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Representations of Hermitian Kernels
by Means of Krem Spaces

By

Tiberiu CONSTANTINESCU * and Aurelian GHEONDEA**

Abstract

Hermitian kernels are studied as generalizations of kernels of positive type. The main tool is

the axiomatic concept of induced Krem space. The existence of Kolmogorov decompositions of a

hermitian kernel and their uniqueness, modulo unitary equivalence, are characterized. The existence

of reproducing kernel Krem spaces is shown to be equivalent to the existence of Kolmogorov

decompositions. Applications Applications to the Naimark dilations of Toeplitz hermitian kernels on

the set of integers and to the uniqueness of the Krem space completions of nondegenerate inner

product spaces are included.

§1. Introduction

The theory of positive definite kernels and their reproducing kernel repre-
sentations is well established and has significant applications in various
domains as seen in [2], [4], [6], [26], [15], [29]. L.Schwartz [30] has
considered a parallel theory, of Hilbert spaces continuously embedded in
quasi-complete locally convex spaces, and he showed the equivalence with the
abstract reproducing kernel Hilbert space theory of N. Aronszajn and
S. Bergman. In addition, "not as a monstrosity, but as an interesting novelty", to
quote his own words, L. Schwartz generalized this theory to hermitian kernels,
and hence to genuine Krem spaces, apparently independent of the theory of
operators on Krem or Pontryagin spaces, which was already developed at that
time. Among other pathologies that appear in this theory, of special concern is
the lack of uniqueness of the associated reproducing kernel spaces. From a
slightly different point of view, P. Sorjonen [31] considered reproducing kernel
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Pontryagin spaces, which are uniquely determined.
Historically, two parallel main constructions appear to be used: the first

one is based on a quotient-completion process, cf. A. N. Kolmogorov [18], M. A.
Naimark [24], [25], while the second one uses image-spaces, cf. N. Aronszajn
[2], L. de Branges [4], L. Schwartz [30], etc. The quotient-completion pattern,
applied to certain hermitian kernels with a finite number of negative squares,
was followed also by M. G. Krem and H. Langer in generalizing to Pontryagin
spaces much of the corresponding theory on Hilbert spaces, cf. [20], [21], [22].
In the positive definite case these two approaches turned out to be perfectly
equivalent, see e.g. [15]. Due to the nonuniqueness, in the hermitian indefinite
case the relation between the two constructions in less obvious.

Our first aim is to investigate the interplay between these two approaches
and to show their equivalence. We look at hermitian kernels through the
Kolmogorov decompositions and investigate their properties. In this context, we
address the uniqueness problem for Kolmogorov decompositions, modulo unitary
equivalence, and then for reproducing kernel Krem spaces. Finally, we show
some applications to the Naimark dilations of hermitian Toeplitz kernels and to
Krem space completions of abstract indefinite inner product spaces.

The paper is organized as follows. In Section 2 we present an axiomatic
study of Krem spaces induced by selfadjoint operators. Induced Krem spaces,
obtained by a renorming process as in Example 2.1, appeared since the early
stages of operator theory on indefinite inner product spaces. We indicate
another equivalent construction (the Krem space $A, cf. Example 2.3) in
connection with applications in dilation theory, lifting and extension of
operators in Krem spaces in [9], [8]. We show that the axiomatic approach of
induced Krem spaces contains also the de Branges construction based on
operator ranges as in [5], cf. Example 2.5. The characterization of the
uniqueness of induced Krem spaces is obtained in Theorem 2.8, whose proof is
inspired by our paper [8]. As a consequence of this result, we can obtain the
result of T. Kara [17] on the uniqueness of de Branges spaces, cf. Corollary
2.9. Section 3 is devoted to the existence problem of Kolmogorov decompositions
for hermitian kernels. The main result of this section is Theorem 3.1 which
combines characterizations obtained by L. Schwartz, in the case of Krem
subspaces continuously contained in quasi-complete locally convex spaces, with
the renorming procedure. Here, the use of induced Krem spaces plays a key
role. We also show that a multiplicative structure of the Kolmogorov
decomposition for hermitian kernels on the set Z of integers can be obtained,
see Theorem 3.3.

The main result in Section 4 is Theorem 4.1, which gives a
characterization of the hermitian kernels addmitting unique Kolmogorov
decomposition, in terms of an associated family of selfadjoint operators.
Theorem 5.1 shows that, even for a general hermitian kernel K, the existence of
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Kolmogorov decompositions of K is equivalent to the existence of Krein spaces
with reproducing kernel K. As a consequence of this result and of Theorem 401,
the uniqueness of the reproducing kernel Krein space associated to a given
hermitian kernel is characterized. This may be viewed as an answer to a
question left open in the paper [30] of L. Schwartz, see also [l] .

Section 6 gives an application to Naimark dilations of hermitian Toeplitz
kernels. In connection with the existence problem of Naimark dilations it
appears as natural to introduce an intermediate class, what we call "hermitian
kernels of bounded shift type", which provides a tool for the solution of this
problem, cf. Theorem 6.8. Then we address the question whether the Naimark
dilation can be characterized only within the class of hermitian Toeplitz kernels
and we prove in Theorem 6.10 that this can be done only for the subclass
admitting fundamentally reducible Naimark dilations.

In the last section we sketch how similar arguments can be used to provide
an answer for a characterization of the uniqueness of Krein spaces associated
with abstract indefinite inner product spaces (see, M. Tomita [32] and F.
Hansen [16] for related problems) .

We thank the referee for valuable comments that improved the presentation
of this paper.

§2. Induced Krein Spaces

Let (X, [•, •]) be a Krein space, that is, an indefinite inner product space for
which there exists a positive definite inner product {', a) turning (X, (*, 8))
into a Hilbert space, and such that there exists a symmetry / on X, that is

j* =j~l —j^ with [x, y] — (jx, y) for all x, y ^ 3C. Such a symmetry is called a
fundamentel symmetry and its spectral decomposition, denoted ft = ft~ [+]ft+, is
called a fundamental decomposition.

We consider a bounded selfadjoint operator A on X, that is, A#=A, where
we always denote by # the involution determined by the indefinite inner
product. On X define a new inner product [-, *]A by the formula

(2.1)

The goal of this section is to investigate the properties of some Krein spaces
associated with the inner product [•, '~\ A- By definition, a Krein space induced
by .A is a pair (ft, IT) , where % is a Krein space and II ^ £ (X, ft) is an
operator with dense range and satisfying

[Tfc, Hy ,] = [Ax, y ] , x , y ^ t f . (2 . 2)

In order to illustrate this concept it is useful to see some examples. We can give
three such examples of Krein spaces induced by a given selfadjoint operator A,
all of them related by certain unitary equivalence. More precisely, two Krein
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spaces ($t i, Hi) , t = l, 2, induced by the same self adjoint operator A ^i£(3C} are

unitarily equivalent if there exists a unitary operator U (that is, 17* = U~1} in
i, #2) such that [7/7i=/72.

Example 2.1. Let / be a fundamental symmetry on 3C and let JA denote
the self adjoint operator with respect to the Hilbert space (X, (\ •)/). Let 3C-
and 3f+ be the spectral subspaces of the operator JA corresponding to the
semiaxis ( — °°, 0) and, respectively, (0, +00). Then we have the decomposition

Note that (X-, — [•, *]A) and (X+, [•, f]A) are positive definite inner product
spaces and hence they can be completed to Hilbert spaces X" and, respectively,
#+. Then we can define the Krem space (XA, [•, B]^) by letting

(2.3)

where the inner product is the extension by continuity of the inner product
[°, u ] A . The operator IIA^2!(X, #A) is, by definition, the composition of the
orthogonal projection of X onto $£ O Ker A with the embedding of X O Ker A
into XA. With these definitions, it is readily verified that (MA,nA) is a Krem
space induced by A.

We now take a closer look at the strong topology of the Krem space XA.

Consider the seminorm #Bjfi-»||[/>l|1/2&||. The kernel of this seminorm is exactly
Ker A and the completion of X © Ker A with respect to this norm is exactly
the space XA. Moreover, the strong topology of lKA is induced by the extension
of this seminorm. The positive definite inner product associated with the norm

|||/A|1/2° || is(|.M|v)/ and hence, letting JA = SJA \JA \ be the polar decomposition
of JA and S/A denote the corresponding selfadjoint partial isometry, it follows
that S/A can be extended by continuity to XA and this is exactly the
fundamental symmetry of XA corresponding to (1/4 |v) A.

We finally note that the construction of the space XA does depend on the
fundamental symmetry /, but it is easy to prove, that all the spaces constructed
in this way are unitarily equivalent. I

The Krem spaces of type XA appeared since the early stages of operator
theory in Krem spaces. A very useful result is a lifting one, originally proved
by M. G. Krem [19] and rediscovered by W. J. Reid [28] , P. D. Lax [23] , and
J. Dieudonne [10]. The indefinite variant below was proved by A. Dijksma,
H. Langer, and H. de Snoo [12] .

Lemma 2.2. Let MI and <f£2 be Krem spaces and let A ^£(ftd , A =A#

i9 3f2), and T2<E£(tf2, #1) be such that

x,y]B= [x, Tyy] A,



REPRESENTATIONS OF HERMITIAN KERNELS 921

or, equivalently, TlA=BTi. Then there exist unique operators Ti^J2?(#A, %B) and

XA) such that

TlnA=nBTl, T2nB=nAT2,
and

[fix, y]B = [x, ftf] A,

Another example of an induced Krem spcace can be described as follows.

Example 2a30 Let again / be a fundamental symmetry on X and consider
the polar decomposition

JA=SjA\JA\, (2.4)

of the selfadjoint operator JA on the Hilbert space ( X , ( m , • ) / ) . The operator
SJA is a selfadjoint partial isometry on this Hilbert space. Define $£A = c\$l([A)
= #COKer A and note that this subspace is invariant under SJA- The restriction
of SJA to $£A is a symmetry, that is, it is unitary and selfadjoint, and let us
consider the (indefinite) inner product [8, m]S/A by

[ x , y ] s M = ( S / A X , y ) j , x , y ^ f f l A . (2.5)

We consider the Krem space (3CA, [', m]sj and define the operator
by

KAx = \JA\l/2x, x<Etf. (2.6)

Note that

[VAX, 7lAy]sJA=(SjA\JA\1/2x, [ f A \ l / 2 y ) j = [ A x , y ] , x,y^3C,

and hence (3CA, KA) is a Krem space induced by A. 1

We note the following result connecting the constructions in Examples 2 . 1
and 2.3.

Lemma 2.4. The Krein spaces (ft A, HA) and (3CA, KA) are unitarily
equivalent, more precisely, the linear mapping

has a unique extension to a unitary operator U^£($(A, ^A) such that U!IA = ft A*

As a consequence of Lemma 2.4, we can see that the construction of (#£A, it A)
does not depend on the fundamental symmetry /, modulo unitary equivalence.

We consider now a third example of an induced Krem space.

Example 2.5. Let again / be a fundamental symmetry on 3€ and consider

the polar decomposition of JA as in (2.4). The space $A — $ (\JA |1/2) endowed
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with the positive definite inner product (°, °)$A is defined by

(\JA\l/\ \JA\1/2y)^=(Pxe^AX,y)j, xty^X. (2.7)

This positive definite inner product is correctly defined and ($tA, (°, °)»J is a

Hilbert space. To see this, just note that we have made the operator \JA |1/2:
^BKer A—*3$A a Hilbert space unitary operator.

On 3$ A we define the (indefinite) inner product [°, •]& by

[\]A\l/2
X,\lA\l/2y\%t=(SjAX,y)j, X,y^XQKerA. (2.8)

Since the operators |/A|1/2 and SJA commute it follows that

In the following we prove that the operator SJA\^A is a symmetry. Indeed,
let x, y^ffl be arbitrary. Since

JAX, y)j= <*, SJAy) ,= (\JA\"2
X, S

it follows that SJA is (°, •) Asymmetric. Moreover,

SjA\JA\1/2y)®A = (SJAX, SjAy)j

KerAX, y) j= (\JA\l/\ \JA\™y) *A,

and hence the operator SJA\^A is (°, °) ̂ -isometric. We have thus proved that
(®^, [°, °]»J is a Krem space and that SJA\^A is a fundamental symmetry.

We define now a linear operator /7®/-3i?— »$A by

From |/A| = |/A|1/2|/A|1/2 it follows that 91 (17® J =S(|/A|) and it is easy to see
that 91 (/7ft.) is dense in S^. In order to prove that the operator II%A is bounded
note that

Then

Finally, for arbitrary x, y^ffl we have

and hence (®A, [8, ']) is a Krem space induced by
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Remark 2.6. The Krein spaces induced by a selfadjoint operator as in
Example 2.5 can be characterized in yet another way. More precisely, to any
Krein space ${ continuously embedded into the Krem space $C one associates a
selfadjoint operator A e £ (X) in the following way: let c- % ^ X be the
inclusion operator which is supposed bounded and take A = cc*^ £($€}. Clearly
A is selfadjoint and (#, c*} is a Krein space induced by A. Conversely, from
Example 2 . 5 it is easy to prove that %A is a Krem space continuously embedded
in $ and such that cc*=JA], where c- HA C—^X is the canonical embedding. S

The Krein spaces of type $)A appeared explicitly in the work of
L. de Branges [5] , and, in a slightly different but more general formulation, in
the work of L. Schwartz [30] . The connection between the induced Krem spaces
(#£A, KA] and (38^, 77s Jean be also easily established.

Lemma 2070 The induced Krein spaces ($A, KA) and (®A, 77$J are
unitarily epuivalent, more precisely, the mapping

extends uniquely to a unitary operator V^£(#£A, $A) such that VKA
 = U®A.

Note also that, as before, a consequence of Lemma 2.7 is that the
construction of the induced Krein space 09^, 77$J does not depend on the
fundamental symmetry /, modulo unitary equivalence.

Until now all the examples of induced Krein spaces we have produced
turned out to be unitarily equivalent and hence, it appears as natural to ask
whether all the possible Krein spaces induced by a fixed selfadjoint operator
are unitarily equivalent. The answer is that, in general, this is not true.

Theorem 208o Let A be a bounded selfadjoint operator in the Krein space 3C.
The following statements are equivalent'-

(i) The Krein space induced by A is unique, modulo unitary equivalence.
(ii) For some (equivalently, for any) fundamental symmetry J of 3C, there

exists an £>0 such that either (0, e) ^p(jA) or ( — e, 0) <^p([A).
(m) For some (equivalently, for any) Krein space {X, 17} induced by A, the

range of II contains a maximal uniformly definite subspace of X.

Proof, (i) => (ii) . In order to simplify the notation let us first notice that,
without restricting the generality, we can assume that 3C is a Hilbert space.
Indeed, the statement (ii) is a topological property of the spectrum of JA which
either holds for any fundamental symmetry / of 3C or it does not hold for any
fundamental symmetry and hence, we can replace the Krem space 3C with the
Hilbert space (#£,(', 9) /) , for some arbitrary fundamental symmetry/, and then,
instead of A, we consider the operator JA. Moreover, in the following we will
denote by (e, •) the positive definite inner product of- 3C and by || • || the
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corresponding norm.
Let us assume that the statement (ii) does not hold. Then there exists a

decreasing sequence of values {fjtn} «^i — a (A), 0 <^M <1 such that jWM~-* 0
(n— »oo) f and there exists a decreasing sequence of values (vnt n^i — o(~ A) ,
0 <vn <1, such that y«~ * 0 (n-^°°). Then there exist sequences of vectors
(en}nzi and {/Jn^i such that

(2.10)

where E denotes the spectral measure of A. As a consequence, we also have

[A*,,/y]=Of ;,/>!. (2.12)

We consider the linear manifolds ®o±

®o+ = Hn (en\n > 1} , ®0- = lin {/Jn > 1} ,

and note that as linear manifolds in the Krem space XA, ®0+ is uniformly
positive and ®o- is uniformly negative. To see this, let A =A+ — A- be the
Jordan decomposition of the selfadjoint operator A and note that LA|=A + +.A_

and mi/2=^4+/2 + A1-2. Recalling that the positive definite inner product onto
MA is (U|°, •), where (B, •) is the positive definite inner product onto X, from
(2.10), (2.11) and (2.12) it follows that W/«}M£i is orthonormal with respect
to (\A\°, B) and hence ®0+ is uniformly positive and ®0- is uniformly negative.
As a consequence, letting

®o is a linear manifold in XA such that its closure (that is, with respect to the

norm ||U|1/2°||) is a regular subspace.
Define the sequence {2n}n*i by

Then 0<^«<l f Xn T 1 (n->oo) and

j^^l. (2.13)

Let us consider now the sequence WM}w^i, of subspaces of the Krem space
* defined by

and then define the operators Un
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The operators £7W are unitary in s&n and the spectral radii

»« 0.

Note that

We consider the linear manifold

which is, by construction, dense in XA, where ®± = f R ( A ± ) . Also, ®o±^=®± and
hence ®0 — ®- Moreover, the following decomposition holds

. (2.14)

With respect to (2.14) we define a block-diagonal operator U in #A, with

domain $ and the same range, by U\dn= Un, n > 1 and [/| (© 0 $£) =/| (® fl ©£) .
The operator [/ is isometric, it has dense range as well as dense domain, and it
is unbounded since its point spectrum Op (U) ^ n^iO (Un) is unbounded. Using

these elements we define the operator II from the dense domain ® + Ken4 into
X 'A by n=UnA. We claim that {XA, H} is a Krem space induced by A.

Indeed, #(/7) =® is dense in XA. Further,

We now prove that II is bounded. From the discussion in Example 2.1, the
Hilbert norm associated to MA is given by |||A|1/2'||, where I ° || is the norm in X.
Define the spaces

and note that by the Spectral Theorem and (2.10) we have

1/2Pf.\A | l max

where PSFM is the Hilbert space projection of 3C onto 9>n.
For *e® n ®^, it follows from the definition of U that
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For x^Sn, we have

In view of the definition of the operator U and taking into account that the
closure of ®o in the Krein space ft A is a regular subspace of XA, it follows that
there exists a constant C>0 such that

\\\A\1/2Ux\ <C\\x\l

This shows that the operator 11= UUA (recall the definition of U 'A in Example

2.1) is continuous: ® + Ker A c ^— » XA. Therefore we can extend it by
continuity to a bounded operator n^£(X, XA} and hence {XA, U} is a Krein
space induced by A.

Finally, since U is unbounded it follows that (XA, UA} is not unitarily
equivalent with {XA, II}.

(ii) => (iii) . As before, we can assume, without restricting the generality,
that 3f is a Hilbert space. Let then A =A+— A- be the Jordan decomposition of
the operator A. Denoting X± = c\9l(A±), the following decomposition holds

The operators A± restricted to 3C± are self adjoint operators in the Hilbert
spaces ffl±, respectively. As in Example 2.1 it follows that the strong topology

of X is determined by the norms ^±3*HIC4±)1/2#II-
To make a choice, let us assume that there exists £>0 such that ( — £, 0) <=

p(A), equivalently A- has closed range. This implies that (3C-, ||04-)1/2°|l) is a
complete normed space and hence, by the definition of the Krein space XA, ffl-
is a maximal uniformly negative subspace of XA. If (0, e) ^p(A), then we prove
in a similar way that #£+ is a maximal uniformly positive subspace of XA-

(iii) => (i) . Let (Xt, Uj i = l, 2, be Krein spaces induced by A. The equation
Unix = n2x, x^X, uniquely determines an isometric operator densely defined in
Xi and with dense range in X2. If 9t (Hi) contains a maximal uniformly definite
subspace then by Lemma 2,3 in [8] it follows that U has a unique extension to
a bounded unitary operator and hence the two Krem spaces induced by A are
unitarily equivalent. Moreover, since bounded unitary operators map maximal
uniformly definite subspaces into subspaces with the same property, it follows
that if (ii) holds for some Krem space induced by A then it holds for any other
Krein space induced by A. I

Let Xi be two Krem space continuously embedded into the Krein space IfC
and denote by ct'-Xt ^^X the corresponding embedding operators, that is cth = h,



REPRESENTATIONS OF HERMITIAN KERNELS 927

(i, i = l, 2. We say that the Krein spaces 3(\ and #2 correspond to the same

self adjoint operator A in X if CiCi = c2c2
=A. If A is nonnegative, equivalently,

the Krem spaces #,- are actually Hilbert spaces, this implies that ^fi = ̂ 2- The
answer of this question for genuine Krein spaces was given by T. Kara [17] . A
parallel treatement can be found in [13] , [8] , with a bridge settled in [14] . We
can obtain these results as consequences of Theorem 2.8.

Corollary 2,9. Given a self adjoint operator A ^ £ (ffl) , the following
statements are mutually equivalent'-

(a) There exists a unique Krein space $i continuously embedded in $( and
associated to A.

(b) For some, equivalently, for all fundamental symmetry J, there exists £>0
such thet either ( — e, 0) <^p(fA)or(Q, e) dp(jA).

(bf) For some, equivalently, for all fundamental symmetry ], there exists £>0
such that either ( — e, 0) <^p (Aj)or(Q, e)^p (Aj) .

(c) There exists a Krein space $ continuously embedded in $C, £'•$(—*$£ such
that cc#=A and $t(c#) contains a maximal uniformly definite subspace of 3(.

Proof. Let Xt be two Krem spaces continuously embedded in X and let
Cr$(t—*3C be the embedding operators, i = I, 2. Assume that the induced Krein

spaces (fit, cf) are unitarily equivalent, that is, there exists a unitary operator
U^3!(Xi, #2) such that Uc2 = Ci. Then Ci = c2U

# and taking into account that d
are embeddings, it follows that

and hence $t\ = $(2 and t\ — C2. This shows that the two Krein spaces coincide.
Taking into account of Remark 2,6, we can now apply Theorem 2.8 and get the
equivalence of the statements (a) , (b) ', and (c) . The equivalence of (b) and
(b)' is clear, since JA =j(AJ)J, that is, JA and AJ are unitarily equivalent, and
hence their spectra coincide, i

§3. Kolmogorov Decompositions of Hermitian Kernels

Let / be a set of indices and H= \M Jie/ be a family of Krein spaces with
(indefinite) inner products denoted by [•, •]#,. A mapping K defined on / X /
such that K(i,j) ^S!(Xjt tfj) for all ij^f is called an ^-kernel. The H-kernel
K is called hermitian if

K(i,j)=K(j,i)#, i./e/. (3.1)

We denote by ^(H) the set of all families /={/,}te/ of vectors such that
/,e^, for all ie/ f and by ^0 (H) we denote the set of all/e^(H) of finite
support, that is, the set supp/={t^/t/"t

:^0} is finite.
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If K is a hermitian H-kernel then one can introduce on ^o (H) an indefinite
inner product [•, °]K defined by

\f,g\K= Z [K(i,j)f(j), *(i)W, ^e^0(H). (3.2)

Also, recall that an H-kernel K is called positive semidefinite (equivalently, of
positive type) if

Z [K(ij)h(j), /i(i)U>0, /ie^0(H). (3.3)
•je/

Let us notice that every positive semidefinite H-kernel is hermitian. Also, a
hermitian H-kernel is positive semidefinite if and only if the corresponding
inner product [°, °]^ in (3.2) is nonegative.

Let us denote by @b (H) the class of all hermitian H-kernels and by J?+ (H)
the subclass of all positive semidefinite H-kernels. On ffi*(H) we define
addition, subtraction and multiplication with real numbers in a natural way.
Moreover, on SA(H) we have a natural partial order defined as follows'- if A,
B<E®h (H) then A <B means [/",/] A < [f, /] B, for all / e ^0 (H) . With this
definition we have

t+(H) = Uer(H)U>0}, (3.4)

and $+ (H) is a strict cone of ^h (H) , that is, it is closed under addition and
multiplication with nonnegative numbers, and S+(H) D — ̂ +(H) =0.

We also note that an inner product [ • , ° ] can be defined for arbitrary /,
#e^(H), provided at least one of/ and g has finite support, by

fc*] = ZI/(i), *«)]*, (3.5)
te/

To each H-kernel K we can associate the convolution operator, denoted also by K,
and defined by

/e=^0(H). (3.6)

Then the kernel K is nonnegative (hermitian) if and only if the corresponding
convolution operator K is nonnegative (hermitian), that is, \Kf, g] >Q([Kf, g] =

By definition, a Kolmogorov decomposition of the hermitian H~kernal K is a
pair (F; X) , where (X, [* , •]) is a Kreln space and Vr={Fi}te> is a family of
linear operators, subject to the following conditions'

(a) Vi e £ ( X i , X ) , for alii e/.
(b) «•= V

(c) K(i,j)=V*iVj for all t,/e/.
Following L. Schwartz [30], we say that two kernels A, B^S+(H) are

disjoint if for any kernel P^ ®+ (H) such that P<A and P<B it follows P=0.
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In the next theorem, the equivalences of the assertions (l) , (l) ', (2) , and
(2) ' are transcripted from similar results obtained by L. Schwartz in [30] .

Theorem 3.1. Let K^®h (H) . The following assertions are equivalent'-
(1) There exists L<^®+ (H) such that ~L<K<L.
(1) ' There exists L<E®+ (H) such that

(2) K=Kl-K2 with Klt K2^®+ (H) .
(2) ' K=K+-K- with K± e t+ (H) and disjoint.
(3) There exists a Kolmogorov decomposition (V\ $C) of K.

Proof. The equivalence of (1) and (l) ' is obtained as follows. Let
H) be such that ~L<K<L, that is

Let/, £^^o(H)- Since K is hermitian we have

4Re [/, g] K= \f+g, f+g] K- \f-g, f-g]

and hence

Let 2<EC be chosen such that U| = l and Re[/, /tg]K= If, MK- Then

I [/, ^1 K\ <| [f, /] L+\ [g, gl L. (3.7)

We distinguish two possible cases. First, assume that either [f, /] L — 0 or
[#, ^]i = 0. To make a choice assume l/>/]i = 0. Consider the inequality (3.7)
with ^ replaced by t^ for t>0. Then

Letting ^0 we get I/, #]*=().
Second case, assuming that both |/,/]L and [g1, ̂ ]i are nontrivial, in (3.7)

replace/ by [/,/]z1/2/ and # by [g, g\ll/2 g and get

We thus proved that (l) ^ (1)'. The converse implication follows by letting

f=g-
(1)'=^ (2)'. Let ^fi be the quotient-completion of the pre-Hilbert space (^o(H),

[-, •] L) to a Hilbert space. More precisely, letting ML = (f ^ &o (H) | [/, f\L

= 0} denote the isotropic subspace of the positive semidefinite inner product
space (^o(H), [-, -]L) we consider the quotient ^o(J3.)/Mi and complete it to
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a Hilbert space XL- The inequality (1)' implies that the isotropic subspace ML
is contained into the isotropic subspace MK of the inner product (^o(H), [-, •]
K) . Therefore, [°, °]# uniquely induces an inner product on XL, also denoted by
[°, °]K such that the inequality in (1)' still holds for all/, g^XL. By the Riesz
representation theorem we get a self adjoint and contractive operator A
A=A* such that

(3.8)

Let A=A+—A- be the Jordan decomposition of A in XL. Then A± are also
contractions and hence

f^XL. (3 = 9)

We now prove that the nonnegative inner products [A±°, •] uniquely
induce kernels ^f±et+(H) such that

andK=K+-K-.
Indeed, the inner product D4+°, °] restricted to ^0 (H) /^ can be

extended to an inner product [°, •]+ on ^0(H) by letting it be null onto ML and
hence

[/,/] + < [/,/k /e^0(H). (3.10)

Let i,j^/ be arbitrary and i^j. Clearly, we can identify the Kreln space
$t [+] fflj with the subspace of ^o(H) consisting of those / such that
supp/^lt,/}. With this identification we consider the restrictions of the inner
products [°," •] + and [°, •]/. to fflt [+]^j. The inner product [°, °]i is jointly
continous with respect to the strong topology of #£t [+] Xj. By (3.10) and the
equivalence of (1) and (1)' we conclude that the inner product [°, •]+ is also
jointly continuous with respect to the strong topology of Xt [+] fflj and hence,
by the Riesz representation theorem, there exists a selfadjoint operator

such that

We define

K+ (i, j) =P*'B\tfi, K+ (i, t) =t'B\Xt,

K+ (j, j) =p£;[+]*'B|#y, and K+ (j, i) =P%WX'B\tfi=K+ (i, j) '.

In this way we have defined a kernel #+ ^ ®A (H) such that K+<L and

Since the inner product [e, •]+ is nonnegative it follows that A"+
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Similarly we construct the kernel K-^$h(H} such that K-<L and

[f,g\K-=[f,g}-, / f*€E^0(H) f

where the inner product [/", g] - is the extension of the restriction of the inner
product U-/, g] to ^oOBQ/^L, by letting it be null onto NK.

From A=A+—A~, (3.8) and the constructions of the kernels K+ and K-,
we conclude that K=K+— K-.

Let P<Et+(H) be such that P<K±. Then

H). (3.11)

As before, [•, °]p induces a nonnegative inner product [•, °]p on #z such that
(3.9) holds for all/e#L. From P<#± we obtain that

[f,f]p<[A±fj]L, ff=XL,

and, since A+A- = 0 this impleis [/", /]p = 0 for all/^^L. Since by (3.11) we
have <NL^Np this implies that the inner producrt [e, "]p is null onto the whole

and hence P=0.
(2) '=> (2) . Obvious.
(2) => (1) . Indeed, if K=Ki~K2 with #1, #2 ^ t+ (H) then letting L =Ki +

M.) we clearly have ~L<K<L.
(l) ' => (3) . As in the proof of (l) ' => (2) ' we consider the quotient-

completion Hilbert space $fi, the representation (3.8) and the Jordan
decomposition A=A+— A-. The latter yields in a canonical way a Krem space
(ft, [", ' ] JT) . We again consider cA^i and NK, the isotropic spaces of the inner
product spaces C^0(H), [•, °]i) and, respectively, (^0(H), [°, B] x) . From the
inequality (l)' we have AfL^AfK.

For every i ^ / and every vector /i ^ J^iff we consider the function
) defined by

This identification of vectors with functions in ^o(H) yields a natural
embedding ffli ^~^^Q (H) . With this embedding we define linear operators
Vr Xi^tt by

To prove that the operators Vt are bounded, fix an index i ^ / and unitary
norms || 8 \\x and || • \\x, onto the Krem spaces X and, respectively, ffli and let
(•, e)^, be the corresponding positive definite inner product onto Xt. Then, for
arbitrary h^$d we have
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<2(L (i, i)h, h)*=2\\L (i, i) 1/2/

This proves that the operators Vt are in £(Xit ft) for
In order to prove (c) , let h ^ 3^ and g G= 2#y be arbitrary vectors. With the

identification of vectors with functions in ^o (H) we have

[VlVjg, h]* = [Vjg, Vih]*

To prove (b) , let us first note that the linear hull generated by
is 2?o (H) /J/K. Therefore, in order to prove (b) it is necessary and suficient to
prove that the linear manifold ^o (H) /J^K is ^-weakly dense in X .

Indeed, any vector in 3d can be approximated L-weakly by vectors in
^o (H) /J\fi and any vector in $C can be approximated ^T-weakly by vectors in
$L/NK. But, since J^i—J^K we have

^o (H) /^= (^o (H) /ML) /MK,

and by means of the polarization formula and the inequality in (1) the L~weak
topology is stronger than the #~weak topology, hence ^o (H) /J^K is K~weakly
dense in ft.

(3) =>(!). Let(X, [°, 9]) be a Krein space and {F,-},e/ be a family of
bounded linear operators Vi^£(ffli, ft), i^/, such that

Fix on ft a fundamental symmetry / and for each i ^ / fix a fundamental
symmetry /,- on fflt. Then define the kernel L by

It remains to prove that Le^+(H) and that ~L<K<L.
Indeed, let/e^0(H). Then

Further, assume that supp/= {ti,...,tn} and consider the Krein space ftn, the

direct sum of n copies of ft. Then we consider the fundamental symmetry /, the
direct sum of n copies of /, and the identity operator / of the Krein space ftn.

Taking into account that /</ with respect to the inner product (•, 8)/, we
conclude that
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' < X to/00 ."vv(0>/= z [L(t./)
t.je/ Me/

and hence !/,/]#< I/, /L. Similarly, taking into account that — /</we conclude
that ~|

Remark 3.2. The fact that the family H consists of Krem spaces is not
essential. We can equivalently start with a family H of Hilbert spaces. Indeed,
the first case is reduced to the latter case by fixing on each Krem space #Ct a
fundamental symmetry and refer only to the inner products (8, •)/,. One good
reason to prefer the Krem space formulation is the axiom (c): if the spaces 3£t

were Hilbert spaces then it would require the use of fundamental symmetries,
more precisely, in this case it would read as follows

(c) K(i,j)=JtV?Vj for all i , /e=/.
Another stroung reason to prefer the Krem space formulation is- related to a
subtle question on the existence of elementary rotations in Krem spaces, which
is quite different of the Hilbert space situation, as shown in [9] . This will
become clear when considering Naimark dilations associated to Toeplitz
hermitian kernels, see Section 6. Q

Given an H-kernel K, then rank (K) is by definition the supremum over all
rank (KA) taken over all finite subsets A = {ii,...,i»} ci /, where KA is the
restricted kernel (K (i, j ) ) t J e A . By definition rank (K) is either positive integer
or the symbol °°.

A hermitian H-kernel K has K, negative squares if the inner product space
(^o(H), [-, •]%) has negative signature £, that is, K is the maximal dimension
of all its negative subspaces. It is easy to see that this is equivalent with
K = K+— K-, where K±^^+(H} are disjoint, such that rank (#_) = K, see e.g.
[30]. We are thus entitled to define K~ (K) =/c, the number of negative squares of
the kernel K. In particular, hermitian H-kernels with a finite number of
negative squares always have Kolmogorov decomposition and for any
Kolmogorov decomposition (V\ $(} of K we have K~ (X) = K~ (K) <°o, hence X
is a 77X space, that is, a Pontryagin space with negative signature K. These
kernels have been carefully studied, starting with M.G. Krem and H. Langer
[20] , [21] , [22] . Among the hermitian kernels which were intensively studied
there are the Schur, the Caratheodory and the Nevanlinna kernels associated to
operator valued analytic functions. These are, respectively

S,(z.O = "^"w. Cf(2,0 =f J- . JV«(*,0 = _- VW.

(3.13)

defined for X (X) -valued analytic functions on appropriate domains.
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The problem whether a given hermitian H-kernel does admit or does not
admit Kolmogorov decompositions might present some difficulty only for those
kernels which have both numbers of positive and negative squares infinite. An
example of a hermitian kernel which cannot be written as the difference of two
positive kernels, and hence, by Theorem §3.1 does not admit Kolmogorov
decomposition, was described by L. Schwartz [30], see also Theorem 2,2 in
[l]. On the other hand, for certain domains of analyticity A. Dijksma, H.
Langer, and H. de Snoo prove in [11] that the Caratheodory and the Nevanlinna
kernels admit "majorants" as in item (l) of Theorem §3.1, and hence, these
kernels admit Kolmogorov decompositions.

In the case of hermitian kernels defined on the set Z of integers, there is
also of interest to exhibit a certain multiplicative structure of the Kolmogorov
decomposition, since, in the positive definite case applications to realization
theory and prediction of nonstationary processes can be obtained using this
structure. We have the following result.

Theorem 3,3, Let H= {#,},ez be a family of Krein spaces and let K ^ $*
(H) be a hermitian ^-kernel snch that K(n, n) — I<tcnfor all n^Z and admitting a

Kolmogorov deeomposition (V\ X) . Then there exist a family {Xn}n e z of Krein
spaces, Xn — ̂ nfor all n^Z, and a family {Wn}n^z of unitary operators such that
Wn^2!(Xn+i, Xn) for all n^Z and

Vn=\
rV^ol n4O f\J%Q\3iQ, n — 0

WQWi -Wn-iltfn, n>0.

Proof. Since FfFi^M the operator V\ is isometric and hence there exists
a Krein space ®i and an operator Di^£(S)it X) such that

is unitary. Denote X0
 = X, Xi = ̂ ?i[+]®i and define the operator

#1) for all n^Z. Then

In particular Ff2) VM = Ix, and hence, as before, there exists a Krein space ®2

and an operator Z)2^^(®2, X) such that the operator

is unitary. Denote ltl\ = 3f\ [+] ©i. We proceed by induction and prove that
there exist Krein space ®«+i and operators Dn+i e j? (®«+i, X) such that the
operator
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Wn= [WJW?-- Wj-iVWV

is unitary. Denote 3fn+i = ^n+i [+] ®«+i- Therefore, for all n>0 we have FK =
W0Wi'°"°° Wn-i\3Cn. Similarly we obtain unitary operators Wn, n<0, such that

Vn=W*-iWi2—'~WZ\tfn for all w<0. For n = Q the formula is clear since X0 =

$i and, from V* VQ = I#0 it follows that VQ is isometric and hence, modulo the
identification of tf0 with 91 (V0) we have Vo=

§40 Uniqueness of the Kolmogorov Decomposition

In the positive definite case the Kolmogorov decomposition is unique,
modulo unitary equivalence. In the general hermitian case, the existence of a
Kolmogorov decomposition does not imply that it is unique and the question of
characterizing those hermitian kernels which possess unique Kolmogorov
decomposition is of interest We first make precise the notion of unitary
equivalence of two Kolmogorov decompositions of the same hermitian kernel.

Two Kolmogorov decompositions ({Fj te /J X) and ({f /J t e/ i $£} of the
same hermitian H-kernel K are unitarily equivalent if there exists a unitary
operator <Pe#(#f X) such that for all i^/ we have Ut = 0Vt.

Let K be a hermitian H-kernel. If Let+(H) is such that ~L<K<L then,
as in the proof of Theorem 3.1, we denote by XL the quotient completion of
(^o(H), [•, •] J to a Hilbert space and by KL^£(%L) the Gram operator of
the inner product [°, •]* with respect to the positive inner product [°, °]i, that
is, [x, y\K = to*, V]L for all x,

Theorem 4010 Let K be a hermitian ^.-kernel which has Kolmogorov
decomposition. The following assertions are equivalent:

(i) The ^.-kernel K has wnique Kolmogorov decomposition, modulo unitary
equivalence.

(ii) For any positive semidefinite ^.-kernel L such that — L <K <L there
exists £>0 such that either (0, e) ^-p(KL] or ( — £, 0)

Proof, (i) =^ (ii) . Assume that there exists a positive semidefinite
H-kernel L such that —L<K<L and for any £>0 we have (0, e) D o(KL] =£ 0
and ( — 8 , 0) n (7 to) =£ 0. From Theorem 2.8 it follows that there exists two
Krem spaces (X, II} and (X, 0) induced by the same selfadjoint operator KL,
which are not unitarily equivalent. It is easy to see that the operator W-9l(lT)— *
91(0) is correctly defined by

Then the operator W is isometric, densely defined, with dense range, and it
is unbounded since the two induced Krem spaces are not unitarily equivalent.
As a consequence, W is closable and its closure, denoted also by W, shares the
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same properties.
Let (ViX) be the Kolmogorov decomposition of K defined as in the proof of

Theorem 3,1, (1)'=^ (3). We now define a new Kolmogorov decomposition
(U\$) and we will prove that it is not unitarily equivalent with (V'*$) . More
precisely, let [/,- = ¥Vt for all i e /. Since 91 (Vf) £®(F) and W is closed it
follows, via the closed graph principle, that Ut^£($Ci, X) for all i^/.

Let i, j ^/ be arbitrary and fix vectors x^fflt and y^Xj. Then

[Ujy, Utx] = [WVjy, ¥Vtx] = [Vjy, Vtx] = [K (i, j ) y , *] ,

and hence U*tUj=K(ij). Also,

V UjXt = V WVjXj= ¥( V VjXj) = X.
i^/ ;e/ ;e/

Thus, ({[/,-} »e/ #) is a Kolmogorov decomposition of the H-kernel K. On the
other hand, since the operator W is unbounded it follows that the two
Kolmogorov decompositions ({Fj te/J X) and ({f /J ie / i #) are not unitarily
equivalent.

(ii) => (i). Let ({V^ef, X) and ({f/J.e/;*) be two Kolmogorov
decompositions of K. Let / and Jt be fundamental symmetries on X and,
respectively, fflt, i^/- We consider the positive definite H-kernel Lv defined by

and as in the proof of Theorem 3»1 it follows that —LV<K<LV. We define a
linear operator UF: ^0(If)^X by

nv(ti) = EVtht,h=(ht)t*fe3FQ(H). (4.1)
ie/

Taking into account of the axiom (c) in the definition of a Kolmogorov
decomposition we obtain

Ulv (ti) , nvk]K= [h, k] x, h,k^&Q (H) , (4.2)

that is, the operator Uv is isometric: C^o(H), [-, •]*)->(#, [•, 8]^).
In addition, we claim that IIV is also isometric when considered as a linear

operator (3F0 (H) , [°, -]LK)-> (^f, <-, • > / ) . To see this, let h= (^,-).e/ be
arbitrary in ^0 (H) . Then

||Z^/ii=<2F,-/i, EVjhj)j= Z (VTVihi9hj)j= 2 \JjVfVihi, h^ = \hHv.
ie/ te/ tej? Me/ t,;e/

This proves the claim.
Similarly, considering the positive semidefinite H-kernel Lv defined by

we have —Lu<K<L\j and defining the linear operator IIu'-^o (H) —*3C by
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H)f (4.3)

obtain

[Huh, nuk]K= [h, k]x, h, fee^0(H), (4.4)

that is, the operator IIu is isometric: (^o (H) , [°, • ] K) ~* (# , [', ']#) and IIu is
also isometric when considered as a linear operator
(^o(H), [-, -;k)-»(#, (-. • > / ) .

We now let L = Lv + Lu and clearly we have —L<K<L. Since Lt/<L it
follows that #£ is contractively embedded into XLV and hence Ily induces a
bounded operator Ilv'-Xr^^- From (4.2) it follows

n?jnv=KL. (4.5)
By assumption, there exists £>0 such that either ( — e, 0) ^-p(Ki) or
(0, e) dp(Ki) and hence from (4.5), Lemma 2.3 in [8], and taking into account
that by the minimality axiom (b) of the Kolmogorov decomposition the operator
IIv has dense range, it follows that there exists a uniquely determined bounded
unitary operator 0v- $(K~~*X such that

@vh = IIvh, h^%L, (4.6)

where MK is the Kreln space induced by the operator ML.
Similarly, performing the same operations with respect to the Kolmogorov

decomposition (U\ X) we get a uniquely determined bounded unitary operator
such that

(4.7)

We define the bounded unitary operator 0- $—*$! by

Taking into account of (4 . 6) and (4.7), the definition of the operator IJV as in
(4.1), and the definition of IIu as in (4.3), it follows that

This readily implies that for all i ^ / we have 0V t = U, and hence the two
Kolmogorov decompositions ({Ff-}te/; X) and ({[/Jte/; X} are unitarily
equivalent. I

As a consequence of Theorem 4.1 we can obtain a counter-part of a result
on nonuniqueness of hermitian kernels of L. Schwartz, cf. Proposition 41 in [30]
(the transcription will be clear after Theorem 5.1). Let K and H be two
positive semidefinite H~kernels. Then we consider the Hilbert spaces XK and
XH, obtained by quotient completion of C^"0(H), [e, •]#) and, respectively, of
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(S^o (H), [-, -]#) . If H> K then XH is contractively embedded into XK.
Following [30], we say that the kernel H is K-compact if the embedding ## c—»
$CK is a compact operator.

Corollary 4»20 Let H+, H- e $i+ (H) be two disjoint kernels, both of them of
infinite rank. If there exists a kernel K €E $+ (H) such that H+ and H- are
K-compact, then the Kolmogorov decompositions of the kernel H+ —H- are not unique,
modulo unitary equivalence.

Proof. Let H = H+~H-. Clearly ~K<H<K. Let A±^£(%K) denote the
Gram operator of the kernel H±. Since H+ and H. are disjoint it follows that A =
A + —A- is the Gram operator of H. Since H± are of infinite rank and Jf-compact
it follows that A± are compact operators of infinite rank in £ (#*) and hence
the spectra a (A±) are accumulating to 0. Then the spectrum a (A) is
accumulating to 0 from both sides. This clearly contradicts the condition (ii) in
Theorem 4.1 and hence the Kolmogorov decompositions of the kernel H+ — H-
are not unique, modulo unitary equivalence. Q

We end this section with another criterion of uniqueness of Kolmogorov
decompositions of a hermitian kernel.

L3» Let K be a hermitian ^.-kernel such that it has a
Kolmogorov decomposition ({Vjie/i X) with the property that there exists a
fundamental decomposition ${ = ${+ [+] $C~ such that either $(+ or $C~ is contained
in the linear manifold generated by ViXt, i ^ /. Then K has unique Kolmogorov
decomposition, modulo unitary equivalence.

Proof. Let ({f/Jte/- $£} be another Kolmogorov decomposition of K. We
define a linear operator 0 by

The operator 0 is densely defined, with dense range and isometric (in
particular, from here follows also that it is correctly defined). Assuming that
there exists a fundamental decomposition X = X+[-\-~\tf~ such that either $+ or
X~ is contained in the linear manifold generated by Vt#£t i^/, from Lemma 2.3
in [8] it follows that 0 extends uniquely to a unitary operator 0^£ (X, X)
such that 0Vi = Ut for alH^/. g

§50 Kreln Spaces with Reproducing Kernel

As in the previous sections let H= {#£t}tej be a family of Kreln spaces and
denote by 2F (H) the class of functions / defined on / and such that / (i) £=• $?t

for all i ^/. Given K^ ®h (H), a Krein space with reproducing kernel K is, by
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definition, a Krem space (f%, [°, °]%) subject to the following conditions-
(1)
(2) 9l=

(3) [f(;), h]x = \ f , K ( \ j ) h ] % , for all/e#, ;e/, and

The next theorem can be obtained from Theorem 3.1 and the
characterization of kernels admitting reproducing Krem space representation.
We first need a direct connection between Kolmogorov decompositions and
reproducing kernel Krem space representation.

Theorem 50L Let K^$h (H) . Then K admits a Kolmogorov decomposition if
and only if there exists a Krein space with reproducing kernel K.

Proof. Let (Vitf) be a Kolmogorov decomposition of the H-kernel K and
define

,|/e#}. (5.1)

Let/, g^% be such that V*,f=V*,g for all i^/. Then,

Of/, h,]g = \V*lg, fc,]jr.. »e/. fc.etf,,

or, equivalently,

\f-g, V,h,]=Q, te/, fc.eaf,.

Taking into account of the minimality axiom of the Kolomogorov decomposition,
from here we get/=#. This shows that the linear mapping

(5.2)

is bijective. We define the inner product [B, 8]$ by

(5.3)

Then endow 3Z with the strong topology transported by the identification as in
(5.2), and hence 0%, [°, •]#) becomes a Krem space unitarily equivalent with
(X, [-, •]*).

By axiom (c) of a Kolomogorov decomposition it follows that

K(-,j)h=(VtVih)&,jefth€=Xjm (5.4)

This shows that for all / e / and all h^Xj the functions # ( - , / ) fee & Then,
using the axiom (b) of a Kolmogorov decomposition (i.e. the minimality axiom)
and the definition of 91 as in (5.1) we have

,= V (Vf7,#,),6/=flf
je^

and hence the minimality axiom in the definition of a reproducing Krem space is
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satisfied.

be arbitrary, and hence there exists g^X such that/= (V*g)iej.
Taking into account of (5.4), for all i^/ and h^$Ct we have

\ f ( i ) , h ] x = [Vig, h]x = [g,

,t K(-, i)h]*= \f,

and hence the axiom (c) in the definition of a reproducing kernel Krein space is
also satisfied. Thus, (91, [°, •]«) is a Krem space with reproducing kernel K.

Let (91, [° , °]sz) be a Krein space with reproducing kernel K. Denote (X,
[°, •]*) = (91, [-, •]») and for arbitrary ;^/ let

Vj=K(-,j)'.Xr^X=9l. (5.5)

By axiom (c) of a reproducing kernel Krem space we have

This implies that V* exists as an everywhere defined operator and coincides
with the linear operator

Therefore V, is a closed operator and since it is defined on the whole Krem
space X,, the closed graph principle implies that Vt^3?(Xt, X) .

Note that with the definition of the operators V, as in (5.5) and applying
the axiom (c) of the reproducing kernel Krem space to the function f=K(9,j) hj
for arbitrary i,j^/, hj^ffli, and hj^Xj we have

[V*tVjhit ht]xt= [Vjhj, Vthl}^= [ K ( - , j ) h J t K(-, i)ht]

and hence V#
tVj = K(i, j) . Thus (V',X) is a Kolmogorov decomposition of the

H-kernel K. i

It is interesting that for the analytic kernels as in 3.13 there always exist
reproducing kernel Krem spaces, cf. D. Alpay [1] . Theorem 5 . 1 shows that this
result is actually equivalent to the realization results of A. Dijksma, H. Langer,
and H. de Snoo in [11].

Inspecting the proof of Theorem 5 . 1 it follows that

Corollary 5.2. Given a hermitian H-kernel K, the mapping

(KX)»9t(KX) = {(V*if)t*,\feX}, (5.6)

such that the inner product [° , °]$(F.#) on 91 (V\ X) is defined as in (5.3), maps
the class of all Kolmogorov decompositions of K onto the class of all Krein spaces
with reproducing ^-kernel K.
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Corollary 503« In the correspondence (5.6) associated to a given hermitian
^-kernel K, two Kolmogorov decompositions (V\ $() and ([/", X) of K are unitarily
equivalent if and only if $l(V\ #) coincides with 31 (U \X) as Krein spaces, that is,

) and [°,

Proof. Let 0<^£ (X, X) be a unitary operator such that 0Ui=Vi for all
. Then

Moreover, for all/, g^$t, taking into account of (5.3) we have

Conversely, let (U\ X) and (V\ X) be two Kolmogorov decompositions of
the H-kernel K such that 91 (U\ X} = 9t (V\ X) as Krein spaces. Taking into
account that the linear mapping (5.2) is bijective, it follows that for all h^ffl
there exists a unique /e^f such that

Thus, we can define a linear and bijective mapping 0'- $C-^$( by

X^h^0h=f^X, (f/ffc),e/=(Vf/W (5.7)

Using the fact that [° , •]« WMI — [', °~\9i (v-x) we readily verify that 0 is

isometric. Since 0 is bijective this means that 0# = 0~l, in particular 0 is
closed. An application of the closed graph principle now shows that 0^$£
(ffl, X) and hence CP is unitary. The way 0 was defined in (5.7) implies that
Vt = 0Ut for all i^/ and hence the two Kolmogorov decompositions (V\ X) and
(U\ X) are unitarily equivalent. I

As a consequence of Corollary 5.3 and of Theorem 4.1 of characterization
of the uniqueness of Kolmogorov decompositions, modulo unitary equivalence,
we can formulate a characterization of uniqueness of those H-kernel K
admitting unique Krein space with reproducing kernel K.

Corollary 5.4e Let K be a hermitian H-kernel admitting Kolmogorov
decompositions, or, equivalently , admitting Krein spaces with reproducing kernel K.
Then there exists a unique Krein space with reproducing kernel K if and only if K
has unique Kolmogorov decomposition, modulo unitary equivalence, and hence, if and
only if the condition (ii) in Theorem 4.1 holds.
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§60 Toeplitz Hermltiae Kernels

Let X be a Krem space and denote by ® ( X ) the set of all functions K-
Z—*£(X}. This is consistent with the notation in the previous section if we
consider the family H={jO»ez where the Krem spaces Xn are copies of the
Krem space X. An X-kernel H^R(X) is called a Toeplitz ^-kernel if there
exists an operator valued mapping T'- Z—*$ (X) such that H(i,j) =T(i—j), for
all i,j^Z. We consider the set %($€} of all Toeplitz ^-kernels. In the following
we will be interested mostly in the subclass of Toeplitz hermitian ^-kernels
X* (X) and the subclass of Toeplitz positive semidefinite ̂ -kernels X+ (X) . Let
us note that £'* (X) is closed under addition, subtraction and (left and right)
multiplication with bounded operators on X. Also, X+ (X) is a strict cone of

We consider the complex vector space 5^o (X) of all functions h- Z—*$C with
finite support and for an arbitrary hermitian kernel H^^h (X) we associate the
inner product space C^o(^),[°, °]#) as in (3,2). On the vector space 3Fo(X)
we consider two operators, the forward shift S+ defined by (S+h) (n) =h(n — l),
for all h^^o (X) and n ^ Z, and the backward shift S- defined by (S-/i) (n) =
h(n + l), for all h^^Q(X) and a

Lemma 6010 Let H^^h (X) . Then H is a Toeplitz kernel if and only if

[S+h, g\H= [h, S-g]H, h,

Proof. We first notice that an ^-kernel H is Toeplitz if and only if jf/(n+l, k)
=H(n,k-i) for alln, k^Z.

Let h, g e ^0 (X) be fixed. Then, by the definition of the forward shift
S+ we have

£ [H(n,k)(S+h)(n),g(k)]=
nJfeeZ n,k^Z

and similarly, by the definition of the backwardshift S- we have

It remains to take into account that the representation of hermitian kernels as
inner products on «^0 (X) is faithful. 1

Remark 6,2. If H is a hermitian Toeplitz J^-kernel then both 5+ and S1-
are isometric with respect to the inner product [°, •]#, that is, for all h, g^^o

(X} we have [S+h, S+g]H
= [h, g]n and [S-h, S-g]H

= [h, g]n- The converse is
also true, if either 5+ or S_ is isometric with respect to the hermitian ^-kernel
H then H is Toeplitz. The proof is similar with that of Lemma 6.1. I
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Let H be a Toeplitz hermitian 3^-kernel. A Naimark dilation of H is, by
definition, a triple ([/, Q; $0 subject to the following conditions-

(a) % is a Krein space, U^S(X) is a unitary operator, and
(b) X= V [

neZ

(c) H(i,j)=

Remark 6.3. If the Toeplitz hermitian ^-kernel H has a Naimark dilation
([/, Q; X) then the equivalent assertions in Theorem 3.1 also hold. Indeed,
letting V(n) = UnQ^£(X, X] it is readily verified that the pair (V\ X] is a
Kolmogorov decomposition of H. Q

6 . 4. Let H be a Toeplitz hermitian ^f-kernel and assume that H (0, 0)
= /, the identity operator on X. Then each Naimark dilation ([/, Q; #) of H can
be viewed as a pair ([/; #) subject to the following conditions-

la) ' X is Krein space extension of 3C and U ^ £ (#) is a unitary
operator.

(b) ' %=VUnX.

(c) H(i, ;)
Indeed, if ([/, Q; ^f) is a Naimark dilation of X then Q*Q=H(Q, 0) =/ and

hence Q is a bounded isometric operator from X into #. Identifying X with Q^f,
the operator Q becomes the embedding X ^—*$C and hence X is a Krein space
extension of $?. The axioms (a)' and (b)' are transcriptions of the
corresponding axioms of the Naimark dilation. The converse implication is
clear. B

6o5* Let X be a Krein space and T^S(X). Then the operator
T has a minimal unitary dilation (U\ X] (see [9]), that is, the following hold:

(a) X is Krein space extension of X and U^£(X] is unitary;
03) V UniM=^\

n(=Z

(7) P*U*\X = T«, for al ln>0.
Consider now the Toeplitz hermitian ^-kernel H defined by

t=yf (6.1)

Then ([/; ̂ f) is a Naimark dilation of / / (cf. Remark 6.4). 1

We are now interested in describing the Toeplitz hermitian J
which admit Naimark dilations. First we need to introduce some other classes of
positive semidefinite ^f-kernels.

A positive semidefinite ^-kernel L ^ ®+ ($£) is called of forward shift
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bounded type if the forward shift S+ is bounded with respect to the seminorm

?Q(X)^h*-*[h, h]Y2, that is,

[S+h, S+h]L<C[h, h]L, hepQ(X),

for some constant C>0. We denote by R+(X) the class of all kernels L^R+(X)
of forward shift bounded type.

Similarly, a positive semidefinite $?-kernel L^ft+(X) is called of backward
shift bounded type if the backward shift S- is bounded with respect to the

seminorm 2F<>(X) B/i»-»[}i, h]l/2 and denote by &±(X) the corresponding class.

Also, let 9$ (X) = 8+ (X) n tl (X) be the class of (positive semidefinite)
$?-kernels of shift bounded type.

By Remark 6.2 it follows that X+ (X) C Rj (X) , hence the latter is a
sufficiently rich class. The fact that these two classes do not coincide is proved
by the following example.

.6. Let X and X be Hilbert spaces. Let Q'-^^X be a bounded
operator and let T' ^— » X be a bounded invertible operator. Consider the

^-kernel L defined by L(i, /) = Q*T*'T'Qf iJ^Z. Clearly Left+OK?). We prove

Indeed, fix/e^0(^f) and denoting x = ZTMQ/(n) tE% notice that [/,/]i =

IU ||2. Then

[S+f, S+f]L=((T*T)x, x) <||T||2|k||2 = |lT||2[f,/]L,

and hence the forward shift is bounded with respect to the seminorm associated
to L. Also

[S-f. S.f\L=

and hence the backward shift is bounded, too. 1

Lemma 6070 Let L^-®* (X) . The following assertions are equivalent'-

(a) LeftJ(#).
(b) There exists C> 0 such that ^ [/, /] L < [S+f, S+f] i < C |/, /] L, /e ^0 (X) .

(c) There exists C> 0 such that £ [/, /] L < [S-f, S-f] L^C\f,f]L,f^&o

Proof. These equivalences follow from the observation that S+S1- = S-S+ =

the identity operator on ̂ o (X} . I

We are now in a position to characterize those Toeplitz hermitian
which admit Naimark dilations.

Theorem 6.8. Let H^%h (X) . The following assertions are equivalent'-

(1) There exists Let? (X) such that -L<H<L.
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(2) H has a Naimark dilation {[/, Q; $f}.

Proof. (1) => (2) . As in the proof of the similar implication in Theorem
301 we consider the Hilbert space $(L and let A ^ £ ($(L) be the selfadjoint
contraction associated to the inner product [e, °]// as in (3.8). Since the shift
operators S+ and S- are bounded in the seminorm associated to L it follows that
they induce bounded operators, also denoted by S±, on $(L. Taking into account

of Lemma 6.1 it follows that AS+ — S+A. We now use Lemma 2.2 and get that
S+ induces an operator [7^J?C$f#). Using Remark 6.2 it follows that U is
isometric and since 5+ is surjective on 2F0(#£) it follows that U has dense range,
hence U is unitary on the Krein space $f#. Note that S_ induces the operator

U* = U-1onXH.
Let us define the bounded operator Q: ̂ -^^H by Qh=h+NH, h ^ f f l . We

now prove that ([/, Q". ##) is a Naimark dilation of H.
Indeed, the axiom (a) of the Naimark dilation holds and the minimality

axiom (b) can be verified similarly as in the proof of Theorem 3.1. As for the
axiom (c) , we identify any vector h with the function h^^o($C) defined by

, vh(n)=
O,

Then, for arbitray i, j^Z we have

Q'W-'Qh, g]*= [iTQh, UJQg]H=
= [Sl

+h,SJ
+g]H=

and hence the axiom (c) is also verified.

(2) => (1). We let L (i, ;) =JQ*U*3U1Q for all i, j^Z. As in the proof of
Theorem 3.1 we verify that L ^ $ + ( f f l } and — L</f<L. From Example 6.6 we
obtain that the $?-kernel L is of shift bounded type. 1

Remark 6.9. If the hermitian Toeplitz kernel H can be written as a

difference H = Hi~H2 where Hi, H2^®o (X) then letting L=Hi + H2 we have

L^^(X) and ~L<H<L, and hence H has Naimark dilation. Apparently the
converse might be also true, but we do not have a proof. I

In the more general case of a hermitian Toeplitz kernel on a group G, a
different characterization of the existence of a Naimark dilation was recently
obtained by F. Pelaez [27] , see also M. Cotlar and C. Sadosky [7] .

Theorem 6.8 makes natural to ask whether, in order to have Naimark
dilations of a Toeplitz hermitian ^f-kernel H, we can choose a Toeplitz
^-kernel L such that ~L<H<L, and whether we can choose Toeplitz positive
semidefinite ^f-kernels H+ and H- such that H = H+—H-. The next result and
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example show that, in general, we cannot.
An operator T *= X (X) is called fundamentally reducible if there exists a

fundamental decomposition X = X+ [+]#~ which reduces the operator T, that
is, both X+ and X~ are invariant under T.

Theorem 6.10,, Let H^%+ (X) . The following assertions are equivalent'-
(1) There exists L^Z+(X) such that ~L<H<L.
(2) H=Hi-H2, with #lf H2^Z+ (X) .
(2) ' H=H+ -H-, with H± e Z+ (X) and disjoint.
(3) H admits a Naimark dilation (U, Q'> X} such that U is fundamentally

reducible.
(3)' H admits a Naimark dilation, uniquely determined modulo unitary

equivalence, {[/, Ql ft} such that U is fundamentally reducible.

Proof. (1)=>(2)'. Let L^X + ( j f ) be such that ~L<H<L. By Theorem 3.1
we have

'2I \f. g] H\ < \f, /] !/2 [g, g] I
that is, considering the quotient completion Hilbert space XL of the inner
product space (^o(^), [°, °]i), the inner product [\ °]H extends uniquely to a
jointly continuous inner product on the whole XL- Therefore, there exists a
self adjoint operator A ^^ (XL) such that

Since L is Toeplitz, both S+ and S- are isometric in the positive semidefinite
inner product [°, °]z and hence they can be extended to unitary operators V

and W in X (XL) . By Lemma 6 . 1 it follows that W = V* = V~l. Using again
Lemma 6.1 applied to the kernel H we obtain VA—AV. Therefore, considering
the Jordan decomposition A=A + — A~, notice that, by the spectral properties of
this decomposition, both A+ and A- commute with V. Finally, we invoke the
construction of the hermitian ^-kernels H+ and H- as in the proof of Theorem
3.1 (l)=>(2) ' and note that fromA±V=VA± we obtain

[S+fc, g] H±=[h, S-g] H,, f.g^^o (X) .

Thus, again by Lemma 6.1, we have that H± are Toeplitz ^-kernels.
(2)'=»(2). Obvious.
(2) =>(!). Take L =Hi +H2 and note that L^Z+(X) and ~L<H<L.
(2) =^> (3) . Let H = H+ - H- with H± e X+ (^) . By applying the original

Naimark dilation theorem, we have two dilations (U±, Q±» X±) of the Toeplitz
positive semidefinite ^-kernels, where both X± are Hilbert spaces. Define X =

- and on the Hilbert space X consider the symmetry G,
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C=

This turns 3( into a Krein space such that G is a fundamental symmetry and 3t
= #+[+]#_ is the associated fundamental decomposition. With respect to this
fundamental decomposition we consider the operators U €= £ (X) and
Q

u. o
0 U-

(6.2)

We claim that (U, 0: #) is a Nalmark dilation of X.
Indeed, let / be a fundamental symmetry on X. Then, for arbitrary t, j €E Z

we have

Q*Ut-'Q=JQ*GU'-'Q=JQ$U'+>Q+-JQ$U'-'Q-=H+ (i, /) -H- (i. /) =ff (i, /) .

As for the minimality condition we have

V UnQ$£= V UZQ+XV V U?Q-X =

(3) =^ (2) . Since the unitary operator U is fundamentally reducible, it
follows that there exists a fundamental symmetry G on iSC which commutes with
U and let # = #+[+]#_ be the associated fundamental decomposition. Then U
has the diagonal matrix representation as in (6.2) and the operator Q splits as
in (6.2). We consider Hilbert spaces X±, unitary operators U± and operators
Q± and, for a fixed fundamental symmetry on X, define the kernels H± by

H ± ( i , j ) =JQ±Ul±JQ, i, j€=-Z. Since U± are unitary operators on Hilbert spaces it
follows that H±^X+ (X) and we obtain that H=H+~H-.

Finally, the equivalence of (3) and (3) ' can be obtained by noticing that
two Nalmark dilations {Ut, Qv Xt} , i = 1, 2, of H, both of them with
fundamentally reducible unitary operators Ut are unitarily equivalent. This
statement can be proved easily taking into account that, in this case, the
corresponding Nalmark dilations behave like the direct sum of two Nalmark
dilations on Hilbert space, for which the uniqueness hold. Q

We present now an example of a Toeplitz hermitian kernel which admits
Nalmark dilations but none of the assertions of Theorem 6 . 10 holds.

le 6.11. Let T^-£($C) be an operator such that for some,
equivalently, for all, unitary norm ||° || on X, sup||Tw ||= °°. We consider the

n^O

Toeplitz hermitian ^-kernel as in Example 6.5, in particular it has Nalmark
dilations and let (U\ X) (see Remark 6.4) be an arbitrary one. For any unitary
norm ||°|| on X we have
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sup|tr||^sup|PjrU"|*|| = sup|T"| = oo. (6.3)
n^Z n^Z n^Z

Since any unitary operator which is fundamentally reducible is similar with a
unitary operator in a Hilbert space, in particular it is uniformly bounded, from
(6.3) it follows that U is not fundamentally reducible. 0

We end this section with a result concerning the uniqueness of Naimark
dilations. Two Naimark dilations ([/, Q; X) and ([/, Q'; X') of the same
Toeplitz ^f-kernel H are called unitarily equivalent if there exists a unitary
operator @<E£(X, X') such that ®Q = Q' and ®U=U'@.

012o Let H^Zh (X) . The following assertions are equivalent'-
(1) The kernel H has unique Naimark dilations, modulo unitary equivalence.

(2) For all L^So"($f) such that ~L<H<L, considering the Gram operator

t there exists £>0 such that either (~e, 0) ^p(HL) or (0, e)

Proof. Indeed, (l)=>(2) follows from Theorem 4.1. To prove the converse
implication we follow the lines of the proof of the implication (ii) => (i) in
Theorem 4.1 and note that, considering two Naimark dilations ([/, Q> X} and
([/', Q'\ X'} of H, we associate to them two positive semidefinite J^-kernels Lu
and LV of bounded shift type and then L=Lu~^~Lu' is also of bounded shift
type. Q

Unlike the case of positive definite inner product space, for which a
canonical way of constructing Hilbert spaces exists, in the indefinite case it
might happen that no Krem space can be associated in a natural way, or, if it
can be, then it might happen that it is not unique, modulo unitary equivalence.
Based on the results obtained until now, in this section we propose an abstract
unifying framework for both these cases. Since most of the proofs can be easily
completed from what was proved until now, we will omit the details.

Let (SIT, [°, •]) be an indefinite inner product space. If 3T°= {*^9f| [x,y] =0,
y ^ X} denotes the isotropic part of 9f, then there is a naturally defined inner
product [•, °] onto the quotient space 9f/9f° which becomes nondegenerate.
Thus, without restricting the generality we always can assume that the inner
product space (9f, [-, °]) is nondegenerate.

Given a nondegenerate inner product space (9C, [°, • ] ) , a pair (X, II) is
called a Krein space induced by this inner product space, if (X, [°, 8]#) is a
Krem space and If- 3C~^X is an injective linear mapping with dense range, such
that [Ih, IIy]x= [x, y] for all x, y^ 9C. The existence of Krem spaces induced
by abstract inner product spaces is known to be related to the existence of
"Hilbert majorant topologies", cf. [3] and the bibliography cited there. The
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following theorem is simply an abstract transcription of Theorem 3.1.

Theorem 7.1. If (3C, [•, •]) denotes a nondegenerate inner product space,
then the following assertions are equivalent'-

(1) There exists a positive definite inner product (", B) on 3C such that
- (x, x) < [x, x] < (x, x) for all x<^3C.

(1)' There exists a positive definite inner product <•, •) on 9C such that for

all x,y^3Cit holds | [x, y] \ < (x, x) 1/2 <y, y) 1/2.
(2) There exist two nonnegative inner products (e, •) ± on 9C such that

(2)' There exist two nonnegative inner products (' , e) ± on X such that
[x, y] = (x, y) + — (x, y) _ for all x, y^9C, and, in addition, if (• , •) is a nonnegative
inner product on 9C such that (x, x) < (x, x) ± for all x ^ 3C, then (x, x) = 0 for all

(3) There exists a Krein space induced by (9C, [ B , • ] ) .

Two Krem spaces (#1, 77,) , i = 1, 2, induced by the same nondegenerate
inner product space (9f, [•, • ] ) , are unitarily equivalent if there exists a unitary
operator 0 e £ (#lf #2) such that <W7i = 772. The following theorem is an
abstract transcription of Theorem 4.1. For a positive definite inner product

< • , • > on SIT such that | [x, y] \ < (x, x) 1/2 (y, y) 1/2 for all x, y e 9f , we denote by X
the unique Hilbert space induced by (9C, (B, • ) ) . It follows from the Riesz
representation theorem that there is a uniquely determined operator A ^ £ (X) ,
A = A* such that [x, y] = (Ax, y) , x, y ^ 3C. We call A the Gram operator
associated to the positive definite inner product (\ 8) on 9C.

Theorem 7820 Let (9f, [°, e]) be a nondegenerate inner product space
admitting an induced Krein space. The following assertions are equivalent:

(1) The Krein space induced by (9C, [e , B]) is unique, modulo unitary
equivalence.

(2) For every positive definite inner product (', °) on 9C with the property that

| [x, y] | < (x, x)l/2 (y, y)1/2 for all x, y ^ 3C, and with Gram operator A, there exists
£>0 such that either (-£, 0) dp (A) or (0, e) Cp(A).
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