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Multiple Gamma Functions and Multiple g-Gamma

Functions

By

Kimio UENO* and Michitomo NlSHIZAWA*

Abstract

We give an asymptotic expansion (the higher Stirling formula) and an infinite product

representation (the Weierstrass canonical product representation) of the Vigneras multiple gamma

functions by considering the classical limit of the multiple #-gamma functions.

§1. Introduction

Multiple gamma functions were introduced by Barnes. They are defined to
be an infinite product regularized by the multiple Hurwitz zeta functions [2],
[3], [4]. [5]. After his discovery, many mathematicians have studied this
function: Hardy [7], [8] studied this function from his viewpoint of the theory
of elliptic functions, and Shintani [20], [21] applied it to the study on the
Kronecker limit formula for zeta functions attached to certain algebraic fields.

In the end of 70's, Vigneras [24] redefined multiple gamma functions to be
a function satisfying the generalized Bohr-Morellup theorem. Furthermore,
Vigneras [24], Voros [25], Vardi [23] and Kurokawa [12], [13], [14], [15]
showed that it plays an essential role to express gamma factors of the Selberg
zeta functions of compact Riemann surfaces and the determinants of the
Laplacians on some Riemannian manifolds.

As we can see from these studies, the multiple gamma functions are
fundamental for the analytic number theory: See also [16], [17]. However we
do not think that the theory of the multiple gamma functions has been fully
explored.

On the other hand, the second author of this paper introduced a ^/-analogue
of the Vigneras multiple gamma functions and showed it to be characterized by
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a ^-analogue of the generalized Bohr-Morellup theorem [24].
In this paper, we will establish an asymptotic expansion formula (the

higher Stirling formula) and an infinite product representation (the Weierstrass
canonical product representation) of the Vigneras multiple gamma functions by
considering the classical limit of the multiple g-gamma functions. In order to get
these results, we will use the method developed in [22]. Namely, by making use
of the Euler-MacLaurin summation formula, we derive the Euler-MacLaurin
expansion of the multiple g-gamma functions. Taking the classical limit, we are
led to the Euler-MacLaurin expansion of the Vigneras multiple gamma
functions. The higher Stirling formula and the Weierstrass canonical product
representation are immediately deduced from this expansion formula.

This paper is organized as follows. In Section 2, we give a survey of the
multiple gamma functions and its ^-analogue. In Section 3, we derive the
Euler-MacLaurin expansion of the multiple #-gamma functions by using the
Euler-MacLaurin summation formula. In Section 4, we consider the classical
limit of the multiple g-gamma functions rigorously. In Section 5, we give an
asymptotic expansion formula of the Vigneras multiple gamma functions. In
Section 6, the Weierstrass canonical product representation of this function is
derived.

The first author is partially supported by Grant-in-Aid for Scientific
Research on Priority Area 231 "Infinite Analysis" and by Waseda University
Grant for Special Research Project 95A-257.

§2e A Survey of the Multiple Gamma Function the Multiple
f -Gamma Function

2oL The Barnes multiple function.. We assume that o>i,o>2, ••• o)n

lie on the same side of some straight line through the origin on the complex
plane. The Barnes zeta function [5] is defined as

where o>:= (o>i, o*2, •", <*>n) •
This is a generalization of the Hurwitz zeta function. Barnes [5] introduced

his multiple gamma functions through

where
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log pn (o>) := -lim [£,' (0, z; o>) +log 2].
2-0

It is easy to see that Fn (z, o>) satisfies the functional relation

a>) rn-i (z, cod})'
where &)(i)- = (a)\, • • • , a>,-i, a>,+i, • • • , a)n) .

2.2. The Vigneras multiple gamma function. As a generalization of the
gamma function and the Barnes G~function, Vigneras [24] introduced a
hierarchy of functions which she called "multiple gamma functions".

Theorem 20L There exists a unique hierarchy of functions which satisfy

(1) Ga

(2) G, (!)=!,

(3) - j - l o g G . U + D ^ O for z>0,
az

(4) G0fe)=*.

Applying Dufresnoy and Pisot's results [6] , she showed that these
functions satisfying the above properties are uniquely determined and that

has an infinite product representation

(2.1)

where

(m) '>=mi+m2~\ ----- l~w» for m=

The Vigneras multiple gamma function can be regarded as a special case of
the Barnes multiple gamma function. Namely
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Gn(z) = /;(*, (1. !••% l))(~1)n~lx (the normalization factor).

In this paper, we will use the word "the multiple gamma function" to refer the
Vigneras multiple gamma function.

2o30 The f-gamma function* Throughout this paper, we suppose Q<q<l. A
^-analogue of the gamma function was introduced by Jackson [9], [10].

Askey [1] pointed out that it satisfies a ^-analogue of the Bohr-Morellup
theorem. Namely, F(z\ q) is uniquely determined by the following three
conditions:

(1)
(2)

(3) ~^-logr(z+l\q}>0 for z>0,
dz2

where [*]«:= (l-qz) / (l~q) .
As q tends to 1~0, F(z\ q) converges F(z) uniformly with respect to z. A

rigorous proof of this fact was given firstly by Koornwinder [11].

2»40 The multiple <g-gamma function. Recently, one of the authors [19]
constructed the function Gn(z\ q) which satisfies a ^-analogue of the generalized
Bohr-Morellup theorem:

Theorem 2020 There exists a unique hierarchy of functions which satisfy

(1) Gn (z+l\ q) =Ga-i (z; q} Gn (z; q) ,
(2) G*( l ;?)=l .

(3) --logGn(z+l-q)>0 for z>0,
dzn+1

(4) G Q ( z \ q ) = [z]q.

We call it "the multiple g-gamma function". It is given by the following
infinite product representation [19]

(2.2)
k=1i\ l—qK

for n>l, where

z — u

M — I
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In the next section, we will derive a representation of the multiple g-gamma
function called Euler-MacLaurin expansion and consider its classical limit. This
limit formula gives some important properties of the multiple gamma functions.

§3. The EuIer-MacLaurin Expansion of GWU+1; q)

By means of the Euler-MacLaurin summation formula

(for/eC«[M,JV]),

we give an expansion formula of the multiple #-gamma functions which we call
the Euler-MacLanrin expansion [22] . This formula plays an important role in the
following sections.

Proposition 3.1. Suppose $iz> — 1 and m >n, then

logG»(z + l; q)

n-l m
-i / \ /~* f \ {_ \ Dr T-> / \ r-j

rn,j \z) Lj (q/ -r / i—j-rn,r-i U; q) ~Xn,»
; = 0

if^^r^

polynomial Gn,} (z) is introduced through
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Proof. From (2.2) and the definition of G n , j ( z } , we obtain

n

Let Lr(z] and Lr be

Lrz: = _^ Li
logr V

where LiVU) is Euler's polylogarithm

Ar=l

and denote by nSj, the Stirling number of the first kind;

n

y=o

where [M]« = M (u~ l) 8" (M— w+1).
By making use of the Euler-MacLaurin summation formula, we have

(n-l)! (;-r)!
;=0 r=0

Lrt

and

(3.3)
k=l
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Lr (z) and Lr cause divergence as q—* 1 — 0, but we can prove that these
divergent terms vanish. In order to show it, we express Lr (z) as the sum of Lr

and convergent terms. By partial integration, we can show

(3.4) L , + 1 f e ) = l

where

Substituting these formula into (3.1), we obtain

(3.5) log G« (

TLr+(n-l)! L (7-0! L (l-r)rr+2

j=Q /=! r=0

n-l j

t=l

(n-l)!
;=0 J=0

Y+

j=0 r=0

) -\B>-— il— Uj7r (y+i-r)! Ll

(»-!)! j (/-/)! (/ + !)
;=o ;=o

j=0
»-i v . ;

'fFn.r-i(z;q) + )Gn,i(z)Ci(q)
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We prove that the divergent terms in (3.5) vanish. From the definition of Gnj
and of the Stirling numbers, we can easily show that terms involving Lr+2 in
(3.5) are canceled out

Next, we prove the coefficient of L\ vanishes. Since

(/-/)! (/ + !)!
;=0 /=0

_ f(t-i \
! J o \ n - l /

and

'*•>*'Lr\ (j + l-r)}~Lrl[\ dz) \n-i
;=0 r=0 r=0

d~1z~1

we have

(the coefficient of Li)

~l

rl dz \n-l
r=0 z=0

We prove that the right hand side of the above formula is equal to zero. In
a formal sense.

Imposing the boundary condition at z = Q, we make the both sides above act

lz-l\
on I 1. Then,

\n — 1 /

\n-l) J* \n-ir Ai r ! [ \ dt) \n-l )\
r=l

because I is a polynomial of (n — 1)-degree. Since F(z) • = —
\ n —I / \ n

satisfies

F(0)=0 t
 /"r""

it can be seen that
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Thus we have the formula

a.,, -(•)+r('-'W£&[(_A)~('->)r_f tW -Mn-l/ £/LV <**' \n- l / J ( _o

which shows that the coefficient of LI is equal to zero. Hence we have proved
that the all coefficients of Lr vanish in (3.5).

n —nz+l\
Finally, we calculate the coefficients of log( . _—) and Tr(z + l). Using

the formula (3.6), we have

(
/ -i 2+1 \

the coefficient of logf -. _—) in (3.5)

dt'

In order to calculate the coefficients of 7VU+1) in (3.5), we note that

\n - l j h (n-1)1! 'L (j-l)lL (I -r)l r\'
7-0 /=0

Using this identity, we have

(3.8) (the coefficient of Tr(z+l) in (3.5)) =(—^]T~\
\n~~\

Substituting (3.7) and (3.8) in (3.5), we obtain Proposition 3.1. D

§4. The Classical Limit of Gn(z + l: q)

In this section, we study the classical limit of Gn (z + 1; q) using the
Euler-MacLaurin expansion. We will see that this limit formula gives an
asymptotic expansion for the multiple gamma functions, which is a generali-
zation of the Stirling formula for the gamma function. First, we consider the
classical limit of the Euler-MacLaurin expansion in the domain (z^C\<3lz> — 1}.

Proposition 4.1. Suppose 5Jz> — 1 and m>n.

lim logCn(*+l; q)
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Z /

- l o g U
r=l

where

n+l

'•-E
r=l

Furthermore this convergence is uniform on any compact set in {z^C\<3lz> ~1}.

Proof. Taking Proposition 3.1 into acount, we must show that

/I —^2+H

(4.1) limlog (n^— )=log(z+l),
9-1-0 \ L ^ /

(4-2)

(4.3) lim Fn,r-i (z\ q) =Fn,r-i (z),
9->l-0

(4.4) l imi?n .«fe ;^ )= /?« f M U),
9-*l-0

(4.5) limCj(q)=Cj,
9-»l-0

and further have to show that this convergence is uniform. Here we prove only
(4.4). The other formulas can be verified in a similar way.

Since
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in order to show (4,4), it is sufficient to prove that the procedure of taking the
classical limit commutes with the integration. Let us introduce polynomials
Mr(x) through

(cf. [18] ) . They satisfy the recurrence relation.

Mi(r)=l. (x2-x)-j-Mrax

and M r(l) = (r~l)l. Using this we have

x
r°° —

/ a*/ 1

Therefore we have to show

(4.6) lim

This can be proved by means of the Lebesgue convergence theorem and of
the following lemma.

Lemma 4.2. Suppose that a ^ N be fixed and that y0 and yi are fixed
constants such that ~ I<y 0 <t / i - Then there exists a constant C depending on t/0

and yi such that

Next we show that this convergence is uniform on any compact set in the
domain

Put

From the consideration above, it follows that {0(z, q) |0<<?<1} is a uniformly
bounded family of functions and
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_, dt as ,--.

Hence, by Vitali's convergence theorem, this convergence is uniform on any
compact set in the domain {z^C\<3lz> — I}. D

The constant C, in Proposition 4.1 can be expressed in terms of the special
value of the Riemann zeta function.

Proof. From the definition of £ (s) .

C'(s)=-J}^ for
k=l

By the Euler-MacLaurin summation formula, we obtain

(4.7) C ( s ) = - + : ' - V ' logrt

Since

^ — ?_[_„] 4--s-n\r-\
— a L 5J ;z f ^T L SJ n

(4.7) can be analytically continued to {z^C\$lz> ~n + 1}. So if we put s=—j,
71—/ + 2, then the claim is proved. D

Next we prove that the limit function in Proposition 4.1 coincides with the
multiple gamma function.

Theorem 4040 Suppose m>n. Then, as q—*I — Q, Gn(z + \\ q) converges to
uniformly on any compact set in the domain C\Z<o and

(4.8) logC,,U+l)
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w-l

* « c' (-,-) +T-~ + ff— U)
j=0

Proo/. In the domain {2 e C |SRz> — 1} , we have already proved the
existence of the limit function and uniformity of the convergence. Let us put

GM(H-D : = l imG n
ff-»l-0

Because of the uniformity of the convergence, we have particularly

A r ~

l im ~ z ) {\ogGn(z + l \ q ) } = ) OogG.U+l)}

so that, from Theorem 2.2, G«U+1) satisfies the conditions in Theorem 2.1 \D
—(4). Since a hierarchy of such functions is uniquely determined, so G«U+1) =

G H ( 2 + l ) in {z&C\3lz> — 1). Thus the claim of the theorem in the case that
9fk>-l has been proved for feeClSRz>-l}.

Next, we show that in feeC|9k<— 1, ̂ ^-1),

Gw(z + l ; ^ )— GWU+1) as q-+l-Q

and that the convergence is uniform on any compact set in this domain. For the
proof, we use induction on n,

The case that w = l was considered by Koornwinder [11]. So, we consider
the case of n. Let K be a compact set in {2 ̂  C| — 2 <#tz < — 1, 2 =£ — 1} . We
assume that

GB_i(*+l:?)-->Gw-iU+l) as <?-»l-0

and that the convergence is uniform on A".
From (2 .2 ) , we see that, if q is sufficiently close to 1, G w _ i U + l; q) has no

poles and no zeros on K, neither has Gn-\ (z + 1) from (2.1). Therefore,

uniformly converges to

Repeating this procedure, we can verify, for any n, G«U + 1; ̂ ) converge to
G»U + D in a compact set in the domain {— 3<9lz< - 2, ̂ ^ — 2}, { — 4 < 9 f k
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< — 3, z^ — 3}, • • • . Thus the claim of the theorem is proved. D

§50 An Asymptotic Expansion of Gn (z+1)

Let us call the expression (4.8) the Euler-MacLaurin expansion
We should note that (4.8) is valid for z^C\{$tz< — I}. We show that it gives
an asymptotic expansion of G»(z-f-l) as |z|—»°°, i.e. the higher Stirling formula.

Theorem 501. Let 0 < d < it, then

r=l
n-1

r=l
I

Z

n-l

- Lfnj (z) (C ( /) + • + 2] + 2j (2r)
;=0

|— ̂ oo in t^ sector (z^G\argz\ <K— d}.

Proof. Straightforward calculation shows that

1=1 *=o

Thus, we can see that

(5.1) FFn2~\((z)=0(z~Z} as |0|~*TO'

Furthermore, noting that

i < i

in the sector {z^C\\argz\<n—5} and that \B2m(t)\^\B2m\ for 0<f<l , we have

V V
(2m)! LL«-

Hence, \Rn.2m(z) | =0 (0-2'K-1+B) =o (F^-i (z)) as |z|-»oo in the sector.
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Lei us exhibit some examples of the higher Stirling formula. In the case
that w = l, we obtain

-U-r-l)-C(O)

B2r I
[2r]s

r=l

This is the Stirling formula since £' (0) = —ylog(27r).

Furthermore, in the case that n = 2, we obtain

logG2 \

-zC'(0)+C'(-D

which coincides with an asymptotic expansion of the Barnes G-function (see
[23], [25]). In the case thatn = 3, 4, and 5, we have the following results.

Proposition 5.2. The higher Stirling formula for n — 3, 4 and 5 are as
follows:

logGsU-
/

~6 4 ' 24 / I U K V" ' ^ 36* ' 2 4 * '3 72

.Ir
2^- - ' - 2 )

r=2

19

2 22 11 31
2 I c\%> ' o Q/'2 19^ 8 36^ 144

/ ? S s V ^ / 1 ^ S v - 1 - /

!__!_ , _J 1 /- 2 , 13 , j>\
12^+1^720 C,+iP\te "^ 22"1"2/
_

12
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-(8rs-56r2+134r-109)}.

log G5 Cz+l)

11 3 z2 , 3~

137 5 , _39_ 4__46_1_ ., £2 323 , 5639
7200* 320* 21602 1440 1440* 43200

C/ / f\\ [ TT>i J-O/& I LJL-J/i, \) or/ / -j v

(0) + 24 "" ( ~ l j

24 12 24
-4- 1 1 1 1 /35 2 45 i\
+12 z+1 ~720 ~k+W\ 4 z + 4 *+2/

+ V^l^- L__(^4- (20r-54)^3+ (/Or'-SZSf-f 506)^2

£j [2rJ6 ' ' " 1 V O " - 1 '

+ 16r4 —^-j'3+ 754^ -"2^r+ 102l) .

§6. The Weierstrass Canonical Product Representation for Gn(z+l)

By calculating the formula (4.8) in the case of m=n + l, we derive the
Weierstrass canonical product representation for the multiple gamma functions.
Main theorem of this section is the following:

Theorem 6.1. Forn^N, u^^ /iaw

X ^ f / 2 \ ~ ( ") , , xxl

G«(z+l)=exp(F«U)) II ( l+f) exp((Z>nU, fc)) .
t— T V. \ K / J

t^/16f^

;=0
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rV

/ r x

p.{r-rV= ) — r/)-; ' LA r\ ̂ J-r

Proof of this theorem will be carried out through the sections 6 . 1 — 6 . 4 ,
and some examples of this representation will be discussed in the section 6.5.

6.1. Rewriting the EuIer-MacLaurin expansion of Gn(z + 1) . In this
section we prove the following proposition.

Proposition 6.2.

n-l

(6.1) log Gn U+D = ^G»j (z)K, (z)
}=Q

where

Furthermore the infinite sum in the last term is absolutely convergent.

Proof. In the Euler-MacLaurin expansion of G»U+1), we see that

(6.2)
' ' ' ' \n —1 / j l * = o rlr

n-l

;=0

and also that for l<r<n — ],
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n-l

(6.3) Fa.r-l(z}=Y,Gnj(Z}

/=0

Moreover, from the properties of the Bernoulli polynomials, we have

j-Q

Next we calculate Rn,n+i (z) . From the definition of Gn,r(z) , we have

Here we have, for /^ n — 1,

(6.6)

so that the infinite sum in (6.5) absolutely converges because/— w — 1< —2.
By means of the Euler-MacLaurin summation formula, we have

«•«
-+ Jf1 [y] ,-i (

r=l

r=l

It is easy to see that the coefficient of logU + 1) of the above formula
vanishes.

Hence we obtain



MULTIPLE GA.MMA AND ̂ -GAMMA FUNCTIONS 831

n-l

(6.8) Rn,n+1 (z) = -

r f g y + i G
L\ yy+i

and the infinite sum is absolutely convergent since, for r>/ + 2,

— (z+fe) ;+1~r decreases more rapidly than k~2 as £—>°°.

Substituting (6.2), (6.3), (6.4), (6.8) to (4.8), and noting that

«+l n+l
I , VBr

r=l r=j+2

we obtain (6.1). CD

In the above proof, we showed that

Bj+\(z+k+l) , (z+k+l\ , n /
• + 1 - ~log\ ^+fe )+P,(z

= 0(k~2) as fe->oo.

We note that the converse is also true.

Lemma 6.3. There exists a polynomial A (fe, z) such that

= 0(k~2) as

A(k,z) is equal to P} (z+k+l) ~Pj (z

Proof. Since

'
+l-r(l} (z+k)r,

we have

Bj+iCg+fe+1), (z±k±l\
1—, _ Ir-kfYl I

j + l
<_i_i

j + l

1=1

By integrating the both sides of
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from —1 to 0, we get

(6.9) j~

This implies the statement. Ci

S02o An product representation! for the £' ( — / ) . We derive an
infinite product representation for C'(~~/) in the same way as in the Section 3.1.

Proposition 6040

exp(C'(-y))=exp(P,(l))n((l+|) '+;'+1 exp(F;(^ + l)-P,W))

the infinite product absolutely converges.

Proof. From the proof of Lemma 4,3, we have

J+2

Here, in the same fashion in the previous section, we have

I 1

This completes the proof. Q

6o3o Good represeetatioe for Kj (z) . In this section, we give a "good"
representation for K} (z) .
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Proposition 6.5. Let k be a positive integer and define

r=0

(//)*:= -(O

and

we have

(6.11) >+ij+i ;iogr i i f c j+p jk+H-D-pyU+fe )

j+l (Li r+l "'+I-'V<

Furthermore each term in the right hand side decreases like 0(k~2) as k—+°o.

Proof. It is easy to see that each term in the right hand side is 0 (fe~2) as k
o. Moreover we can show that (/)* — (IV)* are polynomials of z and that

y
r=0

(a polynomial of k},

U1/* y+ i lM r r * r+l
r=0

+ (a polynomial of k),

(///)/fc= —^T—T T"+ (a polynomial of k),

2
. . -. T"H- (a polynomial of k).
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Hence, if we put

j + 1 [Lt\ r ; r+1
r=Q

then, B (k, z) is a polynomial of &, z and

(the right hand side of (6.11))

From Lemma 6.3, B(k, z)=Pj(z+k + l)-Pj(z+k). D

Proposition 6,6=

ri //
K,(z)=Q,(z} + Yi(

}

^g infinite sum in this formula absolutely converges.

Proof. We have

''t1 ) *-<" E
Noting Proposition 6.4 and

we get
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By (6.12) and (6.13), we obtain

(6-14)
k=l

The proof is completed by substituting (6.14) to the definition of Kj(z) in
Proposition 6.2. D

6.4. A proof of main theorem. By Proposition 6 . 6, we have

(6.15) logGw(*+l)
j-1 i

W + Er
r=0

y=o

rz/z-u \
I IdMJo \w — 1 /

Thus, in order to prove Theorem 6.1, it is sufficient to show

(6.16)

;=0 r=0 1 = 1
n-2 n-l

— _ ± _ \ I \ n-lSr r-M\ /_
(n-l)l L I L r-fiz \(
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Since

U I

= 0(k~2) as k-»™,

we have

(6.17) -
1 = 1

= 0(k~2) as &-*oof

while we obtain

£=_! r=u+l

= O(k~2) as k-»°°.

By the same arguments as in Lemma 6.3, (6.16) is deduced from (6.17)
and (6.18). Hence the proof is completed. D

6c50 of the Weierstrass product for
GnCz+1). We give some examples of the Weierstrass canonical product
representation for the multiple gamma functions.

In the case that n = l, we have

This is the Weierstrass canonical product representation for the gamma
function.

In the case that n — 2, we have

Since C (0) = ~ ^ ^og ̂ ^' ^^s ^s ̂  Weierstrass canonical product repre-

sentation for the Barnes G -function [2].
In the case that w = 3, 4 and 5, we obtain the following results.

Proposition! 6070 The Weierstrass canonical product representations in the
case that n = 3, 4 and 5 are as folloivs:

G3(z+l)
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=exp(_6L24+132s+J9^.
expll442 ^ISZ M442

J>_
24

- C(-2)
fc(/c+l)(fc+2)

6

_ - _ _ . _ . _ .
8 4 3/ \12 2T 6
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