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Squeezing of Optical States on the CCR-Algebra
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Abstract

Squeezing processes are commonly described in terms of quadratic Hamiltonians, which

generate unitary implementations of Bogoliubov transformations of the quantized electromagnetic

field. Here the behaviour of the quasifree, the classical, and the coherent photon states under

general squeezing Bogoliubov transformations is investigated. It is found that there is a great

variety of mixed classical states, which remain classical under the squeezing operation, whereas

each pure classical state becomes non-classical. Especially, some classical, microscopic first order

coherent states remain classical and coherent of first order under one-mode squeezing. This

contrasts squeezing of macroscopic coherent states.

§1. Introduction

Squeezed photon states constitute nowadays the main class of non-classical
states of the quantized electromagnetic field. The experimental squeezing
procedure starts usually with an easily preparable classical state, which often—
but not necessarily—has some optical properties like a macroscopic phase and
/or a certain degree of coherence. Thus it is an interesting theoretical question,
under which kind of squeezing transformations such a state becomes
non-classical.

The theoretical descriptions of squeezing processes are mostly derived from
quadratic Hamiltonians of the photon field involving some classical, macroscopic
pumping fields. The associated dynamics is given in terms of squeezing
Bogoliubov transformations of the photon field observables [38], [24], [25],
[26], [27].

The present investigation is devoted to the behaviour of some Boson state
classes, which are frequently used in quantum optics, namely the quasifree, the
classical, and the coherent states, under general squeezing Bogoliubov
transformations. A systematic calculation of the associated variances of the
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field expectation values is, however, performed in [26] .
Our discussion is presented in terms of a rigorous smeared Boson field

theory based on an arbitrary testfunction space £, a complex pre~Hilbert space.
The choice of E determines the specific Boson system and the number of modes
taken into account. Both finitely and infinitely many field modes are covered in

this way. For scalar Bosons £ is a subspace of L2(/i), whereas E ^ L2 (A) C2s+1

for Bosons with the spin s, [3] , [4] . For photons the quantization procedure in
the Coulomb gauge leads to a testfunction space E consisting of divergence-free
(i.e. V ° /=0) functions /: A~^C3 on the quantization volume yl^E3 in position

space, equipped with the scalar product (f\g) = I A/(X) ° g (x) d3x for/, g
where a ° b = ai&i +0262 +0363 for a= (ai, a2, as), b= (bi, b2, b3) ^C3, [7], [15],
[10]. The smearing of the Boson field operators <P(/) is not only indispensable
for their mathematical realization but also clarifies their role as observables,
where the testfunction f^E determines in which spatial region and in which
(test-) mode a state of the quantized field is to be measured.

Squeezing Bogoliubov transformations of the Boson field arise from
symplectic transformations T on the one-Boson testfunction space E with
non-zero anti-linear part, which implies that at least one testmode is squeezed,
e.g., in the vacuum state (cf. Subsection 2.3). For the present purposes the
symplectic transformations are analyzed in Subsection 2.2.

For the description of the (non-squeezed and squeezed) Boson states we
use the techniques of generating functions (cf. Subsection 2.1), that are
quantities, which are independent of any Hilbert space representation (and
circumvent the problem of inequivalent representations of the field algebra) and
provide a direct connection to the usual (non-smeared) field formalism [25] .

As mentioned above classical states are those states which are most easily
prepared in experiments. For example, the optical coherent photon states of a
Maser or a Laser are classical, and so are the thermal equilibrium states, which
in addition are quasifree (see the Sections 3, 4, and 5; cf. also the pioneering
work [3] ) . In our approach the classical states are characterized by the
positive definiteness of the normally ordered generating functions, and they turn
out to be the mixtures of the generalized pure, coherent states (see Proposition
3.3). They correspond to states with a positive P-representation and obey the
classical correlation inequalities [9], [37]. For applications it is central to
describe precisely how the squeezing operations act on classical states.

We show in Section 3 that under a squeezing Bogoliubov transformation all
pure classical states become non-classical. But there exists a great variety of
(mixed) classical states which remain classical under the squeezing operation.
This is an effect, which is demonstrated in terms of quasifree classical states in
Section 4, and which up to now does not seem to have been analyzed in the
literature.
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In Section 5 the squeezing theory of classical coherent states is worked out,
which is based on our previous generalization and refinement of Glauber's
coherence theory [9] in terms of smeared fields [21], [22], [19]. In a coherent
many photon state the expectation of the Boson field operator @(f) with
testfunction / ^ E is given by means of Re(L(/)) , where L—a complex-linear
form on the testfunction space E—plays the role of Glauber's complex coherence
function (after smearing). In this connection Re(l(/)) (with testfunction /^E
varied) describes the shape of the effective classical field produced by the
coherent state. This interpretation of the (smeared) coherence function L,
following from the basic notions of the theory (which is, however, not made
explicit in the quantum optical text books [10], [31], [29], [32]), is used here
to discuss the physical aspects of the squeezing procedure. There are to be
discriminated the two cases, where the norm ||L|| of L is finite (L is then a
bounded linear form) or not (unbounded linear form). In the first case, called
microscopic coherence, the coherent state is representable by a density operator in
the Fock space, whereas in the second case, named macroscopic coherence,
non-Fock representations have to be used. The naming derives mainly from the
observation, that the particle number expectation value in a coherent state is
proportional to ||L||2, a relation which reconciles the photon (particle) aspects
with those of a classical field. In position space a finite ||L|| expresses
mathematically square integrability and physically it means localization and
boundedness of the radiation peaks. For macroscopic radiation states, however,
a sufficient intensity is expected on surfaces far from the radiation center,
preventing a finite ||L||.

As initial states to be squeezed we take in Section 5 the classical first

order coherent states j^i1) associated with the coherence function L. We show
that under a squeezing Bogoliubov transformation every macroscopic coherent
state (with ||L||— °°) is rendered non-classical and no longer is coherent. For
microscopic coherent states (with ULl^00) there are, however, completely
natural looking cases, which remain classical and coherent—with a transformed
coherence function—under a one-mode squeezing operation.

The latter case is further analyzed in Section 6, where for a given bounded
coherence function L a one-parameter family of squeezing transformations is
constructed, which only squeezes (and rotates) the mode L, whereas all other
testmodes are only rotated without squeezing. There is then a critical squeezing

strength, above which all states in j^i1) are rendered non-classical and below

which some states from j^i1) remain classical. For the latter situation a
one-parameter family of examples, consisting of Gaussian (i.e., quasifree)
classical coherent states is constructed. However, independently of the
squeezing strength every transformed state possesses still quantum optical
coherence of first order.



872 REINHARD HONEGGER AND ALFRED RIECKERS

§2. Basic Notions and Preliminary Results

Throughtout the present paper we assume 3C to be an arbitrary complex Hilbert
space with (right-linear) scalar product ( e | ° ) » and E to be a dense complex
subspace of $?. With A ^B it is denoted the set inclusion, for a proper inclusion
we write A^B. The orthogonal complement of a subset K^tfC with respect to
( 8 | ° ) is denoted by K±, and dim(&T) is the complex dimension of the complex
subspace K^X.

2.1 Representations
For the convenience of the reader let us here repeat the basic notions of the
C*-Boson field theory. The complex pre-Hilbert space E is considered as the
one-Boson testfunction space taking into account the test modes of the Boson
field. The C*~algebra of the Boson system is taken as the Weyl algebra *W (E)
over E. W (E} is generated by nonzero elements W(f), f ^ E, — the Weyl
operators — satisfying the Weyl relations (cf . [4, Theorem 5.2.8])

j^ = j£ (W (E} ) denotes the state space of W (E} , which is convex and
weak*-compact. The elements of the extreme boundary de&$ of s& are the pure
states. Each a)^j£ is uniquely determined by its characteristic function [20]

C«: £-»C, /->C« (/) : = (a); W (/) ) ,

the expectation values of the Weyl operators. We denote by ^ (E) the convex
set of functions C: £— > C with C(0) =1 and for which the map (/, g) *-+

exp|-|lm</|^)|C(^-/) constitutes a positive definite kernel £ X £ — >C([8], cf.

also the Appendix of [20] ) . From [20] we cite the following result.

2olo The map C: ^5— *^CE) , a) «-*• C^, is a/fine and bijective.
Moreover, we have the continuity relation: lim/ce)f = O) in the weak* -topology, if and
only if lim^, (/) -C^ (/) V/<E£.

The characteristic function Cvac of the (Fock) vacuum state a)vac
e^3 is given by

Cvac(/):= (^vac; W (/)} -exp - ||/ 1|2 V/e£. (2.1)

A state O)^s£ is called regular, if for each/^£ the map £^R— ̂ Cw(tf} is
continuous, and a) is said to be of class (8m, if t e R— * C<o(tf) is m-times
differentiable for every f^E, where m ^ N U {00} . a) is called analytic, if for
each/^£ the function t~^Ca)(tf)is analytic in a neighbourhood of the origin. If
for every f^E this neighbourhood is all of R, then a) is called entire -analytic.
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Especially, since z^C— »exp| — T"||/||2} is entire-analytic, so is the vacuum state

COvac-

In the GNS-representation (Ha, 3Ca>, Qa>) of the regular state o) on W (E)
the existence of selfadjoint field operators <Po>(/), that is, TI(D(W(tf)} =
exp (it $(!)(/)} W^R, is ensured by Stone's theorem. They fulfill the canonical
commutation relations (CCR)

V/,<?EE£ (2.2)

on suitable dense domains. / ^ E *-+ ®a) (/) is real-linear. The smeared

annihilation and creation operators, aw (/") : = /2""1 (^ (/) +i^o> (i/) ) and a* (/) : =

<s/2 ~l (0a> (f) —i®a>(if)), associated with a) are densely defined and closed. It
holds du (/) * — aj (/) , the mapping f^aa> (/) is anti-linear and /^a* (/) is linear.
The commutation relations

[a«,(/). a« to)] = [a2(/)f a*to)] =0, [a, (/), a* to)] ̂

follow from (2.2), cf. [4].

If o)^j^ is of class Ii92m, then the associated cyclic vector QQ> is contained in
the domain of each polynomial of field operators with degree ^m, in which case
one defines

(a)- 0«(/i)"-0«(/2j>:=^

If a) e d is of class ^2, then for each field operator 0W ( /"), / e £, one may
calculate the variance (fluctuation) of the expectation value

(cf. [16] ) with a finite result.
Analytic states are characterized by the following result, which is due to

[20].

Lemma 2820 Let a)^s£. Then a) is analytic, if and only if for each

there exists a neighbourhood Uf^C of the origin (with [// = [//) and an analytic
function UfXU/^ (u, v) }~^Na) ( u , w , f ) , such that

Cw (uf) = Cvac (uf) N<u(u,U\f) ^U^ Uf. (2 . 3)

Especially a) is entire analytic, if and only if U/ may be chosen as the whole of C for
every f^E.

Furthermore, the analyticity condition for a) and (2.3) determine Nw (u, v\ f) to
be uniquely given by its Taylor series
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Na(u, v,f) = (^)*(^) FT7T<W; a*(/) ̂ (/);)- u'v(EUf'
k,l=0

from which one obtains the normally ordered expectations according to

dukdl o. (2-4)

For the (possibly non-analytic) state a) & s£ the above Lemma suggests the
notion of a normally ordered characteristic function for the mapping

(2-5)

This notion is in accordance with the quantum optics literature [7], [32], cf.
also the Appendix A.2 of [26].

The imaginary part of the scalar product is a non-degenerate symplectic form
on £.

5.3 (Symplectic Transformative) 0 A mapping T: £—*£ is
called a symplectic transformation on £, if it is real-linear, if T(E) =£. and i/ it
fulfills

l m ( T f \ T g ) = l m ( f \ g ) V/,<?GE£. (2,6)

We denote the set of all symplectic transformations on E by 3~ (E).

Obviously (2.6) implies the injectivity of T, and thus each symplectic

transformation T acts bijectively on E. Thus T~l ^ 3~ (E), and 3" (E) forms a
group.

Since E and X are complex-linear vector spaces we may decompose each
real-linear operator T: E—* ffl into its (complex-) linear part T/ and its
(complex-) anti-linear part Tfl, that is, T = Ti~\-Ta with the unique expressions

Ti:=^(T-iTi) and Ta:=^(T+iTi). (2.7)

In the following we consider T/ and Ta for a symplectic T ^ Of (E) as (not
necessarily bounded) operators on the Hilbert space 3C with the dense domain
of definition E and range contained in E. We mention that the adjoint B* of the
densely defined operator B on X is given by (B*g\f) = (d\Bf) for linear B, and
by (f\B*g) = (g\Bf) for anti-linear 5,/e® (#) and g£E®(B*). The restriction of
the operator B to the subspace K ^ ( S ) ( B ) is denoted by B\K, and ker(B) is the
kernel of B.

A complete characterization of a symplectic T^3~(E) is found in [24]. For
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the present purposes, however, we need the following lemma.

Lemma 2.4. LetT^y(E). Then it holds

Tfa-T-'-iT-1;), T*2— (T-'+iT-1;), (2.8)

implying T"1 = Tf\E ~ T%\E mth (T~l) , = Tf\E and (T"1) a = - T$\E. Further,

TfTa = T*T,, T?T,-T*Ta = lE, (2.9)

T,Ta*U = TaTfU, T;TfU-TaT*U = l£. (2.10)
T(ker(Ta))=ker(Ta*|£). (2.11)

Moreover, for each complex subspace F of E it follows:
(a) The subsequent three properties are equivalent:

(t) Feker(Ta),
(H) \\Tf\H\f\\ V/<=F,
(in) T acts (complex-) linearly on F.

Especially: Ta
 = Q ̂  T is unitary <=> T is linear on E.

(b) The subsequent two assertions are equivalent:

(it) there is an gQ^F with || gol|
(c) The subsequent two assertions are equivalent:

(i) Tfl|F^0,
(ii) there is an /0^F with ||/o||<||T/0||.

Proof. From (2.6) it follows that Im</|T0> =Im<T-y|f l f> V/, g SEE. With
the use of (f\g) =lm(—if\Tg) +ilm(j\g) V f , g ^ E one calculates

</| (T-tTi)flf) = ((T-*-iT-*i)J\g). (f\ (T+iTi)g) = - (g\ (T^+iT-^)/),

which leads to (2.8). Inserting T = T/ + Ta in (2.6) and taking the adjoints
leads to

Im(Ti*T,/|0> +lm(TfTaf\g) +Im<^|T*Tfl/) +Im<g|T?T,/> =lm(f\g) V/f

The relation lm(f\g) = —lm(g\f) and the non-degeneracy of Im( e |°) finally
gives

(TfTt-TfTg-ls) /+ (Ti*Tfl-T?T,) /=0 V/e£.

linear anti-linear

Since £ is a complex-linear vector space, we may replace / by if, which gives
(2.9). (2.10) is obtained by replacing T by T"1.

(a): (2.9) implies
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(2.12)

which proves (i)=^(ii). (ii)=^(iii): For each/^F there is a 0^R such that

I (Tij\Taf) | =Re (e-'2'<T,/JTfl/> ) = Re <T,

But et6f^F, since F is a complex vector space. Thus the assumption ||Tel(y|| —

He1'*/! implies with (2.12) that ||Tfl/||
2+ |<T//|T«/> 1 = 0 V/6EF. Hence T,U = 0,

and T|F = T/|F is linear. If (iii) is valid, then iTif=— T/V/eF and thus Taf=0
by (2.7), which coincides with (i).

(b): ( i )=>( i i ) : (2.12) is also valid for T'1 = 7? |* - Tj |*. For all/eF,

assume H/H^IlT-1/]!, which yields ||T|^|2-Re<Tf/|T?/> <0 V/eF. But for each/
there is a 0^R such that

I (Tf/| T*/> | - -Re (e- w <Tf/|T*/> ) = -Re <Tf e''*/|TflV*/> .

Thus||T*/||2 + |<Tf/|T*/> |<0 V/eF, which leads to T*/ = 0 V / e F, a

contradiction, (ii) =^ (i) follows from (a) applied to T"1.

(2.11): T acts linearly on ker(T f l). Thus T'1 acts linearly on T(ker(T f l)).

Using (a) (iii) =» (i) for T'1 with F: = T (ker (Tfl) ) implies that T (ker (Tfl) ) £

ker(T?U). Replacing T by T'1 yields T'^ker (T?U)) ^ker (Tfl).
(c): Apply (b) to T =

Y Transformations
For each T^2T(E) there exists a (unique) ^-automorphism aT on 1F(F) with

which is called the Bogoliubov transformation associated with T. The dual Vr: =

a*r is an affine bijection on the state space j*3,

Obviously, (^r)~1 = ^r-i, and CVT(a)) = Cw ° T. Since a symplectic T e y (E) is
real-linear and bijective, the state a) ^ ^5 is regular, of class ^m, analytic,
entire-analytic, if and only if VT (CD) is so, respectively. Obviously, Var (VT (o)) ; /)

By reasons which are elaborated in [26] , the Bogoliubov transformation (XT
respectively VT is called a squeezing transformation, if Tfl=^0, or equivalently, if
T is non-unitary.

Special Bogoliubov transformations are the gauge transformations of the first
kind, T = zlE with z^J:= {z^C\ |z| = l}. We write yz for the associated gauge
symmetry transformations on s£ in the Schrodinger picture. An immediate
consequence is
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Observation 2,5. Let T e ^ (E) . We have Ta =£ 0, if and only if vz

vz for some z ^ T, that is, if some gauge transformations do not commute with the
Bogoliubov transformation associated with T.

Proof. For the proof notice, W(f) =W(g}, if and only if f—Q. •

§3. Transformations of Classical States

In quantum optics a classical state of the photon field is defined by the
positivity of the measure in the so-called P-representation (of the characteristic
function) . This gives the normally ordered expectations the form of a classical
mixture over pure coherent states, tacitly associated with the Fock
representation. We generalize: Let P(E) be the convex set of all positive-
definite functions P: E~^C with P(0) =1 on the additive group (E, +) [8]. It
holds

|P(/)|<P(0)=1 V/<E£ VP€EP(£) . (3.1)

If, e.g., P(/): = exp{ — 1*(/,/)} for a symmetric real-bilinear form u: £ X £ — "R,
thenPep(£), if and only if u is positive, that isu(/,/) >OV/e£.

Definition 3.1 (Classical States) . A state a)^s£ is called classical, if its
nomally ordered characteristic function Pw is a positive- definite function on the
additive group E, that is, if there exists a Pw

e P(E) with C^ — Cvac PCD, where Cvac
is the characteristic function ( 2 , 1 ) of the vacuum state (*)vac ^ s&. The set of all
classical states on W (E) is denoted by j£ci.

Observation 3020 Since the product of two positive- definite kernels gives
again a positive- definite kernel, we have CWP^ C (E) for each P^P (E) , [8] , [20] ,
[21], [33]. Thus, by Lemma 2.1 there exists for each P^P(E) a unique state O)^-
^ with Ceo = Cvac P, that is, with P = Pco. This defines a one-to-one correspondence
between s&ci and P (E) .

Indeed, the above definition of a classical state is a generalization of the
positive P-representation, which is obtained by harmonic analysis. Consider the

additive abelian group E with discrete topology and its character group E ,
which is compact in the A -topology (the topology of pointwise convergence:

lim, %i = % in E, if and only if Urn, x«(/) =x(/) V/e£). For each X^£ there is
a *-automorphism ft on W (E) with Tx(W(f)) = % (/) W(f) V / e # f a gauge
transformation of the second kind. Let

(px : = a)VsLc0Tx^9e^, that is CVx =

which is pure, since <DVac is so. Because of £<^P(E), it holds (p^s&ci with P<px
 =

%. Let M+(E) be the (positive) probability measures on E, which constitutes
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also the weak*-compact state space of the C*~algebra of continuous functions on

E. Via the affine one-to-one correspondence between P(E) and M+(E), which
is given by P(f) — SE% (/)d//(%) V/^E (Bochner's theorem [13]), one proves:

Proposition 3o3«, There exists an affine homeomorphism

T: .iJc/— » M+(E), cy-V/a> with a) =
E

This especially implies for each

Pa (/) = jL (/) d^o, (x) V/e£. (3 . 2)
£

Since M+ (E) is a Bauer simplex, so is s£ci (equipped with the weak* -topology) ,
the extreme boundary de s&ci of which consists just of the pure, classical states

The unique extremal decomposition in Proposition 3,3 illustrates the classical
structure of the classical states j^c/ introduced in Definition 3.1 [33].

If X (/) :~ exp{t/2 Re(G (/))}, f^E, with respect to a (complex-) linear
form G: £— »C, then the associated state (px^de^ci is quantum optically coherent
of order °o according to Definition 5 . 1 below. For bounded G (with respect to
the norm of E) the state <px is a coherent Glauber state, which is realizable by a
so-called Glauber vector in Fock space [9], [17], [20]. This suggests the

notion of a generalized Glauber coherent state for (p% also if X^£ does not arise
from a linear form, cf . [26] .

We now investigate the behaviour of the classical states s&ci with respect to
Bogoliubov transformations.

Lemma 3 A For T e 3~(E] and a) ^ s£ci the following assertions are
equivalent:
(i) vT(a)} e^c/.

(if) NpPco e P (E) , where Np is given by

(3.3)

Proof. Since CWto) = Ca> ° T = Cvac (Np ° T) (Pw ° T) , it follows that VT (co) ^

dci, if and only if (N$°T) (P^T) ep(E). But the map P^»P°T is a bijection on

P(£). Thus (ATjor) (PwoT) ep(£) f if and only if NjP^ e P (£) . B

Theorem 395e I^t Te J(£) . T/i^n
(a) T/i^ following conditions are equivalent:

(i) Tfl^0;
(if) ^r(^vac) ^^c/, ^-^-, ̂ ^ transformed vacuum is non-classical',
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(iii) there exists an O)^de^ci with I>T(O))
(iv) there exists an a)^s£ci with I>T((*))

(b) For Ta^Oit holds vT(de^ci) Ks&ci= 0, but vT(^ci) n*Jc/=£ 0.
(c) For Ta = Q it holds vT(de^ci) = dedci, and vT(&ci) =dci.

Proof, (a) (i) => (a) (ii) : For the vacuum state Q)vac it holds P<uvac (/) = 1 ̂  f

^E. Thus with Lemma 3.4 we only have to show that NF& P(E) , where Np is

defined in (3 = 3). But by Lemma 2.4(b) there exists a 9^E with Np(g) >Np(ty

= 1, which contradicts (3.1). Hence NF & P (E) . (a) (ii) => (a) (iii) is immediate.

since O)Vac — <PZ with )C = 1 e E . (a) (iii) => (a) (iv) is trivial, (a) (iv) ^ (a) (i) :

Assume ^e = 0. By Lemma 2 .4 (a) T is unitary. Hence N£ = l, and 1^7(0)) ^&$ci
by Lemma 3 = 4, a contradiction. The arguments here also prove (c) . (b) : Let %

^E. Since \}( (/) i = 1 V/e£ it holds |JVJ (g) i (g) \ > 1 for the above g e£. Thus

jVj;; $ F"(i;) by (3 = 1). Now Lemma 3.4 implies VT(^-K) ^ s&ci. The rest follows
from Ezample 4.3 belov/. D

§40 TrajiisfoFE'iatloes of

The general notion of a quasiiree state, whose higher-order truncated
fanctionals vanish, was introduced in [34], [35] (cf. also [4] [14]). We do not
give the original delinition, but we state a result, which characterizes all
quasffree states, [1] , [2] [36], [30], [15] (cf. also [3]).

Theorem 4,1 (Qoa.^lfree States) „ Let be £\ E— >R a real-linear form and s:
£XE~^W, a positive symmetric real- bilinear form satisfying

\lm(f\g)\2<s(fj)s(g,g) Vf,g^E. (4.1)

Then ihere exists a unique state a)^s£ with the characteristic function

(4.2)

is qnasifree (especially entire -analytic) , and satisfies

(4.3)

Moreover, every quasifree state on *W (E) has the form (4,2) with s satisfying (4.1).
The set of all quasifree states on W(E)is denoted by s£qf.

We have a) ̂ ^qf fl j^c/, if and only if the associated symmetric real-bilinear
form t (/, 0) '-= s (/, g) —Re (f\g) , /, g ̂ E is positive. In this case

\t(fj}} (4.4)
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for the corresponding P<» e P (E) .
co e j£qf is gauge-invariant (that is, l>2 (cw) = O) V z ^ T) , if and only if t is a

positive sesquilinear form on E (anti-linear in the first factor, linear in the second

factor) and £=0. In this case a>^j£ci i^ith Pa>(f) = exp | — j£ (/, /) j, and t ( f , g ) =

Quasifree states (also called Gaussian states) play an important role in
statistical physics, since, e.g., the thermodynamic equilibrium states (limiting
Gibbs and KMS states) for the photons and those for the free Boson gas (with
and without Bose-Einstein condensation) are quasifree, gauge-invariant, and
thus classical states, [12], [3], [6], [28], [5], [11], [4].

Theorem 4.2. Let T e ST (E) . Then it holds:
(a) Vr(dqf) =dqf.
(b) Let a)^j£qfr\j£ci with associated real-linear form £ and symmetric real-bilinear

form t from (4.4). We have the following equivalence:
(i) VT((*>) ^^>ci\
(ii) the symmetric real-bilinear form

R, (/, g] *-+t(f, 9} +Re(/|0> -Re(T-lJ\T~lg) (4.5)

is positive.

Proof, (a) : Let 0)^^qf with associated £ and s according to (4.2). Then

Cprto) (/) =C«(T/) = exp{tf(T/) ~\s(Tf, T/)}-exp{i?(/) —?(/,/)} V/e£.

But -S'- = -S°T is a real-linear form on E and the positive symmetric real-bilinear
form s ( f , g ) : =s (T/, Tg),f,g^E, satisfies (see the equations (2.6) and (4.1))

5(T/, Tf)s(Tg, T g } = s ( f j ) s ( g , g ] V

Thus s* fulfills (4.1), and consequently, Vr((ti) ^s&qf by the above Theorem. Up

to now we have shown Vr(s&qf) ^&qf. The same argumentation for T ~ l ^ S f ( E )

gives v T - i ( ^ q f ) ^&qf. Now (VT) ~l = VT-I yields the result, (b) : NpPa> ^ P (E) is
equivalent to (b) (ii). Now use Lemma 3.4. H

4030 Let T e ^ (E) , and define t°(f,g)- = Re (T^fl T~lg} , /, g e E.
For an arbitrary positive symmetric real-bilinear form T on E let t'- = tQ + F. Then t
and tr from equation (4.5) are positive.

For an arbitrary real-linear form l\ E— »R we define the state a)^s£ci by Cw '• =

CvacPa) with the positive- definite function Po> (/) : = exp (i£ (/) — ~r t(f, /) } , / ^ E.

Then by the Theorems 4.1 and 4.2 it holds a) ̂  s^qf fl s2>c\ and VT(O))
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§5o Transformations of Classical Coherent States

A smearing procedure of Glauber's original factorization condition leads to the
following operator algebraic formulation of quantum optical coherence [20] ,
[21], [19], where the linear form L: £— »C replaces the coherence function (cf.
the Introduction) .

Definition 5.1 (Coherent States) . Let n^N U {°°}. An analytic state
s£ is called coherent of n~th order with respect to the (complex-) linear form L: E

if

(a)\ a% (/i) —a% (fm)aa> (9i) —da, (dm)} =L (/i) — L (fm)L (gi) '"L (gm)

for all fi,...fm, 0i,..., dm^E and each m^N with l<m<n. We denote by $L} the
convex set of all n~th order coherent states on *W (E)with respect to L.

Observation 5020 For the linear fom L: E—^C it holds:

(a) ^ii>2^i?)2^i3>2---2^i-).
(b) d(£=dF for every z^={*GC\ \z\ = l} and all n ^ N U {oo}.

(c) //L = 0, then ^>=^«> = .»= *J<-> = {ojvac}.

Before summarizing some essential results concerning coherent states, we
introduce two Bauer sub-simplices of s&ci. Let bC be the Bohr compactification

of C[13]. Each function z^G*-»^a(z) :r=exp{iy^ Re(za)} extends uniquely to a
continuous function on bC. Moreover, {fa|aeC} generates C*-algebraically the
continuous functions on bC which are isomorphic to the almost periodic

functions on C [13] . Obviously, / e £ i-> y£(f) : = exp (i J2 Re (zL (/) ) } is an

element of E. This defines the continuous embedding CL: bC—*E, z*-*%z. Thus the

torus ^i(T) and ifi(5C)are compact subsets of £, and ^(C)is an open subset of

E (the canonical embedding of C into bC is an open map [13] ) . The associated

embedding of the measures ci\ M+(^C)— * M+ (E) is given as ci(fjL) = fjL ° CLI.
Obviously it holds

(tL (bC} =E is equivalent to dim (E) = 1.) M i- (l) , Mi (6C) f and Mi (£) are

Bauer simplices, but Mi (C) is not so, since C is not compact. By restricting

T~l of Proposition 3.3 we obtain convex subsets of ^5C/, especially the Bauer

simplices (r~l°ci) (Mi (l)) and ̂ ,:= (T^ofl) (Mi(&C)) . Let fj&^Ml
+(bC) be

the measure uniquely associated with oj^^ci via T~l°cl. Then fia^ CL((£) e

M + ( E ) , and for the positive-definite function P(I}^P(E) from (3.2) we obtain
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the integral decomposition

P» (/) = fjC (/) d0« (l) = f expfev^ Re (zL (f)) [ d/d fe) V/eE£ (5.1)
*J E <=J bC

for every a) ̂  j^/. For //£ ^ M+ (C) we define the moments (if the integrals
exist)

<oo. (5.2)

Obviously, c%> (l, fe) = c ^ ( k , l ) . The measure ^^ Mi (C) is called (entire-)

analytic, if I exp{<5|z|}d£d(z) <°° for some (all)<5>0.

In the subsequent theorem we compile some structural results on coherent
states, extracted from [20], [21], [22], [17].

o3o Let L: £—»C be a non-zero linear form. It holds

(a) (iDvac^s£ci, and [iwvac^M+ (C) is the point measure at the origin z = Q.

(b) a) ̂  s£ci is regular, if and only if fjfa ^ Mi- (C), that is, fjfa (bC\C) = 0. Let

l£) (Mi (C)). CD e s%ltng is of class %2m (m <E N), if and only if

, m) <oo5 {n which case for all fi,..., fk, 9i,...,dt^E and each Q<k, l<wi:

t(gl)-am(gi))=A(kj)L

is (entire-) analytic, if and only t /^^M+(C) is so.

(c) ^3i1) fl s&d d s&ci,reg- O) ̂  ^ci,reg is an element of jJi15 Pi j^5c/, if and only if [*%> is

analytic and c£(l, 1) =1.

(d) d(
L

n) n ^cl = ^(
L°°} ndci= (r^ofi) (Mi(T)) (and hence is a Bauer simplex) for

all n>2. a) e s£ci,reg is an element of j^i°o) fl ^Sc/, i/ and on/j t/ c%> (1, 1) = 1 =

/, if and only if L is unbounded (with respect to the norm of E) . That

is, only for bounded L there exist non-classical states a)^j£jF\ n ^ N U {°°}, some
examples of which are found in [18] and [23] forn = °°.

(f) Let a) ^ *$(L\ or let a) ^ ^ci.reg \ {covac} • Then a) is normal to the Fock
representation, if and only if L is bounded. Especially, each non-classical coherent
state of any order is normal to the Fock representation.
(g) By the parts (d)and (e)it holds

J^^ID^^ID^IDjf ^ L unbounded.

For bounded L the inclusions in Observation 5 . 2 (a) are proper, and one has

(L°\ L bounded.
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Corollary 5040 Let L be a nan-zero linear form on E. It holds

(a) s&^i=s&vci and s^ci,reg = ^l^reg for each non-zero v

(b} c^(k, I) =vkvlc%(k, I) for all 0<k, l<°° and each non-zero v

(c} If (D^^ci is analytic, then a) ̂ 4$$ where X\ = Jc^(l, 1) .

(d) If (D^dh is of class %2, then

0)) , (5.3)

-^(1, O)2]) (5.4)

Proof. ^°v=fj[vcoL and Jc/W d/d (z) = f c f ( v z ) &jj% (z) . For (d) use the
CCR and Theorem 5.3 (b). EJ

Observe that (5.3) gives a non-vanishing field expectation only if c& (I, 0 )^0
and that the field fluctuations in (5.4) decompose into the quantum mechanical

vacuum part Var (ow; /) ~yl l / l l 2 and the remaining classical part (for more

details to the decomposition of the fluctuations we refer to [26] ) .

We now investigate the behaviour of the Bauer simplex s^ci with respect to
Bogoliubov transformations.

Theorem 505. Assume T^y(E)and let L: £— »C be a non-zero linear form.
Then the following assertions are valid:
(a) Let Ta = 0 (or equivalently, T linear resp. unitary by Lemma 2.4). Then /e£f-»

L(Tf) is a non-zero linear form. It holds vT(s&ci] =&L vT(s£ci,reg) =^cF,reg,

(b} Let T*|keru,)^0. Then vT(^ci) r\s£ci
= 0 • Moreover, for each analytic, and thus

(by Corollary 5.4 (c)} first order coherent a)^ ^i\{a)v^it holds, that itT(a))is no
longer coherent in any order with respect to any linear form G: E—*C.

(c) Let T f l^0 and ker (L) ^ker (T*) (or equivalently, T?|ker(L) = 0). Then TI, Ta,
and L are bounded, and we have the case of one-mode squeezing. That is, there exist
unique normalized hi, hQ^E and a unique phase vi^T such that

°L(f)=vL\L\\(hL\f) forallf^E;
0 T/HWK/M/ii, resp. T*f=\\Ta\\<J\hi)hQlforallf^E;
9 TI is a bijective isome try from VIQL onto hiL\

feL, and TfhL

(d) Let Tfl^O. Then Pr(^vac) is coherent in first order with respect to some linear
form G: E—*C, if and only if dim(T f l(E)) = 1, that is, if and only if we have

one-mode squeezing (observe that O)vac ^ s£ci for every linear form L: E~^C by
Theorem 5. 3 (a)). But Vr(wvac) is always non~ classical for Tfl^0 (by Theorem 3.5
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(b) , since

Proof, (a) is immediate, (b) : Let a)^s£ci- We use Lemma 3.4 to show that

VT(CD) $dci. By Lemma 2.4(b) there exists a#eker(L) with N$(g) >A$(0) =

1, where NF is from (3.3). Since g e ker (L) , it follows from (5 . 1) that Pa> (0) =

1. Thus N$(g)Pa> (g) >1, which with (3.1) yields N$Pa)$P(E). Consequently,
VT(CD) ^s&ci by Lemma 3.4.

Now we prove that VT (CD) is no longer coherent for each analytic a) ̂  &i.

By Theorem 5.3(b) CD^J^CI analytic is equivalent to Jc exp{d|z|}dj/J; (z) <°°

for some <5>0. Thus for each/^£ there exists a neighbourhood U/=Uf^C of
the origin such that the function

NVT(a»(u, V\f)

: = exp{-j[2ut;||Ta/||2+t;2<T,/|T«/)+u2<Ta/|T//>]}

= (u [zL (T,/) +z L T ~ f ) ] +v \_zL (T//)

is analytic in the arguments (u, v) ^ [// X [//^C2. With (2.12) one checks the
relation Cyr(o» (uf) = Cvac(ti/) A/"vr(Qj) (w, it"; /) VM ̂  [// and each f ^ E, which
identifies Py^) (/) = -/V^^) (1, 1;/) as the normally ordered characteristic
function for VT (CD) (which is positive-definite, if UT (CD) is classical) according to
Definition (2.5) and Lemma 2.2. Applying equation (2.4) for k = l = l to Vr(o>)
yields

= |Ta/||
2+ l\zL(Tlf)+zL(Taf)\

2Alj.
L

0,(z) V/e£. (5.5)
J C

Let us from now on suppose that VT (CD) is coherent, that is, VT (CD) e ^^D for
some linear form G: E~ * C. But VT (CD) & jJc/ implies G to be bounded by

Theorem 5.3(e), i.e., there is an hG^tf with G (/) = (hG\f> V/€E£. VT(CD) ^^
means (VT (CD) ; a*(/)a (/)> =|G (/) I2. The comparison with (5.5) gives ||Tfl/||

2<
|G(/)|2<||/iG||2||/||2V/eE, which implies Ta to be bounded and ker (Tj ^hG

± =

ker (G). From Tf l^0 it follows hG±Q and thus Taf= (f\HG)h^f^E with some

O^/io^. The boundedness of T/, and thus of T, follows from T/*T; = T?Tfl + l£
(eq. (2.9)) . We continue T/, Tfl, and T to all of ffi without changing the notation.

The adjoint relation T*/= (f\h0)hG Vf^X, Ta(E) ^E, and T*(£) ^E in fact

give fc0. ̂ Ge^-
Specializing to the point measure at the origin, that is, CD = CDvac, we have

proved part (d) . Thus let (D=£a)vac. We first show that L is bounded. Since G is
bounded, it follows from Theorem 5.3(f) that VT(CD) is normal to the Fock
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representation UF of W (E). But T* is an anti-linear Hilbert-Schmidt operator,
and thus the Bogoliubov transformation ar-i on *W (E) is unitarily

implementable in Up by [24]. Consequently, a) — Vr-i (^r (&0) ̂ ^ci,reg is normal
to UF, too, which by Theorem 5.3(f) implies L to be bounded. Let L(/) = (hL\f)
V/e^ with some 0^hL^X. Then (5.5) leads to

0 = |</ic | />|2=<v r(a>);a*(/)a(/)>=|</iL|T // |
2c£(l, D V/eker (Tfl) =/IG

X,

where c£ (1, 1) >0 since a)^0)vac. Thus </IL|T//> =0 V/eker (Tfl). But Lemma
2.4 (a) and equation (2.11) imply that T and thus T/ are bijective isometries

from ker (Tj ^/ic1 onto ker (T?) ̂ /lo1. Hence there exists an O^a^C with hL

= aho, implying ker(T*) = ker (L). This contradicts T* Ikerd) ^ 0, and thus our
assumption of a first order coherent Pr (&>) is wrong.

(c) : Since L is a non-zero linear form, we have dim (E/ker(L)) = 1.

Because of ker(L) ^ker(Tf) , T* defines the canonical map T*: £/ker(L) —*E

with Ta(f): = Taf V/^E, where /h~>/ is the canonical embedding from E into the

quotient £/ker (L). Since T a^0 implies Tals^O, we have T*^0. Hence there

exists an/0e£ with L (/0) =1 such that Q^gQ. = T%f0 = T%(fo) ^E, that is,/0^0.

It holds 7=L(f)/o V/e£, and thus it follows

T*f=Ti(f)=L(f)Tt(fi>)=L(f)go V/e£. (5.6)

Consequently, the linear form

is continuous. (5.6) then implies Ta to be bounded, \\Ta ||= ||T?||= ||L|| || ̂ 0||. The

boundedness of T/, and thus of T, follows from TfT/ = T|T«+l£(eq. (2.9)) . We

do not change the notation when continuing T/, Ta, L, T, and T"1 to all of ffl.

Now define hi by L(/) =: || L \\ (hi [/) , and set /IQ := Ikoll'^o ^ JE. Then (5.6)

rewrites as T*f=\\Ta\\(f\hL)hQ, which gives the adjoint Taf
=\Ta\(f\tio)tiL for all

f^E. Especially it follows that hi^E, since Ta(E) ^ E. Lemma 2. 4 (a) and
equation (2.11) now imply that T and thus T/ are bijective isometries from

ker (To) =h'Q-L onto ker (L) =ker(T*) =hi±. Let us now determine the action of

Ti resp. Tf on h'Q resp. hi With hQ=\\Ta\\~
lT%h'L and (2.10) we calculate

<7Vii|/> =||Tj-1<T/T?/ii|/) =||Tj-1<TB Tfhi\f> =||Tj-1<T*/|T/*fci>I

from which follows T/fcg ± ker (T?) =/iiJ-f that is, Tfh'Q = jh'L for some r^C. A

similar argumentation leads to T*hi = ehQ for some £^C. T*TihfQ= (l + T*Ta)/iQ

= (l + ||Tfl||
2)/io and<T*Q|/ii> = (h'Q\TftiL) imply £7= 1 + ||Tfl||

2 and f=e. Thus |e|

. Let now £ = exp{i20}|£| with some 6^ [0, 27r[, and define hQ
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• = Qxp{i6}hQ and hL '• = exp{—i0}hL and VL : — exp{— id}.

As an immediate consequence of part (c) of the above Theorem we have the

«,6o Assume T^3"(E), and let L\ £— »C be a non-zero linear
form. Let one of the following conditions be fulfilled:
(a) L is unbounded.
(b) Ta (or equivalently T/) is unbounded.
(c) dim(T f l(£))>2.
(d) dim (Ta(E)} = 1 and L is bounded with L (/) = (h\f) V/6E E for some

nan- zero h$Ta(E).

Then it holds TjIkercu^O, and we are in the situation of Theorem 5.5 (b) .

Thus the case (c) of Theorem 5.5 may happen for microscopic coherence (i.e.,
for bounded L), only. Especially for dim (E) =1 we always have (0}=ker(L) ^

ker (Ta) for every non-zero linear form L. Detailed investigations of one-mode
squeezing are found in the next section. Here let us only mention: In contrast to
Theorem 5,5 (b) the case 505 (c) allows that the squeezing operation VT maps
classical first order coherent states onto classical first order coherent states.

§60 One-Mode Transformations

Throughout the present Section we assume the case of one-mode squeezing as in
Theorem 5.5(c) : The (bounded) symplectic T= T/ + Ta e ST(E) be defined in
terms of the normalized vectors hi, hg^E and the squeezing strength /J=||Tfl||>0,
such that the following characterizing relations are valid:

« Taf=@(AhQ)hL, resp. T?/=0</|Jn>fcgf for all/€E£;
0 Ti is a bijective isometry from /ig1 onto hi±',

« TihQ = Jl+P2hL, and T*ihL = Jl+t32hQ.

However, since s£ci= ̂ i for each 0=£t; ̂ C by Corollary 5. 4 (a), we may choose
the linear form L: E— ̂ C here in contrast to Theorem 5 . 5 (c) simply as

• L ( f ) = (hL\f) for all f^E.
Furthermore, let Q: £— »C be the linear form associated with hQ, that is,

\f) for

Theorem 6010 Let all be as above, but jS^O. The subsequent assertions are
valid:

(a) It holds VT(S<$CL) n^5c/dj^^. For a)^s$ci the following conditions are equivalent:

(i) VT(O)} ^s£ci, and thus VT(O)) e^?/;

(ii) N&: C—*C is a positive -definite function on the additive group C, where
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(b) Let a)^&$ci so that 1^(0)) e^?/, both being of class ^2m for some m ^N. Then

, 0<k,l<m,
dvkdv~t

y=0

where M£: C— »C is given by

exp - [$2vv + jS/T+^Re (v2) ]

The moments CVT(O» (k, l) are thus obtained in terms of the moments c& (k, I) ,
especially

C?T(a» (1, 0) -VI +j82<i (1, 0) +#i (0, 1) ,

c?r(o» (2, 0) =&/l+jB2 + (l+j82)^(2, 0) +j82^(0, 2) +2ft/l+j82<i(l, 1).

If in addition a) is analytic, then a) e jj^ fl j^c/ and y^ (a>) ^ j^ig fl jJc/ wt/i

U|2=c£(l, 1) and kl2=c&.(a,)(l, 1), 63; Corollary 5.4(c).

(c) Forgwrj ^C w^ U|2>|-(j82-f ^1+ j82) ft k?/ds Vr(^i"n^c /) HjJc/^ 0,

t5, there exist some CD^J&M H j^c/ (implying c& (l, 1) — U|2) so t/iat yr(<^) e

! fl .fe3cj i^^|yc|2=c?r(a,) (l, 1) from (6.1). Moreover, whenever VT (a») ̂ ^Q H ̂ 5C/

i l l / /for some (analytic) (D^-s&ci and some K^C, then |/c|2^-^"(j82+^8y 1+jS2).L
-i

(d) For every X^C with |^|2<^(/}2+j8v l+j82) ft /io/d5 VT(S&M. H^5C/) n^c/= 0.

/= 0

(/") L^t a>e^7 fo? analytic, and thus co^dfi! ftdci with \A\2 = c^(l, I). Then

VT ((^) ^ j^ig m^ (c/. equation (6.1) )

k|2=j82+j8/l+02 (c£(2, 0) +c£(0f 2)) + (2]82+l)c£(lf 1). (6.2)

Observe, that by the parts (c) (d) , and (e) the transformed VT (co) in many cases is
a non-classical first order coherent state.

Proof, (a) and (b) : Let o> ^ j^c/ such that VT (CD) e dd. Then by equations
(2.12) and (5.1) we obtain the positive-definite function

Pw<»> (/) = exp (||/ |p - |7y|p) xp (ij2 Re (zL (T/) ) } d^ W =M* (Q (/) ) .

Consequently VT (ft>) e J^ci and M£ (v) = I exp (i */2 Re (v^) } dfjST(a» (z) . From
«•' 5C



888 REINHARD HONEGGER AND ALFRED RIECKERS

Subsection 2,3 we know that 0) is regular, of class %m, analytic, entire-analytic,
if and only if VT(O)} is so. Hence (b) follows from Theorem 5.3 (b) and
Corollary 5.4.

(c), (d), and (a) (i) <* (a) (ii): Applying equation (2.12) to T~l = Tf-T*

yields N$ (/)Pa> (/) =N% (v) with v-=L (/). Thus (a) (ii) is equivalent to N^e
P(£), which by Lemma 3.4 is equivalent to (a) (i). Let x '• — Re(v) and y '• —

Im(t;). If VT((*>) e-^8 is of class ^2, then —7- is also positive-definite, which2

especially implies

= 2 f (Imfe))2dAd (z) -
y=0 «/ Cxdy

which in turn implies di (1, 1) ̂  Jc (im (2) ) 2d^ (2) > -| (j82 + ^3 v7! +j32) and

hence (d). Now for a>0 there obviously exists a /^>fl ^ Mi- (C) concentrated
(z) =0} so that for each Im (v) =y^R

(6.3)

which gives the quasifree state cof l^j^c/ of Example 6.2 below. Differentiating

(6.3) with respect to y e E yields (6.4), especially c^a (1, 1) = -| (£2 + jS

Vl+j82) . ^L is positive-definite, if and only if a>I. Hence VT((J^O) ^^?i for all
a> 1, which with Theorem 5.3 and Corollary 5.4 gives (c). Now apply the

results so far to T~ l to obtain, that in any case k|2> -(

(e) : Assume CD e Jli) H *JC/ for ^ > 0 such that yr (o>) e Jc/. By Theorem

5. 3 (d) and Corollary 5.4(b)//£ is supported byt?^C| |z|=^}. By assumption it

follows from (a) that N% is positive-definite, and so is its restriction to iR=
C|Re(z)=0}cC. But

is the Fourier transform of the measure p ^ M+ ([— ^, /I]), which is the

projection of ̂  on the complex axis iR = E. Consequently, p^E,^N^(ip) =

expJY(j82"i~j8vl+j82)p2Jp(p) is positive-definite, and thus given by the Fourier

transform a of a measure o ^ M+ (R) (Bochner's theorem) . exp I — y (j82 +

2) p2| is the Fourier transform of a Gaussian function 0 on E, <p (k) > 0
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V k e E (Lebesgue measure f) . Hence p = (j)d = 0*a, resp. p = 0 * o with the
convolution*, which yields p(B) = IB fR(/)(k — q) d(?(q) d£(k) >0 for every Borel
set jB^R with /5 d-^(fe) =£0. But p is supported by [— A, X], a contradiction.

(f) : Inserting our specific form for Ta, T/, and L into (5. 5) gives (vr(o>);
a*(/)a(/)> = kNO(/) l 2 V/e£. The polarisation identity for the positive
hermitian form ( g t f ) e E X E ^ > ( v T ( c i ) ) ; a * ( f ) a ( g ) ) yields (y^M; a*(/)a (0)) =

fcQ(g}KQ (/) V/, flf <E£, that is, yr M

From the above proof we obtain the following example.

Example 6.20 Let a// fce as above. For each a>0 tfiere is a unique state a)a

ci with

ft)fl is quasifree, fjfaa G M+ (C) is concentrated on (z ^ C|Re (2) = 0} ,
moments

<£.(!. 0)=0. c£.(l, l)=032+J8yi+^) = -^0(2,0). (6.4)

We have VT (o)a) ^^ci (which is equivalent to VT (a>fl)
 e^3c/) , t/ and only if a> 1, in

which case he moments are given by

As an immediate consequence of the parts (c), (d), and (f) of Theorem 6.1 we
get the

Corollary 6.38 Let us here fix a /i>0 and consider the classical, first order

coherent states j^ii fl j^c/. By Theorem 6.1 (c) and 6.1 (d) there exists the critical
squeezing strength j8c=j8c(^) >0, which is given by

&2+&/l+&2: = 2U|2.

If the actual squeezing strength /? is below the critical valve, 0<$<j8c, then some

states a) ̂  j^li? fl ^c/ remain classical under the one-mode squeezing transformation
T = T (/J) ^!T (E), that is, VT (o)} ^ j^c/- For strong squeezing, i.e., for ft above the

critical value, j8>j8c, however, each a)^^^ fl j^5c/ is rendered non-classical by the
squeezing T = T(/3), that is, VT(OJ) ^s&ci-

But it holds for arbitrary squeezing strength /J^O, that for every (D^^u! HJ^C/
the transformed (squeezed) state VT (oj) is first order coherent. The associated
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factorizing linear form is given by icQ: E~^C for a value K, = K (a), ff) & C depending

on @ and on the initial state OJ^S^^L H s£ci according to equation (6.2).
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