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A Trace Formula for Discrete Schrodinger Operators

By

Tonioyuki SHIRAI*

Abstract

We discuss two types of trace formula which arise from the inverse spectral problem for discrete

Schrodinger operators as L — — A + V(x) where V is a bounded potential. One is the relationship

between a potential and spectral data, and another is the one between the green function of L and

periodic orbits of a state space.

§ 1. Introduction

The trace of the difference of two operators L= — 4 + V on L2 (R1) and La that
is imposed the Dirichlet condition at a^R1 has a relation

(1.1) Tr(L-Lj =V(a) = ̂ o+Z Uz,+^-i-20/)
;=i

for a periodic potential V, where { Xj } is the collection of all eigenvalues with
periodic and anti-periodic boundary conditions, and {fa } is the collection of
eigenvalues of certain Dirichlet Laplacian. It is the well known formula in Hill's
theory for periodic Schrodinger operators. In [2], it has been extended to the
class which is called reflectionless potential containing periodic potential In
[4], they studied systematically trace formulas by using the scattering quantity
which is called the Krein's spectral shift function. We will show that similar
results as these hold for a discrete Schrodinger operator L on countable set and
LA that is imposed the Dirichlet condition at a finite set A, that is,

Theorem 1.1. Let G be a countable set and let AG be a Laplacian an G.
Let V be a real-valued bounded function. Further, let L = — AG + V and LA be
imposed the Dirichlet condition on a finite set A. Then

(1.2)
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where OA(^) is a generalized Kreins spectral shift function.

Especially, if G is Z1 and A is a singleton ( a ) , then we can explicitly
calculate of ftiU), and the almost same relation as (1.1) holds.

In the area of quantum chaos, M. C. Gutzwiller has proposed the so-called
Gutzwiller's trace formula [5] . It is the formula which connects the energy level
(the spectrum of Schrb'dinger operators) with the classical periodic orbits. We

will show that Tr (G^~Gf) can be expanded by the periodic orbits on A where

Gx (resp. Gf ) is the resolvent of the operator L (resp. LA] .

Theorem 1.2. There exists J ^ R such that for any A < J

Z (gi (x, x) ~gf (*,*)) = Z "Tylog gi (a, a)

— Z- — ]T exp (— nSr (X) —niziLr)

where F is the set of all prime periodic orbits, L7 is the period of J and Sr(A) is the
length of a periodic orbit 7 with respect to the distance di defined by (4.1).

It is thought as a discrete and heat version of the Gutzwiller's trace
formula.

§ 2. A Trace Formula for the Inverse Spectral Problem

Let G be a countable set and P= {p(x, y}} x,y*=G a transition probability. We
assume that the transition probability is (1) w -symmetric, (2) irreducible and
(3) simple, i.e., (1) there exists a positive real-valued function (m(x)}XeG on G
such that

m ( x ) p ( x , v) =m ( y ) p ( y , x )
for any jc. v e G, (2) for any x, y ^ G there exists a positive integer N such
that

pN(x,y)>0
and (3) p ( x , x) =0. ( (3 ) is not essential but, for simplicity, we assume it.) Let
12(G, m) be an /2~space with respect to the inner product given by

m
xeG

(X}/U)g(X}.

We define a discrete Laplacian on 12(G, m) as follows: for each x

Let V be a real- valued bounded function and we define a discrete Schrodinger
operator by
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L=-AG+V.
It is a linear bounded self-adjoint operator on /2(G, m).

Let A ^ G be a finite subset of G. We consider two problems for our
operator, i.e., one is

and the other is

LA$(X) =L(f)(x) =

LA<t>(a)=0

and their domains are D (L) =/2 (G, m) and D (LA) ={f ^ I2 (G, wi) ; /(a) =0 for
any a ^ A}. We denote the fundamental solutions of the associated heat
equations by pv(t,x,y) and p A ( t , x , y ) , respectively, and the associated green
functions, that is, the integral kernels of ( L ~ / l ) ~ l and ( L A ~ ~ ^ ) ~ I by g * ( x , y )
and g% Cr, v) , respectively. Remark that in general our heat kernels and green
functions are not symmetric functions.

From now on, we assume that there exists a positive integer M such that

(2.1) sup|{r^G;/?U, r) >0}| <M

where \K\ is the cardinality of a set #. We can regard G as an infinite graph,
then the assumption (2.1) means that the maximum degree is bounded.

To show our trace formula we calculate the trace 2 (pv (/, x, x) ~ PA (t, x,
jreG

x) ) in two different ways. We use the following lemma for the first half of the
trace formula.

Lemma 2.1. Let (wt, P?} be a continuous time random walk with the
generator AG, and TA the first hitting time to the set A. Then, as t~-*Q,

and

2 E x [ d x ( w t ) \ T A < t ] = 0 ( t 2 )
xeG\A

where dx( ' ) is the indicator function of x^G,

Proof. Firstly, since AG is the generator of wt and is bounded, we have

E a [ d a ( w t ) ] = E~AG"da(a)
n>0 n-

(AG5a)(a}+0(t2}
= l-t+0(t2}

as f— "0.
Secondly, we define a metric on G as follows: for any x, y ^ G
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/9 9\ , / \_. fln> 0; 3path*=*o*i...*fi=>> \
(2.2) d(x,y)—mi\ _/ \ \ A A </ w ^ i •I s.t /> (*i, *i+i) > 0 0 < V i < n ~ l J

Put M ^ 1 as the assumption (2.1). Then it is obvious that the cardinality of a
set {x €= G; d(x, A) —n} is less than \A |Af. Then we obtain

o;eGV4 n^l x^G
d(x,A)=n

| A (AT Px[w has at least 2n jumps up to time t]

n>l k>2n - n>l

Here we used the fact that the number of jumps of the random walk up to time t
obeys the Poisson law with mean 1.

Now we show the first half of the trace formula.

Proposition 2<,20 Let V(x)be a real-valued bounded function on G. Then,

Z (pv(t, x, x) -pl(t, x, x}) =\A \-t(EV(a) +\A I) +0(t2) as *->0
xeG aeA

where \A\ is the cardinality of the set A.

Proof. By the Feynman-Kac formula, we have

pv(t, x, X) ~pv
A(t, x, x) =E,[e-"vW(l-xiTl>t})d,(wt)]

where XiTA>t} is the indicator function of a set {T^ > t}. We consider the trace
of the difference of two heat kernels

-2 Z -
xeG n^o n\

For n — 0, by using Lemma 2. 1 we have

= 2 Ea [da M ] + Z Ex [3, (w,) ; TA <t\
a&A xe

= \A\(l-t) +0(t*)

For n = l, we have
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0

V(ws)<

S (p0(s,x,y)V(y)p'(t-s,ytx.

where pQ (t, x, y) and PA (t, x, y) are the heat kernels for the case that the
potential V is identically zero. Using the semigroup property, we have

- f'ds 2V(y)(p°(t, y, v) -p°A (t, y, v))
J° yeG

= t\ ZV(a}Ea[da(wt)]+ 2 Vk)Ex[dM; TA < t]}
*- ns=. & «M£^f*\ A '

Last we estimate the term for

< Z^l

< Ct2.

Then, we have

S (pv(t, x, x) ~pl(t, x,x))=\A\-t(E V(a) +\A I) +0 (t2) as t~*0.

Next we will calculate the difference of two green functions for the second
half of the trace formula. Before doing that, we prepare a lemma.

Lemma 2.3* Let G* be a \A \ x | A \ matrix with the elements (Gf)a,b =

gt (a, b) for a, b ^ A. Then detGf is holomorphic in X ^ C\a(L). Moreover, for A

G C\[/!o, ^J, the determinant detGf is non-zero, where o(L) is the spectral set of
the operator L, >?o—inf cr(L) and X^=sup ff(L).

Proof. Note that gx (x, y) is holomorphic in X <E CVr(L). It is obvious by the

definition of the determinant that detGf is also holomorphic in X
Recall that
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(2.3) ftU,)
. , '<ra)?~~^

where {ex}Xec is an orthonormal basis of /2(G, m) such that
f

i x \m(x)~1/2 if y=x,
ex(y)=\

I 0 otherwise,

and E (£) is the resolution of the identity for the operator L. Let/0 be an \A\-
dimensional vector such that ||/O||A — 1, where { ° , ° ) A is the inner product of
I2 (A, m) . Let/ e I2 (G, w) be the extension of /o such that SM#>/ c,4, /(a) =
/o(a) for any a ^ A and ||/|| = 1. Then we have

(2.4) </0. G? /„>,!=</, G,f)= f -jr^-dt£f($J a<L) £ A

where dp!/ (?) =d||£ (c)/||2. We will estimate |(/, G ^ / ) | from below. Firstly, in
the case that |lm/i|>0, for any/ ̂  / 2 (G, m) , we have

(2.5)

Secondly, when X ^ R\ Uo, ̂ J, we have

I / r .^ r\ I -^ 1

In both cases, there exists a positive constant C U) depending only on X such

that KG/,/}| > CU) >0. Then, for any A e C\U0, ̂ J, det Gf ^0.

Remark 2.4. For ^ e [^0, ^J Ha(L) c , the determinant detGj? may vanish.

Lemma 2,5. /I ^ C\[/i0, ^°J. Then for any x,y ^ G

(2.6) g*(xty)-gt(x,y) = E g* (xt a) (Gf) ~l g, (a, y)
aeA

where (Gf)"1 acts on the first variable.

Proof. Let F*(t} =-F,(t, w) = f {)(-* +V(wt))dt. If A < in^c V U), F^(0
>0, and so F^ (°°) = 0 0 . For any A <inf^eG V (x) , by the strong Markov
property, we have
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where (Ss w) t
 = wt+s- We put fjLx, *(a) = Ex [e ~F*(TA)\ WTA — a, TA < °°] for each a

A. Then,

Next, in the same way as above, we have

gt(x, a) = 2^(6, a)(JLx.x (b)

for each x ̂  G and

By Lemma 2.3, there exists an inverse matrix of Gf. Then we have

= 2 jKz.^6) 2ft (fc.

The lemma is obtained by analytic continuation.

Proposition 2.6. Let A^C\Uo, /L].

(2.7) Z (g, (x, x) -gf U, x)) =j^ log det G?.

Proof. Since (Gf)"1 is a linear operator, taking summation over x ^ G, we
have

— --—log (Jgt QA
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Here we used the fact that -TT(L — ̂ )~1= ( L — / l ) ~ 2 and det Gf is non-zero In

^o, /L]by Lemma 2.3.
Next we define a generalized Krein's spectral shift function QA U) - Recall

that for any /e I2 (G, w), ||UG^+/)/|| -> 0 as U | -» °°. Then, since Gf is a
finite dimensional matrix, we have

(2.8) |UGf-r-/ | |-*OasU|-» «>.

Therefore because of the continuity of the determinant, for Im/l>0

(2.9) det Gf - (-/0~UI as | X |->oo.

We take the branch of the logarithm so that Im logdetGf+ re —* 0 as X —*• — °°.

Let (vk U)Hi'i be eigenvalues of Gf. Then, Im logdetGf = Zit'i Im log y*U) .
On the other hand, for each eigenvalue y*-(/U, there exists a normalized
eigenfunction/* such that

f 1
<J a(L) s ^

Here we used (2.4). Then for any Im/lX) and 1 <k <\A |, Imy fe U) >0, and
since the unordered tuple of eigenvalues is continuous in X, by the way of
taking the branch of the logarithm, we have

0 < Im log det Gf < \ A 7T.

Hence, by the Fatou's theorem, a limit

(2.10) 0AW): = lim-nVr Im l°8 det

exists for almost every /I e K and 0 < ^A W) ^1. We call it a generalized
Krein's spectral shift function.

Lemma 2,1'„ For almost every X eR, 0A (^) ^sts and 0 < 6A U) ^ 1.
:. particular,

' 0 t//?</J0,

1 i/-^>^.

Froo/. We have already shown the existence and so we will show only the

second statement. Since detGf is real-valued for X €= R \ [>?o, ^«] , by the
definition of the OA U) , we have

(2.11)
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For any x, y €: G, the convergence of the green function g*+i€ (x, y) as 6 — > 0 is
uniform on an arbitrary compact set #cR\[/i0> /L]. Then, as e ~» 0, Im log det

Gf+ie also converges uniformly on compact sets in R\ U0, /L]. Consequently,
ftiU) is continuous on R\U0 , ^J and in particular, taking account of (2.11),
constant on each open intervals (~°°, /io) and (/L, °°) . Furthermore, by the
way of taking the branch of the logarithm and (2.9), we conclude the lemma.

Theorem 2.8. Let V be a real-valued bounded function. Then,

(2.12) i-k- Z (Pv(t, x, x} -pi (t, x, x))=e~^
I ^ I xeG

where AQ (resp. /loo) is the minimum (resp. maximum} of the spectrum of L.

Proof. Since pv (t, x, x) is the kernel of the operator e~tL, using the Dunford
integral, we obtain the following expression:

= - 2 e^(g,(x, x) -gf (x,
x^G£

where the contour C is

for 6>0 and 5>0. The interchange of the summation and the integral over C
can be easily justified.

By Proposition 2. 6, we have

v (t, x, x) -PV
A (t, x, x) ) = «-" log det Gf

Now we calculate the right-hand side.

' l o g d e t

1 /
+7T-7 I ^"^Tflog det Gf dA.&
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The second and third term of the right-hand side will vanish as 6—»0 since the
integrands are analytic in the resolvent set. Integrating the first term by parts,
we obtain

Im (e u+l€)t log det G*-
7LJ A0—d \

Note that ImlogdetGf is bounded by (2.9), Using the dominated conver-
gence theorem, as £—K), we obtain

-) ?\ I — U*,-t-0U/~| / io — o)+e 6A(A0

Hence, from Lemma 2. 7, as 5—^0, the proof is completed.

Theorem 2«,90 Let V be a real-valued bounded function. Then

(2.13)

Proof. Differentiating both sides of (2.12) and taking the limit t~ *0, we
have the result because of Proposition 2.2.

We will give an example which can be calculated 6A (A) explicitly. This
example is essentially due to Craig [2]. Let G be a one-dimensional lattice Z1

and A be a singleton {a }. V is an periodic potential, that is, for fixed n > 1,
V(x) =V (y) if d (x, y) —n. In this case it is known that the spectrum of L has a
finite band structure. Precisely, the spectrum set is a union of finite closed
intervals, for some N,

ff(L)= U [hk.ht+i].
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Also, the essential spectrum of La is same as that of L and the spectrum of La

may has eigenvalues. Since the green function g* (a, a) is taking real value and
monotone increasing on each resolvent set h — (%2k-i, ^2*), it has at most one
zero on each Ik. If there exists a zero on Ik, we put it as Hk (fl) which is an
eigenvalue of La. If gi (a, a) > 0 (resp. <0) on Ik, we put fjtk (a) ~ &2k (resp.
A2fc-l) •

Now we use much weaker version of the remarkable result in [6].

Theorem 3.1. Let V be a periodic potential. Then, for a. e. X ^ a (L),

lim Re gt+t€ (a, a) — 0.
£-0

For details, one may refer to [6].
Now we can calculate OA U) as follows:

0, fJL

1 ,

2' A

It follows from Theorem 3. 1 and the fact g*(a, a) is real and monotone
increasing on the resolvent set. Then we have the following theorem:

Corollary 3.2. Let G be Z1 and V a periodic potential. Then

1<K<N

Proof. By Theorem 2. 9 we have

Noting that -~6A U) vanishes on a(L] , we have

Remark 3.3. Corollary 3.2 also holds for so-called reflectionless potentials
[2].
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§ 40 A Discrete Analogue of the Gutzwiller's Trace Formula

Now in order to state a discrete analogue of the Gutzwiller's trace formula for
open system, we define a function dx on V (G) X V (C) as follows: for each X

G V(x)

(4.1) d* (*, j) = - l o g £,[^(T*}] +log E,[<r*(T'

where F^ (0 — F^ (f, t0) = fol (~ 2 + V (W) df. Remark that since ^ (#, jy) =
£,[g-^(^; T9<°°]gz(y,y) and Ex[e-F^(T^~\ =Ex[e'F^} ; T,<oo] for

.
, y)

Lemma 4D10 Let A <infTec V (x) . Then, d* (• , °) is a distance, that is,
(• , •) : F(G) X 7(G)-*R+ satisfies the following:
(1) d,? U, jy) ̂ 0 and if d* (x, y) —0 then x=y,
(2) ^Oc,^)=^(^*),
(3) d*(x,y)<di(x,z)+d,(z,y).

Proof, (l) and (2) are trivial. So we will show the triangle inequality (3) .

=Ex[e~F'(TJ:

Here we used the strong Markov property.

-log Ex[e-F'>T'>]

= -log (Ex[e-F'(T>] ; Ty<Tz, Ts<oo

<-log (£,[?-
f'"-''; T,<T,, T,<oo] .£,[,-^W]+£,[e-^^; T,>TJ).

Note that if 0<#, a, 6 < 1 then —log (ax + b) < — log (a + b) ~~log jc. Then we
have

Similarly, we have

Then, we obtain the lemma.
It is easy to see that



A TRACE FORMULA FOR DISCRETE SCHRODINGER OPERATORS 39

(4.2) d*><J* if^i<^2<infx6 C V(x}.

We are interested in the detailed asymptotic properties of the family of
distances (di) . However, we just give an easy example of id*} which can be
explicitly calculated.

Example 4.2. Let G be a d -regular tree and V is identically zero. Let
o / j -T

< , Then as is well known, the spectrum of — AG is [l~ad, l + ad].

By an easy calculation we obtain

(4.3) d i ( x , y ) = d ( x , y ) • (-logw,U))

for X<0. Here d (x,y) is the same one defined by (2.2) and

(4.4)

Especially, as

(1) \imdi(x.y)=dkty) • log(d-l) i f d > 3 ,
/?-o

(2) \w-fy&$-=d(x.y) iid = 2

and as ^-^ — co

(4.5) ^U^)~dU

Now let us show a discrete version of the Gutzwiller's trace formula for

our setting. Let Gf be the matrix that was defined in Lemma 2.3. We decompose

Gf into two matrices D* and K$ as follows:

where D$ is the diagonal matrix such that (D^}a,a=g^ (a, a] for a^A and

Then,

Lemma 4.3. There exists /t €= R such that for any
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Proof. It is obvious by (2. 9) .

Before we state our theorem, we prepare some notations. Let a be the shift
transformation on A® = (a— (a«)MeN; an^A }, i.e.,

Let 2 be the a-invariant closed subset of AN such that

2 — {a^AN ; an^att+i for any n^N).

The restriction of o on 2 will be denoted again by <7. For a pair ( 2 , o) we
define

F(n)^{ae2 ; a
na=a)

P ( w ) = F ( n ) \ U F (Ar)
A|»

where & |w means that k is a divisor of n. For a , b ^ P (n) we define the
equivalence relation by

a~b <^> 0< 3 ̂ <n-l such that aka = b.

Let r M = P ( w ) / — be the equivalence class of P ( n ) by — . We call an element 7
of F „ a prime periodic orbits with period n and denote the period of J by L7.
The totality of prime periodic orbits is denoted by T . Then, our theorem is the
following:

4o4«, There exists /l^K such that for any

X<EG

+ v~i a O f \A. I ^~^ / o / "2 \ • r N2-/ —~j~j—2^ exp(—nSr(A)—nmLr)
rer aA nzi

where S r ( A ) is the length of a periodic orbit j with respect to the distance d*.

Proof. Since ||tf? || < 1 for X < I, we have

detCH-At) =det exp log (/+/#) =exp(Tr:

By the definition of ^1 we obtain

)= 2 U Ea.[e-F>'T->']
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where aia2... dn is a periodic point and an+i = ai. Noting that S7ir=U) — Sri U) +
SV2(/0 we obtain

-1- -de t (/+#?)= e x p - - -
n=l

= exp

= exp( — Z 2 Z—e >H (^)+i7rLT)

rer

Hence taking the logarithm and differentiating both sides of the equation above,
we complete our proof.

Remark 4.5. For fixed X <! the Fredholm determinant det (l~-zKj;) is the
reciprocal of the Ruelle zeta function for the potential U (a) — dx (ai, #2) ~HTT.
Here the Ruelle zeta function £(z) is defined by

cw=exP(-f;^ez

where SnU(a) =Z2=J Lr(dfca) [l].
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