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By

Tatsuva AKASAKA ™ and Masaki KASHIWARA *

Abstract

We present a conjecture on the irreducibility of the tensor products of fundamental
representations of quantized affine algebras. This conjecture imphes in particular that the
irreducibility of the tensor products of fundamental representations is completely described by the

poles of R-matrices. The conjecture 1s proved in the cases of type Ay and Ci".
0. Introduction

In this paper we study finite-dimensional representations of quantum affine
algebras. It is known that any finite-dimensional irreducible representation is
isomorphic to the irreducible subquotient of a tensor product @ ,V (7..) 4
containing the highest weight (Drinfeld [7]. Chari-Pressley [2]). Here V (x,) is
the fundamental representation corresponding to the fundamental weight 7, and
a, are spectral parameters. Moreover {(7,: a,)}, is uniquely determined up to
permutation. This gives a parameterization of the isomorphic classes of
finite-dimensional irreducible representations.

However it is not known for example what is the character of those
irreducible representations except the complete result for A ([2]) and some
other results due to Chari-Pressley ([2, 3, 4]). We have even not known when
XV (1,,) ey itself is irreducible.

In this paper we propose a conjecture on the irreducibility of @,V (7.,) 4,
and prove this conjecture for A and CL.

For x, y€C(q), let us denote x <y if x/y does not have a pole at ¢=0. We
denote by u, the highest weight vector of V (r,).
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Conjecture 1.
(1) I a1<--<ay, then V(74) @@V (7:) ax is generated by 1, Q- Qu,y as
a Uz(g) -module.
(2) If a1= -2 ay, then any non-zero U (g) -submodule of V(7,) 5, @ @
V (T1y) aw contains 1, &+ Qu,y.
Here U, (g) is the quantum affine algebra without derivation (see §1.1).
This conjecture implies in particular the following consequences.

Claim 1. If a1 <as;, then the normalized R-matrix
RY (x, y): V(m) RV (7)) =V () &V () 2
does not have a pole at (x. y) = (a1, az).

Here R (x, y) is so normalized that it sends u.Qu, to 1,Qu,.

Claim 2. V(7)) 2@ QV (T.w) an is trreducible if and only if the R-matrix

R:])?,fu (.I', y) -V (7E1y) I®V (77-'1,;) y—’V(ﬂ,',,,) y®V(7zzu)1

does not have a pole at (x, y) = (ay, a,) for any 1<y, uSN(v+p).

Claim 3. Assume that R'SL, (x. y) has no pole at (x, y) = (ay, a,) for anv 1
Su <y £N. Then the submodule genevated by Uy Q- @,y is an irreducible
submodule of V() a @ -+ Q@ V(1,y) an. Conversely, any finite-dimensional irre-
ducible integrable module is obtained in this way.

Claim 4. If M and M’ are irreducible finite-dimensional integrable Ug(g) -
modules, then MQM, is an irreducible Uy (g) -module except for finitely many z.

The plan of the paper is as foliows In §1, we fix notations and explain the
results used after. We announce non published results but they can be directly
checked for the A and C{! cases. In §2, we announce the main conjecture and
discuss its consequences. In 83, we reduce the main conjecture to another
auxiliary conjecture, which will be proved in the case A" and C;" in §4. In the
appendix, we shall calculate the explicit form of the normalized R-matrices and
the universal R-matrices between fundamental representations of A3 and Ci.

The authors are grateful to K. Takemura for his helpful comments on this
work.

1. Notations

1.1. Quantized affine algebras. Let (a;) ;,er be a generalized Cartan
matrix of affine type. We choose a Q-vector space t of dimension #1+1 and
simple roots @, €t* and simple coroots i, €t such that (&, @,) =a,,, We assume
further that o, and h, are linearly independent. Set Q= 2,Za, and QV= >,Zh,.
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Let 6= 2a;a; be the smallest positive imaginary root and let ¢ = ZaYh; EQ" be
the center. Set tF=t*/Q6 and let cl: t*—t& be the projection. We set t**={1€

t*:{c, A) =0} and t5=cl (t*°).
We take a non-degenerate symmetric bilinear form(+,*) on t* such that

iy, 1) = 2(ai. 2) for any i€I and 1Et*,
(o, )

We normalize it by

1.1 (e, )= (8, A) for any AEt¥.

We identify sometimes t and t* by this symmetric form.

Let us take a (weight) lattice PCt* such that @, €P and h; €P* for every i
€] We assume further that P contains A, satisfying {%;, A,) =0, and that PN
QO0=Z0. We set Pq=P/ZdCt¥ PP={1EP;{c, 2) =0} Ct*°, and Pi=cl (P°) C X"
Note that the dual lattice of Q¥ coincides with Pa=@P,;Zcl (A;).

Let 7 be the smallest positive integer such that

(1.2) (o, @) /2€Z for any i€

Then the quantized affine algebra U,(g) is the algebra over & = Q(g"7)
generated by the symbols e, f; (i €I) and ¢(k) (b € y7'P*) satisfying the

following defining relations.
(1) ¢(r) =1 for h=0.

(2) q(h)q (hs) =q (haithy) for ha, hy € 77IP%
(3) For any i€I and h € 17P¥,

q (I’L) eiq (h) -1 :q(h,cr,)ez and
q (h)f,q (h) _1:q— (h,a,)f’.

g1 ;
4) e, f1=06 b b for i, jE€1. Here g:=¢ " and ti=q o, ) hi).
¢—q;" 2

7

(5) (Serre relations) For i#;j,

[ b

Z (__,1) kegk)ejeib*'k): Z (___1) kfﬁk)j‘]ﬁb-—k) =0
k=0 k=0

Here b=1—{(h;, @,) and
e =ck/ k], =7t/ k],

[k]t (‘It 4 k)/(‘]t a7, [k] = [H;[k] 1

We denote by Uy(g) the subalgebra of U, (g) generated by e, f, 4 €I) and
q(h) (heT™1QY).
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In this paper we consider only U;(g). A U;(g)-module M is called
integrable if M has the weight decomposition M=D;cpy Mz where My={u EM; ¢
(h)u=q**u}, and if M is U,(g) i-locally finite (i.e. dim Ug(g), u <0 for every
wEM) for every i€1I. Here U,(g), is the subalgebra generated by e,, f; and t:.

We use the coproduct 4 of U, (g) given by

(1.3) Alg(m)) =q () Qq (),
(1.4) Ale:) =Rt +1Qe;,
(1.5) A(f) = Q1+,

so that the lower crystal bases behave well under the corresponding tensor
products ([12]).

1.2. Finite-dimensional representations. Let W C Aut (t*) be the Weyl
group, and let I: W—7Z be the length function. Since 0 is invariant by W, we

have the group homomorphism clg: W— Aut (t%°). Let Wy C Aut (t%%) be the
image of W by clo. Then Wy is a finite group. Let us take 1€ [ such that Wy is

generated by clo(s;) G E€Io=I\{io}) and that a}y=1. Such an 4, is unique up to
Dynkin diagram automorphism. Hereafter we write O instead of 4.

Let us denote by Wy the subgroup of W generated by s, G € I, =T\ {0}).
Then Wy is isomorphic to We. The kernel of W— W, is the commutative group
{t(8); £€QuaN QY. Here Qu=1cl(Q) = Z,esZel(a,) and Q¥ =cl(QY) =
DienZel (h,) and t(€) is the automorphism of t* given by

He W =2+ 6. D¢~ & o556, 05
for & €t* such that cl (&) =&
The following lemma is well-known.

Lemma 1.1. Let E€EQuN QY and wE W,
(i) If &is dominant (with respect to Io), then we have

L wot (8)) =1(w) +1(t(€)).
(ii) If & is regular and dominant, then we have
1(£(8) ow) =1((8)) —1 (w).

Let us choose i; such that W is generated by clo(s,) €I\ {i1}) and that a,,
=1. For any z€k\{0}, let ¢(z) be the automorphism of U;(g) given by

02 (e)) = 20,
(l)(z) (fz) = z 0%y 1
$@ ) = q).
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For a U(g) -module M, let M, be the U;(g) -module with M as its underlying

k-vector space and with U (g)fz)—’U; (g)—End (M) as the action of U (g). Then
MM, is a functor satisfying (MQN) ,=M,QN.. This definition extends to the
case zEK\{0} for a field extension K Dk.

If M is a finite-dimensional integrable U; (g) -module, then the weights of M
are contained in PY.

1.3. Fundamental representations. We set 7, =cl(A, —alAo) for i €I,

Then (7,) er, forms a basis of PY. We call , a fundamental weight (of level 0).
For i € I, there exists an irreducible integrable Uj (g) -module V(x,)
satisfying the following properties.
(1) The weights of V(r;) are contained in the convex hull of Wy,
(2) dim V(1) »,=1.
(3) For any 1€ Wum; € PY, we can associate a non-zero vector u, of
weight g such that

[f;w% if (hy, 1) 20,
lt 3/ = /] .
o e T miy, if (b, py <O0.

for any jEL
Then V(m,) is unique up to an isomorphism. Moreover V(m,) has a global
crystal base. We call V(x,) a fundamental representation. Then V(m,) has a
non-degenerate symmetric bilinear form (-.*) such that ‘e,=f, and ‘g (h) =¢ ().
Hence the duality is given as follows. Let wy be the longest element of W, Then
for 1 €1, there exists i* €I, such that

Tyx=— —WoTl,.

(Remark that i+=4* with 0¥ =0 gives a Dynkin diagram automorphism.) Then
the right dual of V (m,)is V (7,+) p+ with the duality morphisms:

(1.6) E—=V () 6@V (1,) and V (7)) QV (1,4) pv—k

with p*= (—1) ®"94%“? Here p and p¥ are defined by: (h,0) =1 and {0, a;) =
1 for every i €. Usually (p. §) = 2,ca) is called the dual Coxeter number and
(0¥, 0) = 2.,esa, the Coxeter number.

Let m, be a positive integer such that

W<At_a://10) = (Az—a;/Ao) +Z7Vt15

We have m,= (@i, a,) /2 in the case where g is the dual of an untwisted affine
algebra, and m,=1 in the other cases.
Then for z, 2 €K*, we have
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(1.7 V(m).=V(r,), if and only if 2™=2z"
Hence we set
Viz,: 2™) =V (1),

The following theorem is announced by Drinfeld ([7]) in Yangian case,
and its proof is given by Chari-Pressley ([3, 4]).

Theorem 1.2. Let K Dk be an algebraically closed field and let M be an
irreducible finite-dimensional Up (g) x—module. Then there exist 1i,..0in € lo and
21,2y € K\AO)} such that M is isomorphic to a umique irreducibe subquotient of

V(7 21) Q- QV (w.; 2w) containing the weight 2=y 7., Moreover, {(iz; z1)....,
(in: zn) )} is umique up to permutations.

Definition 1.3. We call V (r,,; z,) a component of M.

1.4. Extremal vectors. =~ We say that a crystal B over U(g) is a regular
crystal if, for any ]i], B is isomorphic to the crystal associated with an

integrable U, (g;) -module. Here U,(g;) is the subalgebra of U;(g) generated by
ey, f; and ¢, (i €]J). This condition is equivalent to saying that the same assertion
holds for any ]i[ with two elements (see [15, Proposition 2.4.4]).

By [14], the Weyl group W acts on any regular crystal. This action S is
given by

Sob= {f;("'-w“””b if (b, wt (b)) =0
T gy if (r, wi (b)) <O0.

A vector b of a regular crystal B is called i-extremal if ;6 =0 or f,b =0.
We call b an extremal vector if Syb is i-extremal for any wE W and i €.

Lemma 1.4. For any A, uEtE in the same Werorbit, we can find is,..., in €I
such that

ﬂzsin'“sul,
<hlln Sik—f"su/?-) >O fO'V any ].ngN

Proof. 1t is enough to prove the statement above for a regular integral
anti-dominant (with respect to I,) weight A and the dominant weight y € WA.
We may assume further 1 €Qy N QY. Let wo be the longest element of W,

By Lemma 1.1, we have

1) =1(=2))

=1(wo) +1(t(—2A)wo)
=1(wo) +1 (wot (1)).
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Take a reduced expression wot (1) =s,4**s;,. Then for 1 <E<N we have I (¢ (1)
Sisy) =1 (t (R)) —k and hence ¢ () siy***s@x is a negative root. Since it is
equal to sy syt — (4, Su S Qi) 0 and syt+rSu- X 1S a positive root, we
conclude

(/1, Su®t 'Stk-xa'k) >0.

On the other hand we have the equality s,y **sud =wot (1) A =woA in tF°. Hence it
is equal to . [J

For a regular crystal B, bEB and 1 €1, let us denote by ¢ b the i-highest
weight vector in the i-string containing . Namely we have

é—gnax _~sy(b)b‘

Lemma 1.5. Let B be a finite regular crystal with level 0 (with weight in
PY).

(1) For b € B, there are iy,..ix €I such that &B¥-- &M%y 45 an extramal
vector.
(2) Any vector in the W-orbit of an extremal vector b of B is written in the

Sform &5 ¥,

Proof. Let us set Fy={g 03...gm3%p. j, i, €I}, F=U,>oF,. Replacing b with
b €F with maximal (wt(p), wt(b')), we may assume from the beginning that
(wt (), wt(d)) <(wt(d)., wt(b)) for any b’ € F. Since (wt(p’), wt(p'))>
(wt(b), wt(b)), we have (wt(b), wt(b")) = (wt(b), wt(b)) for any b’ EF, and
hence any b'E€F is i-extremal for every 1 €I. Moreover the weight of b’ is in the
Wa-orbit of wt(b). Then for any weight ¢ of F and i such that {1, p) <0, S,
sends injectively F, to Fs,. Hence # (F,) <# (Fs,). and Lemma 1.4 asserts
that they must be equal. Therefore S;: F,—F,, is bijective. This shows that F is
stable by all Sy, Thus we have (1) and (2). [

Lemma 1.6. Let B, and By be two finite regular crystals. Let by and by be
vectors in By and B, vespectively.
(1) If by and by ave extremal vectors and if their weights are in the same Weyl
chamber, then b1Qb, is extremal.
(2) Comversely if by @b, is extremal, then by and by are extremal vectors and
their weights ave in the same Weyl chamber.

Proof. (1) is obvious because Sy, (5;®b;) =S,6:QS,b, under this condition.
We shall prove (2). Since ¢ma---z M (p,Qb,) = M*...5' 1%, Q@ b; for some
b2 € By, the preceding lemma 1mp11es that b; is extremal. Similarly b; is extremal.
It remains to prove that wt(b;) and wt(bz) are in the same Weyl chamber. Let
us show first that wt(b;®bs) and wt(b1) are in the same Weyl chamber. We
may assume without loss of generality that wt (b @ b2) is dominant (with
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respect to Ip). Then & (b:&Qbz) =0 for every i €I,. Hence &;b;=0. Hence wt (b1) is
dominant. Hence wt (by ® b;) and wt(b;) are in the same Weyl chamber.
Similarly wt(b;®b;) and wt(b;) are in the same Weyl chamber. Thus wt(b;)
and wt (bz) are in the same Weyl chamber. []

Definition 1.7. We say that a finite regular crystal B is simple if B
satisfies

(1) There exists A € P% such that the weights of B are in the convex hull

of ch/i.

(2 #B)=1

(3) The weight of any extremal vector is in WuA.

Prposition 1.8. The crystal graph of the fundamental representations is
simple.

The proof will be given elsewhere. However we can easily check this for

the A and Cy¥ cases.
Lemma 1.9. A simple crystal B is connected.

Proof. In fact, any vector is connected with an extremal vector by Lemma

1.5.
Lemma 1.10. The tensor product of simple crystals is also simple.
Proof. This immediately follows from Lemma 1.6. []

Propesition 1.11. Let M be a finite-dimensional integrable Ug(g) ~module
with a crystal base (L, B). Assume the folllwing conditions.
(1.8) B is connected.

(1.9) There exists a weight A EPY such that dim (M;) =1.
Then M is irreducible.

Proof. We shall show first that M; generates M. Set N= U, (g) M; and N=

(LON)/(gLNN) CL/qL. Then N is invariant by ¢, and f,. Hence N contains B,
and Nakayama's lemma asserts that N=M. By duality, any non-zero submodule
of M contains M;. Therefore M is irreducible. []

Corollary 1.12. A finite-dimensional Uy(g) -module with a simple crystal
base is irreducible.

Corollary 1.13. For iy,..., in€1o, V(x,,) ®--QV (.y) is irreducible.
We define similarly an extremal vector of an integrable U, (g) -module.

Definition 1.14. Let v be a weight vector of an integrable Uq(g) ~module.
We call v extremal if the weights of Ug (g)v are contained in the convex hull of
W wt ().
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When the weight of v is of level 0 and dominant (with respect to Io), v is
extremal if and only if wt (Uy (g)v) Cwt () + 2,erZ<o cl (@) . In this case, we
call v a dominant extemal vector.

Since the following proposition is not used in this paper, the proof will be
given elsewhere.

Proposition 1.15. Let v be a weight vector of an integrable Uy(g) -module.
The following two conditions are equivalent.
(1) v is an extremal vector.
(2) We can associate a vector vy of weight w wt(v) to each w € W satisfying
the following propertics:
(@) ve=vif w=c.
(b) Ifi€Iand wEW satisfy (h,, w wt(@)) =0, then e, 1,=0 and vew=

(v)Y)
fz(\h"WWt l))ll’w,

(¢) Ifi€Iand wEW satisfy (h,, wwt(v)) <0, then fwe="0 and vsw=

— 5 M
e'{ Chewt (1) V.

The implication (1)= (2) is obvious.
Let us denote by Uy (b) the subalgebra of U;(g) generated by t, and ¢, (i €

D).

Proposition 1.16. Let M be a finite-dimensional integrable U, (g) -module.
Then any Ug (b) ~submodule of M is a U, (g) ~submodule.

Proof. Let N be a U (b)-submodule. For any pair of weights 4 and g«
conjugate by Wy, there exist iy,...i; such that m,= — (h,,, sy "5 A) >0 and p=

Syesud by Lemma 1.4, Then ef -+ 7 sends injectively N; to N, Hence we
have dim N;<dim N, Thus we obtain dim N;=dim N,. Then the proposition
follows from the following lemma. [

Lemma 1.17. Let M be a finite-dimensional integrable U, (8ly) -module
and let N be a vector subspace of M stable by e and t. If dim N;=dim Ngq, for any A
(s is the simple reflection), then N is a U, (8l;) ~submodule.

Proof. Any u €N, can be written

u= Zﬂml'n
n

with ev,=0. Here n ranges over n€Zzq; n+ h, 1) >0},
Let us prove U,(8lz) v, ©N by the descending induction on ¢ = (h, ). We

have eu =2, [1+¢+n]f" v, Hence the induction hypothesis implies U, (8l3) vy
CN for n>0. Hence we may assume that eu =0, and then ¢=0. The surjectivity

of ¢%: Ny N, implies the existence of w € Ng; such that u =e“w. Then fw =0
and U, (8l)u="U, (8l,)w is generated by {¢"w; n=0}CN. []

Lemma 1.18. Let M, and M; be finite-dimensional U,(g) -modules and let
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v1 and v; be non-zero weight vectors of My and Ma. If viQu; is extremal, then vy and

vy are extremal and their weights are in the same Weyl chamber (in t5°).

Proof. We may assume that wt (v; ®v;) is dominant. Then for any P €
U, (b), we have

P (1/‘1®’l)2) =U]®P1)2+"'.

Hence the weights of U (b)v; is contained in wt (v;) +@Q-. Since Uy (b)v,= U, (g)
vz by Prop 1.16, v, is an extremal vector with a dominant weight. Similary so is

1. D

2. Conjecture

We denote U ,5C((g"")) by & and U ,5eC[[¢"*]] by A. Hence k is an
algebraically closed field and A is a local ring. For a, b€k* =k \{0}, we write a

<bifa/bEA.
For i €1, let u, denote the dominant extremal vector of V (7).

Conjecture 1. Let 43,.... i; be elements of Iy and ay...., a; non-zero elements
of k.

(1) If ay<+--<aq,, then V(7,) @+ QV (1)) o is generated by u,, Q- Ru, as a
Ug (g) &module.

(2) If a;= +-*=a;, then any non-zero U,(g)s-submodule of V(m,)su & &
V (7,,) o contains 1, Ru,,.

Note that (1) and (2)are dual statements and therefore they are equivalent.
One can compare (1) to the case of Verma modules and (2) to the case of the
dual of Verma modules.

Let us discuss several consequences of this conjecture.

For 7,5 €I, there is an intertwiner

(2.1) Mz, y): V) QV (1) =V (1) QV (1) .

We normalize this such that R sends 1, &u; to u;&@u,. Then we regard it as a
rational function in (x, y). Since it is homogeneous, its pole locus has the form
y/x = constant. We call it the normalized R-matrix. By Corollary 1.13 such an

R (x, y)is unique,

Corollary 2.1. If a1 <a,, the normalized R-maivizx RV (x, y) does not have
a pole at (x, y) = (ay, as).

Proof. Suppose that R?9" (x, y) has a pole at (x, y) = (a1, az). Let R’ be the
non-zero Uy (g) -linear map V(7,) 5@V (1j) 0= V () 0,V (,) 4, obtained after

cancelling the poles of R (x, y). Then R’ (4,Qu;) =0, and hence Im (R’) does
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not have weight 7,4+ ;. On the other hand, Conjecture 1(2) implies that Im (R")

contains u,®u,, which is a contradiction. Hence R%" (x, y) has no pole at (a,

az)- |

Corollary 2.2. Let K be a field extension of k, and iy,...0; € Iy, a1...a1 €
K*=K\{0}.
(1) Assume that R (x, y) does not have a pole at (x, y) = (av. ay) for 1<y <p
<1 Then V (7y) ey @ QV (1)) o is generated by uy, Q- Quy as a Uy (g) k-
module.
(2) Assume that R3S, (x, y) does not have a pole at (x, y) = (a,. an) for 1<u<vy
<I. Then any non-zero Uy(g) x-submodule of V (1,) 0, @@V (71,) o, contains us,

®"'®lt”.

Proof. We may assume that K is generated by ai, ***. a; over k. Since k is
an algebraically closed field with infinite transcendental dimension over k, there

exists an embedding K—*k. Hence we may assume K=k.

Since the proof of (2) is similar, we shall only prove (1). We prove (1) by
induction on the number of pairs (v, ) with v<g¢ and a, ¥a,, which we denote
by n. If n=0, the assertion follows immediately from Conjecture 1. If >0, take

v such that a, €a,;:. Hence ayy; <a,. Then Corollary 2.1 implies that R, ,, (x,

y) does not have a pole at (x, y) = (ay+1. @y). Since R%,., (x. y) does not have a
pole at(x, y) = (ay ay41) by the assumption,

Rll’luo,{yﬂ (av. av+l) . V (n—'lu) av® V <ﬂ:lu+1) auﬂ_)‘, (Tctuﬂ) ﬂu+1® K/ (ntu) ay
and

Rll‘lg-li,lv (al‘+1' ay) : ", (n'luﬂ) av+1® 1/ (n'w) au‘——)"r (7[1») dv® V (7[111-#1) ay+1

are inverse of each other. Hence we can reduce the original case to the case
where v and v+1 are exchanged, in which n is smaller than the original one by
1. Hence the induction proceeds. [

Assume the condition (1) in the preceding Corollary 2.2. Let R be the
intertwiner

R: V(7[11)a1®"'®v(7[“)al_)V(n'u)az®‘"®V(7[u)ax

sending 1, Q- Qu,, to 1,Q-+*&uy, obtained as the product of R, (ay, a,) with
1<u<u<l.

Corollary 2.3. Under the condition (1) in Corollary 2.2, Im(R) is irre-
ducible.

Note that the condition (1) is satisfied if K=Fk and a, <+*- <g, and hence
we can apply the corollary in this case.
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Proof. By Corollary 2.2 (1), Im (R) is generated by the dominant extremal
vector &+ &u;,. Since any submodule of Im (R) contains the same vector by
Corollary 2.2 (2), Im (R) is irreducible. [

In fact, Im(R) is absolutely irreducible. Let us recall that, for a (not
necessarily algebraically closed) field K containing &, a Ug(g)x~-module M
finite-dimensional over K is called absolutely irreducible if the following
equivalent conditions are satisfied.

(1) For some algebraically closed field K’ containing K, K’ ® x M is an
irreducible Uz (g) x~module.

(2) For any algebraically closed field K’ containing K, K’ & ¢ M is an
irreducible U; (g) x~module.

(3) M is irreducible and Endu,), (M) =K.

We denote by m the maximal ideal Us04""C[[g*"]] of A.

Corollary 2.4. For a€k*, y/x=a is a pole of R¥" (x, y) if and only if a €
m and V(m,) @V (1,) 4 is reducible.

Proof. By Corollary 2.1, if y/x=a is a pole of R¥" (x, y), then aEm. By a
similar argument to Corollary 2.1, the irreducibility of V (r,) @V (1) , implies
that y/x=a is not a pole of RY* (x, y). Now assume that y/r=a€m is not a
pole of R¥* (x, y). Since R¥" (a, 1)is well defined, R%* (1, a) is invertible. Hence
V() @V (rr,) . is irreducible by Corollary 2.3. [

Corollary 2.5. Lel K be an algebraically closed field containing k. If M and
M’ ave irreducible finite-dimensional integrable Uy(g) x-modules, then MQM, is an
irreducible Uq(g) x-module except finitely many zEK.

Proof. Let M (resp. M’) be the irreducible subquotient of V (1,) ;& QV

(i) am (resp. V(i) sx@-+* @V (i) ame) such that R, (x, y) (resp. RIS (x, y))
does not have a pole at (x, y) = (ay, a,) (resp. (&, y) = (a. a,)) for 1<y<pu<m
(resp. 1 <y <p<wm’). Then Corollary 2.3 implies that M is isomorphic to the
image of the R-matrix

R:V—W,
where V=V (7)) s®"**QV (1) am and W=V (71) am@++* @V (11,,) .. Similarly
M’ is isomorphic to the image of

RV —W,
where V' =V (74) ss® @V (Titn) ot and W' =V (T 1) st @ @V (719 5. If z is

generic, R3%,, (xy) does not have a pole at (x. y) = (ap.zar) and RY, (x, y)
does not have a pole at (z, y) = (zar, a,). Hence the R-matrix WRW;— W, QW
is an isomorphism. Hence the image of the composition
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R:

R®. —~
VQV; WRW, W,QW

is isomorphic to M&M; and it is irreducible by Corollary 2.3. [

Hence the intertwiner MM,—M,@M is unique up to constant.
We give a conjecture on the poles of the R-matrices.

Conjecture 2. For i, j €I, the pole of the normalized R-matrix R¥" (x, y)
has the form y/x= t¢" for n € y7'Z with 0<n < (4, p) except D{¥ (where 7 is
defined in (1.2)). In the D{® case the third root of unity appears in the
coefficients.

As seen in the appendix, this is true for A5 and Ci¥.

We can also ask if the following statements are true.

(2.2) R (x, y)has only a simple pole.
(2.3) If(x, y) = (a, b) is a pole of RY" (x, y), then the kernel of R%* (b, a):
Vi) RV (1) =V (1,) e @V (x,) 5 is irreducible.

3. Reduction of the Conjecture

In this section we shall prove that Conjecture 1 follows from Conjecture 3
below. Let m= U ,50¢Y"C[[¢"”"]] be the maximal ideal of A.

Conjecture 3. For every i €1, there exist NEN, by,....bw, c1,..cy Em\ {0},
St SN. t, INE I, an irreducible finite-dimensional U (g) s-module W, and a
U, (g)i-linear map ¢, V() @V (7s,) 5=V (71,) cn @ W, for ¢ with 1 <p <N,
satisfying the following conditions. Define Fo=®¢s_ra V() ¢ (recall that — 7%
is the lowest weight vector of V (x,)) and F,={ €F, 1|, (¢ Qus,) =0} for 0
<u<N.

(1) FNZEH,,.

(2) Pu (Fﬂ—l®usu) cv (71':,,) cu®wu-

(3) V(ms,) s, is not isomorphic to V (7,,) ca.

(4) V(ms,) s, is not a component of W, (see Definition 1.3).

Here us, and w, are dominant extremal vectors of V (7,)s, and W,, respectively.

Let us show that Conjecture 3 implies Conjecture 1(2).

For al,...,apEk-", let P (as,...a,) denote the following statement.

Play,...ap): For indeterminates xy, ***, 2;, any dominant extremal vector of the
U; (9) Fiz, .zp~module V (njl) 11®' ~QV (TL',,) n®v (Tfu) al®' : '®V(TL’,’,> a»
is a constant multiple of 1; &+ Qu,Ru,, Q- Qu,,.

Assuming Conjecture 3, we shall prove the following lemma.
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Lemma 3.1. If a1..., ap €k satisfy a1 =" Zay, then P(ay,..., ap) holds.

Since any non-zero finite-dimensional module contains a dominant extremal
vector, this lemma implies Conjecture 1 (2). We shall prove this lemma by
induction on p. First assume p=1. Then P (as...., as—1) holds by the hypothesis of
induction. Set K=k (x1,.., x;). Let = be another indeterminate. By the existence
of R-matrix, V(7)) 5@ QV (1) @V (1) 0, @ RV (1i,-) 0, @ V (1r1,) 2 is
isomorphic to V(chl) 2® & V(ﬂ'u) a® V(ﬂ'w>z® V(rn)a® & V(”:p—x) ap-1-
Hence P(ai, ***, asp-1) implies that a dominant extremal vector of the Ug(g) k-
module V ()5 @ @V (1) 5 ®V (1) sy @ - @V (T1p1) 2, @ V (11,,) 2 is a
constant multiple of 1, &+ Qu; &1, Q-+ @u,,. Then it follows that a dominant
extremal vector of Ug(g)x—module V(1) @ -V (7;) 5 @ V(1) 0 ® - @
V(Tipet) 0y @V (1) 2 is a constant multiple of 1, &+ Qu;; R, -+ Qu,, except
for finitely many z € k. This means that P (ai,...ap—1, 2) holds except finitely
many z€k. Arguing by induction on the order of the zero of a,, we may assume
from the beginning

3.1) P(ay,.... ap_1, z)holds for any z€ma,\{0}.

Let v be a dominant extremal vector of Uy (g) x~module V (1,,) ;& @V (7)) &
V() @ QV(1,,) a,. We shall prove that v is a constant multiple of u;,&®-
11, Qu R+ Rty

We have @o: V(1,,) QV (7,%),—k with y = (—1) 074 by (1.6). Set V'
= V(nn)zl ® ot ® V(n'ﬂ).z‘x ® V(n'u)al ® ® V(ﬂ—-u—l)al’-l- Then we have a
morphism

idV’® (QDO) ap: I/,®Llr(7rtp)ap®1'"(7fzp*)apy_+"ﬂ~
Lemma 3.2. We have (idv- & (@o) q,) (@Qu,%) =0.

Proof. Assume that w = (idy @ (@o) 4,) (@ @ uyx) # 0. Then w is a
dominant extremal vector of V’. Hence w is equal to u;; @ Qu,,Qu, & - Qu,,.,
up to a constant multiple by Plai...., ap-1). Therefore Theorem 1.2 implies that
V(M%) apy is isomorphic to one of VA7) zp V(T 2 V(Ti) arnd V(Tiper) aper
This is a contradiction since y €qA. []

Since Fo=w € V(r,); 0o w®u,+) =0}, we have vt € V'Q (Fy)4,. Now we
shall show 1 € V'Q (F,) 4, by induction on g Applying Conjecture 3 with i =1,
we have U, (g) -linear maps ¢, V(m,) @V (15,) 5=V (71,) (s W, for 1 <pu<N
satisfying the conditions (1) — (4) in Conjecture 3. Then this induces a
homomorphism

idv'® ((Pu) ar: V,® v (Ttlp) ap®V (77:5/4) arby V’®V (Tl.'t,,> apta® <Wu) a»-
Suppose that v € V'@ (F,—1) ¢,, which is the case when g=1.
Lemma 3.3. We have (idv® (@) 4,) 0 @uts,) =0.
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Proof. The proof is similar to the one of the preceding lemma. Suppose that
w= (idv ® (@) 2,) v ®us,) is not zero. Write w as v" ®w, in virtue of the
condition (2) in Conjecture 3, where v” is a non-zero vector of V' ®V (7+) arca.
Since vQus, is extremal, so is v" @w,. Hence v” is a dominant extremal vector
by Lemma 1.18. Since asc, € may, the property P(a1,...ap-1, apcs) holds by (3.1),
and hence v” is a nonzero scalar multiple of u;® - Qu,, Qu, X+ Qu,, Quy,.
Then Theorem 1.2 implies that V(7s,) . is isomorphic to one of V (7)) z,
V() e VTw anenV {Tips) aprs V(i) apes or to a component of (Wy) 4, It,
however, is not the case because of the conditions (3), (4) in Conjecture 3 and
apbaemap. D

By this we have v € V' (F,) 4,. Applying this process successively, we
obtain v € V' &Q (Fu) 4,. Hence we have v € V' ®u,, by the condition (1) in
Conjecture 3. Write v as v'®u,,, where ¢" is a nonzero vector of V. Lemma 1.18
implies that v’ is dominant and extremal. Therefore 1" is a nonzero scalar
multiple of 4, Q-+ X1, Qu,, @ ++-Qu,,_, by the induction hypothesis on p. We
have deduced the p case from the p—1 case.

It remains to prove p=0 case, which follows from the following lemma.

Lemma 3.4. Any dominant extremal vector of the Ug(g)iw. ) ~module
V() a® @V I(n,)s is a constant multiple of 1, X Qu,,. Here xu,..., x1 are
indeterminates.

Proof. It is enough to prove the assertion with x;y=--=x, =1 Let V
denote V(m,) &+~ @V (m,). By Corollary 1.13, V is irreducible. Suppose now
that ¥ has a dominant extremal vector v that is not a constant multiple of 1,,&
-+@u,,. Then U;(g)v does not contain u, & ®u,, since wt (U (g)v) Cwt () +
>iereZi<o cl{a,), which is a contradiction. []

Thus we have proved

Proposition 3.5. Conjecture 3 implies Conjecture 1.

4. Proof of Conjecture 3 for A and CY’

In this section, we shall prove the following theorem.
Theorem 4.1. Conjecture 3 holds if gis A or CiF.

4.1, AL, Case. For the fundamental representations of Uj (é\ln), see
Appendix B.l. We identify crystal bases of the fundamental representations
with the corresponding global bases.

Let us prove Conjecture 3.

Since the i =n — 1 case can be reduced to the case i =1 by the Dynkin
diagram automorphism, we assume 1<{<n—1. Set N=1i. For 1 Sg<N=1, take
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sa=p t,=i+1 b= (—¢q) ™2 ¢,=—¢q, W,= V (7y_1) (~gu+1 and define @,
V(m,) QV () grusr=V (;41) -, @ W, as the composition (see Lemma B. 1):

V(T[x) ® (il,u—l) (—q)1-u+2
V(TL':) ®V(7[u) (—q)i~u+2 V(?Z',') ®V(7l'1) (_q);+1®Wﬂ
4.1) | 6.v-®w,
V (T[HI) —q® Wu.

Then it is easy to check that Conjecture 3 holds with

Fp: @ k (1,..., #, au+1,..., a/;) .

1<ayn < <g,Sn

4.2. C¥ Case. For the fundamental representations of U, (C). see Appen-

dix C.1.
For 1<i<n, let pi: V(m) @V (m1) anm—V (Tiz1) —gs be (pi1) —gs. Let pa:
V (12) @V (7r1) (gones—V (7n_1) 45 be the composition

V(1) RV (1) (—gs)n+3
-1 1QV (1) (- qymes l
V(?Tnﬂ) —qs&tr
v (Tl'n—-l) —qs® 14 (71'1) (—qs)l—n® V (77.'1) i (ﬂn——l) g

Here tr is given in(C.1).
For 1<i<n—1, set N=1i. For 1<u<N=i, we set s,=u, t,=i+1, b,=

(—qs)"#* ¢y = —qs and W, = V (Zy—1) (—gg-ar1. We define Qiy: Vin) &
V(1) (—gor-usz=V (T141) —sQ W, as the composition:
(4.2)
V(7)) @ ligu-1) (cqgmarz
V() QV () qsprmnr V(1) QV (1) (g ®W,
1 22w,

V (sz+l) —qs® Wll-

Note that b,, c,€qsA.

For i=n, set N=n. For 1<u<n, we set s,=p, t,=n—1, b,= (—qs)
= —gqs; and W, =V (1) (gon-suss. We define @n 0 V (1,) @V (1) ggyn-sri—
V(m,41) —os@W, as the composition;

(4.3)
Vi 7Tn) ® (il.u—x) (—gs)t u+4
V() QV (7,) (- gorn-avs V (702) QV (1) (- gon+s@ W,
1 n®w,

VA (Ttn-1) —¢ QW

n—u+4‘ Cu

Note that buc,€q:A.
Then we have
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Fy=eV(n); p: w®G (7)) =0 for 1<5<p}.
Then Conjecture 3 easily follows from the following lemma.
Lemma 4.2. Fix 1<i<n. Then
4.4) evm); pw®G())=0 forall 1<<i}=kG(, -, 1).

Proof. Let E be the left-hand-side of (4.4). Then E is invariant by e; for
any k€1, Let us prove E;=0 by induction on the weight A# 7;. We can easily
check the assertion when A=m,—a, since V () i=kfm.. If a weight A of V (1r;)
is not m;—a, then A+ay# m, for any k€I, Therefore any v €E, satisfies ejv =
0 for all k€I, by the induction hypothesis. This implies v=0. []

Appendix A. Universal R-Matrix

In this appendix we shall calculate the normalized and wuniversal
R-matrices of U,(g) for the fundamental representations following a variant of

the recipe of Frenkel-Reshetikhin [8] in the A2, and C¥’ cases.

Let us choose the following universal R-matrix. Let us take a base P, of
Us(g) and @ of U;(g) dual to each other with respect a suitable coupling
between Uy (g) and Uy (g). Then for Ug(g) -modules M and N define

(A.1]) R (uQu) =gVt wt@ )ZP;A}@Qm.
v

univ

so that R¥W gives a U, (g) -linear homomorphism from M&QN to NQM provided
the infinite sum has a meaning. If M and N are finite-dimensional integrable

unv

modules, then Ryn, converges in the z-adic topology. The existence of the
universal R-matrix for (M, N) is proved by [6] (see also [18]). For a scalar q,
the composition

(RYN) a2 Ma®N,= (MN) ;= (NOM) 4 =N, M,

is equal to Ri™,, and we sometimes confuse them.

For irreducible U;(g) -modules M and N, let us denote by R%5 (z) the R-

matrix M QN,— N, ® M normalized by R (z) i« ®@v) =v@u for dominant
extremal vectors u (resp. v) of M (resp. N). Let duy (z) be the denominator of

R% (2). Namely ¢ (2) €Ek[z, z7'] is divisible by dyn (2) if and only if ¢ (z) R3¥ (2)
has no poles. Then dyy (2) is uniquely determined modulo % [z, z7'] *. Here
k[z, z71]* is the set of invertible elements of [z, z27']. Hence

(A.2) Elz. 271 *={ca" n€Z, c€L\{0}}.

Since the intertwiner from M&N, to N;@M is unique up to a constant multiple
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by Corollary 2.5, we can write

(A.3) RV (2) =aun (2) R3 (2) .

If A and ¢ are the dominant extremal weight of M and N respectively, we have
(A.4) amy (2) €¢4* (1+2k [ [2]]).

For i, j €I, we denote RI™ (2) =Ry, (2), RY (2) =RV Eoviny (2), a4 (2)
=avaoviy (2) and di; (2) =dvayva, (@)

For a finite-dimensional Uy (g) -module M, let M* be the left dual of M and
*M the right dual of M. Hence we have

MRM——k kMM
MO*M——k  k——*URM.
We have
(A.5) M**=M,=0 and *FM=Mgpoo,
We have

V(n,)*EV(m*),,*-l and *V<7Z',)EV<7Z',*)1,*.

where p*=(—1) 0”400
Let «—a be the ring automorphism of Ug(g) given by §=¢° %, (¢.) "=e,. (f)~
=f,. q(h)"=¢q(—h). For a U;(g) -module M, let M~ be the U;(g) -module whose

underlying vector space is M with the new action Up(g) —U, (g)— End (M).
Then (M&N)"=N-Q@M~ and V (x,) "=V (x,). Hence we have

(A.6) d;z) =d,j(z")" mod klz, 271]%.
The conjecture 2 implies
(A.7) d;(2) =d,; (z) mod k[z, 271]".
Propesition A.1. For imeducible finite-dimensional integrable Ug(g) -
modules V and W, we have

dyw(z)

mod k[z, z71]*.
dwav(277)

(A.8) (lv,W(Z) (l*V,W(Z) =

Proof. For a Ug(g) -linear homomorphism ¢: V& W,— W, ® V, we shall
define I7(¢): W.Q*V—*VRW, as the composition
@W,@* TRYB*

RVRW.Q*V- TRW.QVR*V

*VRW,Rtr

W.Q*V-

*VRW,.
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The correspondence ¢p—T7(¢)gives an isomorphism

(A.9) Hom (VQW,, W,QV)——Hom (W,Q*V, *VQW,).

If we consider them as modules over k [z, z~'], then Hom (VQ W, W.QV) is
generated by dvw (z) R%% (z), and Hom (W.Q*V, *V@ W,) is generated by dwsv

{z7")R%%y (z71). Hence we have
Tr(dvw (2) RV (2)) =dwarv (27") R¥5v (271 mod klz. 271]%.

Then the result follows from R¥%y (z71) = (R%%w (2)) ™! and a well known result
Tr(R¥W (2)) = (RWW(2)) ™" (see [8]). [

This proposition implies

_ d, 17 x
(A.10) ar, (2)am, (p*2) Ed_,,—:Ej% mod k [z, 271,

Applying (A.8)with *V instead of V, we have

(A.11) axy,w (Z)a**v,W(Z) Eﬂw(i_);— mod & [Z, Z—-l] X,
dW,**V (Z )

Using (A.5) we obtain the g-difference equation

20,00 ,-1)
A 12 ayw(2) ;_de(z)dwﬂ z dklz 217"
( ) ayw(q=2%"'z) dwav (27 dxy,w(2) mod k[z. 27

Write
d, (z) = H (z—x,) and d,,+(2) = H (z—y,).

Then by (A.6), we have

dye)=] ] c—z and o, )= ] | =5

Then using (A.4). we can solve the g-difference equation (A.12),

_ I (0™ yuz; ™) w (p*yuz: p™) w
A.13 , (2) =g — .
(4.13) 4 2) =4 I, (zuz; ™) o (p*°70z; p*?)

Here p*=(—1)'9274"% and (z; ¢) = II5-0(1—¢"2).

We are going to determine d,, (z) and a,, (2) in the A%, and C¥’ cases.
Remark. We can see easily

(A14) dv*,w*(z) Ed*y,*w(z\) =dy,w (Z)
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Hence

(A.15) avewe (2) =asyw (@) =av,w(2),
and

(A.16) dis e (2) =d.; (2).

Appendix B. AL, Case

We shall review the fundamental representations and R-matrices for A,.

B.1. Fundamental representations.  The root data of g = A, are as

follows.

1={0,1,.,n—1}

(@ @)= [2 if i=j
)= —6(=j+1modn) —0(i=j—1 mod n) otherwise

0=ap+ - +ayu,

c=hot - +hp,

(0, 0)= (0, p¥) =n+1.

Here for a statement P, we define (P) =1 or —1 according that P is true or
false.
Hence by (1.6) the duality morphisms are given by

¢ . tr
k ’V(ﬂn—z)(—qwl@V(m) and V(7,) QV (ta-.) cgr—F.

By [16], the vectors of the crystal base By of the fundamental
representation V (m;) (1<k<n) are labeled by the subsets of Z/nZ=1{1, -+, n}
with exactly # elements. For 0<i<u—1 and K CZ/nZ, we have

a(}():{(l(\{i-l-l})U{i} if i+1€K and i €K,

0 otherwise,

) =[ (K\GH) UG+1) ifi€EK and i+1€K,
0 otherwise.

In the case of the fundamental representations of Up (é\l,,) all the weights

are extremal. Therefore we have ¢,G (b) =G (5;0) and fiG (b)) =G (£.b) for every
b in the crystal base. Here G (b) is the corresponding global base. Hence we can
and do identify its crystal bases with the corresponding global bases.

We have

t,-K=qa(‘EK)_6“+IEK)K.

We present a lemma that is easily verified by calculation.
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Lemma B.1. For j, k=0 such that j +k <n, there exist following non-zero

U, (8l,) ~linear homomorphisms.
(1) i V(men) 2V (1) @V (i) —g-
given by

i (M) = Z (—¢q)*VE QK.

#J=7,#K=k
M=JUK,JNK=0

Here ¢(J, K) =#{(y, ) EJXK; v>u}.
@) piw V() o @V (1) car =V (Tyi)
given by

bi (J®K)={('q)‘”""“(JUK) ifINK=0
" 0 JINK+ 9.

Here V (1y) and V (1,) are undersiood to be the trivial representation.
B.2. R-matrices. We shall recall the result of Date-Okado [5].
Proposition B.2([5]). Fork IE],

min(k,!,n—k,n—1)

(B.1) w@= [] G (=g,

y=1
The univeral R-matrices can be easily obtained by (A.13) and (B.1).
Proposition B.3([5]). Fork, i€L,=1{1, -, n—1}, we have

aw (z) =gmnn—ki/n ((=q) "z ¢) o (=) "2 ")
(=) ¥z ¢ o ((—q) ¥ 1z, ™).

Appendix C. C¥ Case

C.1. Fundamental representations. The Dynkin diagram of C%¥' is
1] 1 2 n—1 n
O=0-0—+— 0 <0
—2€1 E1—E2  E2—E3 En-1—¢€n 2en

{q ifi=0ormn
& g% if 1<i<n,
0 = aot2(itan1) T,
c = ho+h1+"'+hn,
(6, 0) = ntl,
(V.0) = 2n,
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T, = A,’“‘Ao=81+"'+81.

We set gs=¢'2. Hence by (1.6)the duality morphisms are given by
¢ r
(C. 1) k ——-—>V(7[z) qsz(n+1)®V(7f,) and V (sz) KV (7[1) qszmm—t—vk.

We review the crystal base (Ls, B;) of the fundamental representation V () (1

<k<n) of Uy(Ci¥). Recall that V () is as a U,(Cy) -module isomorphic to the
k-th fundamental representation of U, (Cy). Hence by [17], By is labeled by

{Om) ey m<-o<mp, m,€{1,...n, w0, 1}, i+ k—5+1) <m, if m,=m, (<))},

_ 7z
where the ordering on {1...., #, 7..., 1} is defined by

(C.2) 1< <p<ig<--<1,

On By the actions of f; and &; with 0<{<#u are defined as follows. As for i #0,
write i and i+1 as +, i+1 and i as —, and others as 0. Then first ignore 0 and

next ignore + —. Then ﬁb is obtained by replacing the leftmost + with — and
;b is obtained by replacing the rightmost — with +.

Lemma C.1. If b is of the form (1, ay...ap—1). then &ob = (ay..ar-1, 1).
Otherwise &ob = 0. If b is of the form (ay..ax—1. 1), then _fob = (1, a1,...ar-1).
Otherwise _770b =0.

Proof. 1t is easy to check that By is a regular crystal with this definition of

éo and ]70 Set /=11, 2, =, n—1} CI. Then B, decomposes. as a crvstal over g;=
Ap—1. into irreducible components with multiplicity 1. Hence there is a unique
way to draw O-arrows on the crystal By over C,. []

The following proposition can be checked by a direct calculation.

Propesition C.2. For gy with p -+ v <n, there exist following non-zero
U, (CP) -linear maps:
T V (TEMTU)——).[/ (7Tu) (—qs)V® Vv (7[,,) (—q)-n,
b V (7T11> (—qs)-V®V (71'1;) (—g)t V(Tfu«w) .

C.2. Normalized R-matrices. Let us calculate R-matrices belween a
fundamental representation and the vector representation of Up(Cy”). First
recall that we have the following decomposition as U, (C,) ~modules;

(C.3) Vm) @V (m) =V (it 1) DV (441) DV () .

Here V(7o) is understood to be the trivial representation and V (ws+1) to be O.
Therefore the R-matrix R¥" (x, y): V (7y) ;R V (1) 7~V (m1) @V (74) 2 can be
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written as R (x, y) = Prpir, ©® 71 W/2) Priows @ 72 (y/x) Pros, where Py is a
U, (C,) -linear projection from V () @V (m;) to V(x) in V(m) @V (rry) with &
=7+ Ty, They OF Thoy.

Let u, and u, (=0, 1, 2) be highest-weight vectors in the U,(C,) -modules
V() @V (my) and V (7)) @V (my) with highest weights 7, + 71 ((=0), 44, (=
1), me_1 (i=2). Remark that if k=n we ignore mx41, u1, u; and 71 (y/x). We set
Q1= fof1 " fu1faSfu-1"frs1 and Q2= fof1"fx-1. Then Qu, is proportional to ue
because its weight is 7; + ;. Let us first delermine 7;, assuming that k#n.

The following lemma is by direct calculation and we leave it to the reader.
In the sequel G means the lower global base (cf. [12, 13]).

Lemma C.3. Let b be an element of V(me) @ V(my) which is a tensor
product of two lower global bases of V{(my) and V (m) and has the weight Tisy.
Then Q@ b#0 if and only if b=b;:=G (1. k) RC (k+1) or b=b,: =G (2,..k+1)

QG (1). Movorver Q1 bi=¢ 'y "uo and Q1b2=x uo, where we set uo=G(1..., k) Q
G(1).

Lemma C.4. If we write uy = by + 2pep ash, where b runs over the set of
tensor products of two lower global bases, then ay,= (—gs)*¥.

Proof. There are relations
e (G (1,.iF 1, e+ D) QG (i+1) —¢:G (1,...4,.. e+ 1) ®G (1)) =0
for 1<i<kp.
It follows that az,= (—g¢s)*. [

By these lemmas we have Quu = (g5'y™ + (—gs)*x™") uo in V(me) @
1 ().
Similary we obtain the following two lemmas.

Lemma C.5. Let b be an element of V(m) Q@ V(my) which is a tensor
product of two lower global bases of V{(m) and V(my) and has the weight Tisy.
Then @ bF0 if and only if b=b1: =G (1) QG (2...k+1) or b=0;:=G(+1)Q
G(1.... k). Moreover Qb1 =qs'x ug and Qibs =y g, wheve we set ug=G (1) Q

Lemma C.6. If we write ui = b+ 2psp5 ash, where b runs over the set of
tensor products of two lower global bases. then ap= (—gqs)*.

By these lemmas we have in V {m) QV (1)
(C.4) Quii= (gs'x7 1+ (—g9) *y™Hus.

Therefore we have
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— (- )k+1

c.5 —x—(=g) "y
( ) n y— ("‘lIs) P
Next let us determine 7. For brevity, we assume that ##n in the following four
lemmas.

Lemma C.7. Let b an element of V (7rx) QV (1) which is a tensor product of
two lower global bases of V (my) and V(m1) and has the weight my—1. Then Qb #0
if and only if b=0b3:=G (1,.) QG (E) or b=0b,: =G (2....k. k) QG (1). Moreover
Q2b3=¢5%y "o and Qzba=x"1[2] 1m0, where we set uo=G (1,..k) @G (1).

This lemma is by direct calculation and we leave it to the reader.

Lemma C.8. If we write us = bz + 2lpzs, asb, where b runs over the set of
tensor products of two lower global bases, then ap,= — (—gqs)? **1/[2]4-1.

Proof. There are relations.

e, (G, k—1,)QC[E) —qG (1, k—1,i+1) QG (+1)) =0

for i=k,., n—1,
en (G, k=1, 0)QC W) —¢?G (1., k=1, 7) G (n) ) =0,
e, (G (1, k= 1i+1) QG (i+1) —gsG (..., k—1,7) ®G (3)) =0

o1 ([2)1aG (A =1, &) QG (k) —qsG (1., k=2, k, k) QG (k—1)) =0,

e, (G iF 1, b E)RG ((+1) —gG (L 4 by £ ) QG (1)) =0
for i=1,.., k—2.

It follows that a,,=— (—gqo) ***/[2] 1. [
By these lemmas we have in V (m;) @V (1y)
(C.6) Quu>= (5%~ — (—q) ™) us.
Similarly we obtain the following two lemmas for V () ®V (1)

Lemma C.9. Let b be an element of V(m) @ V(my) which is a tensor
product of two lower global bases of V(m) and V(m) and has the weight mi-..
Then Qub#0 if and only if b=b5:=G (1) QG (2.... k. k) or b=b;:=G () G (1....
k). Moveover Qzbs=g5 21 [2] o and Qzbs=y ud, where we set uo=0G (1) G (1,...,
k).

Lemma C.10. If we write us= b3+ 2pups asb, where b runs over the set of

tensor products of two lower global bases, then ay= (—qs) #**2[2]_1.

By these lemmas we have in V (7)) @V ()

(c.7) Quz= (g5 ™+ (—g5) 2 **2y 1) (g5 +451) uo.
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Therefore up to a multiple of an element of £ we have

=.Z"_ (_QS) 2n—k+3y
2n—k+3.."

y— (—gs) x

(€.8) T2

It is easy to check that this expression for 7. still holds even if k=u. So we
obtain the following result.

Theorem C.11. The normalized R-matrix is given by

—_—(— k+1 — (— 2n—k+3
Prat {0 e 1 (20" <,
RI(2) = z— (—gs)** z— (—gs)
k1 \R) —
Py, + L0 if k=
Tr+T1 2= (-Qs)”+3 k-1 1f =n.

Hence we have

— (—gs k+1 — (—gqs mA3—k) i 1 <p< ,
(C,Q) dl,k (2) =du (Z) :{ (Z ( q ) ) (Z ( q ) ) if <n
2= (—qg)""* if k=n.

We give the explicit form of R-matrix for the vector representaion.

Proposition C.12. For b1, b2€B (1) we have

b1®b2 if by="b,
R (2) (0:Q0b,y) = o 2) L 3(6,<by) _
! . —
tH(e) (@) =) A —gha2e Z‘_)_ Z - b1®bz+gi(i—q}>—bz®bl if b1#bs, By,
S S

For 1<a <n we have

RIF () (@) =§§Z§a®a+§ (e

L G e g S e
) (780 = ) S A L

e b e B L o G e VO

' (=) P02 (1= 2 (e—1) —or , (1—gd)z_
+ EQk+ 2 Ra.
(z2—¢%) (z— (—gq5) 2" k z—q? ¢

k=1



864 TATSUYA AKASAKA AND MASAKI KASIHIWARA

The general d,; with 4, %1 will be calculated at the end of this section with
the aid of the universal R-matrices.

C.3. Universal R-matrices. We shall calculate the universal R-matrices.
By (A.13) and(C.9), we have

(€.10)  anplz)=an ) = (k=1 {2n+1—k} 2n+3+Fk} {4n+5—k)
‘ w ) = &) = G o+ 3— R} (2n+ 1 H i) (dn+3—k)

Here we employed the notation

(C.11) {m} = ((—g¢s)"z; @) w
Now we shall calculate a (2) for | <k. Consider the commutative diagram

¢
14 (n.k) ®V (71'[—1) (—-qs)‘lz®V (77—'1) (—gg)t-1z — V (ﬁk) ®V (771) z

i
(C.12)  V(mi-1) cap-1:QV () QV (11) (ggr1-12 il
sl
1 (m-1) (—qs)-1z®V(ﬂ.’1> <_qs>z-1Z®V(7rk) -—¢—> V(m) . QV ().
Here
O=V () ® (p1-11) 2, ¢’ = (p1-1.1) LV (1),
S=RER ((—45) 7'2) QV (71) (—qoi12.
9=V (7121) (co9-: QR ((—¢s5)™'2) and h=R}" (2).
We have

p-1a (G 11X W) =G1,.. 1),
R (2) (G(1...., ) QG (1) =G (1) QG (1

Chasing the vector G (1.... k) QG (1.... 1= 1) QG (1) of V(m) @V (1) (—g9-1:&Q
V(11) (—ggi-1z in the diagram C.12, we obtain the recurrence relation

akz(Z) A, - 1( —fls) 1z) ak1< )I !
Solving this, and noticing ax;=ay, we obtain the following result.
Proposition C.13. Fork, | €I,={1...., n}. we have

()ﬁmm(,{n{lk P n+2—k—0 n+2+k+1} dnt+a—|—1)}
G 12) =4 G+ n+ro—r+0 nt2+r—1 Unt+a—k—1) -

Here we used the notation {m} = ({—gs)"z; ¢&"*) .

C.4. Denominators of normalized R-matrices. In this subsection we
shall prove

Proposition C.14. For 1=k, 1<n, we have



QUANTUM AFFINE ALGEBRA OF LEVEL 0 865

min(k,I,n—k,n—1) min(k,[)

(C.13) dir (z)= H (2_ (_qs) lk—ll+21> H (2— (_qs)2n+2-k—l+2i).

i=1 1=1

This is already proved in the case I=1. The case k=I=# is proved in [186,
Proposition 4.2.6]. We shall prove this proposition by reduction to those cases.
Let Dy (z) be the right hand side of (C.13).

By (A.6), we may assume that #=>[. First let us show that d(z) is a
multiple of Dy, {z). In order to see this, by using Corollary 2.4, it is enough to
show that V () ®V (1) 4 is reducible for any root a of Dy, (z). For 1<i<n—F,
I, we have

V(Tfk> ®V (77.'1) (—gs)k—1+2e
V(e ® (tags) g |
v (77-'1-:) ®V (77-'1) (—qs)"+‘®v (T[l—z) (—gg) k-1+t
(bae) 12asr @V (T, gy |
V(Tkss) (—-qsyx®V (i) (—qs)k—i+s

Here V (m,) is understood to be the trivial representation. Then one can easily
see that the composition is not zero but 1, &@u; is sent to zero. Hence V (m) @
V (7)) (—ggit-1+2 is reducible. Similarly for 1<i</, let us consider

V (Tfk) ® vV <TE1) (—gs)2n+2—k-1+21
Lot /& Uy 120) (—qumea-rotnn l
VATk=t) g @VAT,) (<@ V (1) (gqronre-ssi @V {T1_,) (—qqrzmsr-s-ins
VAT k=) (—gsr QUrQV (1,,) (—ger2nv2-4-101 l
V(Jfk_,) (_qs)-®V(7t,_,) (—gg)2n+2-k—1+1

In this case also, the composition is not zero but u,®u,; is sent to zero. Hence
14 (71.'15)®V(71'1) (—gs)2n+2-k=1+21 is reducible.
By (A.10), we have

—(2n+ — dk!(z) —17 x
ak (@) ap ((—g5) ~**%2) = i (—q0) 751 mod [z, 27"
Hence we obtain
(C.14) dii(z) =Dy (2) Pri (2)

for a polynomial ¢ (z)satisfying
(C.15) Gu (2) =¢r ((—gs) 227 mod k[z, 271>,
Now we shall use the following lemma.

Lemma C.15. Let V', V", V and W be irreducible U, (g) -modules. Assume
that theve is a swrjective morphism V' QV'—V. Then
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dwy (@) dwy (2)awy (2) and dvw @) dyw(2) avw(2)
dwy (2)awy (2)awy- (2) dv,w (@) avw(2)ayw(z)

are in klz, z71].
Proof. In a commutative diagram

WRV,QV, — WQV,
R2®v: |

V.QWRV; RG |
Vi®R () |
V.QV.QW — V.QW,
if R’ (z)and R” (z)do not have poles, then so is R (z). To see the first assertion. it
is enough to apply this to R (z) =dw.y (2) R (2), R” (z) =dw.v (2) R (2) and

R (z) — dw.yv (Z)dW,V" (Z)aW,V (Z) RO, (z)

aw,v’ (Z)aW,V” Z)

The second assertion can be proved similarly. []

We shall prove ¢ (z) =1 mod klz, 271~

Case k+1=<n. We prove this by the induction on L. If /=1, it is already
proved. If 1>1 then applying the lemma above to V (m-1) (—g-1Q V (1) (—gr-—
V(). we have

dii—1 ((—qs) 2)dia ((—gs) '2) ans (2)
dieg (2) ani-1((—gs) '2) a1 ((—gqs) 7l2) Sklz, 2.

Since

Dy (_(Is) _lz)dk,l ( (__.qs) ’—Iz)ak,l (z) _
Dis (z)a’”—l ( ("qS) 2)ak ( (""‘Js) -1z) ’

¢ra-1(2) =1 implies @i (2) =1.

Case k+1>n. We shall first reduce the assertion to the k=n case. For %
< n consider a surjection

V (7ie1) ca9-1QV (1) Cqgamei-—V (1)
given bv the composition

V (Th+1) (=g @V (1) (—gerzmn-+—V (114) @V (711) (= g9y-1x @V (7T1) (—gsromsi-s
—V (7‘[’1;) .

We have

Dis1 ((—¢9) 2)d1s ((—gs) 2 2) ais (2) = (—gy) Wtk
Dii (@) agers ((—gs)2) ar,; ((—gs) 2 2) § ’
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Hence (441, (z) =1 implies that ¢y (2) is a divisor of z— (—g5) ****=!. Then
(C.15) implies that ¢, (z) =1. Hence, the descending induction on k reduces the
problem to the k=n case. We have

Dii-1((—gs) '2) dia ((—g5) "'2) ar, (2) =
Dii (2) ari-1((—gs) ') ar1 ((—g5)'7'2)

2— (_qs) 2n+2~k+['

Hence by the similar argument to k+1<#n case, ¢,-1(z) =1 implies that ¢y (2)

is a divisor of z— (—gs) % ¥* Hence if ¥ k=n then we can reduce the ! case
to the I—1 case. This completes the proof of Proposition C.14.
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