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An Upper Bound for the Characteristic
Variety of an Induced ¥-Module

By

Carlos MENEZES™

Abstract

We generalise the Carf, (M) upper bound of Laurent & Schapira [LS87] for the characteristic
variely of the induced system of a coherent @x-module R on a hypersurface Y of X. to the case
where Y is a smooth submanifold of X of arbitrary codimension
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1. Introduction

Given a complex analytic manifold X and a smooth submanifold Y of X, let
T*X—X be the cotangent bundle of X, T*Y—7Y the cotangent bundle of Y. TyX

2 >
—Y the normal bundle of Y in X, T¥X—7Y the conormal bundle of ¥ in X, and

)
let o and @ be the maps cannonically associated to the immersion Y—X:
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THYEY X xT*X-ST*X,

Let Ox be the structural sheaf of X, £y the defining ideal of ¥, Oy=0x/fv the
structural sheaf of ¥, @x the sheaf of holomorphic differential operators of finite
order in X, Px|v the restriction of Px to Y, and let

Dy-x=0vQp Dxiv=Dx/ ¥ vDx
be the transfer bimodule from Y to X. Given a coherent Dx-Module I, let
93213:@,/_,;((%)%9)? be the induced @y-Module in Y. Define
My=H""* (M?) =Tory* (Dy—x, M).

Kashiwara [Ka83a] proved that, if M is non-characteristic for ¥, then

o the cohomology of the complex M¥ is concentrated in degree O;

o MY is a coherent Dy-module;

o Car (M) =p@ *Car (M).

Consider now in @xyy the Kashiwara [Ka83b] V-filtration associated to the

j
embedding Y—X and defined in degree k by
FiDx={PEDxyy : PFy'Cy'™* VIEN),

and let F’fr@y—.x:%‘j be the degree k of the corresponding Fy@y—x quotient
filtration.

Let M be an arbitrary coherent Px-module not necessarily non charac-
teristic for Y. In [LS87] Laurent & Schapira proved that

o IM% is a union of an increasing sequence of coherent @ y-modules.
So they could define the notion of characteristic variety of My, Car(M7).
Moreover by [Sch85] the sheaf of graded rings gry(@x) is isomorphic to
the subsheaf As%Pir,x; of rings of holomorphic differential operators of finite
order on TyX that are algebraic in the fibers, and if FyIM is a FyPx-good
filtration on M then the graded module of M for this filtration, gry (M), is a
g7y (Dx) -coherent module. Denoting by ETYX(W?)CT*TyX the formal
microcharacteristic variety of ¢ along Y, i.e. the characteristic variety of
D1, xR -1gr, 0087y (M), it was proved in [LS87] that

o Car (M) CT*Y NCrx(M).

Moreover, when Y is smooth embedded hypersurface of X, in [LS87] was
defined a new subset of T*Y, denoted Cars (M), and it was proved that

o Car (MF) CCar% (M) CT*Y NCr,x (M),
providing a better upper bound for Car (IMY).

The aim of this work is to generalize the construction of the Cars (M) of
[LS87] to the case where Y is a smooth embedded submanifold of X of
arbitrary codimension.

To finish this introductory section some of the above globally defined
objects are computed in a special coordinate system.
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The above objects in local coordinates. Let (y, t) = (y1, ..., Ym—q t1, -y
ts) be a local coordinate system in X such that Y={(y, t): t=0}. Then:

TeX={(y, 7): y€C™ %, c€CY,

Dx
t1@x+"‘+tq@x'

@y__.x:

Let §%=0§'®+% be the image of %, 07°€ Dx by the canonical projection
@x_’@yqxzm?&—hg(. Then
F§Dyx= D Dvyo°,
la| <k

and

Dy-x= DD Dyd*.

k20lal=k

Acknowlegments. I want to thank Professor T. Monteiro Fernandes for
her continuing support and encouragement during the preparation of this paper.
I also want to thank Professor M. Kashiwara for some discussions about the
results of this paper.

2. Definition of Car (M7)

Proposition 2.1. [LS87]. Let (X, Ox) be a complex analytic manifold and
let Y be a smooth submanifold of X. Let M be a cohevent Dx-module. Then the

Dy-modules MYy may be locally written as a union of an increasing sequence of
coherent D y-modules.

Proof. Consider a local finite type free resolution of J:

Ap-1 Al

(1) 0—Dym gm0 M — 0,

where A4,(i=0, ..., p—1) is a m,41; X m, matrix of differential operators that acts

on the right of @x™"'. Tensoring (1) on the lelt by @qu®@x we get the
complex

(Dy_x)™— o= (Dyx)™

which is quasi-isomorphic to M. Then

Ker(4,.) = U Ker (F§Dy_x"—Dy.x™")

keN
= U Ker (F’f/@ Y_.Xm""’Flf’-H@Y-.xm(—l)
keN

for a big enough [>0. Setting
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K, (k) =Ker (F’fr@y-.xm""’FIf/H@ Y—-XmH)

we have that K, (k) CK,(k+1) and that K, (k) is a coherent Dy-module. This
proves that Ker(4,.;) is a union of an increasing sequence of coherent
PDy-modules. On the other hand we have:

Im (Az) = UIm (@ Y—»Xmm—"@ Y—»xml) NFYDy-x™

keN

= UU Im (F’y@y-.xmm_“@ y_)Xm’) N F’f’@ Y—»Xm‘.

keENIEN

Setting
I, (k) = U Im (F¥Dy-x™"—D Y—~Xml) NFYDy_x™,

IeN
we see that I; () is a union of an increasing sequence of coherent sub-Py-
modules of the coherent Dy-module F¥PDy-x™. Being Py a noetherian sheaf of
rings, I, (k) is a coherent @y-module. Finally we have Im (4,) = U yenl, (k) and
I,(k) €I,(k+1). Hence it follows that Im(A,) is also a union of an increasing
sequence of coherent Py-modules. O

Now let R be a left Dy-module, locally a union of an increasing sequence of
coherent Dy-modules (MNy) rew. Then the subset
Car(M) := U Car(Ny)
keN
does not depend on the sequence (M) ren and is called the Characteristic Variety

of M.
If 0 RN N N 0 is an exact sequence of @Yy-modules of the

preceding type then

Car (M) =Car (W) UCar(N").

Definition 2.2. If RN° is a bounded complex of Dy-modules such that the
cohomology groups are Dy-modules of the preceding type the characteristic variety
of the complex N° is defined to be the following subset of T*Y:

Car(M°) = U Car (B (N°)).

jEZ

In particular if M is a coherent Px-module, then the characteristic variety
of My is the following subset of T*Y

Car(MS) 1= U Car (H7{IM3)).

jeN
3. Differential Operators on a Holomorpic Vector Bundle

Given a holomorphic vector bundle of rank g over the complex analytic
manifold Y,
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2
A—Y,
let #=e; be the Euler-vector field of A. Given an integer k let
Okl ={r€0, : 6f=kf)

be the sheaf of holomorphic functions on A that are homogeneous of degree k in
the fibers, and let

D (k] ={PED, . [6, Pl =—FkP}

be the sheaf of holomorphic differential operators on A that are homogeneous of
degree k in the fibers. The following proposition is clear:

Proposition 3.1. [LS87] The map AxOuy; [0] '—p"@y, = fir is an
isomorphism of Oy-modules.

The sheaf 2:+D 1 [0] acts on the left of Ax0w; [0] and so also on Oy. This

defines a morphism of sheaf of rings 2+P ) [O]L@y.

If (y, t) is a local trivialization of A such that A(y, ) =y, then the
differential operators P € Dy [F] are those that may be written in that
coordinate system in the form:

P= 2 Pasly, 0,,)["65

la|—|Bl=k

In particular the differential operators P€ @, [0] are those that may be written
in the form:

P= 3 Py, 8,)t%9.
lal=18]

and we have
0(P) =Pos(y. 8,).
Thus, locally, 2x@u; [0] is identified to
DO =Dy, Orz..., Ouq. ..., Oa1, ... O4g) / {commutation relations}

where, by definition, #; = ,0,, and the commutation relations between the
variables §,; are the following ones:

0 if j#k and i #1

0. if j=Fk and i #I

0.,—0,, if j=Fk and i=1

—0, ifj¥Fkandi=I

(2) [ﬁt.i- 0kl] = [ttatp tkatl] =

In particular, locally, o is identified to o (P (y, 8,, 8,,)) =P (y, 9,, 0)
If M| is a coherent AxDy [0] -module the coherent Dy-module p(N) is
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defined by “extension” of scalars:
o () =DrQ o.M,
thus having a characteristic variety Car(0(®)) in its own right, which is an

involutive analytic subset of T*Y.

Proposition 3.2.
(@) If O > G Bl N 0 is an exact sequence of cohervent
25D 14; [0] -modules then

Car(p(R)) =Car (o () UCar(o(N")).
(b) If § is coherent ideal of 2xD ) [0] and if R=24D 4 [0]/F then
Car(o(M)) ={y*eT*Y : vPES o(p(P)) (y*) =0}

Proof. The problem being of local character we can set
ﬂ*@m] [O] =@y<ﬁ>.

Let I be the left ideal of £y<6> generated by 611, O, ..., Oug, ..., Oar. ..., Gaq.
Then:
o @Y:@_Y_I(Q_

° ;€I Vi.j,
and the commutation relations {(2) give
o 6, EI* if i#j
°§,—0,EI" Vi, j
o Gk—@LET* Vi jYEEN.
Let FDy<8 be the non-separated filtration on L¢<6> defined by
Dyl if k=0
Fk@y<0> =
I if k<0
The properties of @y <O listed above imply that the graded ring of Dy<& for
this filtration is isomorphic to the ring of polynomials Dy (6] in one variable 8
and with coefficients in Dy, where 8 is the image of all the 6,,€I' (=1, .., ¢) in
the quotient I*/I%
As grDy<0> =Dy [0] is a noetherian graded ring and

Fo@y<6> =@y<ﬁ>

is a noetherian filtered ring, proposition 1.1.8 of Chap. II of [Sch85] implies
that the filtration F@y<6 is a noetherian one.

Now let gr@y <6> be filtered by the order of holomorphic differential
operators in Y.

If M is a coherent Py <{H -module equipped with a good FPy < -filtration
the graded module of M for this filtration, gr(M), is a graded coherent
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Dy [6] -module whose characteristic variety Car (grRR) is an analytic subset of
T*(Y) XC

By Proposition 1.3.1 of Chap. Il of [Sch85], the characteristic variety Car
(grM) is independent of the choice of the good filtration on M and the map that
sends M to Car (grR) is an additive map, that is, if 0 R N—N" 0
is an exact sequence of coherent Dy <6 -modules then Car (grR) =Car (grI) U
Car (grR”) .

Hence, to prove the first part of the proposition it is enough to prove that
Car (grM) = Car(Z) X C.

Suppose that M is a coherent Py <> -module. Then the filtration on N
defined by

_{m if k>0
Tl if <o

is a good filtration, and the graded module of 9t for this filtration is

gr(N) =D '

= k+1g3°
k>0 I N

So, for all k € Z, ,k':—\,nm is a coherent Py-module and we have a surjective
morphism of coherent P y-modules

R "IN
I Ilc+1m'
Thus
,1"93> (ﬁ) *
CM(I"“‘R CCar 9t CT*Y,
and

Car (grt) = (liBOCar<T£:?;a)) xXC =Car(%> xC.

Part b) of the proposition follows from o (%) =,% where

p(}) :{P(y, Oy. 611, Ois..., 014, e qu, e 6qq)|0”=0 Pef}
O

Notation. For € Z the module Dy [k] is a coherent Dy [0] -bimodule
(in fact it is locally free). Therefore, given a coherent 3P y;-module N, we
may consider the coherent ¥ y-module

?RY,k:@Y®la@m[o] (2*@[/1] [k] ®l*f’m [Olm)
=0(AsD ) [k] 2.9, 10T .
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Example 3.3. Let PEF{Dx and let %=g7°(§—,§>), where -@%"; is equipped with

the induced filtration F¥@y_x. Then

Ny =DrRr.0. 101 (/I D [#] D;.0., [o]g70<‘@@fﬁ)>

k
=9,®s.0, A0
YERD00V i (@) 60 (P)
_ Dy
gr* (Dyx) 6y (P)

Example 3.4. Given k=1 let PE F{Dxiy \F¥-1Dxiy. Then, in the special

local coordinate system chosen in the introductory section,

P=Q+ X 9fQ,.

18l=k

where QEFY 1 Dx and QsEFEDx. Thus, locally,

M.

o)t
DxP D g (Dx) 7* 22 0£6(Qs)
lal=k 18l=k
Since
@y_ QO@X

gTO@X<T15-L—1, e 2'161,,, . Tqan, s Tqan) '
it follows thal

Nyo= @Y®gr°%.§7’0<g;?>

0 )
— g" @X 0( -0){ )
g?’o@x (Tlan. . Tqan,) ®g70@4‘g‘l’ @XP

=0.

Proposition 3.5. [LS87]
(i) Let M be a cohevent AxDy-module and let N be a cohevent sub-
AxD i1 [0] -module of M that generates M over AxD ;. Then

S(M) 1= U Car(My,)

keZ

is a subset of T*Y which does not depend on the choice of M.
Gi) If O m- m Mm” 0 is an exaci sequence of cohevent
AxD1-modules then

S (M) =6 (M) US(M").

Proof. (i) Let M and N two coherent A5xD4) [0] -modules that generate
As M is a generator of M we have
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=2 (2D [R]N) NR

keZ

and so W= U WP where
kEN

e = Z (/1*@(/1] [7] ER) N
—k<)<k
The sequence (N %) ez is a sequence of coherent 25D [0] -modules of N, and
being U of finite type this sequence must stabilize. Let ky be an integer such

that W=W* and let R'= 2 QD FIN).
—ko<i<ko
Then

U Car (m'y,/) C Car (En”y,k) =U Car (my,k).

kEZ keZ keZ

Reversing the roles of i and N’ we get the first part of the proposition.

() It is enough to prove that if 0 —— N" N <N 0 is an exact
sequence of coherent AP [0] -modules then

Car Ryx) =Car Myx) UCar Ny.o).

But this is an immediate consequence of Proposition 3.2 and of the flatness of

Z*@M) [k] over 2*@;/1] [O] D

4. Definition of Cars (M)

Now let A= TyX—l—’Y be the normal bundle of ¥ in X. Let IR be a
coherent Yx-module and let Fy¥lt be a good filtration on M. Then the graded
module for this filtration, gryM, is a coherent Dyy-module and N = g} (M)
generates M over Dyy. Thus we can associate to gry (M) the subset & (gryM)
of T*Y. By Proposition (3.5), the functor - & (N) is an additive one. By
Proposition 1.3.1. of Chap. Il of [Sch85], & (gryM) is independent of the choice
of the good Fy@x-filtration and the functor M & (gryM) is an additive onc.
Therefore we have the following proposition

Proposition 4.1. Let M be a coherent Dx-module and let FyI be a good
Fy@Dx-filtration on M. Then

(i) S(gryM) is a subset of T*Y and does not depend on the choice of the
good FyDx-filtration on .

(i) if 0 M m Mm” 0 is an exact sequence cohevent
Dx-moditles then

S (gryIl) =G (gryM) UGS (gryM”).

This proposition enables us to make the following definition, as in [LS87]:
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Definition 4.2. Let M be a coherent Dx—module and let FyI be a good
Fy@xfiltration on M.  We define

Car%:(g)?) =6 (g?’ygﬁ) =U Car(my,k)

k€Z

where Ny =Dy, 045D 11 [k] 1,0, 10187% (M).

The goal of the remaining sections is to prove that Carf/ (M) is an upper
bound for Car (IR3).

5. The Case Where I is the Module Defined by One Operator

Let pE@XIY and m:@x/@xp Then

P
0 Dx Dx m 0
is a free resolution of M. So, in the derived category,

Dx ? Dx

P
m?’—”@yax——’@y—»x'—vff* 4

and
My =Ker P, M}=Coker P.

Let PEFYDx. Then (F8¥Dy_x). PCF%Dy_x. Hence we can define

o)
FDy-x— FyDy_x

where gy (P) is the restriction of P to F¥Dy_x.
Consider now the action of P on the vectors 0% of the base (07) <k of
F@y x= @D Dyd". If P is locally formally written as
171k

P= X P,s(y.0,) %0
lal >8]

then
1
§.P= 3 Paply, 8,) L0725
lal> 181 =s . 0 (r—a)!
Let A (7. ) the coefficient of 6% in the expression of 6".P. Then
A (T' 0) = > Poo-ria (y, ay)

0<a<r

.
(r—a)v

Ordering the base (07) ;<4 in such a way that all the 07 with l7|=1 have orders
lower than the 07 with |7]=i+1, it follows that the matrix A (k) of @(k) in such
a base is block-lower-triangular:
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Ao 0 0
A (k) — Alo All O
ww An Ak

where A,, is the matrix A (&) (1, ) =119=;. Clearly that A (k—1) is the matrix
A (k) with the last row and last column of blocks omitted. Thus

“T&@-IT—X“>= LkJ *ET*Y: det(4,;) (y*) =0}
4Dy xpe (P) ] 121
where det is the determinant of Sato-Kashiwara [SK75].

But {y* € T*Y: det (Aw) (y*) =0} is precisely Car (ﬁ%) where

Car(

0k(P)
& (Dy-x)——gr% (Dy_x) is the linear morphism whose matrix in base (67) ;1=x
oo(P)

is Agr. Observe now that o, (P) is the morphism gD y.x—— g7%Dy_x. Then,
from example (3.4) it follows that

* PEFYDxr = Ca-r(( @%.(P ) j) - ngP (1 «Diay [k] ®z*®m.[o]gr?z—%) ,

and thus the following property is true:
Car (M3 ) S Car% (M)
Cary (M) = U {y*ET*Y ©  det{o(P)) (y*) =0}

kE€Z

° PGF(])/‘@){[Y3 [

From example (3.3) and from definition of Car% (M) it follows that
o k>0 and PEFY\FS'Dx=> Cark (M) =T*Y.

Hence we have proved the following proposition

Proposition 5.1. Let PEDxy and M= 9‘(’{},. Then
(@) Car(My) CCark (M.
(b)  Moreover if PEFYZx then

Cars (M) = U {y*€T*Y: det (o, (P)) (y*) =0}.

k€eZ

6. The Case Where I is the Module Defined by a Coherent Ideal

Let ¢ be a coherent ideal of Pyx; then gry(%—Y) is generated by gr?z(F‘;?‘) where

Fo=FNFYDx. Therefore

®) Car%(%) =Y Car( (2y®s,0, 04D [k]) B3, [olgrg'(F(f@?X) )

keZ
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_ 24D 141 [0]
4 = U CarlgrDy_.
( ) kez dr(g Y X®z,@m,[o] gﬁ*(}o) )
ke
5 = U Car( &2
( ) keZ m(g?’?' (fo))

Let P be an element of £ and let go(P) be the image of P in g7${(¥#o). Then

& *Dy-x gr*Dy_x 0
gr"@ Y-x00 (P) grk@ Y—»ngg (fo)

is an exact sequence of gr*Dy_y-modules. Thus, taking into account equation

),

)

Ca%(@)i)C U y*ET*Y: det (0, (P)) (y*) =0 VPEF}.
”@ k€Z

The following proposition shows that the above inclusion is in fact an equality.
Proposition 6.1. Let £ be a coherent ideal of Dx. Then
Car%r(%&>=kU W*eT*1 det (0« (P)) (y*) =0 VPEF]}.
ez
Proof. For each kEZ let us denote by ¥ the following Dy-module:

P Dy08 if k=0

lal=k

D Dyte if k<0

lal=—k

L=DvQ;.0,0AxDw [k] =

Then we have a commutative diagram of ring homomorphisms

25Dy [0] — Endg, (L4).

T /Pk

Fo=F NFYDx
We denote by Ny the Dy-module Zrox (Fo). With this notation, we see that, to
prove the proposition, it is enough to prove that, for all kEZ,

Car(%) 2 Qéﬂ(}q)CW(éﬁé).

S
Let ey, ..., es be a basis of the free Py-module £, and we write €, = DDye..

1=1
We denote by & the ring of Py-endomorphisms Endp,(%:). Then % is a
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left-right (Dy, &) -bimodule and the functor

Hom(Z, )
ED?od (@ y) —_— ED?od (.ﬂk)

M +— Homg, (£:, M)
is an equivalence of categories.

The correspondence

2R,
Mod (A,) —— Wod (Dy)

2 — 2,2
is a left adjoint functor. This gives a correspondence

L —
U J .
N (submodule) «— $ (ideal)
between submodules of ¥, and ideals of &,. Thus one has a bijective corre-
spondence
L

_ :Qlk_) g

7= 48— 5

For each (uy, ..., us) €LY let ¢ (uy, ..., us): £—— %, be the homomorphism of
free Dy-modules defined by @ (u1, ..., us) (&) =u;.

= (uy, ..., us) is an isomorphism. Now }:N?S. Hence we have

Then ff?s —dy, (uy, .., us)
n Car( gfk ) =
Pepk(gy) k- (

N Car( L )
UL,y us)e.A/fBs

Suppose now that p &€ T*Y\Car(%). Then there is some Q € Dy such that Qe, €
N (1<i<s) and 6(Q) (p) #0. Setting u,=Qe, i=1, ... s) it follows that

is isomorphic as a Yy-module to é
1=1

&

g@m,

o2, implying pEECar(;’* ). |
=’®m.

7. Main Theorem
Now everything is prepared for the statement and proof of the main
theorem.

Theorem 7.1.

of X and M a coherent Dx-module.

Let X be a complex analytic manifold, Y a smooth submanifold
Then

Car (M) CCare (M).

763
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Proof. Let 6 be a point in T*Y\Car% (M). Given a section u of M let FC
Dx be the annihilator of u. By proposition (6.1) there exists a PE# such that
det (0x (P)) (6) #0 for all kREZ. In fact, if this was not the case, then we would
have € Car%/(%) and, since Dx/F——M, P — Pu is an injective morphism, one
would conclude by proposition (4.1) that € Cars (IN).

As the module MM is locally of finite type there is a local system of
generators (u1, ..., us) of M and for each u, one operator P,, such that Pu, =0
and det (0x (P,)) (6) #0 for all kEZ and 1<i<s.

o
Let us denote f=®97?‘%, and let ¥—IM be the morphism that sends u, to
1=1

the class of 1 modulo Py P,. Let N be Ker (¢). Then there is an exact
sequence of left Px-modules:

0 N ¥ m 0.

Applying the functor Dy_x& 4, to the above exact sequence we get a long
exact sequence of cohomology

(6) N £% mi =My — 0.

As the theorem was already proved for modules of type @?—xp and there exists a
ko € Z such that /* =0, one may assume, as an induction hypothesis, that

Car (M%) C Car’s (M) for all coherent Dy-module M and all #<k,. Now, from
the long exact sequence (6), it follows that

Car (Me*1) C Car (P%*Y) U Car (N®),
implying that 6 Car (M%), Hence, by induction, we finally conclude that
0& U Car (M7*5) = Car (M3),

keN

finishing the proof of the theorem. O
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