Publ. RIMS, Kyoto Univ. 34 (1998), 27-41

A Trace Formula for Discrete Schrödinger Operators

By

Tomoyuki SHIRAI^{*}

Abstract

We discuss two types of trace formula which arise from the inverse spectral problem for discrete Schrödinger operators as $L = -d + V(x)$ where V is a bounded potential. One is the relationship between a potential and spectral data, and another is the one between the green function of *L* and periodic orbits of a state space.

§ 1. Introduction

The trace of the difference of two operators $L = -\Delta + V$ on $L^2(\mathbf{R}^1)$ and L_a that is imposed the Dirichlet condition at $a\!\in\!\mathbb{R}^1$ has a relation

(1.1)
$$
\operatorname{Tr} (L - L_a) = V(a) = \lambda_0 + \sum_{j=1}^{\infty} (\lambda_{2j} + \lambda_{2j-1} - 2\mu_j)
$$

for a periodic potential *V*, where $\{\lambda_i\}$ is the collection of all eigenvalues with periodic and anti-periodic boundary conditions, and $\{ \mu_i \}$ is the collection of eigenvalues of certain Dirichlet Laplacian. It is the well known formula in Hill's theory for periodic Schrödinger operators. In $[2]$, it has been extended to the class which is called reflectionless potential containing periodic potential In [4], they studied systematically trace formulas by using the scattering quantity which is called the Krein's spectral shift function. We will show that similar results as these hold for a discrete Schrödinger operator L on countable set and *LA* that is imposed the Dirichlet condition at a finite set *A,* that is,

Theorem 1.1. Let G be a countable set and let Δ_G be a Laplacian on G. Let V be a real-valued bounded function. Further, let $L = -\Delta_G + V$ and L_A be *imposed the Dirichlet condition on a finite set A. Then*

(1.2)
$$
\frac{1}{|A|}\mathrm{Tr}\,(L-L_A) = \frac{1}{|A|}\sum_{a\in A}V(a) = \lambda_{\infty} - 1 - \int_{\lambda_0}^{\lambda_{\infty}}\theta_A(\lambda)\,d\lambda
$$

Communicated by T. Kawai, March 19. 1997. Revised November 14, 1997.

¹⁹⁹¹ Mathematics Subject Classification (s): 81U40, 58F20

^{*} Supported by J.S.P.S. Research Fellowships for Young Scientists.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. E-mail: shirai@kurims.kyoto-u.ac.jp

where $\theta_A(\lambda)$ *is a generalized Krein's spectral shift function.*

Especially, if G is \mathbb{Z}^1 and A is a singleton $\{a\}$, then we can explicitly calculate of $\theta_A(\lambda)$, and the almost same relation as (1.1) holds.

In the area of quantum chaos, M. C. Gutzwiller has proposed the so-called Gutzwiller's trace formula $[5]$. It is the formula which connects the energy level (the spectrum of Schrödinger operators) with the classical periodic orbits. We will show that $Tr(G_{\lambda}-G_{\lambda}^{A})$ can be expanded by the periodic orbits on A where G_{λ} (resp. G_{λ}^{A}) is the resolvent of the operator *L* (resp. L_{A}).

Theorem 1.2. There exists $\tilde{\lambda} \in \mathbb{R}$ such that for any $\lambda < \tilde{\lambda}$

$$
\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_{\lambda}(a, a)
$$

$$
+ \sum_{\gamma \in \Gamma} \frac{dS_{\gamma}(\lambda)}{d\lambda} \sum_{n \ge 1} \exp(-nS_{\gamma}(\lambda) - n\pi i L_{\gamma})
$$

where Γ is the set of all prime periodic orbits, $L₇$ is the period of γ and $S₇(\lambda)$ is the *length of a periodic orbit* γ with respect to the distance d_{λ} defined by (4.1) .

It is thought as a discrete and heat version of the Gutzwiller's trace formula.

§ 2. A Trace Formula for the Inverse Spectral Problem

Let G be a countable set and $P = {p(x, y)}_{x,y \in G}$ a transition probability. We assume that the transition probability is (1) m-symmetric, (2) irreducible and (3) simple, i.e., (1) there exists a positive real-valued function $\{m(x)\}_{x\in G}$ on G such that

$$
m(x)p(x, y) = m(y)p(y, x)
$$

for any $x, y \in G$, (2) for any $x, y \in G$ there exists a positive integer *N* such that

$$
p^N(x, y) > 0
$$

and (3) $p(x, x) = 0$. ((3) is not essential but, for simplicity, we assume it.) Let $l^2(G, m)$ be an l^2 -space with respect to the inner product given by

$$
\langle f, g \rangle = \sum_{x \in G} m(x) \overline{f(x)} g(x).
$$

We define a discrete Laplacian on $l^2(G, m)$ as follows: for each x

$$
\Delta_G \phi(x) = \sum_{r \in G} p(x, r) \phi(r) - \phi(x).
$$

Let V be a real-valued bounded function and we define a discrete Schrödinger operator by

A TRACE FORMULA FOR DISCRETE SCHRODINGER OPERATORS 29

$$
L = -\Delta_G + V.
$$

It is a linear bounded self-adjoint operator on $l^2(G,\,m)$.

Let $A \subseteq G$ be a finite subset of G. We consider two problems for our operator, i.e., one is \sim

$$
L\phi(x) = \lambda \phi(x) \qquad x \in G
$$

and the other is

$$
\begin{cases}\nL_A \phi(x) = L \phi(x) = \lambda \phi(x) & x \in G \setminus A \\
L_A \phi(a) = 0 & a \in A,\n\end{cases}
$$

and their domains are $D(L) = l^2(G, m)$ and $D(L_A) = {f \in l^2(G, m) ; f(a) = 0 \text{ for }}$ any $a \in A$. We denote the fundamental solutions of the associated heat equations by $p^V(t,x,y)$ and $p_A^V(t,x,y)$, respectively, and the associated green functions, that is, the integral kernels of $(L - \lambda)^{-1}$ and $(L_A - \lambda)^{-1}$ by $g_\lambda(x, y)$ and $g_A^A(x, y)$, respectively. Remark that in general our heat kernels and green functions are not symmetric functions.

From now on, we assume that there exists a positive integer *M* such that

$$
\sup_{x \in G} |\{r \in G; p(x, r) > 0\}| \le M
$$

where $|K|$ is the cardinality of a set K. We can regard G as an infinite graph, then the assumption (2.1) means that the maximum degree is bounded.

To show our trace formula we calculate the trace $\sum_{x \in G} (p^V(t, x, x) - p_A^V(t, x, x))$ *x)*) in two different ways. We use the following lemma for the first half of the trace formula.

Lemma 2.1. Let $\{w_t, P_x\}$ be a continuous time random walk with the *generator* Δ_G , and T_A the first hitting time to the set A. Then, as $t\rightarrow 0$,

$$
E_a[\delta_a(w_t)] = 1 - t + O(t^2)
$$

and

$$
\sum_{x \in G \backslash A} E_x [\delta_x (w_t); T_A \leq t] = O(t^2)
$$

where $\delta_x(\cdot)$ *is the indicator function of* $x \in G$,

Proof. Firstly, since \varDelta_{G} is the generator of w_{t} and is bounded, we have

$$
E_a[\delta_a(w_t)] = \sum_{n\geq 0} \frac{t^n}{n!} \Delta_{G}^n \delta_a(a)
$$

= 1 + t \left(\Delta_G \delta_a\right)(a) + O(t^2)
= 1 - t + O(t^2)

as $t\rightarrow 0$.

Secondly, we define a metric on G as follows: for any $x, y \in G$

30 TOMOYUKI SHIRAI

$$
(2.2) \t d(x, y) = \inf \left\{ \begin{array}{l} n \ge 0; \ \exists \text{ path } x = x_0 \ x_1 ... x_n = y \\ \text{s.t. } p(x_i, x_{i+1}) > 0 \quad 0 \le \forall \ i \le n-1 \end{array} \right\}.
$$

Put $M \geq 1$ as the assumption (2.1) . Then it is obvious that the cardinality of a set $\{x \in G; d(x, A) = n\}$ is less than $\mid A \mid M^n$. Then we obtain

$$
\sum_{x \in G \setminus A} E_x[\delta_x(w_t); T_A \le t] = \sum_{n \ge 1} \sum_{\substack{x \in G \\ d(x, A) = n}} E_x[\delta_x(w_t); T_A \le t]
$$

$$
\le \sum_{n \ge 1} |A| M^n P_x[w \text{ has at least } 2n \text{ jumps up to time } t]
$$

$$
= \sum_{n \ge 1} |A| M^n \sum_{k \ge 2n} \frac{e^{-t} t^k}{k!} \le \sum_{n \ge 1} |A| M^n t^{2n} \le Ct^2 \text{ as } t \to 0.
$$

Here we used the fact that the number of jumps of the random walk up to time *t* obeys the Poisson law with mean 1.

Now we show the first half of the trace formula.

Proposition 2.2. Let $V(x)$ be a real-valued bounded function on G. Then,

$$
\sum_{x \in G} \left(p^V(t, x, x) - p_A^V(t, x, x) \right) = |A| - t \left(\sum_{a \in A} V(a) + |A| \right) + O(t^2) \quad \text{as } t \to 0
$$

where $|A|$ *is the cardinality of the set A.*

Proof. By the Feynman-Kac formula, we have

$$
p^{V}(t, x, x) - p_{A}^{V}(t, x, x) = E_{x}[e^{-\int_{0}^{t} V(w_{s}) ds}(1 - \chi_{\{T_{A} > t\}}) \delta_{x}(w_{t})]
$$

where $\chi_{\{T_A > t\}}$ is the indicator function of a set $\{T_A > t\}$. We consider the trace of the difference of two heat kernels

$$
\sum_{x \in G} \left(p^{V}(t, x, x) - p^{V}(t, x, x) \right)
$$
\n
$$
= \sum_{x \in G} E_{x} \left[e^{-\int_{\delta}^{t} V(w_{s}) ds} \left(1 - \chi_{\{T_{s} > t\}} \right) \delta_{x}(w_{t}) \right]
$$
\n
$$
= \sum_{x \in G} \sum_{n \geq 0} \frac{(-1)^{n}}{n!} E_{x} \left[\left(\int_{0}^{t} V(w_{s}) ds \right)^{n} \left(1 - \chi_{\{T_{s} > t\}} \right) \delta_{x}(w_{t}) \right].
$$

For $n = 0$, by using Lemma 2.1 we have

$$
\sum_{x \in G} E_x [(1 - \chi_{\{T_A > t\}}) \delta_x (w_t)]
$$

=
$$
\sum_{a \in A} E_a [\delta_a (w_t)] + \sum_{x \in G \setminus A} E_x [\delta_x (w_t); T_A \le t]
$$

=
$$
|A| (1-t) + O(t^2)
$$
 as $t \rightarrow 0$.

For $n=1$, we have

A TRACE FORMULA FOR DISCRETE SCHRODINGER OPERATORS 31

$$
\sum_{x \in G} E_x \Biggl[\Biggl(\int_0^t V(w_s) \, ds \Biggr) (1 - \chi_{\{T_s > t\}}) \, \delta_x(w_t) \Biggr]
$$

=
$$
\int_0^t ds \sum_{x \in G} \sum_{y \in G} \langle p^0(s, x, y) V(y) p^0(t - s, y, x) \rangle
$$

-
$$
p_A^0(s, x, y) V(y) p_A^0(t - s, y, x) \rangle
$$

where p^0 (*t*, *x*, *y*) and p^0 (*t*, *x*, *y*) are the heat kernels for the case that the potential *V* is identically zero. Using the semigroup property, we have

$$
= \int_0^t ds \sum_{y \in G} V(y) \left(p^0(t, y, y) - p_A^0(t, y, y) \right)
$$

$$
= t \Biggl\{ \sum_{a \in A} V(a) E_a [\delta_a(w_t)] + \sum_{y \in G \setminus A} V(x) E_x [\delta_x(w_t); T_A \le t] \Biggr\}
$$

$$
= t \sum_{a \in A} V(a) + O(t^2) \text{ as } t \to 0.
$$

Last we estimate the term for $n \geq 2$.

$$
\left| \sum_{n\geq 2} \frac{(-1)^n}{n!} \sum_{x\in G} E_x \Big[\Big(\int_0^t V(w_s) ds \Big)^n (1 - \chi_{\{T_s > t\}}) \, \delta_x(w_t) \Big] \right|
$$

$$
\leq \sum_{n\geq 2} \frac{t^n}{n!} \| V \|_{\infty}^n \sum_{x\in G} E_x \big[(1 - \chi_{\{T_s > t\}}) \, \delta_x(w_t) \big]
$$

$$
\leq C t^2.
$$

Then, we have

$$
\sum_{x \in G} (\rho^V(t, x, x) - p_A^V(t, x, x)) = |A| - t \left(\sum_{a \in A} V(a) + |A| \right) + O(t^2) \quad \text{as } t \to 0.
$$

Next we will calculate the difference of two green functions for the second half of the trace formula. Before doing that, we prepare a lemma.

Lemma 2.3. Let G^A be a $|A| \times |A|$ matrix with the elements $(G^A)_{a,b}$ = $g_{\lambda}(a, b)$ for $a, b \in A$. Then $\det G_{\lambda}^{A}$ is holomorphic in $\lambda \in \mathbb{C}\setminus \sigma(L)$. Moreover, for λ $\mathcal{C} \subset \mathbb{C} \setminus [\lambda_0, \lambda_{\infty}]$, the determinant $\det G^A_\lambda$ is non-zero, where $\sigma(L)$ is the spectral set of *the operator L,* $\lambda_0 = \inf \sigma(L)$ *and* $\lambda_\infty = \sup \sigma(L)$.

Proof. Note that $g_\lambda(x, y)$ is holomorphic in $\lambda \in \mathbb{C} \setminus \sigma(L)$. It is obvious by the definition of the determinant that det G_{λ}^{A} is also holomorphic in $\lambda \in \mathbb{C} \setminus \sigma(L)$. Recall that

32 TOMOYUKI SHIRAI

(2.3)
$$
g_{\lambda}(x, y) = \left(\frac{m(y)}{m(x)}\right)^{1/2} \int_{\sigma(L)} \frac{1}{\xi - \lambda} d \langle E(\xi) e_{x} e_{y} \rangle
$$

where ${e_k}_{x \in G}$ is an orthonormal basis of $l^2(G, m)$ such that

$$
e_x(y) = \begin{cases} m(x)^{-1/2} & \text{if } y = x, \\ 0 & \text{otherwise,} \end{cases}
$$

and $E(\xi)$ is the resolution of the identity for the operator L. Let f_0 be an $|A|$ dimensional vector such that $||f_0||_A = 1$, where $\langle \cdot, \cdot \rangle_A$ is the inner product of $I^2(A, m)$. Let $f \in I^2(G, m)$ be the extension of f_0 such that supp $f \subset A$, $f(a) =$ $f_0(a)$ for any $a \in A$ and $||f||=1$. Then we have

(2.4)
$$
\langle f_0, G_\lambda^A f_0 \rangle_A = \langle f, G_\lambda f \rangle = \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\mu_f(\xi)
$$

where $d\mu_f(\xi) = d ||E(\xi)f||^2$. We will estimate $|\langle f, G_\lambda f \rangle|$ from below. Firstly, in the case that $|\text{Im}\lambda| > 0$, for any $f \in l^2(G, m)$, we have

$$
|\langle f, G_{\lambda} f \rangle| \geq \left| \int_{\sigma(L)} \frac{\mathrm{Im} \lambda}{|\xi - \lambda|^2} d\mu_f(\xi) \right|
$$

$$
\geq \frac{|\text{Im}\lambda|}{\max_{\xi \in \sigma(L)} |\xi - \lambda|^2}.
$$

Secondly, when $\lambda \in \mathbb{R} \backslash [\lambda_0, \lambda_{\infty}]$, we have

$$
|\langle f, G_{\lambda} f \rangle| \geq \frac{1}{\max(|\lambda - \lambda_0|, |\lambda - \lambda_{\infty}|)}.
$$

In both cases, there exists a positive constant $C(\lambda)$ depending only on λ such that $|\langle G_{\lambda}f,f\rangle| \geq C(\lambda) > 0$. Then, for any $\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_{\infty}]$, det $G_{\lambda}^A \neq 0$.

Remark 2.4. For $\lambda \in [\lambda_0, \lambda_{\infty}] \cap \sigma(L)^c$, the determinant det G^A may vanish.

Lemma 2.5.
$$
\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_{\infty}].
$$
 Then for any $x, y \in G$

(2.6)
$$
g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = \sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y)
$$

where $(G_A^A)^{-1}$ acts on the first variable.

Proof. Let $F_{\lambda}(t) = F_{\lambda}(t, w) = \int_{0}^{t} (-\lambda + V(w_t)) dt$. If $\lambda \leq \inf_{x \in G} V(x)$, $F_{\lambda}(t)$ >0 , and so $F_{\lambda}(\infty) = \infty$. For any λ \leq inf_{xeG} *V* (x), by the strong Markov property, we have

$$
g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = E_{x} \left[\int_{T_{\lambda}}^{\infty} e^{-F_{\lambda}(t)} \delta_{y}(w_{t}) dt \right]
$$

A TRACE FORMULA FOR DISCRETE SCHRÖDINGER OPERATORS 33

$$
=E_x\Big[e^{-F_x(T_A)}E_x\Big[\int_0^\infty e^{-F_x(t,S_{T_x}w_t)}\delta_y(S_{T_A}w_t)dt\Big|\mathcal{F}_{T_A}\Big];\ T_A<\infty\Big]
$$

=
$$
E_x\Big[e^{-F_x(T_A)}E_{w_{T_A}}\Big[\int_0^\infty e^{-F_x(t)}\delta_y(w_t)dt\Big];\ T_A<\infty\Big]=E_x\Big[e^{-F_x(T_A)}g_x(w_{T_A},y);\ T_A<\infty\Big]
$$

where $(S_s w)_t = w_{t+s}$. We put $\mu_{x, \lambda}(a) = E_x [e^{-F_{\lambda}(T_A)}: w_{T_A} = a, T_A < \infty]$ for each α *A.* Then,

$$
g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y) = \sum_{a \in A} g_{\lambda}(a, y) \mu_{x, \lambda}(a).
$$

Next, in the same way as above, we have

$$
g_{\lambda}(x, a) = \sum_{b \in A} g_{\lambda}(b, a) \mu_{x, \lambda}(b)
$$

for each $x \in G$ and $a \in A$.

By Lemma 2.3, there exists an inverse matrix of G_{λ}^{A} . Then we have

$$
\sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y)
$$
\n
$$
= \sum_{a \in A} \sum_{b \in A} g_{\lambda}(b, a) \mu_{x, \lambda}(b) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y)
$$
\n
$$
= \sum_{b \in A} \mu_{x, \lambda}(b) \sum_{a \in A} g_{\lambda}(b, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, y)
$$
\n
$$
= \sum_{b \in A} \mu_{x, \lambda}(b) g_{\lambda}(b, y) = g_{\lambda}(x, y) - g_{\lambda}^{A}(x, y)
$$

The lemma is obtained by analytic continuation.

Proposition 2.6. Let $\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty]$. Then (2.7) $\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \frac{d}{d\lambda} \log \det G_{\lambda}^{A}.$

Proof. Since $(G_A^A)^{-1}$ is a linear operator, taking summation over $x \in G$, we have

$$
\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{x \in G} \sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda}^{A})^{-1} g_{\lambda}(a, x)
$$

$$
= \sum_{a \in A} (G_{\lambda}^{A})^{-1} \frac{d}{d\lambda} G_{\lambda}^{A}(a, a) = \text{Tr}((G_{\lambda}^{A})^{-1} \frac{d}{d\lambda} G_{\lambda}^{A})
$$

$$
= \frac{d}{d\lambda} \log \det G_{\lambda}^{A}.
$$

Here we used the fact that $\frac{d}{d\lambda}(L-\lambda)^{-1} = (L-\lambda)^{-2}$ and det G^A_λ is non-zero in $\in \mathbb{C} \backslash [\lambda_0, \lambda_{\infty}]$ by Lemma 2.3.

Next we define a generalized Krein's spectral shift function $\theta_A(\lambda)$. Recall that for any $f \in l^2(G, m)$, $\| (\lambda G_\lambda + I)f \| \to 0$ as $|\lambda| \to \infty$. Then, since G_λ^A is a finite dimensional matrix, we have

(2.8) |UGf-r-/||-*OasU|-» «>.

Therefore because of the continuity of the determinant, for $\text{Im}\lambda > 0$

(2.9)
$$
\det G_{\lambda}^{A} \sim (-\lambda)^{-|A|} \text{ as } |\lambda| \to \infty.
$$

We take the branch of the logarithm so that Im log det $G_{\lambda + i\epsilon}^A \rightarrow 0$ as $\lambda \rightarrow -\infty$. Let $\{\nu_k(\lambda)\}_{k=1}^{|A|}$ be eigenvalues of G_{λ}^A . Then, Im log det $G_{\lambda}^A = \sum_{k=1}^{|A|}$ Im log $\nu_k(\lambda)$. On the other hand, for each eigenvalue $\nu_k(\lambda)$, there exists a normalized eigenfunction f_k such that

$$
\nu_k(\lambda) = \langle f_k, G_\lambda^A f_k \rangle_A = \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\mu_{f_k}(\xi).
$$

Here we used (2.4) . Then for any Im $\lambda > 0$ and $1 \leq k \leq |A|$, Im $\nu_k(\lambda) > 0$, and since the unordered tuple of eigenvalues is continuous in λ , by the way of taking the branch of the logarithm, we have

$$
0 < \text{Im} \log \det G^A_\lambda < |A| \pi.
$$

Hence, by the Fatou's theorem, a limit

(2.10)
$$
\theta_A(\lambda) := \lim_{\epsilon \to 0} \frac{1}{\pi |A|} \text{Im} \log \det G_{\lambda + i\epsilon}^A
$$

exists for almost every $\lambda \in \mathbb{R}$ and $0 \leq \theta_A (\lambda) \leq 1$. We call it a generalized Krein's spectral shift function.

Lemma 2.7. For almost every $\lambda \in \mathbb{R}$, $\theta_A(\lambda)$ exists and $0 \leq \theta_A(\lambda) \leq 1$. :. *particular,*

$$
\theta_A(\lambda) = \begin{cases} 0 & \text{if } \lambda < \lambda_0, \\ 1 & \text{if } \lambda > \lambda_{\infty}. \end{cases}
$$

Proof. We have already shown the existence and so we will show only the second statement. Since det G_{λ}^{A} is real-valued for $\lambda \in \mathbb{R} \setminus [\lambda_{0}, \lambda_{\infty}]$, by the definition of the $\theta_A(\lambda)$, we have

$$
\theta_A(\lambda) \in \left\{ \frac{k}{|A|}; \, k \in \mathbb{Z} \right\}.
$$

For any $x, y \in G$, the convergence of the green function $g_{\lambda + i\epsilon}(x, y)$ as $\epsilon \to 0$ is uniform on an arbitrary compact set $K\subset \mathbb{R}\setminus[\lambda_0, \lambda_\infty]$. Then, as $\epsilon \to 0$, Im log det $G^A_{\lambda+i\epsilon}$ also converges uniformly on compact sets in $\mathbb{R}\setminus[\lambda_0, \lambda_{\infty}]$. Consequently, $\theta_A(\lambda)$ is continuous on $\mathbb{R}\setminus[\lambda_0, \lambda_\infty]$ and in particular, taking account of (2.11) , constant on each open intervals $(-\infty, \lambda_0)$ and $(\lambda_{\infty}, \infty)$. Furthermore, by the way of taking the branch of the logarithm and (2.9) , we conclude the lemma.

Theorem 2.8. *Let V be a real-valued bounded function. Then,*

$$
(2.12) \qquad \frac{1}{|A|} \sum_{x \in G} \left(p^V(t, x, x) - p_A^V(t, x, x) \right) = e^{-\lambda x} + t \int_{\lambda_0}^{\lambda_*} e^{-\lambda t} \theta_A(\lambda) d\lambda
$$

where λ_0 (resp. λ_∞) is the minimum (resp. maximum) of the spectrum of L.

Proof. Since $p^V(t, x, x)$ is the kernel of the operator e^{-tL} , using the Dunford integral, we obtain the following expression:

$$
\sum_{x \in G} (p^V(t, x, x) - p_A^V(t, x, x))
$$

=
$$
-\sum_{x \in G} \frac{1}{2\pi i} \int_C e^{-\lambda t} (g_\lambda(x, x) - g_\lambda^A(x, x)) d\lambda
$$

where the contour C is

$$
\{\lambda_0 - \delta + i\xi \; ; \; -\epsilon \leq \xi \leq \epsilon\} \cup \{\lambda_\infty + \delta + i\xi \; ; \; -\epsilon \leq \xi \leq \epsilon\}
$$

$$
\cup \{\xi \pm i\epsilon \; ; \; \lambda_0 - \delta \leq \xi \leq \lambda_\infty + \delta\}
$$

for $\epsilon > 0$ and $\delta > 0$. The interchange of the summation and the integral over C can be easily justified.

By Proposition 2. 6, we have

$$
\sum_{x \in G} \left(p^V(t, x, x) - p_A^V(t, x, x) \right) = \frac{-1}{2\pi i} \int_C e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_{\lambda} d\lambda.
$$

Now we calculate the right-hand side.

$$
\frac{-1}{2\pi i} \int_{c} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda
$$
\n
$$
= \frac{1}{\pi} \int_{\lambda_{0}-\delta}^{\lambda_{0}+\delta} \text{Im} \left(e^{-(\lambda + i\epsilon)t} \frac{d}{d\lambda} \log \det G_{\lambda + i\epsilon}^{A} \right) d\lambda
$$
\n
$$
+ \frac{1}{2\pi i} \int_{\lambda_{0}-\delta - i\epsilon}^{\lambda_{0}-\delta + i\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda
$$
\n
$$
+ \frac{1}{2\pi i} \int_{\lambda_{0}+\delta + i\epsilon}^{\lambda_{0}+\delta - i\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G_{\lambda}^{A} d\lambda.
$$

36 TOMOYUKI SHIRAI

The second and third term of the right-hand side will vanish as $\epsilon \rightarrow 0$ since the integrands are analytic in the resolvent set. Integrating the first term by parts, we obtain

$$
\frac{1}{\pi} \int_{\lambda_0 - \delta}^{\lambda_n + \delta} \text{Im} \Big(e^{-(\lambda + i\epsilon)t} \frac{d}{d\lambda} \log \det G^A_{\lambda + i\epsilon} \Big) d\lambda
$$
\n
$$
= \frac{1}{\pi} \Big[\text{Im} \Big(e^{-(\lambda + i\epsilon)t} \log \det G^A_{\lambda + i\epsilon} \Big) \Big]_{\lambda_0 - \delta}^{\lambda_0 + \delta}
$$
\n
$$
+ \frac{t}{\pi} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \text{Im} \Big(e^{-(\lambda + i\epsilon)t} \log \det G^A_{\lambda + i\epsilon} \Big) d\lambda
$$

Note that Imlog det G_{λ}^{A} is bounded by (2.9) . Using the dominated convergence theorem, as $\epsilon \rightarrow 0$, we obtain

$$
\frac{1}{|A|} \sum_{x \in G} (\rho^V(t, x, x) - p_A^V(t, x, x))
$$

= $-e^{-(\lambda_0 - \delta)t} \theta_A(\lambda_0 - \delta) + e^{-(\lambda_x + \delta)t} \theta_A(\lambda_\infty + \delta)$
+ $t \int_{\lambda_0 - \delta}^{\lambda_x + \delta} e^{-\lambda t} \theta_A(\lambda) d\lambda.$

Hence, from Lemma 2. 7, as $\delta \rightarrow 0$, the proof is completed.

Theorem 2.9. Let V be a real-valued bounded function. Then

(2.13)
$$
\frac{1}{|A|} \sum_{a \in A} V(a) = \lambda_{\infty} - 1 - \int_{\lambda_0}^{\lambda_{\infty}} \theta_A(\lambda) d\lambda.
$$

Proof. Differentiating both sides of (2.12) and taking the limit $t \rightarrow 0$, we have the result because of Proposition 2.2.

§ 3. An Example

We will give an example which can be calculated θ_A (λ) explicitly. This example is essentially due to Craig [2]. Let G be a one-dimensional lattice \mathbb{Z}^1 and A be a singleton $\{a\}$. *V* is a *n* periodic potential, that is, for fixed $n \geq 1$, $V(x) = V(y)$ if $d(x, y) = n$. In this case it is known that the spectrum of L has a finite band structure. Precisely, the spectrum set is a union of finite closed intervals, for some N,

$$
\sigma(L) = \bigcup_{0 \leq k \leq N} [\lambda_{2k}, \lambda_{2k+1}].
$$

Also, the essential spectrum of *La* is same as that of *L* and the spectrum of *L^a* may has eigenvalues. Since the green function $g_{\lambda}(a, a)$ is taking real value and monotone increasing on each resolvent set $I_k = (\lambda_{2k-1}, \lambda_{2k})$, it has at most one zero on each I_k . If there exists a zero on I_k , we put it as μ_k (a) which is an eigenvalue of L_a . If $g_\lambda(a, a) > 0$ (resp. <0) on I_k , we put $\mu_k(a) = \lambda_{2k}$ (resp. λ_{2k-1}).

Now we use much weaker version of the remarkable result in [6].

Theorem 3.1. Let V be a periodic potential. Then, for a. e. $\lambda \in \sigma$ (L),

$$
\lim_{\epsilon \to 0} \text{Re } g_{\lambda + i\epsilon} \ (a, a) = 0.
$$

For details, one may refer to $[6]$. Now we can calculate $\theta_A(\lambda)$ as follows:

$$
\theta_A(\lambda) = \begin{cases}\n1, & \lambda_{2k-1} < \lambda < \mu_k(a) \\
0, & \mu_k(a) < \lambda < \lambda_{2k}, \\
\frac{1}{2}, & \lambda_{2k} < \lambda < \lambda_{2k+1}.\n\end{cases}
$$

It follows from Theorem 3. 1 and the fact $g_{\lambda}(a, a)$ is real and monotone increasing on the resolvent set. Then we have the following theorem:

Corollary 3.2. Let G be \mathbb{Z}^1 and V a periodic potential. Then

$$
V(a) = \frac{\lambda_0 + \lambda_{\infty}}{2} - 1 + \frac{1}{2} \sum_{1 \leq k \leq N} \left(\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a) \right).
$$

Proof. By Theorem 2. 9 we have

$$
V(a) = \frac{\lambda_0 + \lambda_\infty}{2} - 1 + \int_{\lambda_0}^{\lambda_\infty} \left(\frac{1}{2} - \theta_A(\lambda)\right) d\lambda.
$$

Noting that $\frac{1}{2} - \theta_A(\lambda)$ vanishes on $\sigma(L)$, we have

$$
V(a) = \frac{\lambda_0 + \lambda_{\infty}}{2} - 1 + \sum_{k=1}^{N} \int_{\lambda_{2k-1}}^{\lambda_{2k}} \left(\frac{1}{2} - \theta_A(\lambda)\right) d\lambda
$$

= $\frac{\lambda_0 + \lambda_{\infty}}{2} - 1 + \frac{1}{2} \sum_{k=1}^{N} \left(\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a)\right).$

Remark 3.3. Corollary 3.2 also holds for so-called reflectionless potentials [2].

§ 4. A Discrete Analogue of the Gutzwiller's Trace Formula

Now in order to state a discrete analogue of the Gutzwiller's trace formula for open system, we define a function d_{λ} on $V(G) \times V(G)$ as follows: for each λ $\langle \inf_{x \in G} V(x) \rangle$

(4.1)
$$
d_{\lambda}(x, y) = -\frac{1}{2} \Big(\log E_x \big[e^{-F_{\lambda}(T_y)} \big] + \log E_y \big[e^{-F_{\lambda}(T_x)} \big] \Big)
$$

where $F_{\lambda}(t) = F_{\lambda}(t, w) = \int_0^t (-\lambda + V(w_t)) dt$. Remark that since $g_{\lambda}(x, y)$ = $E_x[e^{-F_x(\tau_w)}; T_y < \infty]g_x(y, y)$ and $E_x[e^{-F_x(\tau_w)}] = E_x[e^{-F_x(\tau_w)}; T_y < \infty]$ for $V(x)$,

$$
d_{\lambda}(x, y) = -\frac{1}{2} \log \frac{g_{\lambda}(x, y) g_{\lambda}(y, x)}{g_{\lambda}(x, x) g_{\lambda}(y, y)}.
$$

Lemma 4.1. Let λ <inf_{xeG} V (x). Then, d_{λ} (°, °) is a distance, that is, d_{λ} $(\cdot, \cdot) : V(G) \times V(G) \rightarrow \mathbb{R}^+$ satisfies the following: (1) $d_{\lambda}(x, y) \ge 0$ and if $d_{\lambda}(x, y) = 0$ then $x = y$, (2) $d_{\lambda}(x,y)=d_{\lambda}(y,x)$, (3) $d_{\lambda}(x, y) \leq d_{\lambda}(x, z) + d_{\lambda}(z, y)$.

Proof. (1) and (2) are trivial. So we will show the triangle inequality (3) .

$$
E_x[e^{-F_{\lambda}T_{\nu}}] = E_x[e^{-F_{\lambda}(T_{\nu})}; T_y < T_z] + E_x[e^{-F_{\lambda}(T_{\nu})}; T_y > T_z]
$$
\n
$$
= E_x[e^{-F_{\lambda}(T_{\nu})}; T_y < T_z, T_y < \infty] \cdot E_y[e^{-F_{\lambda}(T_{\nu})}] + E_x[e^{-F_{\lambda}(T_{\nu})}; T_y > T_z].
$$

Here we used the strong Markov property.

$$
- \log E_x[e^{-F_x(T_t)}]
$$

= $-\log (E_x[e^{-F_x(T_t)} : T_y < T_z, T_y < \infty] \cdot E_y[e^{-F_x(T_t)}] + E_x[e^{-F_x(T_t)}; T_y > T_z])$
 $\leq - \log (E_x[e^{-F_x(T_t)}; T_y < T_z, T_y < \infty] \cdot E_y[e^{-F_x(T_t)}] + E_x[e^{-F_x(T_t)}; T_y > T_z]).$

Note that if $0 \le x$, $a, b \le 1$ then $-\log(ax+b) \le -\log(a+b) - \log x$. Then we have

$$
-\log E_x\big[e^{-F_\lambda(T_s)}\big]\leq -\log E_x\big[e^{-F_\lambda(T_s)}\big]-\log E_y\big[e^{-F_\lambda(T_s)}\big].
$$

Similarly, we have

$$
-\log E_z\big[e^{-F_\lambda(T_x)}\big]\leq -\log E_z\big[e^{-F_\lambda(T_y)}\big]-\log E_y\big[e^{-F_\lambda(T_x)}\big].
$$

Then, we obtain the lemma.

It is easy to see that

A TRACE FORMULA FOR DISCRETE SCHRÖDINGER OPERATORS 39

(4.2) d*><J* if^i<^2<infx6C *V(x}.*

We are interested in the detailed asymptotic properties of the family of distances $\{d_{\lambda}\}\right.$ However, we just give an easy example of $\{d_{\lambda}\}\right)$ which can be explicitly calculated.

Example 4.2. Let G be a d-regular tree and V is identically zero. Let $\alpha_d = \frac{2\sqrt{d-1}}{d}$. Then as is well known, the spectrum of $-\Delta_G$ is $[1-\alpha_d, 1+\alpha_d]$. By an easy calculation we obtain

(4.3)
$$
d_{\lambda}(x, y) = d(x, y) \cdot (-\log m_d(\lambda))
$$

for λ <0. Here $d(x, y)$ is the same one defined by (2.2) and

(4.4)
$$
m_d(\lambda) = \frac{d}{2d-2} \left(1 - \lambda - \sqrt{(1-\lambda)^2 - \alpha_d^2} \right).
$$

Especially, as $\lambda \rightarrow 0$

(1)
$$
\lim_{\lambda \to 0} d_{\lambda}(x, y) = d(x, y) \cdot \log(d - 1)
$$
 if $d \ge 3$,
\n(2) $\lim_{\lambda \to 0} \frac{d_{\lambda}(x, y)}{\sqrt{-2\lambda}} = d(x, y)$ if $d = 2$

and as $\lambda \rightarrow -\infty$

(4.5)
$$
d_{\lambda}(x, y) \sim d(x, y) \left\{ \log(1 - \lambda) + \log d - \frac{1}{4} \left(\frac{\alpha_d}{1 - \lambda} \right)^2 - \cdots \right\}.
$$

Now let us show a discrete version of the Gutzwiller's trace formula for our setting. Let G^A_λ be the matrix that was defined in Lemma 2.3. We decompose G_{λ}^{A} into two matrices D_{λ}^{A} and K_{λ}^{A} as follows:

$$
G^A_\lambda = D^A_\lambda \ \ (I + K^A_\lambda)
$$

where D_{λ}^{A} is the diagonal matrix such that $(D_{\lambda}^{A})_{a,a} = g_{\lambda}(a, a)$ for $a \in A$ and

$$
(K_{\lambda}^{A})_{a,b} = \begin{cases} \frac{g_{\lambda}(a, b)}{g_{\lambda}(b, b)} & \text{if } a \neq b, \\ 0 & \text{if } a = b. \end{cases}
$$

Then,

Lemma 4.3. There exists
$$
\tilde{\lambda} \in \mathbb{R}
$$
 such that for any $\lambda < \tilde{\lambda}$
 $||K^A_{\lambda}|| < 1$.

Proof. It is obvious by $(2, 9)$.

Before we state our theorem, we prepare some notations. Let σ be the shift transformation on $A^N = \{ a = (a_n)_{n \in \mathbb{N}}; a_n \in A \}$, i.e.,

$$
(\sigma a)_n = a_{n+1} \quad (n \in \mathbb{N}).
$$

Let Σ be the σ -invariant closed subset of A^N such that

$$
\Sigma = \{ \underline{a} \in A^N : a_n \neq a_{n+1} \text{ for any } n \in \mathbb{N} \}.
$$

The restriction of σ on Σ will be denoted again by σ . For a pair (Σ, σ) we define

$$
F(n) = \{ \underline{a} \in \Sigma \; : \; \sigma^n \underline{a} = \underline{a} \}
$$

$$
P(n) = F(n) \setminus \bigcup_{k|n} F(k)
$$

where $k \mid n$ means that k is a divisor of n . For $a, b \in P(n)$ we define the equivalence relation by

$$
\underline{a} \sim \underline{b} \Leftrightarrow 0 \le \exists \ k \le n-1 \text{ such that } \sigma^k \underline{a} = \underline{b}.
$$

Let $\Gamma_n = P(n)/\sim$ be the equivalence class of $P(n)$ by \sim . We call an element γ of Γ_n a prime periodic orbits with period *n* and denote the period of γ by L_{γ} . The totality of prime periodic orbits is denoted by *T .* Then, our theorem is the following:

Theorem 4.4. There exists $\tilde{\lambda} \in \mathbb{R}$ such that for any $\lambda < \tilde{\lambda}$

$$
\sum_{x \in G} (g_{\lambda}(x, x) - g_{\lambda}^{A}(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_{\lambda}(a, a)
$$

$$
+ \sum_{\tau \in \Gamma} \frac{dS_{\tau}(\lambda)}{d\lambda} \sum_{n \ge 1} \exp(-nS_{\tau}(\lambda) - n\pi i L_{\tau})
$$

where $S_r(\lambda)$ *is the length of a periodic orbit* γ *with respect to the distance* d_{λ} *.*

Proof. Since $||K_{\lambda}^{A}|| < 1$ for $\lambda < \tilde{\lambda}$, we have

$$
\det\left(I + K_{\lambda}^{A}\right) = \det \exp \log\left(I + K_{\lambda}^{A}\right) = \exp\left(\operatorname{Tr} \log\left(I + K_{\lambda}^{A}\right)\right).
$$

$$
= \exp\Big(-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}\mathrm{Tr}\left(K_{\lambda}^{4^n}\right)\Big).
$$

By the definition of K^A_λ , we obtain

$$
\operatorname{Tr}\left(K_{\lambda}^{A^{n}}\right)=\sum_{a_{1}a_{2}}\sum_{a_{n}\in F(n)}\prod_{i=1}^{n}E_{a_{i}}\big[e^{-F_{\lambda}T_{a_{i1}}}\big]
$$

where $a_1 a_2 ... a_n$ is a periodic point and $a_{n+1} = a_1$. Noting that $S_{\tau_1 \tau_2}(\lambda) = S_{\tau_1}(\lambda) +$ $S_{\tau_2}(\lambda)$ we obtain

$$
\det(I + K_{\lambda}^{A}) = \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\tau \in F(n)} e^{-(S_{\lambda}(\lambda) + i\pi L_{\tau})}\right)
$$

$$
= \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\tau \in P(k)} e^{-\frac{n}{k}(S_{\cdot}(\lambda) + i\pi L_{\cdot})}\right)
$$

$$
= \exp\left(-\sum_{k=1}^{\infty} \sum_{\tau \in \Gamma_{\cdot}} \sum_{m=1}^{\infty} \frac{1}{m} e^{-m(S_{\tau}(\lambda) + i\pi L_{\tau})}\right)
$$

$$
= \prod_{\tau \in \Gamma} \left(1 - e^{-(S_{\tau}(\lambda) + i\pi L_{\tau})}\right).
$$

Hence taking the logarithm and differentiating both sides of the equation above, we complete our proof.

Remark 4.5. For fixed $\lambda \leq \tilde{\lambda}$ the Fredholm determinant det $(I - zK_{\lambda}^{A})$ is the reciprocal of the Ruelle zeta function for the potential $U(\underline{a}) = d_{\lambda}(a_1, a_2) + i\pi$. Here the Ruelle zeta function $\zeta(z)$ is defined by

$$
\zeta(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{a \in F^{(n)}} e^{-S_n U^i(a)}\right)
$$

where $S_n U(\underline{a}) = \sum_{k=0}^{n-1} U(\sigma^k \underline{a})$ [1].

References

- [1] Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, *Lecture Note in Mathematics, 470* (1975), Springer Verlag, Berlin.
- [2] Craig, W., The Trace Formula for Schrodmger Operators on the Line, *Comm. Math. Phys ,* 126 (1989;. 379-407.
- [3] Duren, P L, Theory of H^{ρ} -Spaces, Pure Appl Math., 38 (1970). Academic Press.
- [4] Gesztesy, F., Holden, H. and Simon, B., Absolute Summability of the Trace Relation for Certain Schrodmger Operators, *Comm. Math Phys ,* 168 (1995), 137-161.
- [5] Giitzwiller. M. C., *Chaos in Classical and Quantum Mechanics,* Springer Verlag, Berlin, 1990.
- [6] Kotani, S., One-Dimensional Random Schrödinger Operators and Herglotz Functions, *Taniguchi Symp. PMMP Katata,* (1985), 219-250
- [7] Kotani, S. and Simon, B., Stochastic Schrödinger Operators and Jacobi Matrices on the Strip, *Comm. Math. Phys.,* 119 (1988), 403-429.