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Some Remarks on the Symplectic Pairing
on the Moduli Space
of Representations of the Fundamental Group of Surfaces
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§0. Introduction

This work grew out of an attempt to understand a conjectural remark made
by Professor Kyoji Saito to the author about a possible link between the
Fox-calculus description of the symplectic structure on the moduli space of
representations of the fundamental group of surfaces into a Lie group and pairs
of mutually dual sets of generators of the fundamental group. In fact in his
paper [3], Prof. Kyoji Saito gives an explicit description of the system of dual
generators of the fundamental group.

If S is a compact surface of genus g=2 and its fundamental group m;(S) is
given by a presentation 7y (S) =<A4,By, ..., Az By, [A,, Bl =D (where I is
the identity element), then the dual set of generators of m,(S) are defined by

a’zzct—lB;—l Ct_l
B.:=CiA7* Cih
for i=1, .., g where C;=]1:-1[A4,. B;].

It can be checked that [1¢=; [a., B.] =I so that m; (S) (henceforth simply denoted

as ) has another presentation 7={ay, Bu. ..., @, BolIli=1 [, B =D>. Both the
presentations are mutually dual since the following holds

At = %1—1.81—1€1—1
B.=%.a; 64
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for i=1, ..., g where €,=1I1;-:[a;, B;].

Now if G is a compact Lie group together with adjoint invariant inner
product on its Lie algebra, then the moduli space #l=Hom (7, 4) /% of conjugacy
class of representations of 7 into G admits a natural symplectic structure. We
explore in this paper the relationship between the Fox-calculus description of
this svmplectic structure and the mutually dual presentations of the
fundamental group described above. In fact this paper re-interprets the results
of [2] in the framework of mutually dual presentations of the fundamental

group.
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§1. Fox-Calculus Description of the Symplectic Structure
on the Moduli Space

Goldman ([1]) described explicitly the symplectic structure on the moduli
space in terms of Fox-calculus. We recall this description in this section.

Let S be a compact surface of genus ¢g= 2 and 7:= m (S) be its
fundamental group. Let 7 =<A4, By, ..., Ag Bollli=1 [A.. BJ =1 be a given

presentation where [ is the identity element. Let C,= H;=1 [4,, B,] and R=C, so
that R =17 is the unique relation among the generators of 7.
The anti-automorphism # on the integral group ring Z7 is defined by

# (>na,) =2na7" for n, €% and 4, .

Using notations from Fox calculus [1,83] we have

gjf%:c,_l(j—A,B,Afl) =Ci1— CiBs
R G (A= ABAT B =CraA =G,
so that
2E—cm - ey
OR

# _GE:A'_I Cih —Cit
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The tangent space T (M) at an equivalence class [p] € is identified with the
first group cohomology H' (mr, §,) where &, is the m-module. with the module

structure defined by the composition 4G ﬁi Aut(9).
27, 9,) = lwmr—Holu (xy) =u &) +Ad, (x) (w)) for x. yEx} is the spece of
1-cocycles.

The following composition of the cup-product and <.

< U , W
Zl <7Tv '{)P) X Z] (T[: 'g)P> i ZZ (7[7 @n®®p) i Z2 (TE' R>
induces the a skew-symmetric pairing on cohomology
H (z, §,) xH (%, §,) —~H (n. R) =R.

This skew-symmetric pairing induces the symplectic structure on /.

We assume henceforth that g is irreducible. For simplicity we write x * u
(y) or just xu (y) for Ad, (x) (v (y)). We know from [1,§ (3 4)] that the
following formula

w (i, v) =_1§{ <u< #—g/%) v (A,)> + <u( gg—) v(B,) >]

(for u. v€Z (7, §,)) gives the symplectic form on H' (m, H,).

§2. Mutually Dual Presentations of the Fundamental Group

If 1=<Ay, By, ... Ay By|I19-1[A,. BJ=D is a given presentation then we
set

al:Cl—lB!_l CTI
Bl:CtA 1_1 Cl_—ll

for i=1, .., g where C,=1I1!-,[4,, B,]. It can be checked that [1%,[a,. B.]=I so
that we have another presentation

r={ay. B . . Bl 1T [ B =D

If we set 4,=Il;=1[a, B,]. then it can be checked that
A=% B 6!
B.=%.a:' 64

for i=1, .., g where €,=Il:=:1[a,. B,].

Consequently we see that both the above presentations of 7 are 'dual’ to each
other.
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§3. An Inner Product on Z* (z, £,).

Given a presentation 7 = <Ay, By, ... Ay, By|Il [A,, B.] =1, define the
symmetric pairing on Z* (7, §,) by

Gy v30= £ (@), v (@) >+ w (B), (8
where a;, B3, are the dual generators defined in §2. <,>, defines an inner product
on Z'(m, ,), since for u€Z (m, H,,)
S, u), = 0> (e, ul(a,)>=0=u{B,), u(B,)) fori=1, ... g.
=u (a,) =u (B,)> =0 since < is an inner product on $
=1, =0 since u vanishes on the generators &,. B8, of .

For u€ 9, its co-boundary dy: m—> 9, is defined by () (x) =x - p—pu for x
€ 1. The space B! («r, §,) is the space of coboundaries. Using the inner-product
{>,on Z'x, H,) we can write

Zl (71', &jﬂ) =Bl (ﬂ'.r '@ﬂ) ®Bl (77:7 &:)0) -L'
As in [2], we call B*(x, §,)* the space of 'harmonic’ cocycles.

B, §,) =z (1. $,)|<u, 0w ,=0Y peHo}.

Now {u,0p,
=32 a0, )+ u (B), 0 (B
=S (G la). @ - =g+ ), B - =)
=§:{<a, ), > = ), D+ <B7 - w(B), 10— w (B). 1)

- ;1(14 (@) +ulan) +u (B +u (B, w

since a;* - u (@) = —u (ai’h)

TeuB)=—u (B

$u, 0w ,=0 Vla-—“—><i{u () tular™ +u(B) +u (Y}, w=0
i=1

:é {u (@) +u (@) +u (8,) +u (B} =0

since £,> is non-degenerate on Do.
Thus we have the following characterisation of harmonic cocycles.

B (x, §0) = [0 €2 (m. £)15 u (@) Hu(ar?) +u )+ (67)) =)
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§4. The Symplectic Pairing and Its Relationship to Mutually
Dual Generators

For u € 7' (m, ,), let u* be its harmonic part i.e u* is the projection of 1
onto B* (. §,)*. As in [2,§1], we define the map ¢: Z* (r, Do) =2 (7, H,) as

s hr=e(s )

¢ (u) (B:) -‘:ul( #%) fori=1, .., g.

We need to check that ¢ (u) is a 1-cocycle or equivalently [1, §3-6] that the
following identity holds

8 (R) =5 [2 900 (4) + I 9) (B)] =0

Now gAi,qb (u) (A4,)

~sa(# 35)

= (C;—CB)u* (Ci4 —Bi' 7Y

=Cu* (C74) —C.Bu* (C:2) —Cioqu* (BT C7Y) +C.Bu* (B C7Y)
=—{u* (Cim) +Coow* (B C71) } —{C.Bau* (C2) +u (C.B))}
=—{u* (CimaB7' 1) +u (C.B.CH) )

=—{u* (o) +ut (@)}

Similarly

%)

= (C,A,—C)u(A7' G —C7Y)

=—u* (Cimd) —Ca* (AT C7L) —CiA e (C7Y) —ut (C))
=—{u(CmACTY) tut (CATICIA) )

=—{u*(B) +u (B}

T ) (B) =gt ( #

Thus

g

{0 w) (40 + 256 ) (5]

1=1

S {ul (a) tut (@it) +ut (B,) +u' (‘3”_1)]

=0
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since #* is a harmonic cocycle.

Consequently ¢: Z* (&, $,) — 2 (m, H,) is well defined. We can identify
B'(x, $,)* with H' (7, ,). Now for harmonic cocycles 1, v EB (7, §,)* = H (x,
o) (i.e. u=u*, v=v") we check the following identity

w, ¢))=—<u. v,

We know {rom §1 that

 (u, ¢(v))=-§[<n(#%}?—l), ¢ () (A,)> + <u<#g—§,>, ¢ ) (B,)>}.

It follows from the definition of dual generators that

%zc;ﬂ =Bl cit=Ci —Ciha
so that
lt( # gTR) =u (C;Y) —u (Cha,)
=u(CY) —u (C) —Cilhu (@)
=—Cu(a,).
Similarly
#%%71 Ch—cit=CrtB—Ct
1
so that

u( gg) =y (C7'B,—C;Y) —u(Crh)
=u (C;7Y) —Cru (B) —u (CTY)
:C1_1Li (,81)

We therefore have
<u<#%e:> o) (A,)> = <n< gf‘%) v( #g£)> since v =yp*
={—Clu(a,). —Cin ()
= (), via,)?.
Similary

(u(#8R). 90 B)) = w(B). v (8.

Thus we have
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0, p0) == (@), v(@)>+ (). v (g)))

=—Lu, 17,
The identity w (u, ¢ (v)) = — {u, v>, suggests that ¢ may induce a complex
structure on B! (mw, H,) * = H' (7, H,) ie. ¢?*= —1Id on H* (m, H,) and is

integrable. But we are unable to prove it. We leave it as a conjecture. Thus the
symplectic structure @ on J = Hom (7. G) /G intertwines the mutually dual
presentations of 7. The geometry behind this intertwining phenomenon is yet to
be explored.
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