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Gevrey Hypoellipticity for Grushin Operators

By

Tadato MATSUZAWA*

Intreduction

Toward 1966-1967, M. S. Baouendi. [1], has considered the boundary value
problem and hypoellipticity on essentially the operators P=DZ+y%*D2, k=1, 2,

Shortly later, V. V. Grushin introduced in the papers [8] and [10] a wide
class of degenerate elliptic operators including the above operator P with three
conditions for them to be hypoelliptic. After then there have been investigated
the problem of analytic and non-analytic hypoellipticity of the Grushin
operators, (cf. [19], [2], [9], [27], [28]. [30], [31], [11]).

The aim of this paper is to give a nearly complete answer to this problem
by expanding the idea developed in [10] to utilize the operator-valued pseudo-
differential operators. Such a method might be called a kind of separation of
variables in x and y. The Gevrey index of each Grushin operator may be
determined depending on the quasihomogeneity condition of the symbol, (cf.
Condition 1.1, Condition 6.1 and Condition 7.1 and Theorem 1.2, Theorem 6.1
and Theorem 7.1 respectively). We treat the Grushin operators dividing into
three groups. The operators in the first group introduced in § 1 including the
above operator P are analytic hypoelliptic in the space of hyperfunctions # as
mentioned in Theorem 1.2. The operators in the second and the third group

are Gevrey hypoelliptic in the corresponding ultradistribution spaces 9%,
(6>1) and treated similarly as those of the first group, (cf. Theorem 6.1 and
Theorem 7.1).

In § 2~8§ 4, we prepare necessary steps to prove these three theorems. In
§ 2, it will be shown that any eigenfunction of Grushin operators of the form
(2.1) satisfying ellipticity condition (2.2) belongs to the JS-space of
Gel'fand-Shilov, (in fact S%41%). This fact (especially 1 =T4z+15:) plays an

Communicated by T. Kawai, December 25, 1996. Revised April 8, 1997.
1991 Mathematics Subject Classification {s): 35, 46, 47
x«Department of Mathematics, Meijo University, Nagoya 468, Japan
E-mail address: tadalo@meijo-u.ac.)p



776 TADATO MATSUZAWA

important role. In § 3, we shall derive precise estimates of the pseudoinverse
of a Grushin operator as a symbol of an operator-valued pseudodifferential
operator. The notion of pseudoinverse was first introduced in [8]. Actually
it is shown to be a symbol of (o, §) -type. Therefore, we can apply the Gevrey
calculus developed so far for the ordinary pseudodifferential operators, (cf.
[12], [20], etc.). We shall give some microlocal preparation for hyper-
functions and ultradistributions in § 4, where the heat kernel method will be
needed. (cf. [22], [24], [25]). In §5, the proof of Theorem 1.2 will be
completed by using these preparations. In § 6. we shall consider the operators
of the second group whose tvpical example is given by L =D+ (¥ +y%) D2,
(1, k=1, 2, --). Gevrey index for L is given by =742, (cf. Theorem 6.1).
In § 7, we shall investigate the third group which is represented by an example
M=D2+y?D%+D? (k=1, 2, --). Gevrey index for M is given by =1+F.
Grushin operators in the above three groups are considered to be some freezing
operators at the origin of more general differential operators with analytic
coefficients. In §8, we shall mention about natural extension of these
operators.

Finally we note that for the example M given above, Gevrey index §=1+F
is optimal by the result of [11], where is constructed a function u=u (z, y. z)
satisfying the equation Mu =0 in a neighborhood of (0, 0, 0) € R® and strictly

belonging to Gevrey class 8. Also we note that the operator of the form
Di+y¥Di+y?D? k2120,
is essentially contained in the third class and it turns out to be Gevrey
hypoelliptic of index 8= (1+#%)/{(1+1). The optimality of this index was
shown in the paper [31].
Chapter 1. Analytic Hypoellipticity of a Class of Grushin Operators

§ 1. The First Group of Grushin Operators

We write RN=R**" N=k+n, N>2, whose point is denoted by (x, y). x=

(ry. ==, 1), y = Wi =+, y»). We first consider the operator with the
polvnomial coefficients in y:
(1.1) P(vax. D,) = > aaB?'yngDg- aasr €C, PISVAS B. r€Z%,
rl<xm—|8D
la+8l<m

where m is a positive integer and £ is a rational number with £m a positive
integer fixed. The symbol of the operator P is given by
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(1.2) Ply, &m= 2 aaey’6n®, EER’, EER"
Iqlsitélr&;—lﬁl)

We suppose the following three conditions on P.

Condition 1.1. (quasihomogeneity) The symbol of the operator P
possesses the following property of quasihomogeneity:

(1.3) P(y/2, A€ An) =A"P(y. & n), A>0.
Condition 1.2. (ellipticity) The operator (1.1) is elliptic for y #0, i.e.
(1—4) P <y. €. 7]) = 2 aasry75“ﬁ3*0
la+Bl=m
I7l=xlal

for y#0. EER*, nER", |&|+|n|#0.

Condition 1.3. (nonzero eigenvalue) For all wER"*, |w|=1. the equation
(1.5) Ply, w,Dy)v(y)=0  in R}
has no nonzero solution in & (R?). where

(1.6) Py, w, D)= 2 ausy oDt
|71 < (m—|B])
la+8l<m

V. V. Grushin proved the following theorem in the paper [8]:

Theorem 1.1. Under the conditions 1.1 and 1.2, the operator P in (1.1) is
hypoelliptic if and only if the condition (1.3) holds.

Example 1.1. (cf. [8]) The operator
1.7 Ay-i-'y]zA,-l-iﬂ%, (rER* yER"Y),

is hypoelliptic for $myu+ 0, while for real g and k> 1 it is hypoelliptic if and

only if lul is less than the first eigen value of the operator |y|2—Ay in L, (R}).
We can see that exp[— |y [>/2] is an eigenfunction of this operator with
eigenvalue n. Hence (1.7) is not hypoelliptic for $mp=0 and |y >n.

We shall prove the following theorem in § 5 after preparing some auxiliary
results in § 2, § 3 and § 4.

Theorem 1.2. Let P be the operator given above. Consider the equation
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(1.8) Pu= 2 aapy™DEDI(x, y)=flx,y) in Q,
Irlls:';lms—lﬁl)

where u(x, y) €EB(Q) and f(x, y) EL(Q). Then ulx, y) €4 (Q).

Remark. We denote by B(Q) the space of hyperfunctions in @ whose
definition will be given in § 4.

§2. JS-spaces of Gel’fand-Shilov and the Grushin Operators

We fix the parameter w, |w|=1, in (1.6) and we rewrite it as

2.1) Aly,Dy)= X  asy™DE as<EC.

Ir|<x(m—|B)

Then the ellipticity condition 1.2 turns into

(2.2) A"y, n)= X  asyn®#0, (y,n) ERIxRBIN,0).

|71=x(m—|B)

We remark that if A (y, D) satisfies the condition (2.2) then the transposed
operator ‘A (y, D) also satisfies the same condition (2.2). A typical example
of such an operator is given by (d/dy)2—y?% for which m=2 and £=k.

Let Homn (BB*) denote the domain of A (y, D) considered as an unbounded
operator in L, (R"), equipped with the norm

(2.3) luls, = 2 lyDPull, (B™).

7l +x18| Sxm
We have the topological inclusion
(2.4) Himpo CHm (R™) CL2 (R,
where H, denotes the usual Sobolev space of order m.
Theorem 2.1. (cf. [8]) There exists a positive constant C such that for all
U E Homn:
2.5) leelom o <CUAul+lull}.

where || - || denotes the Ly norm.  We call (2.5) the Grushin inequality.

Now we recall the definition of the space J5(R") following the expression
of [4].

Definition 2.1. The space S35(R™) (r, s=0; A, B>0) consists of all
infinitely differentiable functions ¢ (y) satisfying the inequalities
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(2.6) suply®D?¢ (y) | <C,AMBE B, a, BEZL,

yER"

where the constant Cy depends on the function ¢). This is a Banach space with
the norm

N 7L 2.
2.7 |¢IA.B‘“:EURPn Al BBlg17Bis®
a.B

The space S5 (R") is defined by the inductive limit
S3(R™) =limJs4 (R .
Wi

Remark 2.1. We have the inclusion S5 (R"*) € S(R") (r, s=0) by (2.6),
where S (R”) is the space of rapidly decreasing functions of L. Schwartz.

Remark 2.2. The norm (2.6) can be replaced by the L, norm.

Remark 2.3. (cf. [6), Vol. 2, Chapter IV) The space S5(R") is not
trivial if one of the following conditions is satisfied:

(1) r+s=1,r>0, s>0;
(n) »=0, s>0;
w) ¢>1, s=0.

Otherwise it degenerates to the single function ¢ (y) =0.

Theorem 2.2. (cf. [6], Vol. 2, Chapter IV) If 0<s<1, then every ¢ (y) €

S5 (R™) is continued into the entive z=y +in space C" and the following estimate
1s salisfied:

(2.8) ¢ (y +in) | <Cexp[—aly| +bln[V"~], y+ineC™
where the positive constants a and b are taken corresponding to the constants A and

Bin (2.6). The converse also holds.

As an example, the Gaussian function exp[— y?] is a member of SY3 by
(2.8) with r=s=1/2.

The first assertion in the following theorem has been proved by Grushin in
[8] and [10]. Another method of its proof using Grushin inequality will be
indicated in the proof of the second assertion of the following theorem.

Theorem 2.3. Let A (y. D) be the operator (2.1) satisfying the condition
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(2.2). Then we have the three assertions:

(1) Ifu€Ly(R") and Au€S(R"), then u€ S (R").

(1) Ifu€L,(R") and Au€ SHELE, then u€ SHELH.
In particular, if A (y, D)u=0, then we have the following inequality
(2.9) lyeDPul<Coctr*Plar g Syl (a, B) €225 % 22,

where the constants Co and Cy depend only on M= maxlaas|, C in (2.5) and the
dimension n. The inequality (2.9) is equivalent to the following inequality (2.10)
with different constants Co, C1 and a:

(2.10) IDPu ()| SCoCPB P ullexp [—aly["**], yER™.
(i) The eigenspaces of A are finite dimensional and included in the space

dn/(H-n)
1714 -

Proof of (n). We may suppose u € S (R") and Au € SYHH (R™) by (1)
We shall prove that there exist constants Cp and C; such that

(Z. 11) ”y“D‘gu (y) |ISC0CP+EIQII/(I+X)BI u/(1+m’ ((X. ,3) ELX I

Suppose that there exists a number j =m sufficiently large and a couple of the
constants Cp and C; such that the following estimate

(2.12 Jy"DPul S CoCtr [l + sl

holds for all & and B8 with |a|+ &8 <&j, where [x] denotes the integral part of
the number x. Now take a and B with xj <|a|+£|8|<k(j+1). Then we can
write

a=a'+a’, B=p+p" la|+&lp|=km,
and we have
la’|+lB|<kG+1) —km <kj.
We have
ly*DPull=lly*y* D D¥ul|
<|y*D?y*D¥ull+lly* [y D¥1D"ul.
First we shall deal with the last member in the right-hand side. We have by

induction assumption

V4 I/,
. a’ [,a" nBNns < (.B >__9{+_ a-unB-u
(2.13) ly® [y, D*1D% ul| O<Ew, v & _#)!"y DAy
0<u<p’
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<om e sup o] (ol =1) -+ ol = +1) GOt~ lar— -+l = ] 174

o<u<a’”
0<u<p’
SzmnCOCFH.EI_Z - sup {Iaﬂl (Ial/l _ 1) e (Ialll . I#|+ 1) }x/()(+1) Ha,| _f_KLB_#H !1/(1+x)
o<p<a”
0<u<p

< ZmnCOC&an—z [lal +I€|,3|] 11/(1+x)‘
Next by the Grushin inequality (2.5)
ly® Dy D ul <C{| Ay* D ul + y* D ul}.

As for the last member in the right-hand side of the above inequality we have
the estimate

ly™ Dl < Coclrvai=H lad + £l 0.
We have

lay* D7 ul<lly*D"Aul+] X arlyD?, y* D" 1ull

rl+xidl<xm

I

<[y D" Aul+ M2 max - E ]y sy 4

|71 +x|él<um ‘u)l
0<u<é
o<uta”
max ” yr+a —up)-u+8 u”}.
I7l+xl8l <xm (T ‘LL)‘
o<p<ry
0<u<p”

where M= max|aas]. We may suppose the first term in the right-hand side is
estimated by

COCY”BI_I HQ'I +lf|,3|] 11/ a0

We can treat the second term in the right-hand side of the above inequality as
in (2.13) and it is evaluated by

szm+21zcocya+ﬂl—1 max |a”‘,,, (‘O.’” _‘ul +1) Ha_‘ul +K‘B_ﬂ|] !1/(1+z)
lrl+x|d| <xm
0<u<d
0<p<a’

_<_A/[2mn+2nCDCIIa+S!—-1 [lal +KIB|] !1/(1+x)‘

The last term in the right-hand side is estimated similarly. Thus we have
obtained the estimate of the form

(2.14)  |yeD®ul| < {2m+14C (1 +2Mm22m+2n) } O CletBI-1 [| | + k| BT 11/ A+,
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If we take the constant C; larger than {2"*4+1+4C (14 2M2""**")} then we have
(2.12) in case j+1. It is easy to obtain the estimate of the form (2.11) from
the estimate (2.12).

The estimate (2.9) is derived by the same method as above by using the
Grushin inequality (2.5) with Au=0.

We shall derive shortly the inequality (2.10) from the estimate (2.9). The
estimate (2.9) can be modified as

Iyl DA (y) | < Caclellafi 40 e/ a+ ],

Hence for y €ER", |a|£]y!“"£|a'+l, (la]=0, 1, -*+), we have

D% () | <C, ckﬁlﬁ,u/(l+x)c&a|<__L“I"____>l/(l+n)” I
Y/ i=Cto ' iy,(lﬂt)]al u

T\ 7+
SCCPIB ||y IOl (’f Lff L" | ) '

which is estimated by the quantity of the kind CoC¥'BI™ | u| « exp [—aly|***]
with some positive constant a by applying the Stirling formula.

§ 3. Pseudoinverse of the Grushin Operator

Let P(y, D:D,) = > aasy™DEDS be the operator given in (1.1)
|7l <x(m-18D
'a+/3|.<_m
satisfying the conditions 1.1, 1.2 and 1.3. For each £€R"\0, we consider
P(y7 &! Dll) = Z aaﬁTyTsaDgef (H(m,x) (R;l)’ LZ (Rl’]))

|7l <x(m—|8])
la+Bi<m

Theorem 3.1. (Grushin inequality) Therve is a positive constant C such
that

(3.1
2 Nq@v e +Helly ) Poful <P (v, & Dyl uEHano, 18121,

Iri<x(m—|8D

Proof. The estimate (3.1) can be derived only by using the transformation
y=y’|E[Y% in the estimate (2.5) and by the condition 1.3.

We denote by P¥ (y, & D) =0¢P (y, & D) as usual. Then we can derive
the following estimates from (3.1):

Theorem 3.2. There is a constant C such that
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(3.2) 1P (y, & D)ul<ClEl7IP(y, & D)ul, #EHum0, |E21.

Grushin, [7], has shown that the index of the operator P(y, & D,) is equal
to zero when n>1 under the conditions 1.1, 1.2 and 1.3. When n =1, the
index of the operator P (y, & D) is not necessarily equal to zero, depending on
the topological characteristics of the symbol P(y, & 7). We remark that
transpose ‘P(y, & D) also satisfies the conditions 1.1 and 1.2.

Theorem 3.3. (1) In the case n>1, theve is an inverse G (E) €L (L, (R"),
Homw) of Py, & D) such that

(3.3) GEPy, ED)=I in Homn (R,
(3.4) Ply, £ DG =I in L,(RF).

(i) In the case n=1, let 11 () be the orthogonal projection on the kemel of

‘Ply, & D) in Ly(Rj}). Then there is a pseudoinverse G(§) € £ (L, (R,),
Hom (By)) of Py, & D) such that

(3.5) GEPy, ED)=I in Hupmn (R,
(36) P(y, S» D)G(E) :I'—H (E) n Lz(Ry)-

Theorem 3.4. Let G (&) be the inverse of P(y, & D) when n>1 or let G (§)
be the pseudoinverse when n=1. Then there are constants Cy and C, such that

(3.7) 16 (&) lum <CoCiallel ™™, a€Zi, |E>1.
where || * |low denotes the operator norm on € (Ly (R”), Homx (R™)).

Proof. (1) The case n>1. By using the relations (3.3) and (3.4) we
have

3.8 c@@=— 3 (%) @Py, &D)CE, acz,
O<u<a u
from where we obtain immediately the estimates of the kind (3.7) by induction
procedure.
(i1) The casen=1. Let II be the orthogonal projection on the null space
of 'Ply, w, D), (EER*, w=E&/|€]) in L,(R,). Then the distribution kernel of
II is given in the form:

Iy, 1) = iu;(y)ti,(t),

where the u, satisfy (2.9) and (2.10). By the quasihomogeneity, we can see
the distribution kernel of II(€) of null space of ‘P(y, & D) is given by
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(3 R g) IEII/(IH:) éui (lE[l/(lH()y)ﬁ—j (IElmHmt) )

We can show that there are another couple of constants Co and C; such that
(3.10) 1@ (&) | <CoCtallél™. a=0,1,2, - [g=>1.

This is equivalent to the estimation of the following type for u=u;.

(3.11) | 0w (|E] T oy) [SCoClale] 1™, aeZs, [E=1.

It can be obtained by a careful application of the following formula for the

Il/(l+x)

derivatives in &€ of a composition of two functions u (t) and t=|§ y under

the assumption (2.9).

Lemma 3.1. (The formula of Fad di Bruno, cf. [17]) Let I be an open
interval in R and suppose that fEC™ (I). Assume that f takes real values in an
open interval J and gEC™(J). Then the dervivatives of h=g(f(t)) are given by

B (8) :Zkllk:;-!--lg,:fg(k) (f(t)) (fmlft) )k’...(f“;fl) )k"y

wheve k=Fky+ky+ - +k, and the sum is taken over all ky, kg, =+ ky, for which ky+
byt kb, =mn.

To apply the formula of Faa di Bruno we need the following combinatorial
lemma which follows from a particular application of the above formula.

Lemma 3.2. (cf. [17]) For cach posilive integer n and positive real number

1
i R*=R(1+R)"!

Zk]'kz"kn’

holds, wheve k=kytky+ -+ +ky, and the sum is taken over all ky, ke, **+, ky for which
k1+2k2+"'+}lkn:1’l.

Now by using the relations (3.5) and (3.6). we can legitimate the
following formula

(3.12) @ (O =— X (a>G($)P(”’(y. £ D)GE (&) —G (O TI@ (8).

<v<a v

This yields the estimates of the kind (3.7) by applying the estimates (3.2) and
(3.10). QE.D.

We remark that the estimate (3.7) means G (&) is a symbol of an operator-
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valued parametrix of P (y, Dz, D,) as an operator-valued analytic pseudo-
differential operator, which we shall recall in § 5.

§ 4. The Heat Kernel Method and the Wave Front Sets

We begin this section with remembering the definition of ultra-
distributions and hyperfunctions.

Definition 4.1. Let Q be an open subset of R” and ¢ €C*(Q). Then we

say that ¢ is in 8 (Q) with s>1 if for any compact subset K of Q there are
positive constants Cq and C; such that

4.1) sup D% (x) | <CCWats, aE€EZn.

rek

We denote by @' (Q) the subspace of & (Q) which consists of functions with
compact support in . The topology of such spaces is defined as follows:

(1) We say a sequence {f,(x)} C8"(Q) converges to zero in & (Q), s>
1, if for any compact subset K of Q there is a constant C such that

44
(4.2) sup D J,(‘T)’—-——*() as j——> oo,
z€K C’“'ais

a

(1) We say a sequence {f, (x)} €D (Q) converges to zero if there is a
compact set K of € such that suppf, €K, j=1, 2, -, and f{—0 in &% (Q) as
j——»OO.

We denote by 2% (Q) and " (Q) the strong dual spaces of 2% (Q) and

8 (Q) respectively. Let 1 €8 (R") with the support contained in a compact
set K, (s>1). Then for any & >0 there is a constant C>0 satisfying

(4.3) lu (@) |<C suII? JD—W%‘% eEES (R,

[24

Definition 4.2. A linear form u on the space A = A(C™ of entire
analytic functions in C” is called an analytic functional supported by a compact
set K of R” if for every complex neighborhood w of K there exists a positive
constant C, such that

(4.4) i (@) |<Cusuplol, pEA.

The space of such analytic functionals is denoted by A’ [K].
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We set A" (R") = UA’[K] and the support of u €A’ (R") is the smallest set
K

KCR” such that w€A’[K], (cf. Remark 4.2).
Now we define the space of hyperfunctions:

Definition 4.3. (cf. [22], [24]) Let Q;, j=1, 2, -, be bounded open
subsets of B”" with GQ;-——'R”. We say u €B(R") if u= {2, u;€A4°[Q],

j=1

u;=u, in ;N Q, for all 7 and k.

Next we recall the n-dimensional heat kernel, =>1):
(4.5) E(x, t) = (4mt) 2exp[—|z|?/4t], z€R" +>0.

We note that E( , t) may be considered as an entire function of the order 2 in
C?” for every t>0.

Theorem 4.1. (cf. [22], [24]) (1) Let w € D (R"). Then theve exists
Ulr, t) €C™(RT), R '={(x, t); x €ER" 0<t<o0} satisfying the following
conditions:

(4.6) (0/6t—MNU(x, £)=0 n R
For any compact set K C R" there exist positive integer N =N (K) and a positive
constant C such that

4.7) sup |U (x, £)|<CEN+1), >0,

zeK

and U (x, t) —u as t—04 in the sense that for every @ €CY (R™

(4.8) u(ep) =lime(x, t) @ (x)dx.

=0+

Conversely, let Uz, t) € C™(R*) satisfy the conditions (4.6) and (4.7).
Then there exists a unique w D (R") satisfying (4.8).

(1) Letu€D™ (R"), s>1. Then there exists Ulx, t) €C (RMY) satisfying
the heat equation (4.6), and for any compact set K C R" and for any €>0 there
exists a constant Ce x>0 such that
(4.9) sup [U(x, )| <Cexexp(e/t) V"], >0,

e
and U (x, t) —u in the sense that for every @ € D' (R") the relation (4.8) holds.

Conversely, let U(x, t) € C*(RTY) satisfy the conditions (4.6) and (4.9).
Then there exists a unique u €D (R") satisfyving (4.8) for every o€ D' (RB™).

() Let u € B(R™). Then theve exists Ulx, t) € C~ (R satisfying the
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heat equation (4.6), and for any compact K < R™ and for any €> 0 there exists a
constant Cex >0 such that
(4.10) sup |U (x, )| £Cex exple/t], 1>0,

€K

and Uz, t) —u as t—0, in the sense that Ulx, t) —U,(x, 1)=30 as t—=0, in Q;,j
=1, 2, -+, where u={u;}, R"=U,Q; and

(4.11) Uj (x, t)=fE(x—y, Hu; (y)dy, j=1,2, .

Conversely, let Ulx, t) satisfy the heat equation (4.6) and the estimate
(4.10). Then there exists unique u B (R") satisfying (4.11).

(v) Let w€A’[K) with a compact set KE R" and set
(4.12) Ulz, t) =u,(E@—y, 1), (x t)ERF.
Then Ulx, t) satisfies the heat equation (4.6) in R¥ and U( -+, t) €A for each

1>0. Furthermore for every € >0 we have

g 2
(4.13) U@, )| <Ce exp[i—-@[é‘x’“]{—)—] in R

U (x, t)—u as t =0, in the following sense:
(4.14) w)=tin| U@ )x@edz, pea(C?),
-0

where x €C3 (R™) and x=1 in a neighborhood of K.
Conversely, every C*~function Ulx, t) satisfying the heat equation (4.6) and
the condition (4.13) can be expressed in the form (4.12) with unigue u€A'{K}.

Remark 4.1. We have the inclusion
9 (R") <D (R") €B(R"), (s>1); & (R" A (RY).
Remark 4.2. Let uw € B(R"). Then suppu is the complement of the
largest open set 0, CR” such that U(x, )=20 as t — 0, in 0,. (cf. (4.13)).

Now we remember the definition of the wave front sets.

Definition 4.4. (cf. [22], [24]). Let u€A4’(R™ and (xo, &) ET*(R™)\
0. Then we say (i) (xo, &) € WF4(u) if and only if there is a conic
neighborhood I' of (xo, &) and there are positive constants C and ¢ satisfying
the inequality

(4.15) luy (exp[—i<y, & —|&l (B—y)¥/2])|<Ce8, (B, &) ET:
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(i) (xo, &) & WFiy () (1 <s <o0) if and only if there is a conic
neighborhood I" of {(xo, &) and there are positive constants C and ¢ such that

4.16)  luy(exp[—i<y, & —|€l(B—y)?/2D)|<Ce™, (B §€ET,

@)  (xo, &) € WF (u) if and only if there is a conic neighborhood I" of (xq,
&) and there are positive constants Cy, N=0, 1, 2, **-, such that

@.17)  fuy(exp[—i<y, © =&l (B—y)/2D)|<CHlel™. B O €T

The following local expression formula of hyperfunctions plays an essential
role in the microlocal calculus, (cf. [22], [33]):
Let u€A'[K]. Then for any o€ R” and 6 >0 we have

(4.18)

w@ =0 [ [ wlexplic—y, &—E—4e/2) (1) sptetus @),
|8—x0l <26
lgl=1

where ws (x) €B(R") and w; (x) is analytic in {x; |xr —x0| <08}. The first term
in the right hand side of (4.18) is also in B (R”), which is the initial value of a
solution R (x, t) of the heat equation satisfying the estimate of the kind (4.10)
and given by

R, 0= [ [ wlexplice—y, & — 6y le/2) (1) “erapae

18~x0| <28
lgl=1

§ 5. Analytic Hypoellipticity of P(y, Dz, D,) in the Space of
Hyper-functions. Proof of Theorem 1.2.

Assume that P(y, Dz, D,) be the operator given in §1. Let Q be a
bounded open set in R:S" containing the origin and let us consider a partial
differential equation

(5.1) P(y, Dz, Dy)ulx, y) =f(x,y) in Q

where we assume # € 8(Q) and f € o (Q) which denotes the set of all real
analytic functions on £.

According to the ellipticity of P for y #0, u (x, y) must be real analytic in
@\ A(x, 0); x €R", and the operator P is partially elliptic with respect to y
everywhere, so that there is no analytic wave front set of 1 in the direction (0,
0; & 1), In|>clé| for any fixed ¢>0, (cf. [22],[24]). Therefore, in order to
prove the analyticity of # in a neighborhood of the origin, it will be sufficient to
prove that there is no analytic wave front set of % in the direction (0, 0; & 0),
EF0.
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We shall use the local expression formula (4.18) with respect to any

solution » €B(Q) to the equation (5.1) for a sufficiently small §>0 with N=¢k
+n:

(5.2 uly) =0Cm)™ ff u,—,',,,r(exp [i(x-x', &+iy—y,p—

1811 +B2l <20
&l+Inl=1
(=) 2+ By ) ) (L) dpapraan+us (2. )

=g (x, y) +w;s (@, y).

We write the integrand of i (x, y) in (5.2) as F(x, y, B B2, & n). Since there
is no analytic wave front set of u in the 7n-direclion in a neighborhood of the
origin, we have by (4.15)

(5.3) [F(z. y, Br, Bo & M| <Cem™ |8 +]B:) <28, [n]=c'|El

where (x, y) €ER**" and ¢’>0 can be taken arbitrarily.
On the other hand, we can see that (4.4) yields the estimate

(5.4) |F(x, y, B, Ba € M) SCe® 170 (£ n)ERYN, >0,

Now let us consider the function @ (x, ¢; y) for +>0:

(5.5) @z & y)= (2m) N ff Fx, Y, B, B &, U)e_lgzdﬁldﬁzdfdﬂ.

|1B1]+|B21 <20
lel+lnl21

Then we have @ (x. t; y) EC*(R*X (0<t<o0) X R") satisfying

(5.6) <%—Az)12(r, t;y) =0 in REXx(0<t<) xR}

Furthermore, by (5.3) and (5.4), we can easily show that for arbitrary
intervals Iy = {r € R" |x|<d}, (6>0), and I, ={y ER™ ly|<p}. (£>0). we
have the estimate of the form

(5.7) i (x, t; y) |y <Cepe, x€15 0<t< o0,

By the heat kernel method, (cf. Theorem 4.1.), we see that (5.6) and (5.7)
yield the unique initial value @ (x, 0: y) =i (x, y) €B s Hn(I,)) which denotes
the set of Hu (I,) -valued hyperfunctions of x € I; for any fixed 6>0. By the
formula (5.2) we have 1 (x, y) =@ (x, y) +ws (x. y), so that we have

(5.8) uwlr,y) €BUs Hu ()., Li={x; |x|<8}, L=1{y: lyl<w

Now we can apply the results obtained in the papers [21], [22] and [24]
on the basis of the investigation in § 3. We can contruct an operator valued
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parametrix G (D;) of
Q(Dz> EP(y, Dy, Du)

as an analytic pseudodifferential operator and symbolically we have
ulx, y) =GD)QD)u=GD)f(x, y) = (2n) ‘kffe’““z"G ©)f(z, y)dzd&

which means u (z, y) is a vector (Lz([u) -) valued analytic function in x in a
neighborhood of x =0 € R* under the condition that f(x, y) is a real analytic
function (cf. (3.7)). Then we can easily see (by using (5.2) for example) that
u(x, y) is a real analytic function in all the variables (x, y) in a neighborhood

of (0,0) €ER***. Thus we have completed the proof of Theorem 1.2.
Chapter 2. Gevrey Hypoellipticity

§ 6. The Second Group of the Grushin Operators

As in § 1, we write (r, y) € RN =R**". Furthermore, we divide r into
two parts such as x = (x’, £”) if necessary. Let m be a positive integer and &
and ¢ be positive rational numbers with &m and &m/0 are positive integers.
We consider an operator

(6' 1) L (-T’, Y, DIy Dll) = Z aaﬁurx,vyTDzaDg, aaﬁwe C
alvl+]7| < x(m—|BD
la+B8l<m

a vEZ,, B rEZL

The symbol of the operator L is given by

(62) L (.Z’, Y, »’S, 7]) = Z aaﬂyrx'”yTaﬂB, SERk, VJER"

o)+l <x(m—|8])
la+pl<m

a, vEZ4, B rEZL.
We suppose the following three conditions on L corresponding to those on P
given in § 1.
Condition 6.1. (quasihomogeneity) The symbol of the operator L

possesses the following property of quasihomogeneity:

(6.3) LA™, Ay, A€, 287, An) =2"L(x', y, & 1), A>0.

Condition 6.2, (ellipticity) The operator (6.1) is elliptic for |z'|+|y|=1.
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Condition 6.3. (nonzero eigenvalue) For all @€ R*, |w|=1, the equation

6.4) L'y, w, D)v(y)= > Gapord "y @w?DEy (y) =0 in R}
alvlTlrlsln(m—lBl)
a+Bl<m

has no nonzero solution in & (R}).

Moreover we assume 1+£>0. Then we have the following

Theorem 6.1. Let Q be an open neighborhood of (0, 0) € B**" and consider
the equation

(6.5) Lz, y, Dz DYulx, y)=f(x,y) n Q,

1+k

where u €D (Q) and FEE9 (Q) with 0:m~

Then we have €8 (Q).

Remark 6.1. We remember &% (Q) the set of Gevrey functions of the

index 0 defined on Q and D% (Q) the set of ultradistributions on § with index
6>1 as was mentioned in § 4.

Example 6.1. The operators

0*
a 2

02
oxr?

L=

+ (x2!+y2k) l, k=1. 2v

satisfy all the above conditions with K =%k, o==F&/l and x =x  from which we
have 6=1(1+%) /{i(1+%) —k}. When [=k=1, we have 8=2 which is known
the optimal index in this case by the result of G. Métivier, [27]. We note
that there is no x”-variable in these cases. If we consider the operators

0% , 0*

L'= -éay*z"-( 21+y2k)'a?+p I, k=12, -,

then we have x'=x, ¥”" =z and 0, £ are taken the same as above.

The proof of Theorem 6.1 can be obtained by the similar process as to
prove Theorem 1.2 given in §3, §4 and §5. We need to prepare some
corresponding steps. First by the conditions 6.1 and 6.2, we can see that L is
partially elliptic in the y-direction. Therefore, it will be sufficient to prove
Gevrey hypoellipticity for L of the index {#} in the x-direction.

For each £€ R*\0, we consider

L (-T’v Y, Ev Dy) = Z aaﬂvrx,vyrgaDg =34 (H(m,x) (R:/Z) , Ly (R;‘) ) .

ofyl+IrI<x(m—iBD
la+Bl<m
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Theorem 6.2. (cf. [10] and Theorem 3.1) There is a positive constant C
such that

(6. 6) S H{IEIMH") + (

olul+|r| <x(m—|8))
|a+ﬁ|$m

CIL(x, y. & D)ull, wEHmw EER* |E=1.

£y ) 1) 4 Dgul <

We denote L (z', y, & D) = 0D} (', y, & D), u. A€ Z%, as usual. Then
we can derive the following estimates from (6.6):

Theorem 6.3. (cf. [10]) There are constants Co and Ci such that

(6.7) [L® (', y, & D)ul SCoCY*H 1| E|~ W L (', y, & D)ul,
WEHuo (BD). ESR' 821, =10

Proof. The estimates with respect to 9¢L = L' are obvious, so we shall

consider the estimates with respect to 0fL. (87L)u may be considered as a
linear sum of terms

XY E DR (y), v=A.

Then comparing the quasihomogeneous order of x*~*y7€% with that of the right
hand side of (6.7), we easily obtain the estimates of type (6.7).

Theorem 6.4. (cf. Theorem 3.3 and Theorem 3.4) (i) There is an
inverse G (&', &) €L (Ly(R™), Himp (B")) of L such that
(6.8) Gx' . &L’ y. &ED)=I in Humuo (R},
(6.9) L' y, EDIGx' & =I in Ly(RY).
(1) There are constants Co and Cy such that
(6.10) G (x, &)l <CoCEH g+ y 27
(ER' ld>1 o=77

The proof of the above theorem can be completed easily by using (6.7) and
the following lemma.

Lemma 6.1. Let n=1 and Il (x", §) be the orthogonal projection on the null
space of 'L (x', y. & Dy) in Ly (R,). Then I (x', &) =0, i.c. null space of 'L (x, y.
€ D) in Lo(R") is veduced to {0},
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Sketch of the proof of Lemma 6.1.
We remember that II(x’, ) is given by a Dunford integral:

(6.11) i, © ZE}f—i rz—'L (x"iZE y. D)’

where I' is a circumference of sufficiently small radius lz|l=¢ depending on x’,
(cf. [5]), from where we can see that II(x’, &) is analytic in =" and & On the
other hand, concerning with ‘L, we have the inequality of the kind (6.6)
replacing the right-hand side with

cll'L @y, & Dyul+ull. wEHmy, EER' |21
Now let u (x, y) €E4 (x, L.(R,)) be a solution of the equation
(6.12) ‘L', y, w DYulx’ y) =0, |wl=1.

Then by iterating the above inequality, we have the estimates of the following
type:

(6.13) “ I-T"’M @, y)“Lz(R,)SC’“ u(x’, y)“Lzm,), j=L2. -

This yields that u (x’. y) =0 since u (x’, y) is analytic in 2’ € R”. Hence we
have II(x’, w) =0 and by the quasihomogeneity we have IT(x’, £) =0.

Skeich of the proof of Theorem 6.1.
The proof will be carried out by the similar method as in the proof of

Theorem 1.2 given in §5. We suppose that # and FE&'" (Q) and €4 in a
neighborhood of (0, 0) €Q, f=7r%-. We can use the local expression formula
(5.2). Then by the inequality (4.16) with s=06, the estimate (5.3) is replaced
by

(6.14)  [F(z.y. Br B & MI<Cem Bl +]Bl <20, [n|=c1El.

We note that the estimate (5.4) is replaced by

6.15)  |F(r.y. Bu Bo & )| <Ce=c8™ 0™ (g ) ERN >0

which is obtained by (4.3).
Let # (x, t; y) be the same as in (5.5). Then # satisfies the heat equation
(5.6) and by using (6.14) and (6.15). we have the estimate of the form

(6.16) |z, £ y) may SCepexpl(e/0)VH V] rel;, 0<t<oo

By Theorem 4.1, (6.16) means that @ (x, 0; y) = (x, y) €D (Is: Hn (I,)) for
any fixed 6>0. By the formula (5.2), we have u {x, y) =1 (x, y) +ws (x, y) so
that we have
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(617) u(x‘ y) e (161 HmUu))-

Now we can apply directly the results in the paper [20] to obtain the
Gevrey hypoellipticity in the xr-direction by constructing an operator valued left
parametrix of L starting with G (x’, D;) and finally we get the fact u (x, y) €87
in a neighborhood of (0, 0) € R*”". We can take 6=1itre5=1=77r5 according

to the result of [20], (cf. (6.10)).
§ 7. The Third Group of the Grushin Operators

The third group looks similar to the first group in appearance, but the

condition of quasihomogeneity is different. We write (x, y) ER**=R" and x
= (z’, x”). In this case there are always the variables x’ and x” so that N>3.
Let m be a positive integer and £ be a rational number with &m a positive
integer. We consider the operator

(7.1) M(y. Dz, Dy)= X aapy’DED], aasr€C.
ITISn(mI—;IBI)
latBI<m

We suppose the following three conditions on M.

Condition 7.1. (quasihomogeneity) The symbol of the operator M
possesses the following property of quasihomogeneity:

(7.2) My, AY*E A8 An) ="My, & n), A>0.
Condition 7.2. (ellipticity) The operator M in (7.1) is elliptic for |y|=1.

Condition 7.3. (nonzero eigenvalue) For all w€R", |w|=1, the equation

(7.3) My, w,D)v{y)= X aasy@Div(y)=0 in R
Irlslni%—slﬁl)

has no nonzero solution in J (R?).

Theorem 7.1. Let Q be an open neighborhood of (0, 0) € R and consider
the equalion

(7.4) M(y. Dz, DYux, y) =flx,y) n Q,

where u €D (Q) and FEEP(Q) with 6=1+r%. Then we have u<8% (Q).

Example 7.1. The operators
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2 2 2
VI
satisfy all the above three conditions with K=k and x’=z, x"=z2. When k=1,
we have 6 = 2 which is known the optimal index by the result of
Baouendi-Goulaouic, [2] and also we refer to [15], p.310. For general integer
k, it turns out that the index 8=1-F is also optimal by the result of [11] and
[31] as was mentioned in the introduction.

The proof of Theorem 7.1 is obtained by the quite similar steps of those of
Theorem 1.2 and Theorem 6.1. We need only the following preparations.

Theorem 7.2. (cf. [10] and Theorem 6.2) There is a positive constant C
such that

(7.5) = g +le+ye
i

ClM(y, & DYuly)l, uw€Humn, EESR, |E=1.

}BIDEw (y) | <

We also denote by M“ (y, & D) = 0¢M (y, & D), u € Z%. Then we can
derive the following estimates from (7.5) by using the quasihomogeneity.

Theorem 7.3. (cf. Theorem 6.3) There arve constants Co and Cy such that

(7.6) IM“ (y, & D)ull <Co Cp| &[4 +2| M (y, & D)ull,
'lie-H(m,n) (R!}lﬂ)v SERk' IS'Z]-

Theorem 7.4. (cf. Theorem 3.4 and Theorem 6.4) (1) In case n>1,
there is an inverse G (&) EL (Ly(RY), Hom (RE)) of M such that

(77) G (S)M(y‘ 87 D) =I in Hup (R:) '
(7.8) My, € D)G(E)=I in Ly(R}.

(u) In case n=1, let I1 (§) be the orthogonal projection on the mull space of
‘M(y, & D) in Lo(Ry). Then there is a pseudoinverse G (§) EL (L2 (R,), Hmw (R,))
of My, & D) such that

(7.9) G (S)M(y, 5, D) =] H(m,x) (Ry),
(7.10) My, & D)G(E)=I—TI(&) in L:(R,).
(i) In any case n=1, there are constants Co and Cy such that

(7.11) G (&) llom S CoClpa | 0+0 - pe i, & =1
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Proof. Only the case n=1 need to be verified. The null space of ‘M (y, &
D,) is finite dimensional, whose functions satisfy the estimate of the type (2.9).
For £= (€, &) € R*, we define the quasihomogeneous function

(7 . 12) Isl;‘____ {glzm.{.... _,_Ekz,m+5kz,rz(11+n> +-... +E£m(1+n)}1/2m(1+n)_

Since &m is a positive integer by assumption, this is analytic outside of the
origin. Now for @€ R" such that |w|,=1 take any function u (y) satisfying the
equation

'M(y, w, Dj)u(y) =0 in R
Then for §= (A"*"w’, Aw”) we can easily verify that
My, & Dy)u(Au) =0 in R
That is to say, we have
(7.13) "My, & D)u(lEly) =0 in R
Observing that the following tvpe of the estimate
(7.14) |0¢ (&l [ <CoClla g1V, qezt,  [g]=1,

holds (cf. [13]) and by using again the formula of Faa di Bruno as in § 3, we
obtain the estimate of the tyvpe

(7.15) 081 (|Ely) | < CoCPlant| g1 -1l a0y || e 7%,

from where we have the estimate of the form

(7.16) [0ET1 (&) [l S CoCl | 1al 00 e 74

where I1(€) denotes the projection operator on the null space of ‘M (y, & D,) in
Ly (R,). The remaining procedure is just the same as in §3. Q.ED.

QOutline of the proof of Theovem 7.1.

By the above observation, we see that G (D) is a vector-valued parametrix
of M(y, Dy, D,) with the pseudolocal propertv of the Gevrey index 8, §=1+kF,
(cf. (7.11) and [12]. [20]). Then symbolically we have the equation

u=G (Dy)M(y. Dz. Dy)u(x, y) =G (D) f (x. y),

where the right-hand side is in % in a neighborhood of the origin. Hence we
have u is in 8" in the x-direction in a neighborhood of the origin. Since u is

partially analytic in the y-direction, we may say » €8'? in the whole variables.
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Chapter 3. Generalizations

§ 8. General Grushin Operators with Analytic Coefficients

The differential operators P, L and M in the above three groups are
considered to be freezing operators at the origin of more general Grushin
operators with analytic coefficients. For example, consider an operator

(8.1) Plx,y,Ds D)= 2 Gag(x. y)y’DDE a€Z', B, 7EZL

17| <x(m—|B)
la+8l<m

where m is a positive integer and £ is rational number with &m a positive
integer fixed as in (1.1). agug (x, y) are supposed to be real analytic in an
open neighborhood @ of the origin. Furthermore, we suppose the freezing
operator

(82) Py (y. Dy, Dy) = z Aapr 0, O)yTDng
Il <x(m—|8)
la+8l <m

satisfies all the three conditions given in § 1. Then we have the same assertion
as in Theorem 1.2:

Theorem 8.1. Let P(x, y, Dz, Dy) be the operator given above. We consider
the equation
(8.3) Plx,y Dz D)ulx, y)=/(x,y) in Q,
where u(x, y) €EB(Q) and f(x, y) EA(Q). Then u(x, y) =4 (Q).

Sketch of the proof.

Almost the same procedure given at the end of §5 works well. We
remember I; = {r € R*, |x| <8} and I, = {y ER™ |y|<p). where § and p are
arbitrary positive numbers. Then we may assume u(x, y) € BUs: Hn(1,)).

Now let Go(&) be the pseudoinverse of Po(y, & D,) considered as in Theorem
3.3. For u€%B(ls Hy(l,)) we have the equation

Go(E)Px,y. & Du=u—GoPo—P)u.
Symbolically we can write
Go(&)P(x,y, & Dy) =I—Go(Po—P)=I—K (x, &) in Hu(l,).

Here KE¥ (Hy (1), Hn(1,)) whose operator norm is arbitrarily small if we take
0 and g small. Then there is an inverse

R(I‘, E) = (I"’K(JI‘, £)>_l€f<Hm (lu). Hy (Iu))
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Thus we have R(x, § P(x, y, §& D,) =I. We can easily show that there are
constants Cp and C; such that

(8.4) sup|R@ (x, &) llom SCoClt i BllEl ™, o, pEZ, |E=1

e,

Starting from R (x, D) we can construct the left parametrix of P, (cf. [20]) and
we have finally u (r, y) €4 (I5, H, (1)) . From this fact we have u (x, y) €4 (I,
X1I,) since u is analytic in y-direction. Q.E.D.

Remark 8.1. We may add to the above operator P(x, y, Dy, D,) the lower
order terms of the form

a(r. y)yDDE, |a+pl<m—1. |f<em—|B)., alx,y)E4(Q).

Remark 8.2. For the operators L and M in the second and third groups
respectively, the similar discussion as above works well and we obtain the same
assertions of Theorem 6.1 and Theorem 7.1 for the corresponding general
differential operators with real analytic coefficients.
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