Publ. RIMS, Kyoto Univ. 34 (1998), 27-41

A Trace Formula for Discrete Schrödinger Operators

By

Tomoyuki Shirai*

Abstract

We discuss two types of trace formula which arise from the inverse spectral problem for discrete Schrödinger operators as $L = -\Delta + V(x)$ where V is a bounded potential. One is the relationship between a potential and spectral data, and another is the one between the green function of L and periodic orbits of a state space.

§1. Introduction

The trace of the difference of two operators $L = -\Delta + V$ on $L^2(\mathbb{R}^1)$ and L_a that is imposed the Dirichlet condition at $a \in \mathbb{R}^1$ has a relation

(1.1)
$$\operatorname{Tr}(L-L_a) = V(a) = \lambda_0 + \sum_{j=1}^{\infty} (\lambda_{2j} + \lambda_{2j-1} - 2\mu_j)$$

for a periodic potential V, where $\{\lambda_j\}$ is the collection of all eigenvalues with periodic and anti-periodic boundary conditions. and $\{\mu_j\}$ is the collection of eigenvalues of certain Dirichlet Laplacian. It is the well known formula in Hill's theory for periodic Schrödinger operators. In [2], it has been extended to the class which is called reflectionless potential containing periodic potential. In [4], they studied systematically trace formulas by using the scattering quantity which is called the Krein's spectral shift function. We will show that similar results as these hold for a discrete Schrödinger operator L on countable set and L_A that is imposed the Dirichlet condition at a finite set A, that is,

Theorem 1.1. Let G be a countable set and let Δ_G be a Laplacian on G. Let V be a real-valued bounded function. Further, let $L = -\Delta_G + V$ and L_A be imposed the Dirichlet condition on a finite set A. Then

(1.2)
$$\frac{1}{|A|} \operatorname{Tr} (L - L_A) = \frac{1}{|A|} \sum_{a \in A} V(a) = \lambda_{\infty} - 1 - \int_{\lambda_0}^{\lambda_{\infty}} \theta_A(\lambda) d\lambda$$

Communicated by T. Kawai, March 19, 1997. Revised November 14, 1997.

¹⁹⁹¹ Mathematics Subject Classification (s): 81U40, 58F20

^{*}Supported by J.S.P.S. Research Fellowships for Young Scientists.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. E-mail: shirai@kurims.kyoto-u.ac.jp

where $\theta_A(\lambda)$ is a generalized Krein's spectral shift function.

Especially, if G is \mathbb{Z}^1 and A is a singleton $\{a\}$, then we can explicitly calculate of $\theta_A(\lambda)$, and the almost same relation as (1.1) holds.

In the area of quantum chaos, M. C. Gutzwiller has proposed the so-called Gutzwiller's trace formula [5]. It is the formula which connects the energy level (the spectrum of Schrödinger operators) with the classical periodic orbits. We will show that $\operatorname{Tr}(G_{\lambda}-G_{\lambda}^{A})$ can be expanded by the periodic orbits on A where G_{λ} (resp. G_{λ}^{A}) is the resolvent of the operator L (resp. L_{A}).

Theorem 1.2. There exists $\tilde{\lambda} \in \mathbb{R}$ such that for any $\lambda < \tilde{\lambda}$

$$\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_{\lambda}(a, a)$$
$$+ \sum_{\tau \in \Gamma} \frac{dS_{\tau}(\lambda)}{d\lambda} \sum_{n \ge 1} \exp(-nS_{\tau}(\lambda) - n\pi iL_{\tau})$$

where Γ is the set of all prime periodic orbits, L_{τ} is the period of γ and $S_{\tau}(\lambda)$ is the length of a periodic orbit γ with respect to the distance d_{λ} defined by (4.1).

It is thought as a discrete and heat version of the Gutzwiller's trace formula.

§ 2. A Trace Formula for the Inverse Spectral Problem

Let G be a countable set and $P = \{p(x, y)\}_{x,y \in G}$ a transition probability. We assume that the transition probability is (1) *m*-symmetric. (2) irreducible and (3) simple, i.e., (1) there exists a positive real-valued function $\{m(x)\}_{x \in G}$ on G such that

$$m(x)p(x, y) = m(y)p(y, x)$$

for any $x, y \in G$, (2) for any $x, y \in G$ there exists a positive integer N such that

$$p^N(x, y) > 0$$

and (3) p(x, x) = 0. ((3) is not essential but, for simplicity, we assume it.) Let $l^2(G, m)$ be an l^2 -space with respect to the inner product given by

$$\langle f, g \rangle = \sum_{x \in G} m(x) \overline{f(x)} g(x).$$

We define a discrete Laplacian on $l^2(G, m)$ as follows: for each $x \in G$.

$$\Delta_{G}\phi(x) = \sum_{r \in G} p(x, r) \phi(r) - \phi(x).$$

Let V be a real-valued bounded function and we define a discrete Schrödinger operator by

A TRACE FORMULA FOR DISCRETE SCHRÖDINGER OPERATORS

$$L = -\Delta_G + V.$$

It is a linear bounded self-adjoint operator on $l^2(G, m)$.

Let $A \subseteq G$ be a finite subset of G. We consider two problems for our operator, i.e., one is

$$L\phi(x) = \lambda\phi(x)$$
 $x \in G$

and the other is

$$\begin{cases} L_A \phi(x) = L \phi(x) = \lambda \phi(x) \quad x \in G \setminus A \\ L_A \phi(a) = 0 \quad a \in A, \end{cases}$$

and their domains are $D(L) = l^2(G, m)$ and $D(L_A) = \{f \in l^2(G, m); f(a) = 0 \text{ for} any <math>a \in A\}$. We denote the fundamental solutions of the associated heat equations by $p^V(t, x, y)$ and $p^V_A(t, x, y)$, respectively, and the associated green functions, that is, the integral kernels of $(L - \lambda)^{-1}$ and $(L_A - \lambda)^{-1}$ by $g_\lambda(x, y)$ and $g^A_\lambda(x, y)$, respectively. Remark that in general our heat kernels and green functions are not symmetric functions.

From now on, we assume that there exists a positive integer M such that

(2.1)
$$\sup_{x \in G} |\{r \in G; p(x, r) > 0\}| \le M$$

where |K| is the cardinality of a set K. We can regard G as an infinite graph, then the assumption (2.1) means that the maximum degree is bounded.

To show our trace formula we calculate the trace $\sum_{x \in G} (p^V(t, x, x) - p^V_A(t, x, x))$ in two different ways. We use the following lemma for the first half of the trace formula.

Lemma 2.1. Let $\{w_t, P_x\}$ be a continuous time random walk with the generator Δ_G , and T_A the first hitting time to the set A. Then, as $t \rightarrow 0$,

$$E_a[\delta_a(w_t)] = 1 - t + O(t^2)$$

and

$$\sum_{x \in G \setminus A} E_x \left[\delta_x(w_t); T_A \leq t \right] = O(t^2)$$

where $\delta_x(\cdot)$ is the indicator function of $x \in G$,

Proof. Firstly, since Δ_G is the generator of w_t and is bounded, we have

$$E_a \left[\delta_a \left(w_t \right) \right] = \sum_{n \ge 0} \frac{t^n}{n!} \Delta_G^n \delta_a \left(a \right)$$
$$= 1 + t \left(\Delta_G \delta_a \right) \left(a \right) + O\left(t^2 \right)$$
$$= 1 - t + O\left(t^2 \right)$$

as $t \rightarrow 0$.

Secondly, we define a metric on G as follows: for any $x, y \in G$

Tomoyuki Shirai

(2.2)
$$d(x, y) = \inf \left\{ \begin{array}{ll} n \ge 0; & \exists \text{ path } x = x_0 \ x_1 \dots \ x_n = y \\ \text{s.t. } p(x_i, \ x_{i+1}) > 0 & 0 \le \forall i \le n-1 \end{array} \right\}.$$

Put $M \ge 1$ as the assumption (2.1). Then it is obvious that the cardinality of a set $\{x \in G; d(x, A) = n\}$ is less than $|A|M^n$. Then we obtain

$$\sum_{x \in G \setminus A} E_x [\delta_x(w_t); T_A \le t] = \sum_{n \ge 1} \sum_{\substack{x \in G \\ d(x,A) = n}} E_x [\delta_x(w_t); T_A \le t]$$
$$\le \sum_{n \ge 1} |A| |M^n P_x [w \text{ has at least } 2n \text{ jumps up to time } t]$$
$$= \sum_{n \ge 1} |A| |M^n \sum_{k \ge 2n} \frac{e^{-t} t^k}{k!} \le \sum_{n \ge 1} |A| |M^n t^{2n} \le Ct^2 \text{ as } t \to 0.$$

Here we used the fact that the number of jumps of the random walk up to time t obeys the Poisson law with mean 1.

Now we show the first half of the trace formula.

Proposition 2.2. Let V(x) be a real-valued bounded function on G. Then,

$$\sum_{x \in G} (p^{V}(t, x, x) - p^{V}_{A}(t, x, x)) = |A| - t (\sum_{a \in A} V(a) + |A|) + O(t^{2}) \quad as \ t \to 0$$

where |A| is the cardinality of the set A.

Proof. By the Feynman-Kac formula, we have

$$p^{V}(t, x, x) - p^{V}_{A}(t, x, x) = E_{x} \left[e^{-\int_{0}^{t} V(w_{s}) ds} (1 - \chi_{\{T_{A} > t\}}) \, \delta_{x}(w_{t}) \right]$$

where $\chi_{\{T_A>t\}}$ is the indicator function of a set $\{T_A > t\}$. We consider the trace of the difference of two heat kernels

$$\begin{split} \sum_{x \in G} \left(p^{V}(t, x, x) - p^{V}_{A}(t, x, x) \right) \\ &= \sum_{x \in G} E_{x} \left[e^{-f_{\delta} V(w_{s}) ds} \left(1 - \chi_{(T_{A} > t)} \right) \delta_{x}(w_{t}) \right] \\ &= \sum_{x \in G} \sum_{n \geq 0} \frac{(-1)^{n}}{n!} E_{x} \left[\left(\int_{0}^{t} V(w_{s}) ds \right)^{n} (1 - \chi_{(T_{A} > t)}) \delta_{x}(w_{t}) \right]. \end{split}$$

For n = 0, by using Lemma 2.1 we have

$$\sum_{x \in G} E_x \left[(1 - \chi_{T_A > t}) \delta_x(w_t) \right]$$

=
$$\sum_{a \in A} E_a \left[\delta_a(w_t) \right] + \sum_{x \in G \setminus A} E_x \left[\delta_x(w_t); T_A \le t \right]$$

=
$$|A| (1 - t) + O(t^2) \quad \text{as } t \to 0.$$

For n=1, we have

A TRACE FORMULA FOR DISCRETE SCHRÖDINGER OPERATORS

$$\sum_{x \in G} E_x \left[\left(\int_0^t V(w_s) \, ds \right) (1 - \chi_{\{T_A > t\}}) \, \delta_x(w_t) \right]$$

= $\int_0^t ds \sum_{x \in G} \sum_{y \in G} (p^0(s, x, y) \, V(y) \, p^0(t - s, y, x))$
 $- p_A^0(s, x, y) \, V(y) \, p_A^0(t - s, y, x))$

where $p^0(t, x, y)$ and $p^0_A(t, x, y)$ are the heat kernels for the case that the potential V is identically zero. Using the semigroup property, we have

$$= \int_{0}^{t} ds \sum_{y \in G} V(y) \left(p^{0}(t, y, y) - p_{A}^{0}(t, y, y) \right)$$
$$= t \left\{ \sum_{a \in A} V(a) E_{a} \left[\delta_{a}(w_{t}) \right] + \sum_{y \in G \setminus A} V(x) E_{x} \left[\delta_{x}(w_{t}); T_{A} \leq t \right] \right\}$$
$$= t \sum_{a \in A} V(a) + O(t^{2}) \quad \text{as } t \rightarrow 0.$$

Last we estimate the term for $n \ge 2$.

$$\left|\sum_{n\geq 2} \frac{(-1)^n}{n!} \sum_{x\in G} E_x \left[\left(\int_0^t V(w_s) ds \right)^n (1-\chi_{\{T_A>t\}}) \delta_x(w_t) \right] \right|$$

$$\leq \sum_{n\geq 2} \frac{t^n}{n!} \|V\|_{\infty}^n \sum_{x\in G} E_x \left[(1-\chi_{\{T_A>t\}}) \delta_x(w_t) \right]$$

$$\leq Ct^2.$$

Then, we have

$$\sum_{x \in G} (p^{V}(t, x, x) - p^{V}_{A}(t, x, x)) = |A| - t (\sum_{a \in A} V(a) + |A|) + O(t^{2}) \text{ as } t \to 0.$$

Next we will calculate the difference of two green functions for the second half of the trace formula. Before doing that, we prepare a lemma.

Lemma 2.3. Let G_{λ}^{A} be a $|A| \times |A|$ matrix with the elements $(G_{\lambda}^{A})_{a,b} = g_{\lambda}(a, b)$ for $a, b \in A$. Then det G_{λ}^{A} is holomorphic in $\lambda \in \mathbb{C} \setminus \sigma(L)$. Moreover, for $\lambda \in \mathbb{C} \setminus [\lambda_{0}, \lambda_{\infty}]$, the determinant det G_{λ}^{A} is non-zero, where $\sigma(L)$ is the spectral set of the operator $L, \lambda_{0} = \inf \sigma(L)$ and $\lambda_{\infty} = \sup \sigma(L)$.

Proof. Note that $g_{\lambda}(x, y)$ is holomorphic in $\lambda \in \mathbb{C} \setminus \sigma(L)$. It is obvious by the definition of the determinant that det $G_{\lambda}^{\mathbb{A}}$ is also holomorphic in $\lambda \in \mathbb{C} \setminus \sigma(L)$. Recall that

TOMOYUKI SHIRAI

(2.3)
$$g_{\lambda}(x, y) = \left(\frac{m(y)}{m(x)}\right)^{1/2} \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\langle E(\xi) e_{x, e_{y}} \rangle$$

where $\{e_x\}_{x\in G}$ is an orthonormal basis of $l^2(G, m)$ such that

$$e_x(y) = \begin{cases} m(x)^{-1/2} & \text{if } y = x, \\ 0 & \text{otherwise.} \end{cases}$$

and $E(\xi)$ is the resolution of the identity for the operator L. Let f_0 be an |A|-dimensional vector such that $||f_0||_A = 1$, where $\langle \cdot, \cdot \rangle_A$ is the inner product of $l^2(A, m)$. Let $f \in l^2(G, m)$ be the extension of f_0 such that $supp f \subset A$, $f(a) = f_0(a)$ for any $a \in A$ and ||f|| = 1. Then we have

(2.4)
$$\langle f_0, G_{\lambda}^A f_0 \rangle_A = \langle f, G_{\lambda} f \rangle = \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\mu_f(\xi)$$

where $d\mu_f(\xi) = d \| E(\xi) f \|^2$. We will estimate $|\langle f, G_\lambda f \rangle|$ from below. Firstly, in the case that $|\text{Im}\lambda| > 0$, for any $f \in l^2(G, m)$, we have

$$|\langle f, G_{\lambda}f\rangle| \geq \left|\int_{\sigma(L)} \frac{\mathrm{Im}\lambda}{|\xi-\lambda|^2} d\mu_f(\xi)\right|$$

(2.5)
$$\geq \frac{|\mathrm{Im}\lambda|}{\max_{\xi\in\sigma(L)}|\xi-\lambda|^2}$$

Secondly, when $\lambda \in \mathbb{R} \setminus [\lambda_0, \lambda_{\infty}]$, we have

$$|\langle f, G_{\lambda}f \rangle| \geq \frac{1}{\max(|\lambda - \lambda_0|, |\lambda - \lambda_{\infty}|)}$$

In both cases, there exists a positive constant $C(\lambda)$ depending only on λ such that $|\langle G_{\lambda}f, f \rangle| \geq C(\lambda) > 0$. Then, for any $\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_{\infty}]$, det $G_{\lambda}^{4} \neq 0$.

Remark 2.4. For $\lambda \in [\lambda_0, \lambda_\infty] \cap \sigma(L)^c$, the determinant det G_{λ}^A may vanish.

Lemma 2.5.
$$\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty]$$
. Then for any $x, y \in G$

(2.6)
$$g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = \sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y)$$

where $(G_{\lambda}^{A})^{-1}$ acts on the first variable.

Proof. Let $F_{\lambda}(t) = F_{\lambda}(t, w) = \int_{0}^{t} (-\lambda + V(w_{t})) dt$. If $\lambda < \inf_{x \in G} V(x)$, $F_{\lambda}(t) > 0$, and so $F_{\lambda}(\infty) = \infty$. For any $\lambda < \inf_{x \in G} V(x)$, by the strong Markov property, we have

$$g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = E_{x} \left[\int_{T}^{\infty} e^{-F_{\lambda}(t)} \delta_{y}(w_{t}) dt \right]$$

$$= E_x \left[e^{-F_\lambda(T_A)} E_x \left[\int_0^\infty e^{-F_\lambda(t, S_{T_A} w_l)} \delta_y \left(S_{T_A} w_l \right) dt \mid \mathcal{F}_{T_A} \right]; T_A < \infty \right]$$
$$= E_x \left[e^{-F_\lambda(T_A)} E_{w_{T_A}} \left[\int_0^\infty e^{-F_\lambda(t)} \delta_y \left(w_l \right) dt \right]; T_A < \infty \right] = E_x \left[e^{-F_\lambda(T_A)} g_\lambda \left(w_{T_A}, y \right); T_A < \infty \right]$$

where $(S_s w)_t = w_{t+s}$. We put $\mu_{x,\lambda}(a) = E_x \left[e^{-F_{\lambda}(T_{\lambda})} : w_{T_{\lambda}} = a, T_A < \infty \right]$ for each $a \in A$. Then,

$$g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = \sum_{a \in A} g_{\lambda}(a, y) \mu_{x, \lambda}(a).$$

Next, in the same way as above, we have

$$g_{\lambda}(x, a) = \sum_{b \in A} g_{\lambda}(b, a) \, \mu_{x, \lambda}(b)$$

for each $x \in G$ and $a \in A$.

By Lemma 2.3, there exists an inverse matrix of G_{λ}^{A} . Then we have

$$\begin{split} &\sum_{a \in A} g_{\lambda}(x, a) \ (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y) \\ &= \sum_{a \in A} \sum_{b \in A} g_{\lambda}(b, a) \mu_{x, \lambda}(b) \ (G_{\lambda}^{A})^{-1} \ g_{\lambda}(a, y) \\ &= \sum_{b \in A} \mu_{x, \lambda}(b) \sum_{a \in A} g_{\lambda}(b, a) \ (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y) \\ &= \sum_{b \in A} \mu_{x, \lambda}(b) g_{\lambda}(b, y) = g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) \end{split}$$

The lemma is obtained by analytic continuation.

Proposition 2.6. Let $\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty]$. Then (2.7) $\sum_{x \in G} (g_\lambda(x, x) - g_\lambda^d(x, x)) = \frac{d}{d\lambda} \log \det G_\lambda^A.$

Proof. Since $(G_{\lambda}^{4})^{-1}$ is a linear operator, taking summation over $x \in G$, we have

$$\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{x \in G} \sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, x)$$
$$= \sum_{a \in A} (G_{\lambda}^{A})^{-1} \frac{d}{d\lambda} G_{\lambda}^{A}(a, a) = \operatorname{Tr}\left((G_{\lambda}^{A})^{-1} \frac{d}{d\lambda} G_{\lambda}^{A}\right)$$
$$= \frac{d}{d\lambda} \log \det G_{\lambda}^{A}.$$

Here we used the fact that $\frac{d}{d\lambda}(L-\lambda)^{-1} = (L-\lambda)^{-2}$ and det G_{λ}^{A} is non-zero in $\lambda \in \mathbb{C} \setminus [\lambda_{0}, \lambda_{\infty}]$ by Lemma 2.3.

Next we define a generalized Krein's spectral shift function $\theta_A(\lambda)$. Recall that for any $f \in l^2(G, m)$, $\|(\lambda G_{\lambda} + I)f\| \to 0$ as $|\lambda| \to \infty$. Then, since G_{λ}^A is a finite dimensional matrix, we have

(2.8)
$$\|\lambda G_{\lambda}^{A} + I\| \to 0 \text{ as } |\lambda| \to \infty.$$

Therefore because of the continuity of the determinant, for $\text{Im}\lambda > 0$

(2.9)
$$\det G_{\lambda}^{A} \sim (-\lambda)^{-|A|} \text{ as } |\lambda| \to \infty$$

We take the branch of the logarithm so that Im $\log \det G_{\lambda+\iota\epsilon}^A \to 0$ as $\lambda \to -\infty$. Let $\{\nu_k(\lambda)\}_{k=1}^{|A|}$ be eigenvalues of G_{λ}^A . Then, Im $\log \det G_{\lambda}^A = \sum_{k=1}^{|A|} \operatorname{Im} \log \nu_k(\lambda)$. On the other hand, for each eigenvalue $\nu_k(\lambda)$, there exists a normalized eigenfunction f_k such that

$$\nu_k(\lambda) = \langle f_k, G_\lambda^A f_k \rangle_A = \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\mu_{f_k}(\xi) \, .$$

Here we used (2.4). Then for any $\text{Im}\lambda > 0$ and $1 \le k \le |A|$, $\text{Im}\nu_k(\lambda) > 0$, and since the unordered tuple of eigenvalues is continuous in λ , by the way of taking the branch of the logarithm, we have

$$0 < \text{Im log det } G_{\lambda}^{A} < |A| \pi.$$

Hence, by the Fatou's theorem, a limit

(2.10)
$$\theta_A(\lambda) := \lim_{\epsilon \to 0} \frac{1}{\pi |A|} \text{ Im log det } G^A_{\lambda+i\alpha}$$

exists for almost every $\lambda \in \mathbb{R}$ and $0 \leq \theta_A(\lambda) \leq 1$. We call it a generalized Krein's spectral shift function.

Lemma 2.7. For almost every $\lambda \in \mathbb{R}$, $\theta_A(\lambda)$ exists and $0 \leq \theta_A(\lambda) \leq 1$. In particular,

$$\theta_A(\lambda) = \begin{cases} 0 & \text{if } \lambda < \lambda_0, \\ 1 & \text{if } \lambda > \lambda_\infty. \end{cases}$$

Proof. We have already shown the existence and so we will show only the second statement. Since det G_{λ}^{A} is real-valued for $\lambda \in \mathbb{R} \setminus [\lambda_{0}, \lambda_{\infty}]$, by the definition of the $\theta_{A}(\lambda)$, we have

(2.11)
$$\theta_A(\lambda) \in \left\{\frac{k}{|A|}; k \in \mathbb{Z}\right\}.$$

For any $x, y \in G$, the convergence of the green function $g_{\lambda+i\epsilon}(x, y)$ as $\epsilon \to 0$ is uniform on an arbitrary compact set $K \subset \mathbb{R} \setminus [\lambda_0, \lambda_\infty]$. Then, as $\epsilon \to 0$, Im log det $G_{\lambda+i\epsilon}^A$ also converges uniformly on compact sets in $\mathbb{R} \setminus [\lambda_0, \lambda_\infty]$. Consequently, $\theta_A(\lambda)$ is continuous on $\mathbb{R} \setminus [\lambda_0, \lambda_\infty]$ and in particular, taking account of (2.11), constant on each open intervals $(-\infty, \lambda_0)$ and (λ_∞, ∞) . Furthermore, by the way of taking the branch of the logarithm and (2.9), we conclude the lemma.

Theorem 2.8. Let V be a real-valued bounded function. Then,

(2.12)
$$\frac{1}{|A|} \sum_{x \in G} \left(p^{V}(t, x, x) - p^{V}_{A}(t, x, x) \right) = e^{-\lambda t} + t \int_{\lambda_{0}}^{\lambda_{w}} e^{-\lambda t} \theta_{A}(\lambda) d\lambda$$

where λ_0 (resp. λ_{∞}) is the minimum (resp. maximum) of the spectrum of L.

Proof. Since $p^{V}(t, x, x)$ is the kernel of the operator e^{-tL} , using the Dunford integral, we obtain the following expression:

$$\sum_{x \in G} \left(p^{v}(t, x, x) - p^{v}_{A}(t, x, x) \right)$$
$$= -\sum_{x \in G} \frac{1}{2\pi i} \int_{C} e^{-\lambda t} \left(g_{\lambda}(x, x) - g^{A}_{\lambda}(x, x) \right) d\lambda$$

where the contour C is

$$\{\lambda_{0} - \delta + i\xi; -\epsilon \leq \xi \leq \epsilon\} \cup \{\lambda_{\infty} + \delta + i\xi; -\epsilon \leq \xi \leq \epsilon\}$$
$$\cup \{\xi \pm i\epsilon; \lambda_{0} - \delta \leq \xi \leq \lambda_{\infty} + \delta\}$$

for $\epsilon > 0$ and $\delta > 0$. The interchange of the summation and the integral over C can be easily justified.

By Proposition 2. 6, we have

$$\sum_{x \in G} \left(p^V(t, x, x) - p^V_A(t, x, x) \right) = \frac{-1}{2\pi i} \int_C e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_\lambda \, d\lambda.$$

Now we calculate the right-hand side.

$$\frac{-1}{2\pi i} \int_{C} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda$$

$$= \frac{1}{\pi} \int_{\lambda_{0}-\delta}^{\lambda_{0}+\delta} \operatorname{Im} \left(e^{-(\lambda+\iota\epsilon)t} \frac{d}{d\lambda} \log \det G_{\lambda+\iota\epsilon}^{A} \right) d\lambda$$

$$+ \frac{1}{2\pi i} \int_{\lambda_{0}-\delta-\iota\epsilon}^{\lambda_{0}-\delta+\iota\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda$$

$$+ \frac{1}{2\pi i} \int_{\lambda_{n}+\delta+\iota\epsilon}^{\lambda_{n}+\delta-\iota\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda.$$

TOMOYUKI SHIRAI

The second and third term of the right-hand side will vanish as $\epsilon \rightarrow 0$ since the integrands are analytic in the resolvent set. Integrating the first term by parts, we obtain

$$\frac{1}{\pi} \int_{\lambda_0 - \delta}^{\lambda_n + \delta} \operatorname{Im} \left(e^{-(\lambda + \iota\epsilon)t} \frac{d}{d\lambda} \log \det G_{\lambda + \iota\epsilon}^A \right) d\lambda$$
$$= \frac{1}{\pi} \left[\operatorname{Im} \left(e^{-(\lambda + \iota\epsilon)t} \log \det G_{\lambda + \iota\epsilon}^A \right) \right]_{\lambda_0 - \delta}^{\lambda_n + \delta}$$
$$+ \frac{t}{\pi} \int_{\lambda_0 - \delta}^{\lambda_n + \delta} \operatorname{Im} \left(e^{-(\lambda + \iota\epsilon)t} \log \det G_{\lambda + \iota\epsilon}^A \right) d\lambda$$

Note that $\operatorname{Im} \log \det G_{\lambda}^{A}$ is bounded by (2.9). Using the dominated convergence theorem, as $\epsilon \rightarrow 0$, we obtain

$$\frac{1}{|A|} \sum_{x \in G} (p^{V}(t, x, x) - p^{V}_{A}(t, x, x))$$

$$= -e^{-(\lambda_{0} - \delta)t} \theta_{A}(\lambda_{0} - \delta) + e^{-(\lambda_{w} + \delta)t} \theta_{A}(\lambda_{\infty} + \delta)$$

$$+ t \int_{\lambda_{0} - \delta}^{\lambda_{w} + \delta} e^{-\lambda t} \theta_{A}(\lambda) d\lambda.$$

Hence, from Lemma 2. 7, as $\delta \rightarrow 0$, the proof is completed.

Theorem 2.9. Let V be a real-valued bounded function. Then

(2.13)
$$\frac{1}{|A|} \sum_{a \in A} V(a) = \lambda_{\infty} - 1 - \int_{\lambda_0}^{\lambda_{\infty}} \theta_A(\lambda) d\lambda.$$

Proof. Differentiating both sides of (2.12) and taking the limit $t \rightarrow 0$, we have the result because of Proposition 2.2.

§ 3. An Example

We will give an example which can be calculated $\theta_A(\lambda)$ explicitly. This example is essentially due to Craig [2]. Let G be a one-dimensional lattice \mathbb{Z}^1 and A be a singleton $\{a\}$. V is a n periodic potential, that is, for fixed $n \ge 1$, V(x) = V(y) if d(x, y) = n. In this case it is known that the spectrum of L has a finite band structure. Precisely, the spectrum set is a union of finite closed intervals, for some N,

$$\sigma(L) = \bigcup_{0 \le k \le N} [\lambda_{2k}, \lambda_{2k+1}].$$

Also, the essential spectrum of L_a is same as that of L and the spectrum of L_a may has eigenvalues. Since the green function $g_{\lambda}(a, a)$ is taking real value and monotone increasing on each resolvent set $I_k = (\lambda_{2k-1}, \lambda_{2k})$, it has at most one zero on each I_k . If there exists a zero on I_k , we put it as $\mu_k(a)$ which is an eigenvalue of L_a . If $g_{\lambda}(a, a) > 0$ (resp. <0) on I_k , we put $\mu_k(a) = \lambda_{2k}$ (resp. λ_{2k-1}).

Now we use much weaker version of the remarkable result in [6].

Theorem 3.1. Let V be a periodic potential. Then, for a. e. $\lambda \in \sigma(L)$,

$$\lim_{\epsilon \to 0} \operatorname{Re} g_{\lambda+i\epsilon} (a, a) = 0.$$

For details, one may refer to $\lfloor 6 \rfloor$. Now we can calculate $\theta_A(\lambda)$ as follows:

$$\theta_{A}(\lambda) = \begin{cases} 1, & \lambda_{2k-1} < \lambda < \mu_{k}(a) \\ 0, & \mu_{k}(a) < \lambda < \lambda_{2k}, \\ \frac{1}{2}, & \lambda_{2k} < \lambda < \lambda_{2k+1}. \end{cases}$$

It follows from Theorem 3. 1 and the fact $g_{\lambda}(a, a)$ is real and monotone increasing on the resolvent set. Then we have the following theorem:

Corollary 3.2. Let G be \mathbb{Z}^1 and V a periodic potential. Then

$$V(a) = \frac{\lambda_0 + \lambda_{\infty}}{2} - 1 + \frac{1}{2} \sum_{1 \le k \le N} (\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a)).$$

Proof. By Theorem 2. 9 we have

$$W(a) = \frac{\lambda_0 + \lambda_\infty}{2} - 1 + \int_{\lambda_0}^{\lambda_\infty} \left(\frac{1}{2} - \theta_A(\lambda)\right) d\lambda.$$

Noting that $\frac{1}{2} - \theta_A(\lambda)$ vanishes on $\sigma(L)$, we have

$$V(a) = \frac{\lambda_0 + \lambda_\infty}{2} - 1 + \sum_{k=1}^N \int_{\lambda_{2k-1}}^{\lambda_{2k}} \left(\frac{1}{2} - \theta_A(\lambda)\right) d\lambda$$
$$= \frac{\lambda_0 + \lambda_\infty}{2} - 1 + \frac{1}{2} \sum_{k=1}^N \left(\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a)\right).$$

Remark 3.3. Corollary 3.2 also holds for so-called reflectionless potentials [2].

§ 4. A Discrete Analogue of the Gutzwiller's Trace Formula

Now in order to state a discrete analogue of the Gutzwiller's trace formula for open system, we define a function d_{λ} on $V(G) \times V(G)$ as follows: for each $\lambda < \inf_{x \in G} V(x)$

(4.1)
$$d_{\lambda}(x, y) = -\frac{1}{2} \Big(\log E_{x} [e^{-F_{\lambda}(T_{y})}] + \log E_{y} [e^{-F_{\lambda}(T_{x})}] \Big)$$

where $F_{\lambda}(t) = F_{\lambda}(t, w) = \int_{0}^{t} (-\lambda + V(w_{t})) dt$. Remark that since $g_{\lambda}(x, y) = E_{x}[e^{-F_{\lambda}(T_{w})}; T_{y} < \infty] g_{\lambda}(y, y)$ and $E_{x}[e^{-F_{\lambda}(T_{w})}] = E_{x}[e^{-F_{\lambda}(T_{w})}; T_{y} < \infty]$ for $\lambda < \inf_{x \in G} V(x)$,

$$d_{\lambda}(x, y) = -\frac{1}{2} \log \frac{g_{\lambda}(x, y) g_{\lambda}(y, x)}{g_{\lambda}(x, x) g_{\lambda}(y, y)}.$$

Lemma 4.1. Let $\lambda \leq \inf_{x \in G} V(x)$. Then, $d_{\lambda}(\cdot, \cdot)$ is a distance, that is, $d_{\lambda}(\cdot, \cdot) : V(G) \times V(G) \rightarrow \mathbb{R}^+$ satisfies the following: (1) $d_{\lambda}(x, y) \geq 0$ and if $d_{\lambda}(x, y) = 0$ then x = y, (2) $d_{\lambda}(x, y) = d_{\lambda}(y, x)$, (3) $d_{\lambda}(x, y) \leq d_{\lambda}(x, z) + d_{\lambda}(z, y)$.

Proof. (1) and (2) are trivial. So we will show the triangle inequality (3).

$$E_{x}[e^{-F_{\lambda}(T_{z})}] = E_{x}[e^{-F_{\lambda}(T_{z})}; T_{y} < T_{z}] + E_{x}[e^{-F_{\lambda}(T_{z})}; T_{y} > T_{z}]$$

= $E_{x}[e^{-F_{\lambda}(T_{y})}; T_{y} < T_{z}, T_{y} < \infty] \cdot E_{y}[e^{-F_{\lambda}(T_{z})}] + E_{x}[e^{-F_{\lambda}(T_{z})}; T_{y} > T_{z}].$

Here we used the strong Markov property.

$$\begin{aligned} &-\log E_{x} \left[e^{-F_{\lambda}(T_{y})} \right] \\ &= -\log \left(E_{x} \left[e^{-F_{\lambda}(T_{y})} : T_{y} < T_{z}, T_{y} < \infty \right] \cdot E_{y} \left[e^{-F_{\lambda}(T_{z})} \right] + E_{x} \left[e^{-F_{\lambda}(T_{z})} : T_{y} > T_{z} \right] \right) \\ &\leq -\log \left(E_{x} \left[e^{-F_{\lambda}(T_{y})} : T_{y} < T_{z}, T_{y} < \infty \right] \cdot E_{y} \left[e^{-F_{\lambda}(T_{z})} \right] + E_{x} \left[e^{-F_{\lambda}(T_{y})} : T_{y} > T_{z} \right] \right). \end{aligned}$$

Note that if $0 \le x$, $a, b \le 1$ then $-\log(ax+b) \le -\log(a+b) - \log x$. Then we have

$$-\log E_{x}[e^{-F_{\lambda}(T_{z})}] \leq -\log E_{x}[e^{-F_{\lambda}(T_{y})}] - \log E_{y}[e^{-F_{\lambda}(T_{z})}].$$

Similarly, we have

$$-\log E_{\boldsymbol{z}}[e^{-F_{\boldsymbol{\lambda}}(T_{\boldsymbol{x}})}] \leq -\log E_{\boldsymbol{z}}[e^{-F_{\boldsymbol{\lambda}}(T_{\boldsymbol{y}})}] - \log E_{\boldsymbol{y}}[e^{-F_{\boldsymbol{\lambda}}(T_{\boldsymbol{x}})}].$$

Then, we obtain the lemma.

It is easy to see that

A TRACE FORMULA FOR DISCRETE SCHRÖDINGER OPERATORS

$$(4.2) d_{\lambda_1} > d_{\lambda_2} \text{if } \lambda_1 < \lambda_2 < \inf_{x \in G} V(x)$$

We are interested in the detailed asymptotic properties of the family of distances $\{d_{\lambda}\}$. However, we just give an easy example of $\{d_{\lambda}\}$ which can be explicitly calculated.

Example 4.2. Let G be a *d*-regular tree and V is identically zero. Let $\alpha_d = \frac{2\sqrt{d-1}}{d}$. Then as is well known, the spectrum of $-\Delta_G$ is $[1-\alpha_d, 1+\alpha_d]$. By an easy calculation we obtain

(4.3)
$$d_{\lambda}(x, y) = d(x, y) \cdot (-\log m_d(\lambda))$$

for $\lambda < 0$. Here d(x, y) is the same one defined by (2.2) and

(4.4)
$$m_d(\lambda) = \frac{d}{2d-2} \left(1 - \lambda - \sqrt{(1-\lambda)^2 - \alpha_d^2} \right).$$

Especially, as $\lambda \rightarrow 0$

(1)
$$\lim_{\lambda \to 0} d_{\lambda}(x, y) = d(x, y) \cdot \log(d-1) \quad \text{if } d \ge 3,$$

(2)
$$\lim_{\lambda \to 0^{-}} \frac{d_{\lambda}(x, y)}{\sqrt{-2\lambda}} = d(x, y) \quad \text{if } d = 2$$

and as $\lambda \rightarrow -\infty$

(4.5)
$$d_{\lambda}(x, y) \sim d(x, y) \left\{ \log (1-\lambda) + \log d - \frac{1}{4} \left(\frac{\alpha_d}{1-\lambda} \right)^2 - \cdots \right\}.$$

Now let us show a discrete version of the Gutzwiller's trace formula for our setting. Let G_{λ}^{A} be the matrix that was defined in Lemma 2.3. We decompose G_{λ}^{A} into two matrices D_{λ}^{A} and K_{λ}^{A} as follows:

$$G_{\lambda}^{A} = D_{\lambda}^{A} (I + K_{\lambda}^{A})$$

where D_{λ}^{A} is the diagonal matrix such that $(D_{\lambda}^{A})_{a,a} = g_{\lambda}(a, a)$ for $a \in A$ and

$$(K_{\lambda}^{A})_{a,b} = \begin{cases} \frac{g_{\lambda}(a, b)}{g_{\lambda}(b, b)} & \text{if } a \neq b, \\ 0 & \text{if } a = b. \end{cases}$$

Then,

Lemma 4.3. There exists
$$\tilde{\lambda} \in \mathbf{R}$$
 such that for any $\lambda < \tilde{\lambda} \parallel K_{\lambda}^{A} \parallel < 1$.

Proof. It is obvious by (2, 9).

Before we state our theorem, we prepare some notations. Let σ be the shift transformation on $A^{\mathbb{N}} = \{\underline{a} = (a_n)_{n \in \mathbb{N}}; a_n \in A\}$, i.e.,

$$(\sigma a)_n = a_{n+1} \quad (n \in \mathbb{N}).$$

Let Σ be the σ -invariant closed subset of A^N such that

$$\Sigma = \{ a \in A^{\mathbb{N}} ; a_n \neq a_{n+1} \text{ for any } n \in \mathbb{N} \}$$

The restriction of σ on Σ will be denoted again by σ . For a pair (Σ, σ) we define

$$F(n) = \{ \underline{a} \in \Sigma : \sigma^{n} \underline{a} = \underline{a} \}$$
$$P(n) = F(n) \setminus \bigcup_{k \mid n} F(k)$$

where $k \mid n$ means that k is a divisor of n. For $\underline{a}, \underline{b} \in P(n)$ we define the equivalence relation by

$$\underline{a} \sim \underline{b} \Leftrightarrow 0 \leq \exists k \leq n-1 \text{ such that } \sigma^k \underline{a} = \underline{b}.$$

Let $\Gamma_n = P(n) / \sim$ be the equivalence class of P(n) by \sim . We call an element γ of Γ_n a prime periodic orbits with period *n* and denote the period of γ by L_{τ} . The totality of prime periodic orbits is denoted by Γ . Then, our theorem is the following:

Theorem 4.4. There exists $\tilde{\lambda} \in \mathbb{R}$ such that for any $\lambda < \tilde{\lambda}$

$$\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_{\lambda}(a, a)$$
$$+ \sum_{\tau \in \Gamma} \frac{dS_{\tau}(\lambda)}{d\lambda} \sum_{n \ge 1} \exp(-nS_{\tau}(\lambda) - n\pi iL_{\tau})$$

where $S_{\gamma}(\lambda)$ is the length of a periodic orbit γ with respect to the distance d_{λ} .

Proof. Since $||K_{\lambda}^{A}|| < 1$ for $\lambda < \tilde{\lambda}$, we have

$$\det (I + K_{\lambda}^{A}) = \det \exp \log (I + K_{\lambda}^{A}) = \exp (\operatorname{Tr} \log (I + K_{\lambda}^{A})).$$

$$= \exp\left(-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{Tr}(K_{\lambda}^{A^n})\right).$$

By the definition of K_{λ}^{A} , we obtain

$$\operatorname{Tr}(K_{\lambda}^{4^{n}}) = \sum_{a_{1}a_{2}} \prod_{a_{n} \in F(n)}^{n} \prod_{t=1}^{n} E_{a_{t}} \left[e^{-F_{\lambda} \cdot T_{a_{1}, t'}} \right]$$

where $\dot{a}_1 a_2 \dots \dot{a}_n$ is a periodic point and $a_{n+1} = a_1$. Noting that $S_{\tau_1 \tau_2}(\lambda) = S_{\tau_1}(\lambda) + S_{\tau_2}(\lambda)$ we obtain

$$\det (I+K_{\lambda}^{A}) = \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\gamma \in F(n)} e^{-(S_{\lambda}(\lambda) + i\pi L_{\gamma})}\right)$$
$$= \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\gamma \in P(k)} e^{-\frac{n}{k}(S_{\lambda}(\lambda) + i\pi L_{\gamma})}\right)$$
$$= \exp\left(-\sum_{k=1}^{\infty} \sum_{\gamma \in \Gamma_{\lambda}} \sum_{m=1}^{\infty} \frac{1}{m} e^{-m(S_{\tau}(\lambda) + i\pi L_{\gamma})}\right)$$
$$= \prod_{\gamma \in \Gamma} \left(1 - e^{-(S_{\tau}(\lambda) + i\pi L_{\gamma})}\right).$$

Hence taking the logarithm and differentiating both sides of the equation above, we complete our proof.

Remark 4.5. For fixed $\lambda < \tilde{\lambda}$ the Fredholm determinant det $(I - zK_{\lambda}^{4})$ is the reciprocal of the Ruelle zeta function for the potential $U(\underline{a}) = d_{\lambda}(a_{1}, a_{2}) + i\pi$. Here the Ruelle zeta function $\zeta(z)$ is defined by

$$\zeta(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{\underline{a} \in F(n)} e^{-S_n U(\underline{a})}\right)$$

where $S_n U(\underline{a}) = \sum_{k=0}^{n-1} U(\sigma^k \underline{a}) [1].$

References

- [1] Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, *Lecture Note in Mathematics*, **470** (1975), Springer Verlag, Berlin.
- [2] Craig, W., The Trace Formula for Schrödinger Operators on the Line, Comm. Math. Phys, 126 (1989), 379-407.
- [3] Duren, P L, Theory of H^p-Spaces, Pure Appl Math., 38 (1970). Academic Press.
- [4] Gesztesy, F., Holden, H. and Simon, B., Absolute Summability of the Trace Relation for Certain Schrödinger Operators, Comm. Math. Phys., 168 (1995), 137-161.
- [5] Gutzwiller, M. C., Chaos in Clussical and Quantum Mechanics, Springer Verlag, Berlin, 1990.
- [6] Kotani, S., One-Dimensional Random Schrödinger Operators and Herglotz Functions, Taniguchi Symp. PMMP Katata, (1985), 219-250
- [7] Kotani, S. and Simon, B., Stochastic Schrödinger Operators and Jacobi Matrices on the Strip. Comm. Math. Phys., 119 (1988), 403-429.