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Series on Compact Lie Groups
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Abstract

The characterization of Fourier series of real analytic functions and hyperfunctions on compact

Lie groups is discussed by means of complex analysis.

§0» Introduction

The aim of the present work is to give the characterization of Fourier series of
real analytic functions and hyperfunctions on compact Lie groups by means of
complex analysis.

Here let us review the history of the studies concerning this subject. The
concept of hyperfunctions was first introduced by Sato [Sa] in 1958. In [Sa],
among other results, he already got the characterization of Fourier series of real
analytic functions and hyperfunctions on the one dimensional sphere S1. The
way he used was complex analysis, more precisely Cauchy's integral theorem. In
1970, Sugiura [Su] gave the characterization of Fourier series of C°° functions
on compact Lie groups. His method was based on the fact that, on a compact Lie
group, the Casimir operator becomes an elliptic differential operator and it acts
as a scalar operator on each irreducible unitary representation space of the
group. In 1973, Hashizume, Minemura and Okamoto [HMO] characterized the
Fourier coefficients of real analytic functions and hyperfunctions on real
analytic compact Riemannian manifolds with respect to the Laplace-Beltrami
operators. Their argument mainly depended on the estimate for the growth of
eigenvalues of the Laplace-Beltrami operator obtained in [Mi]. In 1979-80,
Morimoto [Mol, Mo2] discussed on the characterization of the Fourier
coefficients of the analytic functionals on the complex sphere or the Lie sphere
with respect to spherical harmonics. His work owed mainly to the classical
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theory of spherical harmonics and the study of the Shilov boundaries of E.
Cartan's classical domains of type IV in [Hu]. In 1991, Oshima, Saburi and
Wakayama [OSW2] treated the characterization of Fourier coefficients of real
analytic functions and hyperfunctions on the so called Martin boundaries of
Riemannian symmetric spaces with noncompact linear reductive groups as their
isometry groups (cf. also [OSWl]). Their method was similar to that in [Su].
In 1995, by the similar argument used in [HMO], Morimoto and Fujita [FM]
got the characterization in the case of the spaces of functions of Gevrey classes
and their dual spaces on real analytic compact Riemannian manifolds.

In this paper we shall give a different proof for the result in [HMO] in the
case of the compact Lie groups. Our argument is complex analytic. Precisely, we
present the matrix elements of irreducible unitary representations of compact
groups in the integral form owing to the Borel~Weil theorem. Then we can get a
good estimate of the Fourier coefficients by shifting the cycle of the integrals
owing to Cauchy's integral theorem. However we note that the method in [Su] is
valid even in our case.

At the end of this introduction we have to add that this work is inspired
not only by the works started above, but also by [Bl, B2]. In [Bl, B2], van den
Ban studied on asymptotic behavior of Eisenstein integrals associated with the
minimal parabolic subgroup of a connected real semisimple Lie group with finite
center. To get a good estimate for the integrals, the method used in those
preceding works [A, HC1, HC2, HC3, HC4, E, TV], etc. were mainly based on
the study of differential equations satisfied by these integrals. In contrast with
those preceding works, he made a good deformation of the cycle of the integrals
owing to the Stokes formula. That gave us the quite enough motivation of the
shift of the cycle in our problem.

Let U be a connected compact Lie group. It is known that there exists a
connected algebraic subgroup G of a complex general linear group GL(n, C)
with the following properties, (a) It is stable under conjugate transpose, (b)
There exists an isomorphism of U onto G fl U (n), where U (n) is the unitary
group, (c) The Lie algebra g of G coincides with the complexification uc — u0

J^ln of the Lie algebra u of G D U (n). We identify U with G fl U(n) , and
introduce into U a real analytic structure via this identification. This means a
function on an open subset of U is real analytic if and only if it extends to a
holomorphic function on an open subset of G. The group G is called the
Chevalley complexification of U. Note that the group G is not only linear
algebraic but also real reductive. We denote by IG the identity element of G.

Let 0 denote a Cartan involution of G defined as Og = (g*} -1 for g ^ G,
where g* denotes the conjugate transpose of g. We also denote its differential by
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0, that is, OX= —X* for X^Q. Then the direct sum decomposition g = u0-/--Tu

means the Cartan decomposition for 0. Namely t! is the 1 eigenspace and y7 — 111
is the — 1 eigenspace for 0, respectively. We denote by exp the exponential
mapping of g into G. Then we have a Cartan decomposition of G. Namely the
mapping

(1.1) [/X/ irTu3(uf JSO^

is a real analytic diffeomorphism. Hence for every g ^ G there exist unique

elements uc(g)^U and X(g) <E/— lu so that

(1 = 2) g=uc(g} expX(g).

Let t be a maximal abelian subalgebra of u, and put a = ̂ /~lt and c = tc = t
0 o. Then a is a maximal abelian subspace of -/—I it and c is a Cartan
subalgebra of g. Put T — expt, A = exp a and C — expc = TA. Then T is a
maximal torus of [/, and C is a Cartan subgroup of G. We have another Cartan
decomposition of G:

(1.3) G = UAU.

So every g&G decomposes into the form

(1.4) g=u? acuc
2

with ui, U2 ̂  U and ac ^ A. Let a' and c' denote the dual spaces of a and c,
respectively. Since C = QC, any element in a' has a unique natural extension as an
element in c '. So we regard the elements in a' as elements in c' which are real
valued on a. Let S(Q, a) denote the set of all nonzero restricted roots of g with
respect to a, and ga the root space for a^Z(Q, a). Note that Z(Q, a) coincides
with the set of all nonzero roots of g with respect to c in the above sense and
that each of the root spaces ga is a complex one dimensional vector subspace.
Introducing a lexicographic ordering into a' with respect to some basis of a, let
us denote by ¥ the positive system of ^(g, a) and by A the set of all simple

elements in ¥. Put n = @aevQa, n~ = 6n = ®a^w g~a, A^expn and AT^expn".
Then N and N~ are complex nilpotent Lie subgroups of G.

Now we have an Iwasawa decomposition of G. Namely the mapping

(1.5) t / X A X A T 3 (Mf a,n~)"-»uan-eG

is a surjective real analytic diffeomorphism. Hence for all g ^ G, there exist

unique elements u (g) ^ U, a (g) ^A and vl~ (g) ^N~ such that

(1.6) g=u(g)a(g}vt'-(g)

and the mapping g^> (u(g), a ( g ) , v l ' ~ ( g ) ) of G onto U*A *N~ is real analytic.
Since the restriction of the exponential mapping of g to a is injective, writing its
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inverse by log^ we put H (g) =logA (a (00) for
Put B = CAT = TAN~. Then B is not only a Borel subgroup of the linear

algebraic group G but also a minimal parabolic subgroup of the real reductive
group G. Since G is connected, its open dense subset NB admits the so called
Gelfand-Naimark decomposition. Namely the mapping

(1.7)

is a surjective holomorphic diffeomorphism. We note that any element b in B
uniquely decomposes into a product cn~ of elements c^C and n~^N~ because of
the fact Cr\N== (Ic). We also note that the groups N, C and N~ are complex Lie
subgroups of G. Then we see that for all elements x ^ NB there exist unique
elements v(x) ^N, c(x) ^C and v~ (x) ^N~ such that

(1.8) x = v(x)c(x)v~(x},

and the mapping x^(v(x) , c(x) , v~ (x)} of NB onto JVXCXJNT is holomorphic.
We have a relation between the Iwasawa decomposition (1 . 6) and the

Gelfand-Naimark decomposition (1.8):

Lemma 1. Let n&N, then u (n) ^NB and the following holds

(1.9) v(u(n})=n, c(u(n)} =a(n}~1 and

y- (u (n) ) =a (n) vl'~ (n} ~la (n) ~l.

Proof. Letn^N. Then by (1.6) we have

(1.10) u(n)=nvl'-(n)-la(n)~l

=na (n) ~* (a (n) »''" M a (n) "') -

Since C normalizes JV~, this equality shows u(n) ̂ NB.. Hence we have (1.9) by.
the uniqueness of the decomposition (1.8). CH

§20 Irreducible Unitary Eepresentatlons of U

In this section we review a summary on the irreducible unitary representations
of the compact connected Lie group U(ci. [W, §1.7 in Chap. 1] and [Kn, §7 in
Chap. V] ) .

Put B(X, Y) =TrUT) for X. Y^Q. Then B gives an invariant symmetric

bilinear form on g. Since the elements in V~~l u are Hermitian symmetric

matrices, the restriction of B to \/~l u is real valued and positive definite.
Hence we see that both B and its restriction to c are non-degenerate and that
for any fi^c there exists unique H^t such that n(ti) =B(H, H») holds for all
H ^ c. We can then define a symmetric non-degenerate bilinear form on c' by
putting (a, r) =B(Ha, HT) for a, r^c'. Since the restriction of this bilinear form
to a' is positive definite, it gives an inner product on a'. An element X in c' is
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said to be dominant if it satisfies the condition Q, a) >0 for all
Put L = {H Ei t; exp H = IG) . An element ft in c' is said to be analytically

integral or T-integral if it satisfies the condition fi(L) d 2it<J—\ Z. Since L
spans the whole space t over K,, we see that T-integral elements are in a'. We
note that every element in J7(g, a) is T-integral (cf. [He, Lemma 6.5 in Chap.
VII]). We put

(2.1) A={A^c; A is dominant and T-integral}.

As for the algebraic structure of the irreducible unitary representations of
the compact connected Lie group [/, the followings are well-known. (A) Every
irreducible unitary representation of U is finite dimensional and its differential
gives rise to a highest weight module of U(Q), the universal envelopping algebra
of g. (B) For any X^A, there exists an irreducible unitary representation 0* of
U with the highest weight X. (C) For any distinct X and fj, in A, 0* and 0U are
not equivalent. (D) The set {&*} *GA gives a complete representative system of
the equivalent classes of irreducible unitary representations of U. (B) For X ^
A, every weight a of @* is of the form a=X — 2ae4 maa (ma^Z>o), hence is
T-integral. Furthermore it satisfies the following estimate:

(2.2) M|<|U||.

Next, we mention the realization of irreducible unitary representations of U
with the given highest weight X^A, the Borel~Weil theorem. Let X^A, and put
CA = exp (X (H) ) for c = exp H (H e c) . Then c1 defines a single valued
holomorphic function on C. We put also &(cn~) =c* for c^C and n~^N~, then
& gives a holomorphic one dimensional representation of B. Furthermore we put

0(X) — indS ^, the induced representation of G by ^. That is, the left regular

representation: <&(X; g)f(x) =f(g~1x) (g, x^G) of G on a function space

(2.3) r(X)={f^6(G}\f(gb)=^(b}-lf(g} for alU^G and all b<EB},

where 0 (G) denotes the space of all holomorphic functions on G. Then @(X) is
a holomorphic irrenducible representation of G with the highest weight X.
Introducing the inner product of L2 ' (U) into F(X) , one can make it a Hilbert
space. Then the restriction of $(X) to U gives the irreducible unitary
representation of U with the highest weight X.

For the later use, we give a formula for the L2 (U) -norm of the functions in

F(X) with X^A. Put p = 2~llLaev (diniR Qa)a= Saer a. Then the invariant
integral on U is given as

(2.4) f f(u)du= f f f(u(n)t)a(nYp dtdn
JU J NJ T

for continuous functions / on U, where dn is the left invariant measure on N
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normalized so that JVa(n)2p<in — 1 and dt the Lebesgue measure on T
normalized so that fT dt=l. Let A^A and/^FU) . Then by Lemma 1 and
(2.3) we have

(2.5) /(M(n)*)=/W(a(n)rT

for all n^N and all t^T. Since A^a\ we also see that |^|=1 for all t^T.
Therefore we have the following formula for the functions/ in F(/0:

(2.6) I l / l l 2 =f f \f(u(n)t)\2
a(nY"dtdn

*s N<J T

= f \fM\2a(n)2U+p>dn.
<J JV

We finish this section by recalling a well-known estimate for the matrix
elements of <PQ).

The restriction of the invatrinat symmetric bilinear form B on g to </~\ u
gives its inner product: (X, Y) = B(X, Y) for X, Y^ <J — 1 u. Using this inner
product and the Cartan decomposition (1.2), we put \\g \\= \\X (g} \\ for g €= G.
Then the followings hold

(2 . 7) ||M 0w'|| = \\g\\ for u,u'^U and g e G,

(2.8) || 0

For X e A we put d U) = dime rU) . Since F(X) is decomposed as the
orthogonal direct sum of its weight spaces, we can choose an orthonormal
weight basis (cpi (X) = (Pi U; 0)}i<^,;<d(/u, and in what follows we will fix it for
simplicity. We identify <f>Q) with its matrix representation [0tj(X) =

), where

(2.9) ® l J t i ; g )

Then the following estimate holds:

(2.10) |

This is an immediate consequence of the following inequality

(2.11) K-U; d}\< |0U; ff)|| Ik-ll NI=II<5U; ff)ll
and the decomposition (1, 4) and the estimate (2, 2).

§3o Fourier Series of Real Analytic Functions on U

The family {(PU)}>je^ gives a complete representative system of the equivalent
classes of irreducible unitary representations of U. Hence, from the Peter~Weyl
theorem, we see that the set
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(3.1)

gives an orthonormal basis of L2 ([/) . Then any function / in L2 (U) has an
expansion

(3.2) f

the Fourier series of/. For/eL2([/) and ^A we put ^/,/U) = (/, (P«/
( l < i , / < d U ) ) and #/U) = [#7,,-U)L<;M^r;i). For fceZ>0 let M(fc, C) denote
the set of all k~by~k complex matrices, and we put S(A) = ILeyi M(d(A], C).
For s ^ S(A) and A ̂  A, let us denote the /i~th component of s by sU) ^

, C) . Then the space

{
XeA

is a Hilbert space with the Hermitian inner product

(3.4) (s. 5') = JdU)Tr(5U)s 'U)*) for 5, 5'es20l).
^eyl

Again from the Peter-Weyl theorem we see that the mapping 2F:ft-^2?f= (2Ff
U)) K=A is a unitary operator of L2([/) onto S2(A). We call ^ the Fourier

transformation of L2 (U) . The inverse ^-1 of the maping 3? is given in the form

(3.5) ^

Now we are going to discuss on the restriction of the Fourier
transformation 3f of L2 (if) to the subspace si (U) of all real analytic functions
on U.

Let V be an open subset of G. We put

(3.6) 0*(V)={fec(Cl(V))',J\ve0(V)},

where Cl(V) denotes the closure of V in G, C(CL(V)) the space of all
continuous functions on C l ( V ) , and 6 (V) the space of all holomorphic functions
on V. Then 0&(F)is a Banach space with the norm ||/|| = sup0ec/(jol/(0)l for/^
0& (F). For e> 0, we put VB = (g e G; ||g ||<e} . Then {yj £>0 consitutes a
fundamental neighborhood system of U in G. For 0 <£ <e', the natural
restriction mapping ^(W)"*" ^&(Ve) is injective and compact. Hence ^ (U)
becomes a DFS space with the following inductive limit topology (cf. [Ko] ) :

(3.7) rf(

For ?7^R we put
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(3.8) S,U)-{SesU);||4 = supe-'
!l

Af=A

Then SV(A) is a Banach space. We also put S*(A) = U £ > 0S- s (A). For 0 <£<£',
the natural inclusion mapping S-e

f(A)t-^S-e(A) is compact. Hence S^(A) is also
a DPS space with the following inductive limit topology:

(3.9) Sd (A) = Urn inde>o S-e (A) = lim ind^ez>0 S-i/k (A).

Now we can state our first assertion.

Theorem 2_ (i) The Fourier transformation SF gives a topological linear
isomorphism of sA (U) onto S^ (A).

(ii) For s ^ Sd (A) the Fourier series (3.5) converges in the topology of
sA(U}.

For the proof of this theorem we prepare the following lemma.

Lemma 30 Let £>0. Then we have

(3.10) |^ ;-U)I<II/IU-£ |UI1 ( i< ; , /<dU))
for all h^Aand all f <=6b(VB}.

Proof. When ^ = 0, (PU) is trivial. Hence (3.10) is obvious in that case. So
we may assume that X ^ A\ {0} . Let / ^ Ob (V£). Since 0 U) \u is unitary,

0 U; M'1) = 0 U; M) * holds for all u e U, and thus, it follows from (2.4) and
(2.5) that

(3.11) fffrW = f f(u] (Py/U; u<j u
/« /»

= I /W I <
a/ U <J U

= I f(uv l) (pt (>?; u) <PJ (/!; v}dudv
<J u2

r

0 (a (m) ti~la (n2) t2)
 A (a (m) a (n2) )

 2pdtidt2dnidn2.

Here we note that the function f(u (n\) c\C2~lu(n2)~1} (c\~l €2)* is holomorphic in
the variables (ci, cz) on some neighborhood of T2 in C2. So, to obtain a good
estimate of the integral (3.11) we are going to shift the component T2 in its
domain of integration. For T] ̂ K, put aU, 17) =exp(r?//;i/||/l||) ^A. Then we see

(3.12) |(aU;)7)0*l=*' i m i and

for all t^T. On the other hand, from (2.7) we see that

(3.13)
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for all r] and r)' with 0<19, r/<£/2. Hence we can shift the component T2 in the
domain of integration (3.11) into a U; e/2) T x a U; — e/2) T without change of
its value. Then by the Schwartz inequality and the formula (2.6), we have

I1 f |^U;n1)^U;
a/ JV2

r /°I! II ?,| |P, » I
La/ JJV2

n
Proof of Theorem 2. We are going to prove (i) and (ii) simultaneously. The

Fourier transformation 3F of L2 (if) is a linear isomorphism onto S2 (A). Hence,
to see that ^4 — ̂  d(u) gives a topological linear isomorphism of si (if) onto

S* (A), it is sufficient to show that both &s& (U) c 5^ (A) and %~l$d (A) c

si (if), and that both 2?^ and 3FsTl are continuous with respect to the topologies
of si(U) and SW (A), respectively. The spaces sd(lf) and S^(A) are endowed
with the inductive limit topologies (3.7) and (3,9), respectively. So, to see the
continuity of 2Fd, it is sufficient to prove that for any £>0 there exists e'>0
such that the restriction of & & to the Banach space ft(Ve) gives a bounded
linear operator intc the Banach space S-B'(A) (cf. [KA, Remarks 2 and 6 in §5.6
in Chap. XI]). Since the well-known Weyl dimension formula d(X) ^dimc F(X)
— Ilaesr U +/0, ct) / (cr, a) implies that d U) is a polynomial of degree # ¥ in X,
the fact 2Fsi(U) ^S^(A) and the continuity of ^ follow from Lemma 3. Next,
for R>Q we put n (R) = # U^yl; |U||<J?}. Then n (ft) is bounded from above by
a polynomial in R. Hence from (2.10) and the Weyl dimension formula we see

SF^S* (A) dsi (U), the continuity of ̂ T1 and (ii). D

§4 Fourier of Hyperfunctioes on 17

Since U is compact, the space 5B(U) of all hyperfunctions on U coincides with
the dual space si (if)' of d (if) (cf. [Ma]). Since sA (if) is a DFS space with the
inductive limit topology (3.7), f8([/) is an FS space with the following
projective limit topology (cf. [Ko]):

(4.1) S(U) =lim proje>0 ft (^^lim proj ,ez>0 ftC^i/*)',

where ft^)' denotes the dual space of ft(Fe). Note that 36 (if) = n£>00b(V£)
f

as a set, and for any £>0, @b (V£)' is a Banach space with the operator norm

(4.2) ||/||; = sup{|(r,F)|;Feft(7.)f||F||^l> for /eft

Let 5^ C/l) ' denote the dual space of S1^ (yl) . Then S1^ (yl) ' is also an FS space
with the following projective limit topology:
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(4 . 3) S^ (A) ' = Urn proje>0 S-e (A) ' = Km proj k^z>0 S-i/k (A) ',

where S-e (A) ' denotes the dual space of S-e (A) . We also note that S* (A) ' =
0 £>o S-e (A) ' as a set. We introduce another FS space by putting

(4 . 4) S® (A) = lim proj£>0 S£ (A) .

Then the equality S® (A) = D £>0 S£ (A) also holds.

Lemma 40 The FS space S% (A) is isomorphic to the FS space SW (A) ' under
the following pairing:

(4 . 5) (s, S) = d U) Tr (s (X} S U) ) for (s, S} e S^ U) x Srf Oi) .

Proof. For 17 ^ R we put

(4.6) S*(A)

Then 5^ (A) are Hilbert spaces with the Hermitian inner product

(4.7) (s,s') = e-rimdti)Tr(S(2)s'(2)*) for s, s'^S*(

Furthermore the spaces S%(A) and S-V(A) are dual to each other under the
pairing

(4.8) G.fS) = dU)Tr (5U)SU)) for (s,

Let 0<£<£7 . Since d U) is a polynomial in ^ and the number n(R) ~ $
\\A\\<R} is bounded from above by a polynomial in R, we have the injective and
continuous sequences:

(4.9) S2-s (A) -»S_£, (yl) -» S2_E (A) -» S_s (A),
(4.10) S.-G1) «- Si-U) ^-S.01) ^SiU).

Hence we have the topological linear isomorphisms:

(4.11) Srf(yD' = lim proj^oS-^yD'^lim proj£>0 Sie (A)'

= lim proj£>0 Si (A) = lim proje>0 S£ (A)
=S%(A),

where the pairing between S^ (A) and 5® (A) is given by (4.5). D

Now we are going to discuss on the Fourier transformation of ® ([/). Since
CP(/0 (^ ^ yl) are holomorphic representations of G, we can take the pairing
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between the elements /e SB ([/) and the functions <P,/U; u

(4 . 12) ^/iy U) = (f, % U; M-1) ) U e A 1 <*, ;

We put ̂ /U) = [^/iy U) ] i< M < d u) ̂ M(d Q) ; C) and ^/=
and call the mapping 5r: f*-+2Ff the Fourier transformation of fS([/). Note that
the restriction of this Fourier transformation of &l(U) to L2(lf) coincides with
that of L2(U) defined in §3 (compare (4.12) with (3.11)). Now we can state
our second assertion.

Theorem 5. (i) The Fourier transformation 9 gives a topological linear
isomorphism of 9&(U) onto S% (A) .

(ii) The inverse «^~1 of the Fourier transformation 2? of SB (U) is given by the
series

(4.13) ^-Js

converging in the topology of 3B(U) .

For the proof of this theorem we make some preparations. The set

(4.14) {dW^QM'.u-^'.teA, I<i,j<dtt)}

forms an orthonormal basis of L2 ([/) . Hence we have an expansion for /
L2(U):

(4.15) / = U ) < f ,

We call this expansion the conjugate Fourier series of/. We put

(4.16)

and f/U) = [^U)] i<t j<dU)^M(dU); C) for/e L2([/) and A^A. We also

put 2Ff= (2Ff (ft) M ^ S2(A), and call the mapping & : f*-+2Ff the conjugate

Fourier transformation of L2 ([/) . The inverse 3^~l of the mapping 3F is given by

(4.17) ^-1s

As for the restriction of the conjugate Fourier transformation to sA(lf) we also
have the following theorem.

Theorem 2'. (i) The conjugate Fourier transformation & gives a topological
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linear isomorphism of si (if) onto S^ (A) .
(ii) For s ^84 (A), the conjugate Fourier series (4.17) converges in the

topology of st(U).

Proof. Recalling the proof of Theorem 2, we see that the proof of this
theorem is reduced to showing the following two inequalities:

(4.18) |̂

for all feA, all/e^(Ffi) and all £>0, and

(4.19) I^
for all X^A and all g^G. The proof of (4.18) is similar to that of (3.10), and
the inequality (4.19) follows from (2.10) and (2.8). D

Proof of Theorem 5. (i) The fact 2F3B(U) <^S*(A) follows from (4.19) and
the Weyl dimension formula. We have seen in Theorem 2' that the series (4.17)
for S^Sd(A) converges in the topology of sl(U) . Then by (4.5) we have

(4.20) (/,f-i5)

= (&f. 5)

for all/e#([/) = n e > 0 0f t (Ve) ' . This shows that the Fourier transformation #*

of $& ([/) coincides with the dual operator C^"1) d of 2F d~l. Hence again from
Theorem 2' and Lemma 4 we see that the operator ^ gives a topological linear
isomorphism of SB ([/) onto S% (A) .

(ii) Let s^S%(A) = f! £>0 S£(A). By virtue of (4.18) we see that the series
(4.13) for 5 converges in the operator norm || ||e for all £>0. This means that
it converges in the topology of $([/) (cf. [KA, Remark 1 in §5.2 in Chap. XI]).
Then again by (4.5) we have

(4.21)

for all s&Sa(A) and all F^sd(U}. This shows that the series (4.13) for s^

Ss(A) coincides with (2?d)ds, where (^ d)d denotes the dual operator of ̂ . On

the other hand, from the proof of (i) we see (^)d=5r«"1. Thus we see that the

series (4.13) f or s ̂  S% (A) coincides with 2F%~ls. D
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