an induction hypothesis, that $Car(\mathfrak{M}_Y^k) \subset Car_Y^Z(\mathfrak{M})$ for all coherent \mathfrak{D}_X -module \mathfrak{M} and all $k \leq k_0$. Now, from the long exact sequence (6), it follows that

$$Car(\mathfrak{M}_Y^{k_0+1}) \subset Car(\mathscr{L}_Y^{k_0+1}) \cup Car(\mathcal{N}_Y^{k_0}),$$

implying that $\theta \notin Car(\mathfrak{M}_Y^{k_0+1})$. Hence, by induction, we finally conclude that

$$\theta \Subset \bigcup_{k \in \mathbb{N}} Car(\mathfrak{M}_{Y}^{-k}) = : Car(\mathfrak{M}_{Y}^{\circ}),$$

 \square

finishing the proof of the theorem.

References

- [Ka83a] Kashiwara, M., Systems of Microdifferential equations, Notes by T. Monteiro Fernandes, Progress in Math. 34, Birkhauser (1983)
- [Ka83b] ———, Vanishing cycles and holonomic systems of differential equations, Lecture Notes in Math., Springer Verlag, 1016 (1983), 134-142.
- [SK75] Sato. M. and Kashiwara. M., The determinant of the matrices of the pseudo-differential operators, Proc. Japan Acad., 51 (1975).
- [Sch85] Schapira, P., Microdifferential Systems in the complex domain, Grundlehren Math. Wiss., Springer Verlag, 269 (1985)
- [LS87] Laurent, Y. and Schapira, P., Images Inverses des Modules differentiels. Compositio Math., 61 (1987), 229-251.