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A Trace Formula for Discrete Schrodinger Operators
By

Tomoyuki SHIRAL™

Abstract

We discuss two types of trace formula which arise from the inverse spectral problem for discrete
Schrédinger operators as L= — A+ V (x) where V is a bounded potential. One is the relationship
between a potential and spectral data. and another is the one between the green function of L and
periodic orbits of a state space.

§ 1. Introduction

The trace of the difference of two operators L=—A4-+V on L*(R!) and L, that
is imposed the Dirichlet condition at e €ER* has a relation

(11) Tr (L*La) ZV(G/) :ﬂ()"_g (/,{2]‘*‘12]‘_1‘“2#,')

for a periodic potential V, where {4, } is the collection of all eigenvalues with
periodic and anti-periodic boundary conditions. and {g;}is the collection of
eigenvalues of certain Dirichlet Laplacian. It is the well known formula in Hiil’s
theory for periodic Schrodinger operators. In [2], it has been extended to the
class which is called reflectionless potential containing periodic potential. In
[4], they studied systematically trace formulas by using the scattering quantity
which is called the Krein's spectral shift function. We will show that similar
results as these hold for a discrete Schrodinger operator L on countable set and
L4 that is imposed the Dirichlet condition at a finite set A, that is,

Theorem 1.1. Let G be a countable sel and let A be a Laplacian on G.
Let V be a real-valued bounded function. Further, let L= — Ac+ V and L, be
imposed the Dirichlet condition on a finite set A. Then

(1.2) le—[n (L—La) =TA%T SV =t—1- [ j"a,, ()dA

aeh
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where 04 () is a generalized Krein's spectral shift function.

Especially, if G is Z! and A is a singleton {a}, then we can explicitly
calculate of 4 (4), and the almost same relation as (1.1) holds.

In the area of quantum chaos, M. C. Gutzwiller has proposed the so-called
Gutzwiller’s trace formula [5]. It is the formula which connects the energy level
(the spectrum of Schrodinger operators) with the classical periodic orbits. We
will show that Tr (G, —G%) can be expanded by the periodic orbits on 4 where

G, (resp. G#) is the resolvent of the operator L (resp. La).

Theorem 1.2. There exists A € R such that for any A < 1

2 (gl x)—gt . x)) =2 Edzlog g:(a. a)
acA

TEG

+2 %(—) > exp (—nS, () —nmil,)
rel” n>1
where T is the set of all prime periodic orbits, Ly is the period of 7 and Sy () is the
length of a periodic orbit 7 with vespecl o the distance d; defined by (4.1).

It is thought as a discrete and heat version of the Gutzwiller’s trace
formula.

§ 2. A Trace Formula for the Inverse Spectral Problem

Let G be a countable set and P={p (x, y)}zyec a transition probability. We
assume that the transition probability is (1) m-symmetric. (2) irreducible and
(3) simple, i.e., (1) there exists a positive real-valued function {m (x)}zec on G
such that

m(x)p(x, v)=m(y)p(y, x)
for any r. vy € G, (2) for any x, y € G there exists a positive integer N such
that

PNz, y) >0

and (3) p(x, x) =0. ((3) is not essential but, for simplicity. we assume it.) Let
12(G, m) be an I*-space with respect to the inner product given by

(f.e)= ZG m(x)f(x)g ).

We define a discrete Laplacian on [2(G, m) as follows: for each xEG,

Actp(x) =2 p(x. 7)) (x).

r€G

Let V be a real-valued bounded function and we define a discrete Schrodinger
operator by
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It is a linear bounded self-adjoint operator on (G, m).
Let A C G be a finite subset of G. We consider two problems for our
operator, i.e., one is
Lp(x)=2¢ (x) tE€G

and the other is

Lagp(x) =Lp(x) =2 (x) xEG\A
Lagp(a) =0 a€A,

and their domains are D (L) =12(G, m) and D (La) =1{f € (G, m); f(a) =0 for
any a € A}. We denote the fundamental solutions of the associated heat
equations by p"(t.x.y) and pk(t x.y). respectively, and the associated green
functions, that is, the integral kernels of (L—2) ' and (Lx—A) ! by g1 (x, »)
and g% (r, v), respectivelv. Remark that in general our heat kernels and green
functions are not symmetric functions.

From now on, we assume that there exists a positive integer M such that
(2.1 suplr€G; pa, 1) >0 < M

IT€EG

where |K| is the cardinality of a set K. We can regard G as an infinite graph.
then the assumption (2.1) means that the maximum degree is bounded.

To show our trace formula we calculate the trace > (p¥ (1, x, x) —p¥ (¢, x.
retG

x)) in two different ways. We use the following lemma for the first half of the
trace formula.

Lemma 2.1. Let {w;, Pzt be a continuous time vandom walk with the
genevator Ag, and Ta the first hitting time to the set A. Then, as t—0,

Eo[0a(w) ] =1—t+0(?)

and

2 E0:(w); Ta<t]=0(t?)

reG\A

wheve 0z( * ) is the indicator function of xEG,

Proof. Firstly, since 4¢ is the generator of w; and is bounded, we have

tﬂ
E, [50 (wt)] = 2 EAGM(S,: (a)
n>0 """
=1+t (46d,) (a) +0O(£?)
=1—t+0?
as 0.
Secondly. we define a metric on G as follows: for any x, v € G
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_. . Jn =0; Ipath x=x¢ 21... £a=Yy ]
@.2) d(s.3) 1nf{ st.p(ai, xig) >0 0SSV <pu—1J)

Put M =1 as the assumption (2.1). Then it is obvious that the cardinality of a
set {x € G:d (x, A) =n} is less than | A |M". Then we obtain

2 Ee[0:we); Ta<t]l=2% X E;[0:(w); Ta<t]

zeG\A n1 Z€6
d(z,A)=n
< 3| A|M” Pr[w has at least 2n jumps up to time £]
nx1
=>|A|M" as t—0.
n21 k>2n k! 1121

Here we used the fact that the number of jumps of the random walk up to time ¢
obeys the Poisson law with mean 1.
Now we show the first half of the trace formula.

Proposition 2.2. Let V (x) be a real-valued bounded function on G. Then,

Zb(pv(t, X, x)—pit, x, x))=|A |—t(ZAV(a)+|A D+0(#) ast—0

where | A is the cardinality of the set A.
Proof. By the Feynman-Kac formula, we have
PVt %, ) —ph (¢, 5. x) =Ez[e” V@ (1= xi1,5n) 0z (w)) ]

where X(r.>» is the indicator function of a set {T4 > t}. We consider the trace
of the difference of two heat kernels

2 V(% x) —pht, x, %))
reG
=2 E; [é'_ §Vwads (1 —X(T4>t)> [ (’Wt) ]

zeG

=2 X (= 1) Er[(f V(ws dS) (1 X(TA>!1)5.Z‘(wi:|

ze6G n20
For » =0, by using Lemma 2.1 we have

I§G E-[(1 '"X‘Tpt}) 0z (wt) ]

=2 Eq [5a (w:)] + X Ex[51<wt>; TASt]

acA reG\A
=]al1=-)+0@F)  as 0.

For n=1, we have
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ZE[( [V w) ds) (1= xirn) 0 )|

ze6

=j;tdsz 2 s, x, N V(pE—s,» x)

ze6 yei

—p5 G, 59 V)i (t—s, 9 1))

where p°(t, x, y) and p(t, x, y) are the heat kernels for the case that the
potential V is identically zero. Using the semigroup property, we have

- jo ‘Us SV O @13, 9) =15 (6 3.9))

=] ZV@ELB )]+ T VW E6(wi); Ta < 1]

acA yeG\A

=2V +o{?) ast—0.

aci

Last we estimate the term for n=2.

= L5 b ([ vwds) 0=t s 3w

n>2 : z€G

< ZEIVE ZE (0o 8 w)]

n>2 " reG

IA

Ct2.
Then, we have

> @ x x)—pht x x))=]A |”t(ZAV(a) +AD+0 ) as t—0.

TEG

Next we will calculate the difference of two green functions for the second
half of the trace formula. Before doing that, we prepare a lemma.

Lemma 2.3. Let G4 be a | A|X | A | matrix with the elements (G4)ap=
g:(a, b) for a. b € A. Then detG4 is holomorphic i A € C\o (L). Moreover, for A
€ C\[Ao, A=), the determinant det G4 is non-zero, wheve (L) is the spectral set of
the operator L, 2o=inf (L) and A==supo(L).

Proof. Note that g; (x, ¥) is holomorphic in A € C\o (L). It is obvious by the

definition of the determinant that detG# is also holomorphic in A€ C\o (L) .
Recall that
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_ m_(ﬂ>"2 f 1
(23) g;(x, y) <m<x) a(L)E_Il d<E($>ex,ey>
where {e4)zeq is an orthonormal basis of 2(G, m) such that
ers) :__{m (x) 7Y% if y=y,
0 otherwise,

and E (&) is the resolution of the identity for the operator L. Let fo be an | A |-
dimensional vector such that [[fola =1, where (-.*) 4 is the inner product of
12(A, m). Let f € I2(G, m) be the extension of fo such that supp f CTA, f(a) =
fola) for any @ € A and |/ |=1. Then we have

(2.4) {fo. G fo)a= (/. Gu‘>=j;ug_17duf(€)

where du, (€) =d | E (&) f|2. We will estimate |{f, G £ from below. Firstly. in
the case that |[ImA| >0, for any f € 1?(G. m), we have

!(,f' Glf>l —>— Io[:r(L)l'&Iil;Iz dﬂf(&)l

(2.5) S |ImA]
- maXEeU(L)'S—_/HZ.

Secondly, when 2 € R\[Ao, Aw), we have

1
/ [
1S Ghl 2 =2 A=

In both cases, there exists a positive constant C (1) depending only on A such
that [{G,f. /)| = C(2) >0. Then, for any A € C\[Ao, 2], det GE#0.

Remark 2.4. For 2 € [Ao. A=) N (L)¢, the determinant det G4 may vanish.

Lemma 2.5. 1 € C\[Ao. Aw). Then for any z, v € G

(2.6) alx,y)—gt(x,y)=2 g1(x,a) (GH ' gala, y)

acsA
where (G4) 7! acts on the first variable.

Proof. Let Fr(t) =F(t, w) = [ (—A+V(w))dt. If 1< infzee V (x), F;(1)
>0, and so F; () =00 For any A <infze¢ V (x) . by the strong Markov
property, we have

gi(x,y) —gi{xy) =E1[f:0_””5y (wt)dt]
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=E, [e‘F*(TA’EI [j; e—Fl(z.sr,wo(;y (St, w,)dt | f?r,] T < oo]
=F, [e—Fx(Ta)Ewr‘ [j; e_F‘“)ﬁy (wt)dt] cTa< oo] =FE, [e—F.(TA)gl (wn’ y) CTa< oo]

where (Ssw):= wirs. We put ptz, 2 (@) = Ez [e7F T+ wr,=a, Ta<o0]for each a €
A. Then,

gi(x,y) —gi(x, )= 2Zgla v) iz 2 (a)

acA

Next, in the same way as above, we have
g1(x,a) =2 gi(b, a) yz. 1 (b)
beA

for eachx€G and a €A.

By Lemma 2.3, there exists an inverse matrix of G§. Then we have

2.g(x,a) (GF) 'gala, y)

acA

=2 Zgz (b. a)llz, (b) (Gﬁl)—l &2 ((l. v)

acA beA

=20tz (b)) 2g:(b.a) (GF) 'gala, y)

beA acA

=2t 2 (b)ga (b, y) =galx, y) —gt(x, v).
bEA

The lemma is obtained by analytic continuation.
Proposition 2.6. Let A€C\[ Ao, Aw]. Then

(2.7) 2 (gl x) —gf (n,x))= dZ log det G%.

zeG

Proof. Since (G4)~!is a linear operator, taking summation over x € G. we
have

2 (gl x) —gt (x.x)) =2 2Zgx, a) (G gala, x)

IeG reG ach

=2 (G$H™ Edf G4(a.a) =T1'<(Gf) -t 'd%G’f)

aeA

— 4 4
da log det G§%.



34 TOMOYUKI SHIRAL

Here we used the fact that B%(L—A) 1= (L—2)"2 and det G{ is non-zero in A

€ C\[Ao, Aw)]by Lemma 2.3.

Next we define a generalized Krein’s spectral shift function 64 (1) . Recall
that for any F€ 12(G, m), |(AG:+D | — 0 as | 1] — . Then, since G is a
finite dimensional matrix, we have

(2.8) | AG4+I]|— 0 as | 2| — oo,
Therefore because of the continuity of the determinant, for ImA>0
(2.9) det G§~ (—A) Ml as | A ]|—oo.

We take the branch of the logarithm so that Im log det G$+,e — 0 as A — — oo,

Let {vx (1) Y4 be eigenvalues of G4 Then, Im logdetG4{ = 24, Im log vi(4).
On the other hand, for each eigenvalue v,(A), there exists a normalized
eigenfunction fj such that

vi () = {fr. G} fk>A=j;(L)’§}_—/zdﬂn 8.

Here we used (2.4). Then for any ImA>0 and 1 <k <|A |, Imy, (1) >0, and
since the unordered tuple of eigenvalues is continuous in A, by the way of
taking the branch of the logarithm, we have

O<ImlogdetG§<{Al7r.

Hence, by the Fatou’s theorem, a limit
—1: 1 A
(2.10) 04 () '_1333 Al Im log det Gi+.c

exists for almost every 2 € R and 0 < 6, (1) <1. We call it a generalized
Krein's spectral shift function.

Lemma 2.7. For almost every AR, 04 (R) exists and 0 < 0, (A1) < 1.
In particular,

0 if A<Ao,

0‘4('1):[ 1 if A> Ao

Proof. We have already shown the existence and so we will show only the

second statement. Since detG4 is real-valued for 2 € R\ [, A=), by the
definition of the 64 (4) . we have

(2.11) 0A(x)e[rk—[;kez}.
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For any %, y €G, the convergence of the green function givic (x, y) as € = O is
uniform on an arbitrary compact set K CR\ [Ao, A]. Then, as € — 0, Im log det
G4,ic also converges uniformly on compact sets in R\ [Ag, A-]. Consequently,
64 (2) is continuous on R\ [Ay, A.)and in particular, taking account of (2.11),
constant on each open intervals (—©, A,) and (A, %) . Furthermore, by the
way of taking the branch of the logarithm and (2.9), we conclude the lemma.

Theorem 2.8. Let V be a real-valued bounded function. Then,

212) a7 Z 0 G —phen ) = e M0 (D

where Ao (resp. Aw) is the minimum (vesp. maximum) of the spectrum of L.

Proof. Since p" (¢, x, %) is the kernel of the operator ¢™*£

integral, we obtain the following expression:

> (p"(t, x, %) —py it %, %))

zeG

=— 3o

reG

, using the Dunford

2m (g, x) —gf (x, ) )dA

where the contour C is
{Qo—0+i€; —e<ESQU{Aut0+if: —e<E<L¢e}
U{étie; 10— 0<ELA.+0}

for €>0 and 6> 0. The interchange of the summation and the integral over C
can be easily justified.
By Proposition 2. 6, we have

20V x x) —phlt,x, x) =

= Zm dllog det G dA.

Now we calculate the right-hand side.

;1
o dﬂ —=log det Gf d2A
1 [Ae+s s d
T xd s Im (e o e)tﬁbg det G§+ie>dl
1 XQ—J-H( 2 1
272'1/ Ao—d—1¢ d/-llog det GA d
1 Aatd— 15

2700 J 1t otue - dllog det Gif d.
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The second and third term of the right-hand side will vanish as e—0 since the
integrands are analytic in the resolvent set. Integrating the first term by parts,
we obtain

1 A=t

el —(X+1E)t_d, A )
) s Im(e d/zlog det G44icJdA

At6

=% [Im (e“(“’f)‘log det G124+1e)}

A—6

t Ast0

+—TE L, Im (e‘(“’e” log det Gﬁ‘ﬂe)di

Note that ImlogdetG4 is bounded by (2.9). Using the dominated conver-
gence theorem, as €—0, we obtain

ﬁ[z (¥ (¢ x x) —pY(E 5. x)

ZEG

— _e*(lﬂfﬁ)laA (20___5) _}_e——\/h,-t—éllaA (/100_'_5)
Aato
[ e, (R

Hence, from Lemma 2. 7, as 0—0. the proof is completed.
Theorem 2.9. Let V be a real-valued bounded function. Then

(2.13) ﬁrz V() =zw—1—j;‘”m () dA.

a€A

Proof. Differentiating both sides of (2.12) and taking the limit t— 0, we
have the result because of Proposition 2.2.

§ 3. An Example

We will give an example which can be caiculated 64 (1) explicitly. This
example is essentially due to Craig [2]. Let G be a one-dimensional lattice Z
and A be a singleton {a}. VV is a n periodic potential, that is, for fixed n = 1,
V(x) =V () if d (x, y) =n. In this case it is known that the spectrum of L has a
finite band structure. Precisely. the spectrum set is a union of finite closed
intervals, for some N,

oll)= U UZk. 22k+1].

0<k<N
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Also, the essential spectrum of L, is same as that of L and the spectrum of L,
may has eigenvalues. Since the green function g: (a, @) is taking real value and
monotone increasing on each resolvent set I, = (Aax-1, Azx), it has at most one
zero on each Ip. If there exists a zero on I, we put it as g (@) which is an
eigenvalue of La. If g1 (a, a) >0 (resp. <0) on I;, we put f (@) = Az (resp.
Aze—1).

Now we use much weaker version of the remarkable result in [6].

Theorem 3.1. Let V be a periodic potential. Then, fora.e. A € o (L),

hm Re gi+1e ((l, a) =O
€-0

For details, one may refer to [6].
Now we can calculate 64 (1) as follows:

1, A1 <A< i (a),
Mk (a) <A< Ay,
Aok <A< Azir1.

1
2)

It follows from Theorem 3. 1 and the fact g,(a, a) is real and monotone
increasing on the resolvent set. Then we have the following theorem:

Corollary 3.2. Let G be Z' and V a periodic polential. Then

/10+2

Via)= 1+—— 2 (Aot Ao 2ux (a)).

2 1<k<N

Proof. By Theorem 2. 9 we have

_ zﬂo_;%z_1+ﬁj"(%—eA (n) dx

Noting rhat —6,(A) vanishes on o(L), we have
N Az
v =2t 5 [ (16, )z
k:l ZZ’(—A
_ Aot e

N
5 _1+%Z (hk—l‘*‘/zzk_zﬂk (a) )
k=1

Remark 3.3. Corollary 3.2 also holds for so-called reflectionless potentials

[2].
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§ 4. A Discrete Analogue of the Gutzwiller’s Trace Formula

Now in order to state a discrete analogue of the Gutzwiller’s trace formula for
open system, we define a function d; on V (G) X V (G) as follows: for each A
<infzeg V(x)

(4.1) 42 (1, 9) = =5 (10g E.[e"®] +1log E, [e=>"] )

where F; (t) =F, ¢, w) = J'(— A+ V (w;)) dt. Remark that since g; (x, y) =
Ez[e P, T,<0] g;(y, y) and Ez[e "] =E,[e "™ ; T,<o0] for A <infres
V),

_ 1 gy a(yx)
dilxy)==7lo gj(x,x)gi(y,y)‘

Lemma 4.1. Let A<infre¢ V (x). Then. d; (-, ) is a distance, that is, da
(v,°) : V(G) X V(G)—R" satisfies the following:
(1) d2(x, y) 20 and if da(x, y) =0 then x=y,
(2) da(x,9) =da(y, %),
(3) dalx, y) <da(x, z2) +di(z. y).

Proof. (1) and (2) are trivial. So we will show the triangle inequality (3).
Ezle T2 =E [e 7T, T,<T,] +Ez[e ™', T,>T,]
=E; [e—FAT”): Ty<Tz, Ty<°o] ¢ Ey [é’_F‘(T')] +Ez [e—F‘(T‘): Ty>Tz] .

Here we used the strong Markov property.
—log Ez[e™™'7]
=—log (Ez[e "™ ; Ty<T, Ty<o0] « E,[e T +E[e 5T, T,>T,])
<—log (Ecle™™ ™ Ty<T,, T,<%] - E,[e ™ ] +E;[e ™ T,>T.]).

Note that if 0<x, a, b < 1 then —log (ax+b) < —1log (a +b) —log x. Then we
have

—log Ez[e 7] < —log Ez[e™"™] —log Ey[e "],
Similarly, we have
—log E;[e FT] < —log E.[e "] —log E,[e~"T9].

Then, we obtain the lemma.
It is easy to see that
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(42) d11>d1, if /11</22<inf.ze(; V(x)

We are interested in the detailed asymptotic properties of the family of
distances {d,}. However, we just give an easy example of {d;} which can be
explicitly calculated.

Example 4.2. Let G be a d-regular tree and V is identically zero. Let

_2/d—1

@ =="_—"". Then as is well known, the spectrum of —Acis [1—ay 1+ad].

By an easy calculation we obtain
(4.3) di(x, ) =d (x.y) + (—logma(2))
for 2<0. Here d (x, y) is the same one defined by (2.2) and

(4.4) md(2)=2d—({_7<1—2~«/ (1—1)2—073).
Especially, as 2—0

(1) limdi(x.y) =d(x, y) - logd—1) ifd=3,
2—0

i —d—l—(x’ ): ) i =
(2) Ali?_ /___7% dx,v) ifd=2

and as A——

(4.5) 4 di(x, y) —d (x. y) {log (1—2) +log d—%(—l—a_%)z— . ]

Now let us show a discrete version of the Gutzwiller’'s trace formula for
our setting. Let G4 be the matrix that was defined in Lemma 2.3. We decompose
G% into two matrices Df and K4 as follows:

G$=D4{ (I+K%)

where Df is the diagonal matrix such that (D%)ze=g:(a, a) for a€A and

£2(.b) oLy

o _ ) &b b) '
(Kx)a,b_

0 if a=b.

Then,

Lemma 4.3. There exists A € R such that for any A<1
&g <1.
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Proof. It is obvious by (2. 9).

Before we state our theorem, we prepare some notations. Let o be the shift
transformation on AN={a= (an) nen; a,€EA4 }. ie.,

(0a)n=an1 WMEN).

Let = be the o-invariant closed subset of AN such that

2 ={a€A"; anFans for any nEN}
The restriction of ¢ on 2 will be denoted again by o. For a pair (2, g) we
define
Fn)={a€ZX ;0"=a}

Pn)=Fm)\UF (k)

kin

where k|n means that k is a divisor of #. For a, b € P (n) we define the
equivalence relation by

a~b & 0< 3 k<n—1 such that a*a=b.

Let ', =P )/~ be the equivalence class of P(n) by ~. We call an element 7
of T", a prime periodic orbits with period » and denote the period of 7 by L,.
The totality of prime periodic orbits is denoted by I'. Then, our theorem is the
following:

Theorem 4.4. There exists ASR such that for any A<2

S (g0 —gh e 1) = 2 “og £1(a. a)

ZEG acA

+ > d—scﬁj—)-z exp (—nS, (1) —nmil,)

Ter n>1
where S, () is the length of a peviodic orbit T with vespect to the distance d,.
Proof. Since | K4 | < 1 for 2 < A, we have
det (I+K4%) =det exp log (I+K4) =exp (Trlog I+K%)).

(=1)"

n

=exp (— i Tr (K}‘")).

n=1
By the definition of K%, we obtain

Trk)= 3 11 Eafem ]

a10; 4nEFn) 1=1
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where d1as... dn is a periodic point and a,+1=a;. Noting that Sy, (1) =S, (1) +
S;, () we obtain
det (1+K8) = exp(— 51 5 ¢mwurnm)

n=1" yeFm)

= exp (__ i 1 > e-—;‘«s.uHmL-))

n=1 " 7€P (k)
k'n

— exp(_ Z Z_l_e—m‘s,u‘r-*-mL,')

k=1 €T, m=1M

=11 (1_€—m,r1\+mL,)>_
TET
Hence taking the logarithm and differentiating both sides of the equation ahove,
we complete our proof.

Remark 4.5. For fixed A <A the Fredholm determinant det (I—zK%) is the
reciprocal of the Ruelle zeta function for the potential U (a) =d; (a1 az) +i7.
Here the Ruelle zeta function {(z) is defined by

((2) =exp<_ £z 6_5"”1‘)>
=1 EEF{")
where S,U (a) = 2725 U(o%a) [1].
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