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Quadratic Weyl Representations

By

Paul L. ROBINSON*

Abstract

We offer a new construction for the quadratic representations of the canonical commutation

relations introduced by Proksch, Reents and Summers; our construction, which is related to the

metaplectic representation, automatically produces the quadratic representations in Weyl form,

circumventing the use of unbounded operators.

Introduction

Representations of the canonical commutation relations (CCR) feature
prominently in quantum field theory, specifically in the description of bosonic
systems. The underlying phase space for the CCR is fundamentally a real
symplectic vector space: that is, a real vector space V equipped with a
symplectic (nondegenerate alternating real bilinear) form Q. A Heisenberg
representation of the CCR assigns to each v ^ V a self-adjoint field operator
0(v) in a fixed complex Hilbert space H satisfying the commutation relations

along with conditions designed to cope with the unboundedness of the field
operators. A Weyl representation of the CCR assigns to each v ^ V a unitary
Weyl operator W(v) on a fixed complex Hilbert space H satisfying the
commutation relations

together with a regularity condition amounting to strong continuity on
finite-dimensional subspaces of V. Passage from a Weyl system to a Heisenberg
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system is effected by associating to the strongly continuous one-parameter

unitary group (W(t<JWv)\ t^K) its self-adjoint infinitesimal generator 0(v}

so that W(t</Wv) =exp{it0(v)}.
When V is a complex Hilbert space of whose complex inner product Q is

the imaginary part, there is a standard representation of the CCR over V called
the Fock representation, from which other representations of the CCR may be
obtained by elementary transformations. Coherent transformations change the
phase of the Weyl operators via multiplication by unitary characters of V. More
substantially, quasifree transformations precompose the Weyl operators with
symplectic automorphisms of V. These mechanisms for producing new
representations of the CCR may be called (inhomogeneous) linear trans-
formations.

In [4] appears a new class of representations of the CCR, called quadratic
since they arise from the Fock representation by means of quadratic
transformations. The approach in [4] calls for considerable technical skill,
primarily because the authors construct the quadratic representations in
Heisenberg form and verify that they exponentiate to yield Weyl representation.
Our chief aim in this paper is to offer a fresh perspective on the quadratic
representations by presenting them directly in explicit Weyl form, hence our
title.

"Symplectic preliminaries" details some background real symplectic algebra
of complex Hilbert spaces. "Weyl representations" is concerned largely with the
Fock representations, for practical reasons in the version defined on Q-space;
among other things, it is shown that symplectic automorphisms of V acting
identically on a Lagrangian subspace L act canonically on the Q-space erected
over L. "Quadratic representations" presents our explicit construction of the
quadratic Weyl representations along with their transformation properties.
Finally, we close with some brief remarks relating our construction to the one
in [4].

Symplectic Preliminaries

Let V be a complex Hilbert space, whose complex inner product ( ° \ ° ) has
real part ( " I " ) and imaginary part Q. If / : V~*V signifies multiplication by i
then

The symplectic group Sp(V) comprises precisely all real-linear automor-
phisms g of V preserving the symplectic form Q in the sense that
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Note that if g^Sp(V) then g is necessarily bounded; its adjoint relative to ( " I " )

is g* — ~~Jg~lJ. Our version of the symplectic Lie algebra sp(V) comprises all
(necessarily bounded) real-linear endomorphisms £ of V such that

Of course, infinitesimal generators for arbitrary one-parameter subgroups of
Sp (V) need not be bounded, so it is usual to define the symplectic Lie algebra
differently; however, our needs are satisfied by bounded generators.
Accordingly, the elementary exponential series defines the exponential map

exp :sp(V)-*Sp(V).

Now, let 2 : V~^V be a conjugation: thus, 2 is antiunitary and 22— /.
The real subspace L c V of points fixed by 2 is then a Lagrangian subspace
and the ( e | ° ) "orthogonal decomposition V=JL@L is a Lagrangian splitting,
when V is regarded as a real symplectic vector space. Denote by Sp(V)L the
group comprising precisely all g^Sp(V) with the property that g\L=I and by
sp(V)L the Lie algebra of all C,^sp(V) with C\L = Q; of course, exp maps sp(V}L

to Sp(V)L. In fact, we can describe sp(V)L quite intimately: specifically, in terms
of the space SL comprising all (automatically bounded) real-linear endomor-
phisms Z of L that are self-adjoint in the sense

To begin, let g^Sp(V)L. By definition, g acts on L as the identity operator.
Let h and Z be the bounded real-linear endomorphisms of L defined by

Now, let x, y ^L: on the one hand,

Q(xJy)=Q(gx,g]y}
= Q(xJhy+Zy)

whence h—I\ on the other hand,

Q(x,y)=Q(gJx.gJy)
= Q(jx+ZxJy+Zy)

y] +Q(ZxJy) +Q(jx, Zy)
) + (Zx\y) - (x\Zy)

whence Z^SL. Thus we have a map

To continue, let Z^SL and define a bounded real-linear endomorphism £ of
Vby
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so that £|L = 0 and if x, x', y, y' ^L then

Q(£(lx+xf)jy+y')

whence C,^sp(V)L. Thus we have a map

To round out this discussion, we reconsider the exponential map. Note that
if C,^sp(V) then LCker £ exactly when ran C,^L. It follows at once that if £, 17
€=.sp(V)L then their composite $17 : F — * V is zero, whence so is their bracket.
Thus, sp(V)L is an abelian Lie algebra on which the exponential map assumes
the very simple form

and is actually a homomorphism of groups.

sp(V)L " Sp(V)L

exp

is a commutative triangle of isomorphisms between abelian groups.

Proof. Verification that three consecutive arrows yield the appropriate
identity map is pleasantly routine.

D

It is this result that obviates the need for unbounded generators and
permits us to focus on the bounded symplectic Lie algebra.

By definition, the restricted symplectic group Spj (V) is the subgroup of

S p ( V ) comprising precisely all g^Sp(V) for which the antilinear part Ag : = z

(ff+Jgf) is Hilbert-Schmidt, so that g is the perturbation of its complex-linear

part Cg : —i (#—/#/) by a Hilbert-Schmidt operator. Analogously, we define

spj(V) to be the subalgebra of sp(V} comprising all ^^sp(V) for which A^ is
Hilbert-Schmidt. Finally, we define

Spj(V)L=Spj(V){\Sp(V)L
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Theorem 2, The exponential map defines an isomorphism of abelian groups
from spj(VV to Spj(V}L.

Proof, This follows from Theorem 1 once it is recalled that if £>^sp (V) L

then exp £=/+£ whence the antilinear parts of C and exp £ coincide.
n

Of course, the commutative triangle of isomorphisms in Theorem 1 induces
one relating spj(V}L and Spj(V)L to the space S/L comprising all Hilbert-
Schmidt elements of SL.

In fact, it is generally true that if ^^spj(V) then exp ^^Spj(V): to see
this, note that if n ^ N and if N (£) denotes the Hilbert-Schmidt norm of the
commutator [/,£] then inductively

as a result of which the commutator

[A exp 0 = Si (/.Cl
n=0 n-

is a Hilbert-Schmidt operator.
We close this section with some structural clarification.

Theorem 3, s p j ( V } L comprises precisely all Hilbert-Schmidt operators in sp
(V}L.

Proof. Recall that 2 is the conjugation of V having L as its real space of
fixed points. If ^sp(V)L then Z£=C so that

It follows that each of the separate conditions, that A^ be Hilbert-Schmidt and
that Cc be Hilbert-Schmidt, is equivalent to the single condition that C = Ce + Ac
itself be Hilbert-Schmidt. D

Thus, Spj (V) L comprises precisely all g & Sp (V) L for which g — I is a
Hilbert-Schmidt operator.

Wey! Representations

A regular Weyl representation of V on a complex Hibert space H is a
unitary projective representation W : V~*Aut H with cocycle given by the rule
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and with the (regularity) property that ifv&V then the one-parameter unitary
group (W(tv) : £^R) is strongly continuous.

A specific irreducible regular Weyl representation of V is its Fock
representation, of which there are several standard models. As it will play a
role in our subsequent discussion, we shall recall briefly the model known
variously as the real wave representation or renormalized Schrodinger
representation on Q-space; for further details, see [2] [3] [7] [8] [10].

To begin, we let L c V be the real subspace fixed pointwise by the
conjugation Z as before. Denote by 3F(L) the set of all finite-dimensional
subspaces of L directed under inclusion. Equip each M ^ 5F (L) with the
Gaussian (probability) measure fjL having density function

M-*R : z ^ (x n ) 4dim M exp(—

relative to normalized Lebesgue measure and write PM '• L~*M for orthogonal
projection. Let H (M) stand for the set of all bounded complex functions / : L —»
C that are based on M in the sense that f — g^Pm for some bounded Borel
function g : M~*C. Elements of the complex vector space (indeed, algebra) H(L)
:= U {H (M) : M^2F(L)} are called bounded tame functions. On occasion, we
may lift the boundedness restriction and consider tame functions more
generally.

Consistency of the Gaussian measures ensures that we may well define an
inner product (° °) on the complex vector space H(L) of bounded tame
functions by stipulating that iif,g^H(L) then

where the integral extends over any M in 3F (L) for which f,g^H (M). We shall
denote the resulting Hilbert space completion of H(L) by H (L) or simply H for
convenience. Notice that if M £=• J? (L) then H (L) contains the Hilbert space
completion H(M) of H(M) and hence contains all tame functions g^Pm with g a
polynomial The Hilbert space H(L) is precisely Q-space.

The real wave representation W of V on H (L) arises as follows. For v =Jy
V with x,y^L we define W(v) by requiring that

r™r( \A t \ (x\2z—y) (u\2z-~y) ,/ \[W(v)f] (z) =exp — ' * exp '¥' y f(z-y).

This formula holds strictly for z^L and/^#(L) in which case W(v)f is tame;
of course, the unique extension to H (L) is by continuity. We remark that our

decision to fix -^ fe as the variance of fJL is not crucial; it has the virtue that the

vacuum vectors for W are simply the constant functions.
Henceforth, W : V— *Aut H will be the real wave representation on Q-space
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as described above.
Plainly, if g^Sp(V) then the composite WOg : F-»Aut H is itself a

regular Weyl representation. It is natural to ask whether W ° g is unitarily
equivalent to W in the sense that there exists a unitary operator U €= Aut H
with

v<^V=$ W(gv)=UW(v}U~l.

Shale [9] answers this question: his answer may be expressed as the assertion
that WOg is unitarily equivalent to W precisely when g lies in the restricted

symplectic group Spj (V) . The group Mp/ (V) of all such intertwining unitary
operators U as g runs over Spj(V) fits into a short exact sequence

where o(lf) —g and T is the circle of unitary scalars. The tautologous unitary
representation of Mpj(V) on H is the metaplectic representation.

In the special case that V is finite-dimensional, the group A4pj (V) has a

unique unitary character r : Mpj(V)-+T with the property that rU) =A2 when
^ G T. The kernel of r is a version of the connected double cover of Sp (V}
known as the metaplectic group. In case V is infinite-dimensional, the restricted
symplectic group is actually contractible relative to a natural topology, so a
direct analogue of T cannot exist. Instead, an analogue of the metaplectic group
twice covers the subgroup of Spj(V] comprising all g for which Cg — I is trace
class. See [6] .

It is familiar that the short exact sequence E splits over the unitary group

U (V) of the complex Hilbert space V: there is a homomorphism U(V)—*Mpj(V)
which yields the inclusion of U (V) in Spj(V) when followed by a; indeed, this
is transparent in both the complex wave representation and the particle
representation [2] . We may regard U(V) as the subgroup of Sp(V) stabilizing a
certain totally complex polarization of V\ namely, the subspace {v+ijv : v ^ V}
of the complexification VQ. Now, our fundamental Lagrangian subspace Ley
may also be regarded as a real polarization, of whose stabilizer Spj (V) L is a
distinguished subgroup. In fact, the short exact sequence E splits over Spj(V)L:

there exists a homomorphism U : Spj(V)L-^Mpcj(V) with the property that if g
&Spj(V)L then ff(Ug) = g. The remainder of this central section is devoted to
establishing this important fact, a task to which the real wave representation is
particularly well suited.

As a technical preliminary, we define a quadratic map

by
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fl (z\z).

40 If x, y, z^L then

Or|y)=0 =><&!<&,> =0

Proof. We shall assume x, t/, £ to be unit vectors. Integrating over the plane
spanned by x and y yields

since ^ has variance 17 ^. Higher moment calculations result in

where integration is performed over the line spanned by z.

Similarly, if z^L then the homogeneous quadratic ( z | ° ) 2 in H (L) satisfies

Now let Z^Sj be a Hilbert-Schmidt self -adjoint endomorphism of L. Let us
agree to denote the Hilbert-Schmidt norm of Z by \\Z\\ without further
embellishment; no confusion will ensue, because no other operator norms will be
written explicitly in the sequel.

Suppose first that Z has finite rank: say Z has range M^OF (L) having an
orthonormal basis of eigenvectors ui,...,um with corresponding eigenvalues
Ai,...,Am repeated according to their multiplicity. Thus,

and

Also,

m r
(^!zZ)d^(^)=2:^J (U)\
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by the remark following Theorem 4. We now define an inhomogeneous quadratic
(f>z : L—*R by the prescription

Z<EL =» (f>z (z) = (z\Zz) -TT fi TrZ.

Theorem 5. If Z^Sj has finite rank then

Proof. An immediate corollary to Theorem 4 in view of the decomposition

m
<pz= Z^/0«,. D

J=l

Now lift the supposition of finite rank and let Z&SJ be arbitrary. When M

£=-2F (L) we shall denote by ZM the compression PMZPM of Z so that Z^^S1/ is a
finite rank operator to which the preceding considerations apply; when Z is
understood, we shall denote the inhomogeneous quadratic <j)zM simply by <f>M for
convenience.

We shall use the following standard approximation result.

Theorem 6, The bounded net (ZM : M<^2F(L) ) converges to Z in Sj.

Proof. Explicitly, if £> 0 is given then there exists M£ ^ 2F (L) with the
property

Briefly, let Z have orthonormal eigenvectors (M, : /> 0) with corresponding

eigenvalues U, : />0 ) so that ||z||2 = 2/if: if A f > 0 is chosen so large that
;>o

4 Z/if<£2 then M£ : = span{wi,...,Mtf} works; indeed, if MeciAf e^ (L) then each
;>JV

of ||Z— Zjifell and ||ZM£~~ZM|| is at most ^e. D

We may now complete our present discussion of the inhomogeneous

quadratics themselves; if Z G= SJ is arbitrary then Theorem 5 and Theorem 6
together guarantee that the net (<f>M : M^^(Lj ) in H is Cauchy and therefore
convergent to an element (f)z of H satisfying

Obviously, <pz has no hope for a pointwise formula as in the finite rank case
unless Z is trace class.

Again let Z e Sj be arbitrary and let M e ^ (L) . Multiplication by the
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unitary scalar function exp {ZTF^M) plainly defines an isometry UM : H (L) —*H

(L). Explicitly, if/e#(L) and z^L then

[UMf] U) = exp

If /T := sup|/1 and if Mi^^^L) then

by virtue of the elementary inequality

Thus Theorem 5 yields

and so the net (£/A/ : M^OF (L)) in H is Cauchy on account of Theorem 6. The
limit

[//:= li
Af— I

evidently satisfies the inequality

Continuous extension now uniquely "defines an isometry U : H— »H. Of course,
we may also uniquely extend each UM to an isometry of H and a standard 3s
argument shows that the strong limit Uf=limUMf holds for every /^H.

Af-I

Let us now formally indicate dependence on Z & Sj by writing Uz rather
than U.

Theorem 70 // X, Y^Sj then

UxUy— UX+Y-

Proof. Write Z = X + Y and for M e ^ (L) let UZu be the isometry UM as
above. Let/eH. For e>0 choose Mfie^(L) so that if M£eM^^(L) then both
ll^/-Lr

F/ll<£ and Hf/^ ([/y/) -L^(C/y/)||<e; as f/^ is an isometry, it follows
that \\UxMUYMf-UxUYf\\<2£ by the triangle inequality. The identity UxJJyJ =
UzMf being plain, passage to limit as M— »L yields UxUYf= Uzf as required. D

As £/o is the identity operator, it follows at once that if Z €= Sj then Uz is
actually a unitary operator on H. We remark that the homomorphism
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U : Sj -> Aut H : Z •-> L/z

has the property that each one -parameter group (Utz ' t ^ R) is strongly
continuous. For this, it is enough to verify continuity at zero: i f f ^ H ( L ) and
sup \I\-K then taking the limit M~*L in

yields

\\U,zf~j\\<-^\\Z\\\t\
L^ Li

so that \imUtzf—f\ this result extends to/^H by a standard 3e argument.
t-*o

Finally, let g^Spj(V)L so that Z := (0— /)/|LeS/ as usual and write [/, in
place of Uz.

Theorem 8. // g^Spj(V)L then the unitary Ug& Aut H satisfies

= U9W(v) Ug\

Proof. It is enough to consider the cases v—x and v=Jy for x and y in L.
The unitary W (x) acts on tame functions by multiplication, as does UZM

whenever M^^(L). Passage to the limit now shows that UzW(x) — VV(x}Uz on
H. Straightforward calculation verifies the equality UzMW(fy) = W(jy+Zy)UzM

on tame functions whenever M ^ 2F (L) . Passage to the limit shows that UzW
(jy}=W(jy+Zy}Uz on H also. D

We have thus constructed our splitting of the short exact sequence E over
Sp/(V)L. For future reference, we summarize the result as follows.

Theorem 9- There exists a homomorphism U : Spj(V)L—*Mpj(V) such that
if g ^ Sp/ (V) L then a (Ug] — g and if £ ^ spj (V) L then the one-parameter unitary
group (l/expfC '• t^R) is strongly continuous. D

To close this section, it is perhaps worth pointing out that the result of
Shale [9] on unitary implementability of symplectic transformations was
mentioned only to provide a context for our independent constructive argument
leading to Theorem 9.

Quadratic Representations

Our global construction of the quadratic Weyl representations introduced
infinitesimally in [4] requires just one more algebraic ingredient We let
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be a real-linear map possessing the symmetry property

x,y e V =$ Gy = &£•

We shall not assume of £ any specific continuity properties, but note that it is
automatically continuous when restricted to finite-dimensional subspaces of V,
The commutative triangle of Theorem 1 associates to £ a pair of group
homomorphisms: the one we write as

g:V-*Sp,(V)L

given by

v e v =» gp = exp (£„) =/+ G

and the other

Z: V-+Sj:v^Zv

These homomorphisms have a number of special properties. Thus, just as
elements of s p j ( V ) L vanish on L so does C : V~~*spj(V)L itself: indeed, if z^L
and v^V then Q (v) — Q (*) — 0. We shall have need of the following rather
peculiar properties.

Theorem 10. I f x , y ^ V then

and

®(x+y,gx+y(x+y)} =

Proof. The first identity comes from simple expansion using the symmetry of
C The second comes from the first by expansion, using symmetry of £ and the
fact that if %,r]f=spj(v)L then £17=0. D

Our reason for drawing attention to the second property in Theorem 10 is
that the map % : V—*T defined by the prescription that if v*= V then

has the property that if x,y ^ V then

K(x+y}=l(x)i^

so
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Our reason for drawing attention to this and the first property in Theorem 10
will soon be clear.

Following g : V-+Sp/ (V) l by the splitting Spj (V) L->Mpcj (D of a in
Theorem 9 provides a homomorphism which we shall denote abusively by

U : V-*Mpcj(V] :v^Uv

so that

w^V=*W (gviv) = UVW (w) K1

and the one-parameter group (Utv '• /"^R) is strongly continuous.
Having made all of these preparations, we now define a map

Wc : V -» Aut H

by the rule that if v^V then

Wi(i>)=x(v)UvWMUv

or equivalently

Theorem 11. W$ is a regular Weyl representation,

Proof. To confirm that W* has the correct cocycle, note that if x,y G V then

W, (x) W- (y}=^(x}^(y)W(g^}UlW (gvy ) Li

= 7L Cr)x (y) W(g&) W(g2
x gyy) Ul Li

= exphj;TjH2(,rty) \x (x+y}W(gx+y(x+yY)U2
x+y

on account of Theorem 10 and the subsequent remark. Regularity is plain, for if
v^V then each of the unitaries W ( t v ) and Utv is strongly continuous in ^R. D

We refer to W^ : V — * Aut H so constructed as the quadratic Weyl
representation associated to the symmetric linear map C • V-+spj(V)L.

Notice that there is a little freedom in our construction: the homomorphism

U : V—+Mpj(V) may be multiplied by a unitary character /c^expo {j^-/i} where

A : V— *E is a real-linear map; the quadratic Weyl representation is then



14 PAUL L. ROBINSON

multiplied by sc2 — exp o {-^-2} . Of course, this amounts to the freedom of a

coherent transformation.
A symplectic transformation offers more entertainment, touching upon

functoriality of the real wave representation. For this, let a €= Sp (V) be
arbitrary. This transformation provides V with a new structure of complex

Hilbert space, having complex structure / — a/a"1 and complex inner product
{•[• ) ' given by

with the property that

x, y

Naturally, the real part ( ° | ° ) ' of ( B | ° ) ' behaves in a similar fashion. The

conjugation JL' := aZa"1 has the Lagrangian L' := aL as its space of fixed
points. Upon L' with ( ° | e ) ' as inner product we erect the version ET : = H(L')
of Q-space. We also define the version W* : V —* Aut ET of the real wave
representation by continuously extending the rule

[w(/y +*')/] (*') =

exp-~j-{(x'\2z'-y')'+i(y'\2z'-y')'}f(Z'-y'}

for x',y',z'GZ/ and/^#(L'). It is readily confirmed that continuous extension
of the isometry

A :

yields a unitary isomorphism A : H— KH' having the property

W (av) =A

This is functoriality of the real wave representation. A readily confirmed aspect

of this functoriality is the fact that the splitting homomorphism [/' : Spy (V)1'-^

Mpcy (V) constructed parallel to Theorem 9 satisfies

-1} =AU(g)A~\

Now a^Sp(V) acts naturally on the symmetric linear map £ : V-+spj(V)L

to produce C : V~-*spj' (V)1' given by

v(^y^> ^'av=a^va-^

and the map #' : V~*T given by
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satisfies Xf = X°a~1- I*1 terms of established notation, we now have the following
result

Theorem 12. I f v ^ V then

Proof. A matter of direct calculation. If g := expO£' then

WC' (av) = * ' (atO U' (g'av} Wf (av) Uf (g'av)

= x(v)Uf(agva-1)AW(v)A-1U'(agva-1}

=A{x(v)U(gv)W(v}u(gv)}A-1

D

With this symplectic functoriality of the quadratic Weyl representations we
close the present section.

Eemarks

At this point, it is appropriate to relate our construction to the one in [4] .
The construction in [4] involves a (without essential loss) maximal

subspace L^V on which Q is identically zero and assumes a real-linear map A
: V-+L(&L C V®V with the property that if x,y e V then Ax (y) = Ay (x) where
elements of V®V act on V by linear extension of the rule that if x,y,z& V then
Gr®y) • z = Q(x<z)y. It is straightforward to verify that if v^V then AV^L®L

corresponds to our Zv e Sj under the natural identification of the real tensor

product L0L with the space Sj of Hilbert-Schmidt self-adjoint endomorphisms
of L.

The construction in [4] is also based on a rule W for passing from
(without loss, symmetric) elements of the real tensor product V ® V to
essentially self-adjoint operators in Fock space, these operators being bilinear
Hamiltonians in the sense of Araki [1] . In fact, W actually constructs
infinitesimal generators for the metaplectic representation; in hindsight, this is
clear from the commutation relations in [4] Proposition 3.2.6. The Wick
ordering of W in [4] is manifest in our rule Z *—> (j)z for the construction of
inhomogeneous quadratics.

With A and 5Fas above, the authors of [4] set ft =1 and for v^V define a
transformed field operator @A (v) to be the closure of the essentially self-adjoint
operator $(v) +W(Av) where @(v) is the Fock field operator satisfying exp{t0
(v)} = W (v) . That the transformed field operators satisfy the Heisenberg form
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of the canonical commutation relations

rests partly on the fact that what is effectively the infinitesimal metaplectic
cocycle (a in [4] Proposition 3.2.6) vanishes on the range of A. This vanishing
is a consequence of our Theorem 9 which asserts the triviality over S p j ( V ) L of
the global metaplectic cocycle. With the preceding identifications, our W^ of
course reproduces the representation WA defined in [4] by WA (v) — expit^
(v)} forv^V.

Our construction offers a fresh perspective on the quadratic Weyl
representations. For example, it facilitates an alternative approach to the
problem of determining necessary and sufficient conditions for W^ to be
unitarily equivalent to the original Fock representation, a problem settled in
[4] . In fact, it enables an approach to the more general problem of determining
necessary and sufficient conditions for W$ to be unitarily equivalent to any
Fock representation whatsoever, a problem on which we plan to report
elsewhere. We also plan to determine the extent to which the unitary
equivalence class of We, depends on C

Finally, in the last chapter of [4] the question is raised whether it is
possible to construct representations of the canonical commutation relations
having order higher than quadratic, the comment being made that verification of
(essential) self-adjointness for the pertinent field operators is likely to be
difficult. Being global rather than infinitesimal, our construction of the
quadratic representations avoids such problems of self-adjointness. This
suggests that a search for higher order representations along similar lines might
prove fruitful .
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