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By
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§ 1. Introduction

Let L be a first order differential operator defined in an open set 0 in Hn+1

where A} (x) are real analytic mxm matrices defined in Q and x — Gco, x) —
(xG, xi ..... Xn) , £= (fo, $') — (?o, £1, ..., ?«). Let us denote by h(x, £) and M(X, £)
the determinant and the cof actor matrix of L (x, £) respectively. Let 2 — {^ —

Or, £) |/7 (z) ='~=dm~lh(z) =0} be the set of characteristics of order m of h.

We assume that 2 is a real analytic manifold near a reference point F— (x, f) .
Without restrictions we may suppose that 0^0 and £—0. Let 2 be given by

where 0j U, ?') are real analytic, homogeneous of degree 0 in f ' with linearly
independent differentials at z. Since we are interested in strongly hyperbolic
systems, we assume that L (x, £) satisfies a necessary condition for strong
hyperbolicity obtained in [5] , that is

M(x, ?) vanishes of order m~2 on ^

which implies in particular ( L \ z ) 2 — 0 where L 2 is the restriction of L to
Thus we have

E.
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In our previous papers [6], [7] we studied the extreme case that rank(L|2) =0,
the case closest to symmetric systems. In this note we study the other extreme
case when rank (L |z) = [w/2] , which is, in a sense, farthest away from
symmetric systems. Our aim is to show that if the localization hz of h (x, ?) at
z ^ Z, the first non-trivial term in the Taylor expansion of h at z which is a
polynomial on T*(T*Q)/T2Z, is strictly hyperbolic and the propagation cone of
hz is transversal to 2 at every z ^ 2 then L (x, D) is strongly hyperbolic
(Theorem 1.2). Here the propagation cone is defined as the dual cone of the
hyperbolic cone of hz with respect to the canonical symplectic structure on
T,(T*Q).

We remark that L is not symmetrizable and ht as a scalar operator, is not
strongly hyperbolic if w>3. In fact in order that h is strongly hyperbolic then
every characteristic must be at most double ([!]).

The idea of the proof of strong hyperbolicity is very simple. Let Sm( =

Sifo) denote the space of symbols of order m and denote by Wm the space of
pseudo- differential operators with symbol in Sm (for the definition, see for
example [2] ) . Then we can find Mt ^ yrm~l~l

 so that for any lower order B (x)
we can apply our previous results in [4] , [3] , on the well posedness of the
Cauchy problem for scalar operators or rather its proof to (L + B) (M + Mi +
M2).

Theorem LI. Let F^ S and on S near z we assume that rank L(x, £) =
[m/2] and M(X, f) vanishes of order m — 2. Then one can find M*€= ym~1~i, i = l,
2 defined near z such that with

(L+B)

where Hm-jG= Wm~} near z, we have either ( i ) or (n):
( i ) for every B (x) €E C°° (Q; M (w, C) ) , Hm-} (x, £) vanishes of order m — 2j on 2

near z,
(n) for every B (x) ^ C°° (Q; M(m, C) ) all elements of Hm-j (x, f ) vanish of order

m — 2j on 2 near z except for the last row and column which vanishes of order m — 2j
— 1 and m~2jjr\ on 2] near z 'respectively .

Remark. We can find Mi^W*-2 so that either (L+B) (M+Mi) or
(L+B) verifies the assertion (0 of Theorem 1.1. We give the proof at the end

of Section 3.

In virtue of Theorem 1 . 1 we can apply our previous results or rather its
proof in [4] , [3] to get

Theorem L20 Assume the same assumptions as in Theorem 1.1. Suppose
that the localization h? is strictly hyperblic on 7V(T*Q)/7VZ and the propagation
cone of h^ is transversal to 2 at z. Then L is microlocally strongly hyperbolic near z.
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With A (x, 50 = ZjU-Ay to £/ we can write

k

with P(x, f7) = 4(*. ?') |s. Then we have rankPfc, $0 = LW2] near z by
assumption. Let us write

•0 1 \

pM(r, R)
''8 X /

0 /

and denote j(r\, ..., rs) =®|=i/(f;). The next lemma is well known.

Lemma 1.3. Suppose that rankP(%, £') = [m/2] near F. T^n t^grg is a
real analytic N(X, $0 ^5° defined near z satisfying

wherej=®?t/2]j(2) if m is even and /-©iw/2]/(2)0{0} if m is odd.

Since the existence of a parametrix of the Cauchy problem with finite
propagation speed, which assures the well posedness of the Cauchy problem, is
independent of changes of basis for Cm, one can assume that

if rank A (x, £' ) = [m/2] near z where Bj ^ Sl is real analytic near z and / is
given in Lemma 1.3.

§ 2= Lemmas

Let

(2,1)

where B/ are real analytic near z. Let/=0i/(2)©i+1{0} with m^2s+t. We
actually interested in the case t = s + l. Denote by ai} the cofactor of ai} in
L(x, f) so that M= (a},), the transposed of (at,). We denote CGr, ̂ ) =0(s) if
C(AT, f) vanishes of order 5 on 2] near £and we write C(xt f) =0w(s) if C(x, f)
vanishes of order s at u;^2. Note that

a,j = 0(1) unless ( i f y) = (2fe-l, 2fe),
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In this section we show

Lemma 2.1. Assume that h — 0 (m) , M=0(m — 2) . Then we have

We first observe that

Lemma 2«,2e Assume that M(x, f ) =0 (m — 2) . Then we have

In particular, a2t,2j-i = O (2) , 1 <i, j^

Proof. Let us denote by Sm the set of all permutations on {1, 2, ..., m}.
Note that

- = 0 ( m - 2 ) f f l f f = JJ atffM

where T — {a*= Sm\ # (i\ff(i) = i} — m — 4, a(2k) = 2k — 21 +1} . We show that
aa = 0(2) if G^T unless a(2k-2l + l) = 2k~2l + 2, a(2k~l] =2k and hence
aff= ±a2k-2i+2,2fc-i + 0(2) which proves the assertion. Let l<k<s and (J^T.
Assume that a(2k~2/ + 1) =p=£2k — 2l + 2. lfp = 2k there is i with a(i) <t and
then a,t7(»)fl2A-2/+i,2*= 0 (2). If p^2k, with a(p) =#, a(q) =r we have <7^2fe if
a^T. Thus ^^<?, ^^r hence ap,^Qtr~0(l) and therefore a2k-2i+i,pap,<flq,r —
O (2). Thus we have aa=O (2).

We next assume that a (2k - 21 +1) = 2k - 21 + 2, a (2k - 1) =/> =£ 2k. With
a(/>) =4, (j(g) =r we see p^2k — l, q^2k if (7^ T. Thus p^<?, <?^r and hence
aP,qaq,r~0 (l). Then as above we have a2k-i,pap>qag,r

 = O(2) and hence the asser-
tion. The second assertion can be proved similarly considering

To complete the proof of Lemma 2.1 it is enough to show

2.3. Assume that h = 0(m) and a2t,2j-i = 0 (2), 1 <2, / <s. i =£j.
Then we have

Proof. It is enough to prove a2t,2i-i = Ow(2) for every ^^2 near F, 1 <i
<s. Suppose that the assertion does not hold and hence the differentials of

d2tp.2ip-i at i#^Z were different from zero for p = l ..... /, l<ip<s and a2l,2t-i =
Ow(2) if i«{ilf ..., i/}. Set T=(a^Sm\ # {i\a(i) =i} =m~2l} and/7={l ..... m}
\{t|a(i) =i) for a^T. We recall that

(2.2) ^ = - + a f f f 0 " l ~ 2 / + - = 0(m) f a f f= aw.)
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by assumption. Let y^T be such that v(2ip — 1) = 2ip, v(2ip) = 2ip — l and note
that a? vanishes at w exactly of order /. We show that aa — Ow(/ + l) unless
a=v. If #{i a(2i-l) =2i} <l then it is clear that aff = Ow (/ + !). Thus it
suffices to consider the caseja= {2jp — l, 2jp}

l
p==l. Suppose that/7^/ and hence

there were 2q~l such that 20 - 1 ey*, 2q-lGf. Since a2q,2q-i = Ow(2) by
assumption we get aa = 0w(l + l) and hence the assertion. Therefore from
(2.2) we would have a1/=0w(l + l) which is a contradiction.

§ 3. Proof of Theorem 1.1

In this section we work near z without mention it. We denote by a(M) the
symbol of an operator M and by Op (M) the operator with symbol M. But we
frequently use M to denote both an operator and its symbol if this leads no
confusion.

We first assume that m is even and we write 2m instead of m.

Proposition 3.1. Assume that h Or, £) and M U, f) vanishes of order 2m

and 2m-2 an 2 respectively. Then there is Mi e W2m~2 with a (Mi) = 0(2w — 3)
such that for any B(x) we have

(L+B)

where H2m-J^W2m-J and a(H2m-j) =0(2m-2j}.

For the proof we remark that

Lemma 3-2. Under the same assumptions as in Proposition 3.1 every even
row and odd column of M is 0 (2m — 1) .

Proof. Since LM=hI2m it follows that </|£'|+0 (\<f>\)}M=hI2m that is J\%'\M
= O(2m — 1). This implies clearly that every even row of M is 0 (2m — 1).
Considering ML — hlzm the second assertion follows similarly.

Proof of Proposition 3.1. Recall that a(LM) =hI2m + ^LixL((X]M(a}/a! and note
that

Since 2m - 2j <2m - 2 -; for ;> 2, it is clear that LM
verifies the desired properties. Set

l«l = l

where Te and T0 consists of even and odd rows of lL,\a\=iL(a>M(a) respectively.
Set
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so that J\?\Mi =-T0 and Mi = 0 (2m - 3) . Then it follows that L (M+Mi) = T, +
desired form, because L=J\l;'\ + O(\$\). It is also clear that B(M+Mi) has the
desired form for every B. Thus it suffices to study Te. Note that the 2i~th
row of Te is given by a sum of the following terms over |a| = l

&=l A : even £ : odd

By Lemma 3.2 we see that a^ = 0(2w— 1) if & is even and by Lemma 2.1 we
have a2t,k = 0 (2) if k is odd. Then it follows that Te = O(2m—2) . This proves
the assertion.

We turn to the odd m case. We write 2m + 1 instead of m. Our aim is to
prove that

Proposition 3o3. Assume that h(x, ?) and MGc, f) vanishes of order 2m -hi
2m — I on 2 respectively. Then we have either (i) or (n) I
) tfim is Mi e r 2W~1 u*ffc a (Mi) = 0 (2m - 2) swrli

where H2m-j ^ W2m+1~J and a (#2m+i-,) =O(2m + l~ 2; ) ,
f2w~z, t = 1, 2

(M+M!+M2) =

element of (f(H2m+i-j) is 0(2m + 1 — 2j) except for the last row and
column which is 0(2m — 2j) and 0(2m + 2-~2j) respectively.

To prove the proposition we start with

Lemma 3n40 Assume that h(x, %) and M(x, £) vanishes of order 2m + 1 and
2m — I respectively. Then every even row of M is O(2m) and every odd column
except for the last one is 0 (2m) .

Proof. The proof is a repetition of that of Lemma 3 . 2.

Lemma 3«,50 Assume that Mix, f) vanishes of order 2m—~Ionl>Li. If there
is i such that da2m+i,2i-i (w) =£ 0 with some w^^E* near z then we have a2m^u =

0(2m) for every /, a2m+i,2i = 0(2m + l) for i<m and a2j,2m+i = 0(2) forj<m.

Proof. Note that

2m + l

£ \~^ \~\
&kiQ<k,2i-l~ 2j ^ij^A,2i-l+ £j ®kjak,2t-l

k=l k : odd,A*2j«+l ft : even

it2t-i = 0 (2m + 1) .
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Recall that a,k&-i = 0(2) if k is even and i<m by Lemma 2.1 and 5^=0 (2m) if
k=£2m + l is odd by Lemma 3.4. From (3.1) we get a2m+ijct2m+i,2t-i = 0(2m +

1) for every j. Since azm+u is, up to term O(|0|2w), a polynomial in (f> of
degree 2m — 1 with coefficients which are real analytic on 2 we conclude from
(3.1) that the coefficient vanishes near w and so does near z. Thus we get the
first assertion. To prove the second assertion we note that

2m+l

(3.2) ) k = 0

and a,2t-i,2i = I?' I, e^-i.t ~ 0 (l) if ki=2i. Since a2m+i,k = 0 (2m) by the first
assertion we get the second assertion from (3.2).

We turn to the third assertion. Consider

(3.3) ) (l2j,kG<2m+l,k~^~ / .

k : odd,k=t2m+l k : even

l,2m+l == 0-

If k is even it follows from the second assertion that a2m+i,k — 0 (2m + 1) . On
the other hand we have a2m+i,k~0(2m) from the first assertion and a2;,& = O(2)
if k=£2m + l is odd by Lemma 2.1. Since o^m+um+i vanishes at z exactly of
order 2m the third assertion follows from (3,3).

Lemma 3.6. Assume that a2m+i,2i-i = 0(2) for every i<m. Then we have
aj,2m+i = 0 (2m) for every j.

Proof. Note that

2m+l

d2m+l, kttjk= j 0.2m+l,k^ ^ Ci2m+l,kCLjk

k : odd,fc*2m+l k : even

+a2m+I,2m+l(lj,2m+l = 0 (2m + 1 ) .

m

(3.4) )

If k =^= 2m + 1 is odd then azm+i.k == 0 (2) by assumption. If k is even then a/* =
0(2m) by Lemma 3.4. Since azw+i^m+i vanishes at £ exactly of order 1, the
assertion follows from (3.4).

Proof of Proposition 3.3. We divide the proof into two cases.
(a) Assume that a2m+i,2t-i = 0 (2) , i ̂ m. Set

la|=/

where Tje consists of even rows and (2m+ 1) -th row of Sj while TJO consists of
(2i~l) ~th rows of Sj, l<i<m. Consider the (2m~f l)-th row of Si which is a
sum of the following terms over |tf| = l
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Cl2m+l,k(ljk(a)

k : odd,A:=f=2»i+l

From the assumption it follows that a2m+i,k = 0(l) if k^Zm + 1 is odd. On the
other hand from Lemma 3.4 we get o} )̂ — 0(2m — 1) if k is even and by Lemma
3.6 we have a},2m+i(a) = 0(2m — 1) for every/. This proves Tie

 = O(2m — 1). As
in the proof of Proposition 3 . 1 we set

Then we have M^W2™"1 with Ml = O(2m~2) and setting

(L+B)

it is easy to see that H2m+i-}^¥2m+1~j and #2m+i-7 = 0(2m+l — 2;) since L has
the form /|f 1+0 (|0|).
(b) Assume that there is i such that da2m+i,2t-i (w) ̂ 0 with some t^^Z near £
Let 51;, Tje and T;o be as in (a) again. From Lemmas 2.1, 3.4 and 3.5 we see
that a2t,k — 0(2) for odd k and o^ = 0(2w) for even k. This proves that

even row of Sj~0 (2w + l~~2/) , ; — 1, 2

while the last row of S3 is 0 (2m — 1— /), ; = 1, 2. Moreover by Lemma 3.5 we
have a2m+i,k = 0 (2m) for every /?, 02^+1,* = 0(2w + l) for even k and a2i,k

 =

for odd fc by Lemmas 2.1 and 3.5. This proves that

k=l

and hence the last column of Tje is 0(2m+2 — 2;), ;' = 1, 2. Let us set

so that My e W2m~J and M; = 0 (2m - 1 — / ) . We remark that the last column of
Mj is 0(2m—j) for j — Q, 1, 2 with M0—M because a2m+i,k = 0(2m) .

Consider (L+B) (M + Mi+M2). Note that 5, = 0(2w +2-2;) if ;>3 and
hence LM=T]_-\-T2 + desired form f n ) . Set

where F2m+i-, ^ W2m+l~3. It is not difficult to see that F2m+1_;- = O (2wx + 1 - 2; )
and the last column of F2m+i-j is 0(2m + 2 — 2;). This proves the assertion (n).

Finally we give a proof of Remark in Section 1. Since the last column of
Mj is 0 ( 2 m ~ j ) and L — /|?'|+0(|0|) it is enough to prove that, in case (b)
above, one can find MI^ W2m so that (M+Mi) (L + B) verifies the assertion (i)
of Proposition 3.1. From Lemma 3.5 it follows that a2m+i,j O(2w) and a2j,2m+i
= 0(2). Let
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where Te and T0 consists of even and odd columns of Si respectively. Set

so that MJ\^\=-Te and Mi = 0 (2m -2). Then it is clear that (M+Mi) (L+B)
— T0 + desired term (0. Thus it is enough to study T0. Consider

(3.5) ) 0-kj Qk,2t+l(a)~)~

A: ". odd,/c*2m + l A: : even

From Lemma 3.4 we have ak] — O(2m) ii k^2m + l is odd while a*,2*-i — 0(2) if
fc is even and i <m which follows from Lemma 2.1. Then (3.5) with |cd = l
shows that T0

 = O(2m — 1) except for the last column. We treat the last column
which is a sum of (3.5) with i — m over |a| = l. Since cik,2m+i = 0(2) by virtue
of Lemma 3.5 the same arguments as above show T0 — 0(2m — 1) and hence the
result.
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