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Strongly Hyperbolic Systems of Maximal Rank
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By

Tatsuo NISHITANI*

§ 1. Introduction

Let L be a first order differential operator defined in an open set Q in R"*!

n
L(x, D) =Duln+ ) A, (1) D,
71=1
where A, (x) are real analytic m xm matrices defined in Q and x= (x, ") =

(o, %1, oo 20), E= (&0, &) = (&, &1 ... &). Let us denote by h(x, &) and M (x, €)
the determinant and the cofactor matrix of L (x, &) respectively. Let 2= {z=

(x, &) |n(z) =+ =d" " (z) =0} be the set of characteristics of order m of h.

We assume that X is a real analytic manifold near a reference point 7= (%, &).

Without restrictions we may suppose that 0€Q and £=0. Let 2 be given by
¢0(X, £)=&=0, ¢;(x, &) =0, 1£<k

where ¢, (x, &) are real analytic, homogeneous of degree 0 in & with linearly
independent differentials at z. Since we are interested in strongly hyperbolic
svstems, we assume that L(x, &) satisfies a necessary condition for strong
hyperbolicity obtained in [5], that is

M (x, &) vanishes of order m—2 on 2.

which implies in particular (L|g)?=0 where L[z is the restriction of L to 2.
Thus we have
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0<rank (Lly) <[m/2].

In our previous papers [6], [7] we studied the extreme case that rank (L|s) =0,
the case closest to symmetric systems. In this note we study the other extreme
case when rank (L |z) = [m/2], which is, in a sense, farthest away from
symmetric systems. Our aim is to show that if the localization &, of h(x, £) at
z € 2., the first non-trivial term in the Taylor expansion of 4 at z which is a
polynomial on T.(T*Q)/T,X, is strictly hyperbolic and the propagation cone of
h. is transversal to 2, at every z € X then L(x, D) is strongly hyperbolic
(Theorem 1.2). Here the propagation cone is defined as the dual cone of the
hyperbolic cone of h,; with respect to the canonical symplectic structure on
T.(T*Q).

We remark that L is not symmetrizable and %, as a scalar operator, is not
strongly hyperbolic if m=3. In fact in order that & is strongly hyperbolic then
every characteristic must be at most double ([1]).

The idea of the proof of strong hyperbolicity is very simple. Let S™(=
S7) denote the space of symbols of order w and denote by ¥™ the space of
pseudo- differential operators with symbol in S™ (for the definition, see for
example [2]). Then we can find M, € U™~ so that for any lower order B (x)
we can apply our previous results in [4], [3], on the well posedness of the
Cauchy problem for scalar operators or rather its proof to (L +B) (M +M;+
Ms).

Theorem 1.1. Let € 2 and on 2. near 7 we assume that rank L(x, &) =
[m/2] and M(x, €) vanishes of order m—2. Then one can find M;€E Tm 17" i=1,
2 defined near z such that with

(L+B) M~+M+M,) =hlp+Hpy -+ Hyj+

wheve Hp_; € U™ near z, we have either (1) or (u);

(1) for every B(x) €C*(Q: M (m, C)), Hy—, (x, &) vanishes of order m—2j on 2.
near z,

(n)  for every B(x) €C*(Q; M(m, C)) all elements of Hu—; (x, E) vanish of ovder
m—2j on 2 near z except for the last row and column which vanishes of order m—2j
—1 and m—2j+1 on 2 near z respectively.

Remark. We can find M; € &2 5o that either (L+B) (M+M;) or (M+M;)
(L+B) verifies the assertion (1) of Theorem 1.1. We give the proof at the end
of Section 3.

In virtue of Theorem 1.1 we can apply our previous results or rather its
proof in [4], [3] to get

Theorem 1.2. Assume the same assumptions as in Theorem 1.1, Suppose
that the localization h is strictly hyperblic on Tz (T*Q) /T 2. and the propagation
cone of hyis transversal to 22 at 22 Then L is microlocally strongly hyperbolic near Z.
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With A (x, &) = 27,14, (x) & we can write

Al §)=) B €)¢,x ) +P(x, §)

j=1

with P(x, &) = A (x, &) |z. Then we have rank P(r, &) = [m/2] near 7 by
assumption. Let us write

0 1
/= .| |eMOR)
0

and denote J(ry, ... #s) =®i=1 J(;). The next lemma is well known.

Lemma 1.3. Suppose that rank P(x, &) = [m/2] near z. Then there is a
real analytic N (x, &) €S° defined near 7 satisfving

Nz, &)7'P(x, )N (x, &) =]|&]
where J=@BY2](2) if m is even and J=D?J(2) B0} if m is odd.

Since the existence of a parametrix of the Cauchy problem with finite
propagation speed, which assures the well posedness of the Cauchy problem, is
independent of changes of basis for C™, one can assume that

Al &)=Y B, £):(x, &) +IE]

=1

if rank A (x, &) = [m/2] near z where B; €S' is real analytic near Z and J is
given in Lemma 1.3.

§ 2. Lemmas

Let

(21) L (x, E) = (au (x, &))1swsm=§01m+ ZB]' (x1 S,) &, (x, 5,) +]1€,‘

=1

where Bj are real analvtic near 2. Let J=@5J(2) D%, {0} with m=2s+¢ We
actually interested in the case t =s+ 1. Denote by @; the cofactor of a, in
L(x, & so that M= (d@j,), the transposed of (@;;). We denote C(x, & =0(s) if
C(x, &) vanishes of order s on X near 7 and we write C(x, £) =0, (s) if C(x, &
vanishes of order s at wE 2.. Note that

a;=0(1) unless (i,7)=(2k—1, 2k), 1<p<s.
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In this section we show

Lemma 2.1.  Assume that =0 (m), M=0(m—2). Then we have
a21,2-1=0 (2) s 1<, J <s.

We first observe that

Lemma 2.2. Assume that M(x, §) =0 (m—2). Then we have

azk-z+22-1=0(2), 1<k<s, 2,
amoe-aun=01(2), 1<e<s, 2<I.

In particular, az,-1=0(2), 1<i, j<s, i¥5.

Proof. Let us denote by S, the set of all permutations on {1. 2, ..., m}.
Note that

Aok ok—zi41 =" Zaaégl"4+"'=0(m—2),aa: H Qo)

oeT 1%2k,0(1) *1

where T={0€S,,|# {ilo() =i} =m—4, 6(2k) =2t —21+1}. We show that
a°=0(2) if ET unless 0(26—21+1) =2k—2[+2, 6(2k—1) =2k and hence
a°= tay 2149201 +0(2) which proves the assertion. Let 1<k<s and 6 ET.
Assume that 0(2k—21+1) =p#2k—21+2. If p=2k there is i with 0(i) <i and
then a,om@ze—zi+12¢ =0 (2). If p# 2k, with ¢(p) =q, 0(g) =7 we have q# 2k if
0ET. Thus p#q, gF v hence apqa,,=0(1) and therefore ags—gi+1,pdp.gda, =
0(2). Thus we have a’=0(2).

We next assume that ¢(2k—2i+1) =2k—21+2, 6(2k—1) =p#2k With
o(p) =q, o(g) =v we see p#F2k—1, q#2k if 6€ T. Thus p#q, ¢#r and hence
apqqr=0(1). Then as above we have az_1pdpqdq,=0 (2) and hence the asser-
tion. The second assertion can be proved similarly considering
A2k—21+2,2k-1-

To complete the proof of Lemma 2.1 it is enough to show

Lemma 2.3. Assume that h =0 (m) and a2 =0 (2), 1 <i, j <s. i #J.
Then we have

@21.25-1=0 (2), 1<, sz,

Proof. It is enough to prove a1 =0,(2) for every w€ 2, near z, 1<4
<s. Suppose that the assertion does not hold and hence the differentials of
Azipzip—1 at wE 2 were different from zero for p=1, ... I, 1<i, <s and a1 =
0,(2) if i€ iy, ... 1). Set T={0ES,|# liloG) =i} =m—21} and J°={1. .. m}
N\ {ilo (i) =i} for cET. We recall that

(2.2) =t ) 0t =00m), a”= [ ] aw

oeT i,0() %1
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by assumption. Let vET be such that v(2i,—1) =2i,, v(2i,) =2i,—1 and note
that ¢” vanishes at w exactly of order I. We show that a’= O, (I +1) unless
o=v. If #{ilo(2—1) =2} <i then it is clear that a°=0,( +1). Thus it
suffices to consider the case J°={2j,—1, %,}5-;. Suppose that J°#J” and hence
there were 2¢ — 1 such that 2¢— 1€ J%, 2¢ —1 & *. Since azz2-1= 04,(2) by
assumption we get a’ = 0,( + 1) and hence the assertion. Therefore from
(2.2) we would have a*=0, (I+1) which is a contradiction.

§ 3. Proof of Theorem 1.1

In this section we work near 7 without mention it. We denote by (M) the
symbol of an operator M and by Op (M) the operator with symbol M. But we
frequently use M to denote both an operator and its symbol if this leads no
confusion.

We first assume that m is even and we write 2m instead of m.

Proposition 3.1. Assume that h(x, &) and M (x. &) vanishes of order 2m

and 2m-2 on 2. respectively. Then there is M1 € U2 with ¢ (M) =0 (2m —3)
such that for any B(x) we have

(L+B) (M+M) =hlpmtHom 1+ -+ Hpp,+ -
wheve Hom—, € U™ and 0 (Ham—,) =0 (2m—2).

For the proof we remark that

Lemma 3.2. Under the same assumptions as in Proposition 3.1 every even
row and odd column of M is O (2m—1).

Proof. Since LM = hlyy it follows that {J]€'|+0 (|¢])YM=hl,, that is JIE'|M
=0(2m —1). This implies clearly that every even row of M is O(2m —1).
Considering ML =hl,, the second assertion follows similarly.

Proof of Proposition 3.1. Recall that 0 (LM) =hly,+ 2aL'®M,/a! and note
that

- 1 @ _ .
= ZEL( )]W(a)—O(Zm*‘Z_]).
lal=1

Since 2m — 2 <2m — 2 —j for j= 2, it is clear that LM — Op (2|41l P Ma))
verifies the desired properties. Set

Z L(mM(m =Te+To

lal=1

where T, and T, consists of even and odd rows of 2ja=1L ‘M respectively.
Set
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M= _t]Tolé,"I

so that JIE'|My=—T, and M;=0 (2m—3). Then it follows that L (M~+M,) =T, +
desired form, because L=J|&’|4+0 (|¢|). It is also clear that B(M+M,;) has the
desired form for every B. Thus it suffices to study T.. Note that the Zi-th
row of T, is given by a sum of the following terms over Ial =1

2m

(a) ~ —_ (a) ~ (a) =
Eazi,kajk(a)— Z a3 ik E A2i,kAjk(a)-
k=1 k : even k :odd

By Lemma 3.2 we see that @, =0 (2m—1) if ¥ is even and by Lemma 2.1 we
have az,,=0 (2) if k is odd. Then it follows that T,=0(2m—2). This proves

the assertion.
We turn to the odd m case. We write 2m+1 instead of m. Our aim is to

prove that

Propeosition 3.3. Assume that h(x, &) and M (x, &) vanishes of order 2m—+1
and 2m—1 on 2 respectively. Then we have either (1) or (n)

(1) there is MiE U with 6 (M) =0 (2m—2) such that
(L+B) (M~+M) =hlyme1+Hom -+ +Homor—y+ e

where Hum—; € T and 0 (Hame1—,) =0 Cm+1—2j),
(1) there are M,E T =1, 2 such that

(L+B) (M+M1+Mz) =h12m+1+H2m+"'+H2m+1_,'+“'

where every element of 0 (Homsr—,) is O(2m +1—2j) except for the last row and
columm which is O (2m—2j) and O (2m~+2—2j) vespectively.

To prove the proposition we start with

Lemma 3.4. Assume that h(x, €) and M(x, &) vanishes of ovder 2m~+1 and
2m — 1 vespectively. Then every even row of M is O(2m) and every odd column
except for the last one is O (2m).

Proof. The proof is a repetition of that of Lemma 3.2.

Lemma 3.5. Assume that M (x, £) vawishes of ovder 2m—1 on 2. If there
is i such that dasms1.2-1 (W) F0 with some wE 2. near Z then we have Gom-1;=
O (2m) for every j, @ams12:=0 (@m—+1) for i<m and az; 241 =0 (2) for j<m.

Proof. Note that

2m+1
(3.1) Eakjak.Zi-l= Z GriGi,z-1F 2 ily,20-1
k=1

k > odd,k+2m+1 k:even

+aomer,izmir,2-1=0 2m+1).



STRONGLY HYPERBOLIC SYSTEMS 771

Recall that ay2i-1=0(2) if k is even and i <m by Lemma 2.1 and ;=0 (2m) if
k#2m~+1 is odd by Lemma 3.4. From (3.1) we get @zms1j Gzmsr,20-1=0 (2m+
1) for every j. Since @ams1; is. up to term O(|¢[|*"), a polynomial in ¢ of
degree 2m —1 with coefficients which are real analytic on 2 we conclude from
(3.1) that the coefficient vanishes near w and so does near z. Thus we get the
first assertion. To prove the second assertion we note that

2m+1
(3.2) Z A21-1k Come1,e =0
k=1

and az-12: =&, az-14=0(Q) if k# 2. Since @amsrr = O (2m) by the first
assertion we get the second assertion from (3.2).
We turn to the third assertion. Consider

(3.3) Z Q2 i@om+1,k T Z A2, k@2m+1,k

k :odd,k+2m+1 k . even

+as 2mr1@2mr1,2m+1=0.

If k is even it follows from the second assertion that @am+1.=0(@m+1). On
the other hand we have @am+1.: =0 (Z2m) from the first assertion and as,=0 (2)
if k#2m—+1 is odd by Lemma 2.1. Since @am+12m+1 vanishes at z exactly of
order 2m the third assertion follows from (3,3).

Lemma 3.6. Assume that azmi1,20-1=0 (2) for every i <m. Then we have
@r2me1=0 (2m) for every §.

Proof. Note that

2m+1
(3~4) Z Aom+1,kl 1k = Z 02m+1,kd,«'k+ Z A2m+1,k0jk
k=1 k @ odd,k+2m+1 k:even

+02nl+l,2m+1@,2m+1 =0 (Z’WL +1 ) .

If #2m+1 is odd then azm+1e=0(2) by assumption. If & is even then &, =
0(2m) by Lemma 3.4. Since azm+12m+1 vanishes at Z exactly of order 1, the
assertion follows from (3.4).

Proof of Proposition 3.3. We divide the proof into two cases.
(a) Assume that asms1.2-1=0 (2),i<m. Set

sz Z L(a)M(a)/a!= Tje+ T;o
lal=j
where Tj. consists of even rows and (2m+1) -th row of S; while T, consists of

(2i—1) -th rows of S,, 1<i<m. Consider the (2m=+1)-th row of S; which is a
sum of the following terms over |a'|=1
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2m+1

(a) ~ — (a) ~ (a) ~
Zazmﬂ,kdjk(a)— Z a2m+1.ka«1k(a)+ Z A2m+1,kjk (@)
k=1

k> odd,k+2m+1 k :even
(a) -~
+azm+1.2m+1d;,2m+1(a>-

From the assumption it follows that a$f+1,,=0(1) if k#2m+1 is odd. On the
other hand from Lemma 3.4 we get Gjum =0 (2m—1) if k is even and by Lemma
3.6 we have @amr1a=0(2m—1) for everyj. This proves T1e=0@m—1). As
in the proof of Proposition 3.1 we set

My=—"Tyl|&]™.
Then we have M; € U?7~! with M, =0 (2m—2) and setting
(L+B) OV[‘*"Ml) =h]2m+1+H2m+"‘+H2m+1_1+‘”
it is easy to see that Hami1—, € U2 and Hayms1-, =0 (2m+1—2;) since L has
the form JIE|+0 (@)
{b) Assume that there is i such that dagm+1,2.-1 (w) #0 with some w € > near z.

Let S,, T)e and Ty be as in (a) again. From Lemmas 2.1, 3.4 and 3.5 we see
that a2,,=0(2) for odd k and @;;=0 (2m) for even k. This proves that

even row of $,=0 (2m+1—2j),j=1, 2

while the last row of S, is O(2m—1—3),7=1, 2. Moreover by Lemma 3.5 we
have Gam+1e=0 2m) for every k, Gems1x=0 (2m+1) for even k and az,,=0(2)
for odd # by Lemmas 2.1 and 3.5. This proves that

2m+1

Z s @am1 k=0 (2m+2—2|al)

k=1

and hence the last column of Ty is O (2m+2—25),7=1. 2. Let us set

&7 j=1.2

M,= ——t]Tjo

so that M;E¥# 7 and M,=0(2m—1—j). We remark that the last column of
M, is O (2m—y) for j=0, 1. 2 with Mo=M because Gzm+1.t =0 2m).

Consider (L+B) (M~+M,+M,). Note that S,=0 (2m +2—2j) if ;=3 and
hence LM=T;+ T;+desired form /n). Set

(L+B) (M1+M2) = —Tlo—TZo_"'FZm_f_"'+F2m+1—1+"'

where Fopa1_, € U217 1t is not difficult to see that Foms1—; =0 (2m +1—2))
and the last column of Famsi—, is O(2m+2—2j). This proves the assertion (u).

Finally we give a proof of Remark in Section 1. Since the last column of
M, is 0(2m —j) and L=J|&'|+ 0(¢l|) it is enough to prove that, in case (b)
above, one can find M; € ¥'?” so that (M+M,) (L+B) verifies the assertion (1)
of Proposition 3.1. From Lemma 3.5 it follows that aam+1, 0(2m) and az;2me1
=0(2). Let
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S1= z MPL=T,+T,

lal=1

where T, and T, consists of even and odd columns of S; respectively. Set
M=—THE]!

so that MyJ|€’|=—T, and M;=0 (2m—2). Then it is clear that (M+M,) (L+B)
=T,+desired term (:). Thus it is enough to study T,. Consider

~a) ~(a) ~a)
(3-5) Z akc; ak,21+1(a)+ z akcfak,21+1(m+a2?n+1,1a2m+1.21+1<a)-

k . odd, k+2m+1 k > even

From Lemma 3.4 we have ay, =0 (Zm) if k#2m~+1 is odd while ar2-1=0(2) if
k is even and i <m which follows from Lemma 2.1. Then (3.5) with |a|=1
shows that T,=0(2m —1) except for the last column. We treat the last column
which is a sum of (3.5) with i=m over |a|=1. Since axzmi1=0(2) by virtue
of Lemma 3.5 the same arguments as above show T,=0 (2m —1) and hence the
result.
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