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Nonlinear Singular First Order Partial Differential
Equations Whose Characteristic Exponent Takes

a Positive Integral Value

Bv

Hideshi YAMANE*

Abstract

We consider nonlinear singular partial differential equations of the form (tDt~~p(x))u = t

. tDtu,u.Dii4, ..,Dnii).

It has been proved by Gerard and Tahara that there exists a unique holomorphic solution with

u(Q, x) =0 if the characteristic exponent p ( x ) avoids positive integral values. In the present paper

we consider what happens if p(x) takes a positive integral value at x = Q. Genetically, the solution

u(t, x) is singular along the analytic set (f —0, p ( x ) ̂ N*}, N*— (1, 2, ..}, and we investigate how

far it can be analytically continued.

§1. Introduction

In this paper we consider the following type of nonlinear singular partial
differential equations:

(tDt-p(x))u = ta(x) +G2(x) (t, tDtii, u, Dm, ..., Dnu), (1)

where U, x) e C, x C5, x = (xi xJ, Dt = d/dt, Dl - d/dxt. We assume that
p ( x ) and a(x) are holomorphic functions defined in a polydisk D centered at
the origin of C5 and

G 2 ( x ) (t, z, Xo, X,, .... Xn) = Z aPqa(x)tpzqX$°-~X%n, a\ = aQ+ - +aw.
/»+9+la | >2

Here apqa(x] is holomorphic in D and Z sup a/,^ (x)\tpzqX™ -'X%n is a
^+?+io:|>2 x^D

convergent power series in (t, z, X0, ..., Xn).
Now we look for a (necessarily unique) local holomorphic solution u (t, x)

with u (0, x) = 0. The right hand side of (1) is well-defined because of this
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initial condition.
The following theorem is proved in [1] .

1 (Gerard-Tahara) . Let x =£0 be a point in D. If p (x)
{1, 2, 3, ...}, then the equation (1) has a unique hoiomorphic solution u(t, x) with
u (0, x)=0ina neighborhood of (0, x ) eC, x Cn

x.

In this paper we consider what happens if p (x) takes a positive integral
value.

First we explain the calculation in [l] . They express u (t, x} as a power
series:

(2)
m^l

Then (um (x) } satisfies the following recurrence formula:

and for m>2

( m — p ( x ) ) u m ( x )
, 2uz(x),...1 (m-~l)um-i(x),ui(x) ..... Um-iCr) ,

i ..... Dtflm-i , . . . , DnUm-i, (apqa (x) }p+q+\a\<m) • (4)

Here/m is a polynomial whose coefficients are 1.
The assumption p (x) 4 N* guarantees that tim (x) is hoiomorphic in a

common neighborhood of the origin of C™ for all m. On the other hand, if p (x)
^ N^ then um(x) may be singular at x==x for some m, and there exists no
hoiomorphic solution with u (0, x) =0 in any neighborhood of (0, x) ^ Ct X CS.
This situation is what we would like to consider in this paper.

Example, The equation

(tDt-(l-x
d))u = txh + G2(x) (t, tDtu,u,Diu ,..., Dnu) , 9, h&^*

has a (unique) hoiomorphic solution u (t, x) — ̂ m^ium (x)tm if and only if d ^h.

Remark. It sometimes happens, as is shown in the example above, that
iim (x) determined by (3) and (4) is hoiomorphic for all m even when p (0) €E
N*. In [l] it is proved that u(t,z) = ^m^ium(x) is convergent in a
neighborhood of the origin in such a case.

Now we assume the following:

N*=U, 2,3, ...}, pOr)*p(0). (5)

Under this assumption, the set V={p(x) =p(0)}cCS is an analytic set of
codimension 1. The equation (1) has a unique hoiomorphic solution u (t, x}
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with u (0, x) =0 outside V, and there may be no such solution near any point in
V. Now we put

dGr)=dis tOr , VU dD] = dist(x, V),

where dist (x, Z) is the distance from x to a subset Z C CJ. The second
equality holds if x belongs to a sufficiently small neighborhood of the origin.
We claim that the solution u (t, x) is holomorphic in an open set of the following
form:

\t\<Cd(x}p, x is sufficiently close to the origin,

where p and C are positive constants. A strinking feature of p is that it is
completely determined by p (x) and nothing else. A more precise statement
will be given later.

Assume that p ( x ) —p(0) has a zero exactly of order g at x = Q. Then we
have the following estimate:

1

where C and g are positive constants. The proof of this estimate will be given
in Appendix.

Now we announce

Theorem 2 (Main Theorem).
(0 // p(0)>g +2, then the solution u(t,x) of (1) with u (0, x) = 0 is

holomorphic in a domain of the form

\t\<Cd(x).

(ii) // p(0) < 9 + 2, then the solution u (t,x) of (1) with u (0, x) = 0 is
holomorphic in a domain of the form

In both cases C is a constant >0 determined by p(x), a(x) and Gz(t, 2, XQ,
*!,...,*„).

§2, Proof of the Main Theorem

We express the solution u (t, x) in the form of a power series in t\

00

U (f, x) = 2 Um (x) fl.
m=l

Then {um (x)} satisfies the following recursive formula:

MI (x) ~T.irTr7irr> (7)
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and for m ̂  2

(m—p(x))um(x)
—fm(ui(x), 2u2(x), ..., (m — I)um-l(x),Ui(x) ..... ttm_i(:r)f

<m) • (8)

is a polynomial whose coefficients are 1. Put p(0) — M^N*^ {1, 2, ...}.
Then wm (x) (m>M) may be singular along V— {r^Cw; p(x) =M}. It is easy
to see that we have the following type of estimate:

\um(x}\<Cmd(x}-s™ (m>M) (9)

in a common neighborhood of the origin, where Cm is a positive constant and sm

(w>Af) is a positive integer. Obviously we can take SM = 9. (The first
M— 1 terms si, ..., SM-I will be given later in a technical fashion).

We have

We can choose sm = m+g~M (w>M) i/M>£7 + 2. On the
,0<k<M-l) if

Proof.
Obviously we have

\Dkum(x)\<Cmd(x)-(Sm+l\ m>A4,k = I, ..., n (10)

for some positive constant C»2. Hence we may set, for m>M+l,

sm — max J5Wl + l; l<mi<m — 1|

j ) , Zm r<m] . (11)
;'=i JJ

Here we set 5^ = — 1 (1 < w <M— 1). This technical choice is made in
order to deal with the exceptional cases m — \ ,..., M~l where nm is hoiomorphic
and so nm and its derivatives are bounded. In these cases we don't need the
kind of estimate like (10), in which the term +1 was necessary because of the
singularity of um(m>M). The quantity smi + 1 comes from G2's terms which
are linear in HI ..... um-i, D&I ..... Dnui ,..., Dium-i ..... Dnum-i and Zj'=i (smt, + l)
comes from G2's ;'-th degree terms in MI, ..., um-\, D\n\ ,..., Dnu\ ,..., D\um-\ ,...,
DWWW_I.

We can simplify (11) slightly. Since sm> sm-i + 1 (m> M + 1) follows
immediately from (11), we have sm>sm-i(m>2] . Hence we obtain

Moreover, by using the fact
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we obtain

sm= max { 2 (s»v + l); wi>l ,..., m/>l, 2]w/=m|. (12)

Now we prove the case M>0 + 2 by induction on m. The desired formula
is obviously true for m = M. Assume that the formula is true for si, ..., sm-i,
where w>M+l. Then we have

The proof will end when we prove that sw-i + l attains the maximum in the
right hand side of (12) by using the following iequality:

(13)

If A = 0, then 2f=i (sw,, + 1) = 0 <m +g — M, where the last inequality
follows from the assumption m>M+l.

Next if cardA — 1, we have, since each w/^1,

Z, w/<w —cardAc

Here we have used the notation Ac= {1, 2, ..., /}\ A So it follows from (13)

<m+g—M,

because ;> 2.
Last, if carcL4>2,

Zm/+(cardA) (g~

because g~M<—2.
The case M>^+2 has now been proved.

Next, we prove the case M<g + 2. First we assume that / — I. The case
& = 0 obviously holds. It is easy to see that sm = sm-i + I, M+l<m<2M~ 1.
Hence the case 1 = 1 is proved.

Now suppose that the claim has been shown for si, s2 ..... s/M+*-b /^2, 0</?
~ 1. Then we have

-1}
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We are going to prove that this attains the maximum of the right hand side of
(12). When li + — +lj = l-l't ki + -~+kj=W+k,

= (g+2) Z/y + Zfe/'-cardA
j'eA j'eA

for A = ij'\ /r>l}c{l, 2, ...,/}. Remark that Zr^// = 2f =ilf = l~lf and that
^>1 if /j' = 0. If A = 0, then the right hand side is equal to 0</ (# + 2) +k~2.
The claim obviously holds in this case.

Next if A^0, then

(14)
/'e^

Let us estimate the second term in the right hand side. If j'&A then // = 0
and V — 1- So it follows that

= (M/'+fe) ~ (y-cardA). (15)

By combining (14) and (15) we obtain

+M}-f &-;

n
Thus we have proved that S/M+/C — l(9+2) +k~2.

We will make use of the following

I. Let Q be a domain in C%, x — (xi,..., xn) , and assume that a
holomorphic function u(x) in 0 satisfies

( X ) | < - , aeN={O f l I 2 . . . . } >

where r=dist(x; 90) is the distance from x to the boundary 9Q of 0 and C\r) is a
polynomial in r of degree ^a with non-negative coefficients. Then we have
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Proof.
We may assume that i = 1 without loss of generality. Goursat's formula

implies that

where F= ||y — Xi =-^rr^| cC^. Since

dist((y,x2,..,xj;90)>r-~r=a^ for

a
we have by writing C(r) = 2CX,

;=0

sup|w(j/ f x2 xn) I ^ ZC,( ?
yeP ;=0 ~~

Hence we get the following estimate:

ft r 1 CM\^ / \\ ^
\DM I <

Now we come back to the proof of the Main Theorem.
In a sufficiently small neighborhood of the origin, we may assume that the

following estimates hold:

; = !,..., M~l. i = l, ..., n) ,

:)-('+1)
f (i = l ..... n),

where A. N, a and Apqa are positive constants and 2
/>+?+ ia i>2

is a convergent power series.
Consider now the following analytic equation (with parameter d>0):

f-l | A ^

dg+l

~ E Apqat
pY«Ya«(eY)ai--(eY)an

p+q+\a\>2

1 -*
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where Bm is the coefficient defined by the following identity:

flBmtm= Z
W=2 p+q+\<X\>2

By the implicit function theorem, this analytic equation has a unique
holomorphic solution Y of the form

Y=EYm(d)tm.
m>l

Here Ym (d) is determined by the following type of recursive formula:

A
—

and for

~
\,,.,, eYm-l', \ApqaI p+q+\a\<m) .

where Fm is a polynomial with positive coefficients.
It is easy to see that Ym (d) is of the form

where Cm is a polynomial of order < tm with non-negative coefficients. Here
and for m>M+l

(16)
=1

It is obvious that tm~ s», + l (m>l) . So we have

We are going to prove that Y is a majorant power series of u if d=d(x) .
More precisely, we want to show that for m>l

um(x)\<\mum(x)\<Ym(d) (17)

(r) <eYm(d), t = l, 2 ..... n. (18)

The cases m — 1, 2, ..., M are obviously true. We will prove the remaining
cases by induction on m. Suppose that the above inequalities have been shown
to be true for HI, ti2, .... um-\. Then we have
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\um (x)

|w — p ( x ) \ J""
\DnUi , .... \DiUm-i\, ..., \DnUm-\\\

n—1|» ^1 > ^2 > ••• l^m-lh

)iM«-i|, .... |Dwitw-i!;

' Nom w i . . • • • » m ,

eYi, . . . , ̂ l i , , . . . , cYm-\, ..., eYm-i, \Apqafp+q+a<m)

1
"./Yarn -F« (7i, ..., y«-i. «7it .... eYm-i; {Apqa}p+q+a<m) (it's an equality!)

adYm(d)=4^Y™(d).Nam ™im^> Nm

Therefore we obtain

m u m ( x ) \ < j f Y m ( d ) < Y m ( d ) .

Here we assume that x is in a ball of radius <N centered at the origin. Hence
0<d<JV. Moreover, since

we deduce by using the lemma that

Cm(d) _ ye -ey

So induction proceeds. We have proved that wCF.

Our next investigation is about the convergence of Y= ^Lm>iYm (d)tm and
M (t, x) = ^m>ilim (x) t™ .

Fix some sufficiently small dQ>Q. Then for some T>0, the series
2m>i Ym(do)Tm is convergent by the implicit function theorem.

Let us consider the caseM># + 2, where tm = m+g —M+l(m>M) . We
have

- — Cm WQ) Tm_ 1 v r ^1 - 2^tm(ds m Q , m+g_M+1
m>M m>M ^0

and if |t/c?|<|T/d0 and 0<d<d0, then

— V y f// }t-m 4- y w
- 2. Y m ( d ) t -h 2- m+g

m>MU
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So for x sufficiently close to the origin, there exists a positive constant C
such that u (t, x) is holomorphic in t\ <Cd(x) . (In fact C=|T/d0|.)

Next, we consider the case M<g+2, where £/#+* = / (0 + 2) +k~ !(/>!,
0<£<M-1). We have

on \ VV (rl }Tm— V V00 > 2- r«W0 ;7 -2-2-
W>M fc=o 1=1

M-l rpk °°= 2 -— Z C/M+A (do)

Hence if \tM/d°+2\<\TM/d^2 and 0<d<d0, then

M-l
Ym (d) r + E

M-l
^ 2 r«(d)k|>"+ Z-

So for x sufficiently close to the origin, there exists a positive constant C
such that it (t, x) is holomorphic in |^| <Cd(x)9+2.

The proof of the Main Theorem has now been completed.

§30 Appendix

We give the proof due to T. Oaku of the estimate (6) in the Introduction.
The author is very much grateful for him.

Proposition 20 Let f i x ) be a holomorphic function defined in a neighborhood
Q of the origin of CZ, x = (xi xn). Assume that f ( x ) has a zero exactly of order
9 ^ N* at the origin. Denote by V the set (x ^ Q; /(x) = 0}, and by d(x) the
distance from x^Q to V, Then there exist a neighborhood Q'CQ of the origin and
a positive constant C>0 such that \f(x}\ ^Cd(x)9,,

Proof.
Let the Maclaurin expansion of/(x) be/(x) = ^\ai>gfaXa. Set/^(x) =

!L\a\=gfaXa, which is a nonzero homogeneous polynomial. By applying a
suitable linear change of coordinates if necessary, we may assume that/(^,o o)^
0. The preparation theorem of Weierstrass implies that/Or) can be written in
the following form:
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where c(x) is a holomorphic function defined near the origin 0 of C* and each
at(x') (i = I, 2, ..., g) is holomorphic near the origin (7 of C^T1, x — (x2, Xs ,...,
xn) • So there exist functions <f)\.(x),..., <f>g(x') (which are not necessarily
holomorphic) such that

/Cr)=cfe)fi(ri-0,(r ' )) , 0i (00 =- = 0, (00=0.

If x is sufficiently close to the origin, we have

1/U) >\\c

This kind of estimate does not hold in the real analytic case. We give a
counterexample.

Set/Cri, x2) — ~x?H-xl, (xi, xz) eE2. The function/ has a zero of order 2
at (0, 0). Set VR = {(xi, x2) e E2; / (xi, x2) = 0}. If d > 0 then the distance to
VR from the point ( — d, 0) is d. It is attained by (0, 0). Note that/( — d, 0)

This is not a paradox. There are some points in V^ = {(z\, 22) e C2;
/Ui, 22) — 0) that are closer to (— d, 0) than the origin is. Such points are
found, for example, on the intersection of V*2 and Rn x i^2 ^ Cte1+Wl,^+/W) =
C2(Z1,z2). In fact, the equation /(xi, iy2) — ~~x? — y\ — 0 defines a curve in Rcri.ie)
^ (~d, 0) which is very close to the point ( — d , 0) if d>0 is sufficiently small.

The reader is referred to [5] for estimates of real analytic functions from
below.

References

[ 1 ] Gerard, R. and Tahara, H., Holomorphic and Singular Solutions of Nonlinear Singular First

Order Partial Differential Equations, Publ. RIMS, Kyoto Univ., 26 (1990), 979-1000.

[ 2 ] 1 Singular Nonlinear Partial Differential Equations, Vieweg, 1996.

[ 3 ] Hille. E., Ordinary differential equations in the complex domain, John Wiley and Sons, 1976.

[4] Kimura, T., Ordinary differential equations, Iwanami Shoten, 1977 (in Japanese).

[ 5 ] Lojasiewicz, S., Sur le probleme de la division, Studia Math,, 18 (1959), 87-136.




