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Abstract

We shall give an elementary and rigorous proof of the Thomae formula for Zjv curves which

was discovered by Bershadsky and Radul [1, 2]. Instead of using the determinant of the Laplacian

we use the traditional variational method which goes back to Riemann, Thomae, Fuchs. In the proof

we made explicit the algebraic expression of the chiral Szego kernels and prove the vanishing of

zero values of derivatives of theta functions with Z# invariant 1/2N characteristics.

§0. Introduction

In [1, 2] Bershadsky and Radul discovered a generalization of Thomae

formula for ZN curve sN=f(z) = II E3 (z~^i) (Theorem 3 in Section 7 below).
The original Thomae formula is the case of hyperelliptic curves N=2 and takes
the form

where e is a non-singular even half period corresponding to the partition of the
branch points {1, —, 2m} = {ii < - <im} LJ {j\ < — <;w}, (Ai, Bj} a canonical

homology basis and A= (fAt2
J~1dz/s)i<ij<m-i. This formula expresses the zero

values of the Riemann theta functions with half characteristics as functions of
branch points. Thomae formula was used to give generators of the affine ring of
the moduli space of hyperelliptic curves with level two structure [12] in terms
of theta constants, to give a generalization of the A function of an elliptic curve
[12] (Umemura's appendix) . Beside those, F. Smirnov [14] derived a beautiful
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theta formula for the solution of the 5/2 Knizhnik-Zamolodchikov equation on
level zero using the Thomae formula. For the generalized Thomae formula of Z#
curves similar results are expected. As for the generalization of X function for
TIN curves there are several results [8, 4] based on a different approach. To
study the generalization of Smirnov's formula to the case of sh is a main
motivation for the present work. It will be studied in a forthcomming paper.

Let us comment on the proof of the generalized Thomae formula.
Bershadsky and Radul evaluated, in two ways, the determinant of the Laplacian
acting on some line bundle on a Zjy curve and compared them to obtain the
formula. However they used a path integral description of the correlation
function of conformal fields to identify it with the determinant of the Laplacian.
Hence their proof does not seem mathematically rigorous. It may be possible to
make their proof rigorous using the theory of determinants and Green functions
only, that is, without the path integral.

Instead of going in that manner, here we shall give a rigorous and
elementary proof of the formula. Our proof is based on the traditional
variational method which goes back to Riemann [13], Thomae [15, 16], L.
Fuchs [6, 7]. The role of determinants and path integral is then replaced by
Fay's formula [5] relating the Szego kernel and the canonical symmetric
differential. The strategy of the proof itself is similar to that of [ 1, 2].

The particularity of our proof is to compare the analytic and the algebraic
expressions not only in the final formula but also in each step of the proof. As a
corollary of those comparison the vanishing of the zero value of the first order
derivatives of theta functions with non-singular 1/2N characteristics obtaines.
This result is in turn used to prove the generalized Thomae formula. Hence our
proof clarifies some special aspects of theta functions behind the generalized
Thomae formula. We also reveal a property of the proportionality constants
appeared in the Thomae formula for ZN curves which was not treated in [1, 2].

Now the present paper is organized in the following manner. In Section 1
we gather necessary notation and formulas concerning Riemann surfaces and
theta functions following the Fay's book [5]. The ZN invariant I/2N periods are
studied in Section 2. The algebraic expression for the chiral Szego kernel is
given in Section 3. Section 4 is devoted to the explanation of the canonical
differential and Fay's formula relating it with the chiral Szego kernel. In Section
5 the algebraic expression of the canonical differential is studied. The variation
of the period matrix is studied in Section 6. In Section 7 the generalized Thomae
formula up to moduli independent constants is proved. The property of the
proportionality constants is studied in Section 8. In Section 9 the examples of
Thomae formula for small JV's are given.
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§1. Theta Function

In this paper we mainly follow the notations of the Fay's book [5] which
we summarize here. Let r be the g by g symmetric matrix whose real part is
negative definite. Any element e^Cg is uniquely expressed as

(1)

with 6, 5 ^ K9. Here the vectors €, d etc. are all row vectors. We call £, d the
characteristics of e. The theta function with characteristics is defined by

where

and e is determined by (1). We sometimes use 6 [e] (z) instead of 6
6

The transformation property is

d

€

o s

€
U),

for A, fc^Z9. We shall list some of the properties which easily follow from the
definitions:

(2) ,Gr)=exp(27rw<500
e+n | I c

~_d
€ (o) = *| " |(o),
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5+m(z) o ^
e+n

(z)

(0)

fo rm,
Let C be a compact Riemann surface of genus $. Let us fix a marking of C

[9] (§1). That means, we fix a canonical basis {Ai, Bj} of TTi (C), a base point

Po^C and a base point in the universal cover C which lies over P0. We assume
that the tails of At, Bj are joined to PO. Then we can canonically identify the
covering transformation group and the fundamental group it\ (C, PO) . We also

identify holomorphic 1-forms on C with holomorphic 1-forms on C invariant

under the action of 7Ti(C). Let us denote by TT : C — *C the projection and by
/(C) the Jacobian variety of C which is the set of linear equivalence classes of
degree 0 divisors on C. In the following sections we always assume one marking
of C.

Let ivj} be the basis of the normalized holomorphic 1-forms. The
normalization is

'A,

and set

I vk = 2nidjk,J A,

r
J#, ;A"

A flat line bundle on C is described by the character of the fundamental group
X'- TTi (C) —^ C*, where C* is the multiplicative group of non-zero complex
numbers. The two representations %i and %2 defines a holomorphically
equivalent line bundle if and only if there exists an holomorphic 1-form O) such
that

for any 7^7Ti(C). Let si and ® be positive divisors of the same degree, say d,

and set sA = Z?=i PI, % = Zf-i Ri. Let us fix points Pi, Rj in C so that they lie
over Pi, Rj. Let us set

/"$ d f*R,

I V*=Z I Vi,
J A j=lJp,

where the integration in the right hand side is taken in C. Then the flat line
bundle corresponding to the degree 0 divisor $—sd is described by
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X ( A < ) = 1 , x(B<)

Another choice of Pi, Rj gives an equivalent line bundle.
We say % is unitary if the image is contained in the unitary group [/(I).

The following proposition is well known and easily proved.

Proposition 1. For an isomorphism class of flat line bundles there exists a
unique unitary representation % which defines the line bundle belonging to that
class.

If we take d, €^W such that

((-*, r,,\-\8\I I Vl, "', I Vg) — 1 f
wrf Jd I [ 6 J

as a point on the Jacobian variety of C, then the corresponding unitary
representation % is given by

(3) x (Aj) = exp(-27rifly) f £(By) =exp(27riey).

The multiplicative meromorphic function described by % is, for example, given
by

e

where v is the vector of normalized holomorphic 1-forms, x^C, a^C9 and the

integration path is taken in C.
We denote by A the Riemann divisor for our choice of the canonical

homology basis which satisfies

Here Kc is the divisor class of the canonical bundle of C and = means the
linear equivalence. Let L0 be the degree Q—\ line bundle corresponding to A.
For a divisor a with degree 0 let us denote by 2!a the corresponding flat line
bundle and set La — ̂ a®L0. For a non-singular odd half period a let ha be the
section of La which satisfies

Then the prime form is defined by
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N _
'y)~ ha(x)ha(y)>

y-X=
»

where x, y ^ C and t; = (fi U) , -, vg (x) ) . Let TT,- be the projection from C X C to
the y-th component and 5: C X C~*/(C) the map U, 3;) i-^—*. Then £ (x, y) can

be considered as a section of the line bundle ft* LQI ®7t* LQI ®<5*@, where © is
the line bundle on /(C) defined by the theta divisor. Let us fix the trans-

formation property of the half differential on C under the action of iti (C) so
that the section of TT* L0 is invariant. This means, in particular, that E (x, y)
transforms under the action of A/, £,- in y as

E(x,y+Ai)=E(x,y), E(x,y+Bi) =exp~-

Here we denote the action of Ai, Bj in an additive manner. The prime form has

the nice expansion as follows. Let u be a local coordinate around P^C. Then
the expansion of E (x, y) in u(y) at u (x) takes the form

(4) E (x, y) </du (x) Jdu (x) =u (y) ~u (x)+0( (u (y) ~u (x) ) 3) .

Since the expansion is of local nature we sometimes use the way of saying that
, the local corrdinate u around P and the expansion in u(y) at u (x) etc.

§28 ZN Curve and -^ Period

Let us consider the plane algebraic curve sN=f(z) = flySi (z — fa). We

compactify it by adding N infinity point °°(1), -, °°(N} and denote the compact
Riemann surface by C. The genus g of C is g = 1/2 (N — 1) (Nm — 2) . The
TV-cyclic automorphism 0 of C is defined by 0 : (2, 5) ̂  (z, cos) , where co is the
N~th primitive root of unity. There are Nm branch points Qi, — , QNM whose
projection to z coordinate are ^i, — , X^m-

The basis of holomorphic 1 -forms on C is given by

Let us describe the divisors which we need and their relations. The
following lemma is easily proved.

Lemma 1. For any P^C the linear equivalence class P+ <j) (P) + - +
p
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We set

The following lemma is easily proved.

Lemma 20 The following relations hold.

+00™ for any i.
2. Kc= (L-l)A where L= (N-l}m~l.

3. ZfZQj=mD.

Following Bershadsky-Radul [2] we shall describe the important object of
our study, the Zjv invariant 1/JV or 1/2N periods. Let us consider an ordered
partition A — (Ao, — , AN-I) of {1, 2, • • • , Nm} such that the number \Aj \ of
elements of At is equal to m for any i. With each A we associate the divisor
class BA by

where for a subset 5 of {1, 2, • • • , Nm} we set

S=ZQy.
;es

For a given /I we denote by A(j) the ordered partition

A 0') = (Aj, Aj+i, -, 4-+Ar-i) ,

where we consider the index of Aj by modulo N. Then

Proposition 2. For any ordered partition A we have

1. NeA = QforN being even and 2NeA = QforN being odd .

2. 6yi=£yi(2)= "" =0AUV)«

30 -^=^-1 + 2^-2+ - + (JV-l)yli-D-A

This proposition is easily proved using Lemma 2. For A— (A0, ..., AN-I) we
set

A~= (Ao, ..., yl^-i) = Uo, AN-i, ..., yli) ,

and A = yl+. Let 0 (2) be the theta function associated with our choice of
canonical homology basis. Then

Proposition 3. The 1/2N period eA is non-singular, that means

This proposition was proved in [2]. One can find another proof in [8]
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which is similar to that of [12] in the hyperelliptic case.

§3o CMral

Definition 1. For e^C9 satisfying 6(e) ^0 the chiral Szego kernel R (x,
y\e) is defined by

We remark that R ( * , * \e) depends only on the image of e to the Jacobian
variety j(C) . Let 7T« be the projection to the i~th component of CXC. Then R (x,

y\e) can be considered as a meromorphic section of the line bundle T
and is holomorphic outside the diagonal set { U, x)\x^C}.

We shall give an algebraic expression for R (x, y\eA) . Let us set

(5) *

for l^£ and i^Z. Here (a) —a— [a] is the fractional part of a, [a] being the
Gauss symbol. For an ordered partition A= (A>, •• - , AN-I) we define the number
kj, i = l, ..., Nm by

(7) i^Aj if and only if ki=j.

For each. l^& we set

/, (*. A) = 11 (z U) - A«) ^JteW.
1 = 1

The following proposition was found in [2] .

Proposition 40 / / (# , yl) is a meromorphic section of L€A whose divisor is

(8) divfi=A1-j+2A2-J+ - +(#-1)4-!-,- !><*>,

Let us set

, A)f-i (yt-T7 - — T\ - / \AT ^(j;) — z(x)

Here the choice of the branch of // (x, A) should be specified as in (12) and
(13). Note that both F(x,y\A) and R(x,y\eA) can be considered as meromorphic
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sections of n* L&A ® n* L-gA. Then we have

Theorem 1. For an ordered partition A we have

R(^y\eA)=F(X,y\A}.

As a corollary of this theorem we have the vanishing of the theta
derivative constants.

Corollary 1= For any ordered partition A and any i we have

Note that whether the left hand side of (9) vanishes or not depends only on
the divisor class of eA by (2). Hence the statement has unambiguously a sense.
This curious result is a natural generalization of the hyperelliptic case where eA
is a non-singular even half period and the corollary is obvious. A theta function
0[eA\ (2) is even if and only if eA is an even half period. For JV>2 it is not even
in general.

Lemma 3. The following properties hold.

20 qi (i+N} =qi (i} for any i.

Proof. The properties 1 and 2 are obvious. Let us prove 3. Using 1 and 2
we have

N-l N-l N-l /jy — I

S qi (i) = 2 q-^- (i) = 2 (~^~T—1~
1=0 f=0 *=0 N ^V

D

Proof of Proposition 4. Let us consider // (x, A)z. It is considered as a
multi-valued 1-form on C. We show that it can considered as a (usual)

meromorphic section of L®2 — £2eA ® K-c- The meromorphy at points except the

branch points and °°a) is obvious. We can take t = (z — %i)1/N as a local
coordinate around Qi. Then

If we write / = - (N~ 1/2) +j (0 <j <N~ 1), we have

N

At °°(/c) we can take t = l/z as a local coordinate and we have
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by the property 3 of Lemma 3. Hence, for each p ^ C and a sufficiently small

neighborhood Up of p, ft defines a meromorphic function on Up with the divisor

(10)

Since the divisor (10) is linearly equivalent to 2(eA(i-j)~^~A) =2(^+4) by 2 of
Proposition 2, //(#, yi)2 can be considered as an element of

Note that

(11) fl°(c, L.Y- ZW,+ Z oo<«) )N x fc=i k=i ' '

is one dimensional. Hence// (x, A) can be considered as an element of (11).
Thus Proposition 4 is proved. D

Lemma 40 The following expression holds:

f-i (y, ̂ ) =1l (e (y) -^
«=i

Frc?o/. Recall that

A~= (At, -, yl^-i) ,

Then we have

Nm

/-, (y, /!-) = II (*(y) -^,)
f = l

Hence it is sufficient to prove

q-i(N~i] =—qi(i),

for any / and i. This can be easily checked. D

Lemma 5. F(x,y\A)is regular outside the diagonal set {x= y) .

Proof. A priori we know that F (x, y A) has poles at most at z (x) =z (y) .
Hence it is sufficient to prove that F(X, y\A) is regular at z(x) =z(y) and x=f=y.
If we write /=— (N~ l)/2+/ we have

qi (ki) —q_N=±(ki) =q_*L±(j + ki) —q_N^±(k^ =^jr mod. Z.
2 2 2 J V
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Therefore we can set

Let us choose the branch of// (x, A) , // (x, A~) such that the following equations
hold:

(12) /, (*, A) = (z (x) ~^) r"s W ' / - C * . A) ,

(is) /.,(*, A-) - (z(x) -^-^
Then we have

Now in the limit

*M — ̂ (y), s(x) — ^o>rs();),

with a) = exp27ti/N we have

F (*, j;|yl) ~^/-^I (y(r), >l)/-^i (y, /I') ̂ Zcu^ 0,
2

where 3;(y) = (z (y) , cors (y) ) . D

The following lemma is proved by a direct calculation.

Lemma 6. Let P G= C &g a non~ branch point. We can take z to be a local
coordinate around p. Then the expansion in z(y) at z (x) takes the form

F(x,y\A±)

_</dz(x) i/dg^Q_[1+J^^ _ q (ki,kj) _ i f \___i \\2j_ I
~ z(y}-z(x} [l+2Ni^1(z(x)-^(z(x)-2j)

(zW z(x)) + J'

t^/igrg ^ (i, y) = Z/e^ ^/ (i) q\ 0') •

The following lemma is a consequence of the expansion (4) of the prime
form E (x, y) .

Lemma 7. Under the same conditions of Lemma 6 we have

R(x,y\eA)
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where vt (x) means the coefficient of dz (x) in vt (x) .

Proof of Theorem 1. Let x be the unitary representation corresponding to
£eA. If we write

then x (At) and x (Bj) are given by (3) in section 1. The transformation
property of R (x, y\eA) is

for 71, r2^7Ti (C) . On the other hand if we pull F(X, y\A) back to CX C then

for some unitary representation %i and Xz- I*1 fact if x rounds a cycle of C
// (x, A) is multiplied by an appropriate 2N the root of unity. The same is true
for y.

Let us set

Then F (x, y \A) is the section of the trivial line bundle and obeys the tensor

product of unitary representations of Tt\ (C) X TTI (C) . Hence F (x, y \A) is
invariant under the action of it\ (C) X m (C) . This means that R (x, yle^) and F(X,
y\A) have the same transformation property. Therefore the function

can be considered as a section of the line bundle 7cfL£A ®7i*L-eA. By Lemma 6

and 7 we know that l ( x , y ) is holomorphic at least except US(Qj X {Qj. Since
/ (x, y) is meromorphic on C X C, / (x, y) has no singularity. By Proposition 3, BA
is non-singular which means

H°(C,Lj=Q.

Hence

#°(CXC, x?L.&ic}L-J =7ri*^°(C. Lj®x}H°(C, L_J =0.

U , ) = 0 . D

Proof of Corollary 1. This is a direct consequence of Theorem 1, Lemma 6
and 7. D



THOMAE FORMULA 999

Corollary 2. Under the same conditions and notations as in Lemma 6,
then we have

R(x,y\eA)R(x,y\-eA)

__ dz(x)dz(y)~

§4a Canonical Symmetric Differential

The canonical symmetric differential (i)(x, y) is defined by the following
properties.

1. a) (x, y} is a meromorphic section of K*Qc ® K*@c on CX C, where Tii is the
projection to the i~th component of CXC.

2e Q) (x, y) is holomorphic except the diagonal set (x — y} where it is has a
double pole. For p ^ C if we take a local coordinate u around p then the
expansion in u (x) at u (y) takes the form

& (x, y) = (7—7^ 7-TTT+regular) du (x) du (y).\(u(x)-u(y))2 7

30 The Ay period in x variable is zero for any;:

f cok,y)=0.
*J A]

40 a>(x,y) =a)(y, x).

The following proposition is well known.

Proposition 5» The canonical differential exists and is unique.

In fact there is an analytical description of O) (x, y) in terms of the theta
function (see for example[5] p26, Corollary 2.6):

t ^2 i n
. ... . _ . . . . ^°JL (y~x~/)v<U)Vj(y),i,>=l VZiUZj

for any non-singular point /e (@), where (0) = (^U) —0) . The uniqueness can

be easily proved using H° (C x C, Trf 0£ ® 3r2*fii) = nflf (C, fii) ® icflf (C, fii).
There is a remarkable identity due to Fay [5] (Corollary 2.12) connecting

the chiral Szego kernel and the canonical symmetric differential. The formula is

(14) R(X,y\e)R(X,y\-e)=a>(X,y)+± ^W^ (0)v,(x)v,(y),
i,j=l VZiUZj

for any e^C9 such that 0(e) =£0.
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For a non-branch point P^C we can take z as a local coordinate around P.
Let us define

r* ( \ i- f / \ dz(x)dz(y) 1Gz(z) = h m \ a ) ( x , y ) — V TTTT .
L i ( ^ i u i — ^ f v i i Jy—*x \ \A \jy / /& \A / /

It is known [5, 10] that 6GZ is the projective connection which satisfies

for another local coordinate t around P, where izj} is the Schwarzian
differential defined by

By Corollary 2 and (14) we have

Proposition 6.

, x _ i

As a corollary of this expression we have

Corollary 30 Let t= (z — /!/) 1/JV &g f/ig local coordinate around the branch

point QJ. Then the coefficient of tN~2dt in the Laurent expansion of Gz (z) in t is

q(kM 1 f V/^"2 }d2 log g[gj /ny taf} (n yr
-> _3 (\T__O\I 2^ 2-i I I ^T"̂ : \\JJVr (Ui)Vs

^. X, Xy (TV 2j! r fS= la=o\ « / 9*r9*s

f ra} (Qi) is the coefficient of ta dt in the expansion of vr (x) in t.

§5o Another Description of Canonical Differential

Let P/(n (z, w) be a polynomial satisfying the conditions

L PP (z,w) = ZjSo Pfl (w) (z -w) j with

; Nm f(*n\
Pl8W=fM, Pii'W-^S^f.

IV f-=1 X^ Aj

2.
The following lemma can be easily proved.

Lemma 8. The polynomial P/a) (z, w) saisfying the above conditions 1,2
exists for l = l, —, N~l.
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We set

e ( o > / \_ dz(x)dz(y)

f , = 1 ... Ar_1
' ' '

^V /=o

The condition 1,2 implies that f (/) (#, 3;) is regular on C X C at least except (z (x)

Proposition 7. 1. £ (#, y) is holomorphic outside the diagonal set {x =

y}.
2o For a non-branch point P^C, we take z as a local coordinate around P. Then

the expansion in z(x) at z(y) is

t( \ — dz(x)dz(y) , ^ ( ( (^ ( \\Q\
? U. y) -~r~r\ - f\\^+0 ( (* w ~~z w ) ) •( z ( x ) — z ( y ) ) z

Proof. For y ^ C let yr) = U (y) ,a)rs (y) ) . Suppose that y is not a branch

point. Then we can take z as a local coordinate around y(r\ By calculation we

have the expansion of £ ( / ) (#, jy) in z (x) at ^(r) as

(15)

By definition $U, jy) is regular at least except z(x) — z ( y ) . In order to prove the
property 1 of the proposition it is sufficient to prove that £(#, y} has no

singularity at x=y(r) for l<r<N—l. Note that ify = Qt for some i, then z ( x ) =
z(y) is equivalent to x= y — Qi. Hence by the expansion (15), l ; ( x , y ) is regular

at x=y(r\ The property 2 is also obvious from (15) above. D

Corollary 4. a) (x, y)—% (x, y) is holomorphic on C X C.

Proof. By Proposition 7, <o(x, y) ~ ^(x, y) is regular at least except

US(Qf, Qi). Hence <t)(x,y) —%(x,y) is regular everywhere on CXC, since a)(x,
y) ~%(x,y) is meromorphic on CXC. D

By this corollary there exists a set of polynomials P(kl) (z, w) such that
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V2- 2, /

where by changing the definition of P/(/) (z, w) the k — I term can be excluded.
The condition for the right hand side to be regular at z (x) — °° and z (y) — °° is

deg*Pi/} (2, w) <km-2, deg^Pf (z, 10) < (AT-/)™ -2.

Hence we can write

km-2
P(

k»(z,w) = H P%(w)(t-wV,
j=0

for some polynomials Pk] (w) . Now by the condition that the A period of CD (x, y)
is zero we have

Proposition 80 The relation

"ft PI2 U-) = -/ U/) J- log det A
1=1 vAt

holds, where A is the gXg period matrix of non-normalized form:

Proof. Let us take t— ( z ~ X i ) l / N as a local coordinate around Q*. Then we
have

dz(y) N_ i_

dz(y) N_

Therefore if we set

then the condition that the coefficients of dt, tdt, • • • , tN~2dt in the expansion of
fA, CD (x, y) vanish is equivalent to

(16) / " < y ( l ) G c ) = 0
J A,

Noting that

lm-2

;=0
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d dz _ I dz

we see that (16) is equivalent to

N-l km-2 r (9 3 V//»
_j_ V V P(/)-(/} ) I ' = Q

k=l,k=tl ;=0 ' * A> Sk

We consider (17) as a linear equation for the g variables (P(£r(Xi)}. Solving

(17) in Pi*2 by the Cramer's formula and summing up in / we have the statement
of the proposition. D

The idea of deriving equations of the form (17) is due to
Bershadsky-Radul [1]. By calculations we have

Corollary 5. The coefficient of i^~2dt in the expansion of Gz(z) in t= (z~~

Nm 1 g

— f i N 2 ].— ].~N~aY: lo§ det A,

where

* 6N

§6. Variational Formula of Period Matrix

Let us consider the equation

Nm

which is a one parameter deformation of the curve C by a small parameter t. We
denote the corresponding compact Riemann surface by Ct. Let 7f be the
projection 7f : C —^ P1 which maps (z,s) to z. We can take a canonical
dissection {At (t), Bj (t)} of Ct such that T i ( A l ( t } } , n(Bj (t)} do not depend on t
for \t\ being sufficiently small. The integration of a holomorphic 1-form on Ct

along At (t), BJ (t) can be considered as the integration of a multi-valued
holomorphic 1-form on P1—{/Ji, ••• , /Urm} along 7r (A, - (0 ) , n ( B j ( t ) } . Hence we
can think of the integration cycles Ai (t), Bj (t) as if they are independent of t,
Therefore we simply write At, Bj instead of At (t), Bj (t) in the calculations in
this section. Let {v}(x, t)} be the basis of normalized holomorphic 1-forms on Ct
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with respect to {Ai(f)JBj(t}}. We denote by r(t) = (Tkr(t)} the period matrix

Tkr(t) = f Vr(x,t).
J Bk

We set

We also use our previous notation Vj(x) —Vj(x, 0), r^— r^(0), s—so, w^—w($.
Our aim in this section is to prove

Theorem 2.

^k(rrt =df w

We define the connection matrix a and c by

(18) VJ (*) = Stf/tarf to , to?' to = 2cte^y to .

Let P^C and w be a local coordinate around P. Let o> (P; n) be the abelian
differential of the second kind satisfying the following conditions.

1. a) (P; n) is holomorphic except the point P^C where it has a pole of order
n>2. At P we have the expansion of the form

~^rdu (1+0 (un} ) .
un

20 a) (P; n) has zero Aj periods for any /:

f a)(P;n)=Q.
J A,

The differential a) (P; n) depends on the choice of the local coordinate u. In

our case P=Qi we always take u= (z—Xi)l/N as a local coordinate around Q,-. In
this sense co (P; n) is uniquely determined. It is known that the following
relation holds

(19)

where v)n~2) (P) is the coefficient of un~2du in the expansion of f ;- U) in u.

Lemma 9. // we expand vj (*, 0 as

(20) Vj (x, ̂ ) = v/ W +vyi W f + '",
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then we have

Proof. We have the expansion

(21) wft « =w(^ «
JVU — Ai)S

and the relation

(22) u#}to=i: f 4? - v / u . o .
;=1 ̂  A,

Substituting the expansions (20) and (21) into the equation (22) and
comparing the coefficient of t we have

(23) ,r w =7^7- L, w f /^.
U — /f«)s ;=1 J^ U~"^<)5

Then 17^ (x) has the following properties:

1. /A* ̂ a) W =0 for any k=l, -, ^.

2. Taking w = U — /!,-) 1/jv as a local coordinate around Q* we have the
expansion

Hence we have

(24)

Since

f*/ >if

and CT is the inverse matrix of c, we have the desired result from (23) and (24).
D

Now comparing the coefficient of uN~l~adu of the both hand sides of the
first equation of (18) we have

am-l {'(I \a/N

Z - •}£-!— / V*i7 . (N-l-a)

e=l°
i(aB)Xi ~N(N-l-a)\Vi
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for l<a<N— 1 and thus

vn GO = ~jf £ ^•i.g)!^-1-g) (0,)<»(Q<;a

Integrating both hand sides of this equation along the cycle Bk and using the
relation (19) we obtain

W = - 2 ) . 22 f~2) *rz-fl) (QMB> (0.)•L) \ a=0 \ (X '

§7o Thontae Formula

Now let us prove the generalized Thomae formula.

Theorem 3e For an ordered partition A= (A0, -, AY-I) we have

6[eA] (0)2N=CA(detA)N E (*-tj)
Kj

where ki —j for i ̂  Ajt

and qi (i), £ are given by (6), (5) in section 3. The complex number CA does not

depend on At 's. They satisfy C2/ = C2"' for any A, A'.

Since the family (Cj is locally topologically trivial, we can take a canonical
dissection {At (0 JBj (t)} of Ct such that At (t) , Bj (t) are continuous in t. We
assume that At (t) , Bj (t) does not go through any branch point Qi (t) . We can

also define the base points Po (0 of Ct and ZQ (t) of Ct lying over P0 (t) so that
they vary continuously in t. We identify Q,- (t) with the corresponding point in

the fundamental domain on Ct which contains the base point ZQ (t) . Let kp° (t) be
the vector in Cd whose /-th component is defined by

^ fe 0 .

It is known (see [5] (p8) for example) that

A- (g-l)Po(t) =**(*)

in /(C) . Let us define BA (t) as an element of C° by

M «(x. o+ -+OV-D 2
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Then CA (t) is continuous in t. Note that the linear isomorphism G7 — M2fif sending
e to its characteristics with respect r(t) is analytic in t. Therefore if we write

/ *" W = > . . .
then € (t) and 5 (t) are continuous in t. Since € (t) and 5 (t) are in l/2NZg, they
are constant in t. Therefore we simply write €,d instead of € (t) , 5 (t) . We denote
by Ot\e\ (z) the theta function associated with the canonical basis (Ai(i) J3j(t)}
of Ct. We set 0[e] (z) =d0[e] (z) . Then the function 6t[eA (t)] (0) depends on t
only through the period matrix Tkr (t) since

Using the heat equations

and Lemma 1 we have

(25) -j^ log 6 k] (0) =^r log 6t [eA (t) ] (0) \ ,_0

= 2

1 f 1 d2d[eA] (}dTkr

(0) 9z*Szf
 W d*

On the other hand by Corollary 3, 5 and Theorem 2 we have

~[JNZ y^- Wr log det A

Substituting (25) into (26) we have

9 i av -\ ff\\ 1 9^-logflkJ (0)=-o-^y-
0/f £ OAi

Hence we have proved the first part of Theorem 3.
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§8. Property of the Constant CA

Our aim in this section is to prove the remaining part of Theorem 3, that is,
for any ordered partitions A and A

(27) CT=Cff.

As in the previous section we identify branch points Qt with the corresponding

points in the fundamental domain in C.
The key for the proof is the formula of Fay ([5], p30, Cor. 2.17):

x f
xj) Eg

k=1a(xk) k=i

for any p, xi, • • - , xg^C, where c is independent on p, x\, —, xg and

Taking ratios for p=a,b equations we have

g
k=1xk-a-A) =a(a)

k, b) '

Set a = Qi, b = Qj(i=£j) and taking JV-th power of the both hand sides we obtain

'
\E(xk,Qj)N'

Since NQi and NQj are linearly equivalent, there exists 2 (i, /) , ic (i, /) ^ Z17 such
that

N

If we set

f % U) -JV f% GO =JV f% U) =2^ (i, j) +ic(i, ;) r,
J ZQ J Z0 J Qi

then we have

f(x+Ak)=f(x)

f(x+Bk) = exp( — ^TikK(i,j)i)

Hence the function
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expfZ I v i ( x ) i c ( i , j ) i } f ( x )
\ / J ZQ '

can be considered as a single valued function on C. Its only zeros are of JV-th
order at Qt and only poles are of JV~th order at Q/. Therefore there exists a
constant cy such that

( Cx ( \ (• .M\exp(J zv (x) *(*.,) <)

By the property of ic(i, j) , c^ satisfies

If we set

w Uk y) = I v Of) /r (t, y) f, t^( S**|t, y) = Ew; (*&k y)
^^0 ^ k ' k

we have

.OON / /v I - -(28) explwl 2**k
N \*-i

Now let us take an ordered partition ^:=yl(1)= (A£\ -, A#Li) with

Let us define A™= (A$\ -, A&-J by

^(Z)—/.^ ... -0 vJV-U/lo — Ui, •", ̂ w-1, ^w /,

If we consider Q, as / fji;, we have the vectors in CB:

Putting i=t£~1
fy =ii and
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in (28) we have

(29)

a-. «> * = n^ n' fi &=$
r=l s=l X/M A&

Here II' means the product for (r, s) 3= (N—l, m) .
Let us define the elements of C" by

s + - + GV-1) (yl^'Xity)-^-

where again Qf denotes fzo'v. Then if we set i=im,j==im~1 and

in (28) we have

(30) exp ([/' Gl^'liS,. 4 - 1 ) ) e ? " = n , , ,- *ff fi
r=l s=l

f/' (AU)|tS,, 4-1) =u» UR2+2/l$-s+ - + OV-D Oli»\{tS,}) Iti, tS-1) .

Here we have used the property that 0(z) is an even function of z.
Multiply ing "(29) and (30) we have

(qi \(31)

= n
r=i 5=1

where we set

Since g/i(*)= CAM, k=l, 2 in/(C) we can set

Substituting these equations into (31) , taking 2AT-th power of both hand sides
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and using the transformation property of theta functions, we get

^ (0) V"2_ J^1 £ U.:-;i.»-0 Wr U.*-.-,-/}.,) 2Nr

«] (0) ) -B}_\ l\ , - * " - , - " " '

where we set

/=o

— ('N-l -0
—

We can simplify the right hand side of (32) so that there are no common
divisor in the numerator and ther denominator. The result is

(33) . = n'

Let us compare this equation with those obtained from the proved part of

Theorem 3. Let {&,-}, {&/} correspond to A(1\ A(2} respectively as in (7). Then
by the proved part of the Thomae formula we have

jol^2
=cna_

(o)' ,</ '
where C= (CAM/CAM) m*. Note that 4AT2^ (fe, Ay) and 4N*q (k'it k]} are even. Then
we have

(35) LHS of (34)

N-l m /; _; w \4N2q(r,N-UN-2 m I ; _ 5 n \4N2q(r,0)=cn n ' _ n n" H

N-2 m —n n i A
r=i s=i

where II" means the product for (r, s) ^= (0,m). Let us calculate #/(r, 0- By the
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definition of q(i, /) and Lemma 3, q(i, j) depends only on \i—j\ mod N. Hence
using qi (0) =N/l we have

q(r, f) =q(0, t~r) = Z
leg /G£

The following lemma is obtained by a direct calculation.

Lemma 10.

(36) Zlq*(r)=¥=±-±rft-r).
leg L6 L

Thus we have

q(r. t) =jj (^^-^(t-r) (N-t+r)).

In particular

4N2 (q (0,0) -q (0,1) ) = 2N (AT- 1) ,

47V2 (q (r ,0) ~q (r, N~ 1) ) = 2N (N~ 1 - 2r) .

Comparing (33) and (35) we have

Let us write

Since CAW and d(2) do not depend on r

9o -B=bkrB = Q, for any A:<r.

Hence B = l. Since any two ordered partitions are transformed to each other by
successive exchange of elements of At and A>i, i = 0, ..., JV—1, the equation (27)
are proved.

§9. Examples

In this section we shall give examples of Thomae formula for small ATs.
Recall that
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0(M)=0(o,|t-y|)=0(o,-|<--y|).

We remark that the constants CA in this section are different from those in
Theorem 3 by ± 1 times because of the reordering of the difference products.
The properties of the constants remain same.

9.1. N=2
We consider the hyperelliptic curve s2=Tl*=i(z—Aj). Let A= (A0,Ai) with

We have

0(0,0)=-|,

The Thomae formula is

/t^i

This is the original Thomae formula in which case CA = (2it) ~4(m-1).

9.2. N=3
Let A= Uo^iA) . We have

ftt>fO)=-|f 0(0,1) =0(0,2) = — ^=|.

Then

6[eA] (0)6=

Here if

then

(AA) = na- fc-^n), OM,)= n Uu-^,).&</ jfe f /=i
Our result shows that CS does not depend on A.

9.3. JV=4
Let A= (y!0, -, yla) . We have

0(0.0)=^, 0(0,1) =0(0,3) = -^, 0(0,2)=-^,

Thomae formula is
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6[eA] (0)8 = Q(detA)4((AA) (AA) (A2A2) (AM6

((/Mi) UiA) (A2A3) OM3))3(UoA2) Uix

The constant C® does not depend on A.

904Q ^V=5
Letyl=Uo, -, A). We have

$(0,0)=-!, ?(0,1)=0 (0,4) =0, $(O f2)=0(0,3) = -T.D D

Thomae formula is

4i^i) (AzA2) (A3A3)

(A2A3) (A3A,) (AM6

((AQA2) (AiAJ (A2AJ (AoA3) (AM4.

The constant Ci° does not depend on A.

In this paper we have given a rigorous proof of the generalized Thomae
formula for Z# curves which was previously discovered by Bershadsky and
Radul [1, 2] in the study of conformal field theory. Here let us make a comment
on the related subjects.

There are several papers ([8, 4] and references therein) studying the
generalization of X function of the elliptic curves to Z# curves by studying the
cross ratios of four points on a Riemann surface. In those approaches the only
ratios of theta constants appear and Thomae type formula is not used. However
in the Smirnov's theta formula for the solutions of 5/2 Knizhnik-Zamolodchikov
equation on level 0, Thomae formula is needed.

Our strategy to prove the generalized Thomae formula here, which is
similar to that of [1, 2], is the comparison of algebraic and analytic expressions
of several quantities. In the hyperelliptic case this can be considered as a part
of the more general comparison of algebraic and analytic construction of
Jacobian varieties due to Mumford [12]. It will be interesting to study the
integrable system associated with ZN curves and to study the generalization of
Thomae type formula for spectral curves.

In fact Thomae [15], Fuchs [6] derived differential equations satisfied by
theta constants with respect to branch points in a more general setting and they
could integrate them completely only in the case of hyperelliptic curves. The
Thomae formula for Z# curves provides a new example which is integrable.
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The ZN curves and the 1/2N periods in the generalized Thomae formula are
related with the Lie algebra s/jv and the weight zero subspace of the tensor
products of the vector representation. Hence it is natural to expect that the
Thomae type formula has a good description in terms of Lie algebras and their
representations.

For the evaluation of the constant CA we need to know the explicit
description of canonical cycles of ZN curve. So far we could describe a canonical
basis only in the case of N=3 (except N=2).
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