
Publ, RIMS, Kyoto Univ.
34 (1998), 43-63

Singular Solutions and Prolongation of Holomorphic

Solutions to Nonlinear Differential Equations

By

Takao KOBAYASHI*

§1. Introduction

We consider nonlinear differential equations with holomorphic coefficients
in the complex domain. They admit interesting singular solutions. First of all we
give two concrete examples.

Example 1.1. For any holomorphic function <p(x), put T = t—<p(x). Then
KdV equation

(l.la) ttftt

has a family of solutions which are singular on T — 0:

(l.lb) u=2T-2~~(px+gT2-JQ(pxxT
3+hTt-

where g~g(x) and h — h (x) are arbitrary holomorphic functions.

Example 1.2. The equation

(1.2a) uttt+&uutt
Jruuxx+xu = Q (t, x^C)

has a solution which is singular on t—0:

2 i 3
/I ot^ — - .-2 * L I * f4 __ -1 .51 ^ JL? I

U.^D; M r 24r"r2304r 188928 r 926208 r '

The Laurent series (l.lb) and (1.2b) are not formal ones, but do converge
to define exact solutions (see Theorem 3.1). On the other hand linear
differential equations, since the surface t — (p(x) =0 or t ~ 0 is non-
characteristic, never admit such singular ones (see [15]).
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Formal series such as (l . lb) are used by Weiss [13], [14] et al. But their
point of view is to study the algebraic structure, for example to obtain Backlund
transform, which is called Painleve analysis, and they were not concerned with
the convergence of the series itself.

Ishii [4] studied singular solutions to general nonlinear partial differential
equations and showed first the convergence under certain conditions. But the
above two examples do not satisfy them: in Example 1 . 1, arbitrary functions g
and h are not allowed, and in Example 1.2, the exponent by his definition is not
— 2 but —1 and we can show that there exist no singular solutions with
exponent ~1 (see Theorem 4.7) .

Motivated by this, after changing the coordinates suitably if necessary, we
consider nonlinear differential equations which may be written in the form:

(1.3) d?u=f(t,
\a\<m

We define an exponent to (1.3) with respect to t — 0 (see Definition 2 .5 ) , (^
construct singular solutions with this exponent (Theorem 3.1), and (u) show
that there exist no singular solutions whose singularities on t — 0 are weaker
than this exponent (Theorem 4 .7) .

We finally remark that Leichtnam [7], Nabaji-Wagschal [9], Nabaji [8]
constructed solutions which are singular on a characteristic surface.

The author would like to thank Professor Sunao Ouchi for informing him
that the convergence of formal solutions follows also from the estimates given in
[10]. This work was completed while he stayed at University of Paris "VI. He is
grateful for their hospitality.

§20 Notations and Characteristic Exponent

We use N for the nonnegative integers, while N>o denotes the positive
integers. The variable in C is denoted by t and x — (xi ..... Xd) in Cd with d ^N
(d = 0 means we consider an ordinary differential equation). We write dt = d/dt
and dXt

 = d/dxi, and use the standard multi-index notation: if a= (a\ ..... ad) e

Nrf, we set

a\ : = aiH ----- ̂ ad, a\ ' =

a>/3 if at>fr for \<i<d.

For w^N>0, we define a set of multi-indices A by

A\={(j, a)

and for u—u (t, x) , we put
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The variable corresponding to d{d£u is denoted by Z;,a and the totality of Z/rQ-'s
by Z. It is convenient to extend the multi-index notation to variables with suffix

0", a) ^A: if (JL= (^;,a)(;,a)e^eN#/1, we set

\fl\~

(j,a}f=A

{i>v if fjLJia>i>jta for all (/, <^) e-^-

We study nonlinear differential equations of the form

( 2 . 1 ) d[nu=f(t,r,dAu),

locally near the origin in C X Cd. We assume / (f, x\ Z) is holomorphic in Q X
C#yl, where /3 is an open neighborhood of the origin in C X Cd. We may write

(2.2) f(t,x\Z)=

with a subset Mc:N*A and/ t fe^(12), where 0 (£?) is the space of holomorphic
functions in £?. For simplicity, we exclude p. from M if/ t f = 0. We expand/^ in t
and denote by A w ( eN) the vanishing order of/^ on t = 0, namely,

Figure 1. Characteristic exponent of Example 1.2
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(2.3) fu(t,x}=tk»Efu,k(x)tk, with
k=0

For each jJL^M, we write jt (fi) for the total number of the differentiations with

respect to t in (dAu)u. i.e.,

(2.4) *((*)•= ^ j*to«-
(i,a)<=A

Now we define a characteristic exponent, which plays an important role in
the following sections.

Definition 2.1. The characteristic exponent ac of (2.1) with respect to
the surface £ = 0 is

/o r\(2.5) (7c:

We assign w weight a, 9^ weight —1 and t weight 1, then the total weight of
the term fM (dAu) u is \fJL\o— Tt(ft) -t~A^. Draw lines defined by 0\-* (a,|//|(7— 7/ (^)
+ Ar^) . Then the term in the right hand side of (2 . 5) is the coordinate of the
intersection with the line (J — m, which is the weight of the left hand side of
(2.1) (see Figure 1).

2o2o In Example 1 . 1 we have

m = 3, r,(0)=l, Lu| = 2, ^ = 0 and ac=-2f

where JJL corresponds to the term uut.

Although the characteristic exponent of (l.la) does not depend on the
surfaces, in general it depends on them.

Example 2.3. The characteristic exponent of (l.2a) is —2 with respect
to £ = 0 and is — 1 with respect to t~ ax = 0 if a=£0. In fact, if we change t~*t —
ax, (l.2a) becomes

(2.6a) w/«+ (4c(t+ax) +

whose exponent is — 1, and (l.2a) has the following solution:

(2.6b)

which is singular on t~ax, — 0 with exponent — 1.

Proposition 294. The characteristic exponent oc is invariant with respect to
coordinate changes which keep the variable t.

Proof. Let s = t, y — y ( t t x ) be such a coordinate change. Since 9? = 9S +
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vk and dXf — 2*&i,jfc9yt, where ak, bi,k are holomorphic near the origin, we
have

(2 . 7) (dfdSu) »>*= ( Z elf • d&guY'tx f

with some holomorphic functions c}'$. Notice that the total number of
differentiation with respect to s of each nonlinear term in the right hand side of
(2.7) is less than or equal to/ • [ij,a. Therefore we can write

with some holomorphic functions a#,y. Because the vanishing order ku of /# is

invariant with this coordinate change, the one k» of /# 8 a^ is greater than or
equal to ku. These imply that

- — ̂Tt (v)

where the left hand side is the exponent of the nonlinear term fu • a^ (dA
yu)l'.

Taking the supremum on all ^, u such that ft^M, v\— \ft\, jt (y) <yt (//), we
obtain that the characteristic exponent with respect to the new coordinate
system is less than or equal to the original one.

By exchanging the role of coordinate systems we obtain the reverse
inequality. So the two characteristic exponents are equal. D

Lemma 2.5. // /(t, u\ dAu) includes only terms of which the order of
differentiation with respect to t are less than or equal to wo(^w — l), then oc

Especially it always holds <Jc<m —1.

Proof. By the assumption and the definition (2.4), we have jt (ft) ^
Hence

?t(ft) —m — kfjj < (m~-mo) +kuj_j___ _ Q |^| —i ^'"o- ^

Remark. The above proof shows that oc is strictly less than WQ if M is a
finite set.

In the following sections, MQ (<m — 1) denotes the maximum order of
differentiation with respect to t m f ( t , x ] dAu).

§3. Construction of Singular Solutions

3.L Formal solution8 In this section we construct a solution which is
singular on £=0 to the equation
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To do this, we need to assume that

(A-l) /U, x\ Z) = ^fteM/u (t, x) Zu is a polynomial in Z, that is M is a finite set,
and is of degree greater than or equal to 2, i.e., (3.1) is not a linear
equation.

Since M is a finite set, the characteristic exponent

(3.2) a

1^1 >2

is a rational number strictly less than wo, and the subset M* of M defined by

(3.3) M* :={(tGM : \ti\ac-rt(v) +ku=ac-m}

is not empty. We call the nonlinear term corresponding to JJL in M* principal
nonlinear term. The second assumption is

(A-2) If [JL^M* then fa,a — 0 for \a\>l, namely, all principal nonlinear terms do
not contain the derivatives with respect to x,

Remark. The condition (A-2) seems somewhat strong. However if (A~2)
does not hold, we replace the surface t = Q with another one. For example, the
equation

(3.4a)

whose characteristic exponent is ~2, does not satisfy (A-2). But if we make a
coordinate change, ( t , x ) - + ( t — a x , x ) with a^O, the above equation becomes

(3.4b) Utt~auutJruux'^~Ux~'CiUt — ̂ .

This equation satisfies (A-2) , because the characteristic exponent is — 1 and
the principal nonlinear term is auut. In fact, we have the following solutions to
(3.4a) for a^O:

(3.4c) u = -^(t-ax)-1

where g=g(%) is an arbitrary holomorphic function.

Now for p^R and/^N, we set

(3.5) [p:j] ••=p(p-l)-(p~j+l}=r(TY (tp:0] : = D.

and introduce two polynomials which depend only on principal nonlinear terms:

(3.6) P£U;T?;:=[o-e;m]- Z/,.0(

= [oc.m\- S A . o W l ^ : / ] " 1 " " - 1 by
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(3 .7)Q c (* : j j :p)

l/l1"1 by fA-2 ) .

Note that Pc and Qc are of degree max^e^* \P- 1 ~~ 1 in J? and that Qc is also a
polynomial in p of degree m.

We construct a solution to (3.1) in the form:

(3.8) u ( t , x ) : = t f f e Z u n ( x ) l * / p ,
n=Q

where p ^ N>0 is the denominator of the reduced fraction dc, wn's are
holomorphic in a common neighborhood of the origin of Cd and ^0^0-

Substitute (3.8) into (3.1) and equate the coefficient of tffe~m+n/p to 0 for
each n^N, and we obtain the following recurrence equations:

. c?/ H
Q'—

Here J?K is a polynomial in and depends only on UQ ..... un-i and their derivatives.
Let us assume the following:

(A-3) The equation Pc(x\ T]) =0 in i] has at least one solution J] = UQ(X) which is
holomorphic in a neighborhood of x = Q and UQ(X) ^0.

(A-4) One of the following holds for each n — 1,2,3, ...:

^b) Qcx\ UQ (x) : r = 0 and Rn (x: ..., d£itQ ..... dSuH-i) =0,

(c) Q c(o;M0(0);j)=O i Qc(x;u0(x)\j)*Q and

Qc(x; uQ (x) ; — ) divides Rn (x\ ..., d%u& .,., d£un-i) •

Remark. In case of (a) or (c ) , un is determined uniquely, and in case of (b) ,
Un (x) may be any holomorphic function.

Note also that since QCU; t]\ p) is also a polynomial in p of degree m, the
equation
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has at most m distinct roots.

Theorem 3.1. Suppose (A-l), (A-2), (A-3) and (A-4) are satisfied. Then
we can construct a solution to (3.1) of the form:

(3.10) U-=tac^Un(x)tn/P,
n=0

where uns are holomorphic in a common neighborhood of the origin in C& and UQ & 0.
Moreover all formal solutions of the above form converge near the origin in C/ x Cl

Example 3.2, KdV equation (l.la) has

ac=-2f PcU;5) = -24+12ijl Qx(x;r) = 2> p) = (p + l) (p-4) (p-6).

In this example, Qc (x\ 2; n) vanishes identically for n = 4,6, and R* L0=2 and
Re «0=2 also vanish identically. Therefore «4 and w6 may be any holomorphic
functions.

Example 3o30 Equation (l.2a) has

a* =-2, PcOc;i7) = -24+24^, Qcfc 17 = !; 10) =p(p-2) (p-3) +24.

In this example, Qc (x\ l ;n) ^=0 for all n^N>o and w«'s are determined uniquely.
On the other hand, Equation (2.6a), which comes from (1.2a) after a
coordinate change, has

and itn's are determined uniquely.

Example 3A Equation (3.4b) has

erc=-l, PcU;5)=2+ai7 l QCU; ̂  = ~ p) =

In this example, Qc(x',~~~',n) vanishes identically for n = 2, and Rz\w~-2- also
vanish identically. Therefore U2 may be any holomorphic function.

3c20 Convergence of formal spolutionu By the assumptions (A-3) and
(A~4) the existence of a formal solution is trivial, so we need only to show the
convergence of (3 . 10) .

We will use the following result by Gerard and Tahara (see [2] , [3,
Chapter 8] ) : Consider the following nonlinear differential equation:

(3.11) (tdt)
mw=F(t,x;
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where F (t, x; Z) is holomorphic in a neighborhood of (t, x\ Z) — (0, 0; 0) and
satisfies

(3.12)

(3.13) -Jr-(0,*;0)=o if «

The characteristic polynomial of (3.11) is

m-l
(3.14)

Theorem 3.5 (Gerard-Tahara) . // C(n, 0) ̂ Q far all n^N>0 , then (3.11)
has a unique formal solution w — ^Ln=iwn (x} tn with w(Q, x) = 0, where wn (x) are
holomorphic on a common neighborhood of the origin in Cd. Moreover this power

series is convergent and holomorphic near the origin in Ct
 x Cl

For ATeN>o, we set

(3.15) wN(t,x) :=
«=o

Proposition 306o // the formal series (3.10) satisfies the equation (3.1),
then WN satisfies the following differential equation:

(3. 16) QC(X; Mo (x) ; tdt+j)wN=t1/p

where Qc is a differential operator of order m obtained from (3.7) by replacing (3.5)
with j~th order ones

and G (T, x\ Z] is a polynomial in Z with coefficients holomorphic near the origin in
Crf-t-i

T,X •

Proof. Put

then u=aN+bN and bN—ta°*~PwN. Using the identity

(3.17) di(fw) =tp-j • ( [ t d t + p ; j ] w ) for a l iyeN and

we obtain

(3.18) (9V)"= 0

\ 0 ([ac;;] dSu
* - ( , fy\ = A \
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with some function O (r, x) holomorphic near (r, x) = (0,0) , and

(3.19) (dAbNy= n

By (3.18), (3.19), (2.3) and by the identity jt({J.-v) = rt([i) -ft (v) , we have

(3.20) /„ • (5%r)«-w(d%0"=fl('l'r'~"('')+*'+|I'l£

f 0L(j,a)e

where P(r, x\Z) is a polynomial in Z whose coefficients are holomorphic near
(T,X) — (0,0). In the following we will use the same Q(T,X) or P(r, #;Z) to
represent some functions as above.

Substituting it=aN~^~b^ into (3.1) yields

(i) (
- z z— z z

(I) (IV)
Since ti«'s satisfy the recurrence equations (3 .9) , the first term is

(3 . 22) ( I ) = d?aN-f(t, x\ dAaN) =tac~m+%+JO (ft, x) .

The definition (3.2) of oc implies

(3.23) \fJi\ffc-rt (ft) +ku = ac—ni if fi^M*,

(3.24) \ft\0c-rt(lt)+ku2:ac-m+j if

By (3.23). (3.20) and the definition (3.7), the second term is

(3.25) ( n ) =tae-m+
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By (3.24), the third one becomes

(3.26) (I) = tUc~m+IF+

and by \v ^2, the fourth one

(3.27) (F) =tffe-m+*r

Substituting (3.22), (3.25), (3.26) and (3.27) into (3.21), we obtain the
desired equation ( 3 . 1 6 ) . D

Let us put T=t1/p and

(3.28) S>N(T,x) = EuN+n+l(t)T"+l.
72 = 0

Then WN(Q,X) = 0, and by substituting the relation tdt
 = jTdT to (3.16), WN

satisfies the following differential equation:

(3 . 29) Q c x ; u0 (x) ; jTdr+jwN=T • G . r , *; r

Obviously the above equation satisfies the conditions (3.12) and (3.13), and its
characteristic polynomial is

(3.30) C(p.x)=Qc(x\uo(y)\j(p+N)).

Therefore if we take N sufficiently large, C (n,0) =£ 0 for all n ^ N>0. Now
applying Theorem 3.5 to Equation (3 .29) , we obtain that WN converges near
(r, x) — (0,0). This completes the proof of Theorem 3.1.

§40 Prolongation of Holomorphic Solutions

In this section we show that if M is holomorphic in

Re KO}

and satisfies Equation (2.1) and if u satisfies a certain boundedness condition
which is closely related to the characteristic exponent ac, then u is holomorphic
near the origin.

When oc is positive, by a change of unknown function w — u — Ji, where h is
some holomorphic function, the characteristic exponent of the new equation for
w may be greater than the original one and we may obtain a singular solution of
the form:

M^ holomorphic function + singular solution by Theorem 3.1

(see Example 4 .2) . So we need to define a modified version of characteristic
exponent.
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Definition 4.1. For (2.1), we define of by

(4.D **=su
1

4o2o The equation

(4.2a)

has Oe— i and ac*=t»

So, for example, putting Uo = l, we obtain the following solution with exponent ^:

5/3 , ----
f '5443200

On the other hand, if we replace the unknown variable u with w~\~\g2, where g
= g(x) is an arbitrary holomorphic function with ^(0) =^0, then (4.2a) becomes

1 2wtt+Zg^+SutwI+xw*-^ (w+-~g2) (wx-\--ggx) =0,

which has

Therefore (4.2a) has the following singular solutions with exponent TT:

Lemma 403= T/ie characteristic exponents oc and of enjoy the following:
( i ) ac < of < m o ( < m — 1 ) .
(n) //-ac<0, then oc = 0?.

Proof. U) The first inequality is trivial. The second one is the same as that
of Lemma 2.5.

(") It always holds

m — ktjL for v<ti,

and if crc<0,

T>(JH) —m — ku<0 for all p^M.

These inequalities imply for ajl fjt^ M and v<ti with |y|>2
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^ _ i _sv\-l 101-1

This shows o?<oc. ' d

Definition 4.4. For cr^B, we define <5c(cr) by

(4.3) dc(a) :=M (\v\-l) o-rt(

— inf (| v| a— 7/ ( v) + &0) — (0— m) .

Lemma 405. dc ( • ) enjoys the following properties:
(0 <5C(<7)>0 i/and only if a> a?.
(ii) // a>ac* t/im 5C (0) >0.
(mj5 c(w0)>0.

(ivj /f 5c(<r) >0 an<i cr<m0, f^en f/i^r^ is a constant

(4.4) |P a— 7v(y) +^>(J— w + 5 /or a//

. (0 is clear, because dc(ff) ^0 means

(|^|-l)a>^(^)-m-^ for al!

(n) Note that for |y|>2

This implies 5c(a) >a~ crc*>0.
(in) follows from

; A / m — m o .

Here we have used the inequality 7* (v) <|y|mo.
(iv) It is enough to show (4.4) for \v =0,1. For |v |=0, (4.4) follows

directly from a<m — l, and for y| = l, it follows from yt(u}

Definition 4.6. Let u be holomorphic in Q- and a^R. We say that u is
bounded of order a if there is a constant M>0 such that the following estimates
hold for (f,

^ if (7<0,

or

[M fory=o,i,.,Ld,
\diu(t,X)\<\ , . , , i fa>0.

[M|Re^-; fo r /=kl+l f

Here Lo"J is the greatest integer less than or equal to o.
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For example, t° ° h (t, x) with a holomorphic function h (t, x) is bounded of
order a, and log t 8 h(t,x) is bounded of order — e for any £>0.

Remark. If u is bounded of order €? in Q-, then by Cauchy's inequality and
by shrinking Q- if necessary, we may assume that for (t,x)

, , ., , , f f o r / = 0,1 ..... w — 1 if (7<0,
(4.5) 9/ufo) £ M R e f f f - ' , , - 1 . , '

.,w — 1 if

Note that if M is bounded of order a, it is also bounded of order a for all
<7<er. Now we can state the second main theorem.

Theorem 4,7* Suppose that u is holomorphic and bounded of order a in Q-
and that u satisfies Equation (2.1) in Q-. If 5c(o) >0, then u is holomorphic in a

neighborhood of the origin in C X C*. Especially if a> of or a— m0, then u is
holomorphic near the origin in C X Cd.

Corollary 4.80 // u ^-6 (Q-) satisfies Equation (2,1) and the derivatives of u

up to order Wo are bounded in Q-, then u is holomorphic near the origin in Ct x Cl

Example 40S«, Examples 1.1, 1.2 and 2.3 give singular solutions which
are bounded of order ac — of^ and Example 4.2 gives ones of order a* with

c- On the other hand, for the equation

we have ac
=of = 0 and 5C (0) =l>0. This equation has a solution u = log t,

which is bounded of order — e for any £>0. However Theorem 4.7 implies that
this equation has no solutions of bounded of order <7* = 0.

§5. Proof of Prolongation Theorem

We use the method of majorants. For two formal power series centered at

we write <7<G or G># if \g$ ^G^ for all $^Nd. For two formal ones centered
at (ta) = (-e,0)

we write ^<£ G or G>£ g if 1^^|<G^ for all (fc.jS) ^
The following auxiliary functions are very useful to study nonlinear

differential equations (cf. [6], [12]). For i = 0,lf ..., m, we put



(5.1)

CONSTRUCTION OF SINGULAR SOLUTIONS 57

Lemma 5.1 (Lax). There exists positive constant Ci>l such that

2 €Cid
(l) (z) i=0.1 ..... m.

Proof. It follows from

f / __ H + l ____ \ ' < 9
lt2j ( n + l \ '

^\(k+l) (n-k'+l)) £0\(k+l) (n-k+l)/

With this Ci we define

(5.2; pf"(*)

and for £>0, p>l and7?>0

(5.3) <p$(

(5.4)

Lemma 5.2. d) For a// ;i^N>o the following majorant inequalities hold:

(5.5a)

(5.5b)

(5.5c)

(nl 7"/iCj-g e«sfs a constant C2>0 SMC/! that for i~l ..... m

(5 . 6aJ C2<p"-1) U) «£-<p'!l U) « <P1'-" (z) .

(5 . 6b) c2

(5 . 6c) C2^,V (f , %) «£ «";^'i.« (t. *) «E <?M (*.*).

(5 . 6d) C2«#5U (t. x) «E - <p^,e (f, x) «£ v^i' (t. x) .
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(iii) The following series of majorant inequalities hold:

(5. 7a) (p(m) (z) < <p(m-l) (z) « - -« <p(1) (*) « ^(0) Cz),

(5. 7b) (p^ (x) < <pjf ~1} (*)< — < (p£} (x) < yf (x),

(5.7c) (p(™R,B (t, x) C£ (ppjT,e} (t, x) C£ °°- <£ p^i,s (f, ^) ^e <p(px,& (t, x).

Proof, (i) follows directly from Lemma 5.1.

(n) It is enough to prove (5.6a), which holds with C2= (2")m+2, because

/ iy+2 /w + iy+2

\2 / ~ \n- f -2 /

(m) is trivial by the definition.

We use the following polydiscs.

4 (/?; — £) :={(*,*) eCxC r f : |t-he|</?, kl<i?,t = l,2,..., w},

4(J?) :={(f ,^) eCxC d : \t\<R, \x,\<R,i = l,2,.... w),

Lemma 5030 T/iere is a constant Cs > 0 swc/i f/iat if g (t, x) ^-6 (A (2R; — e) )
and \g (t, x) \ <M, or h (x) e 0 (A' (2R) ) and \h U) ! ^M, rten /or i = 0,1,2, ..., w, w;g
have

(5 . 8a) flr ( t j ) €s C^M(p(f,Ri£ (t, x) for all p > 1,

(5.8b) fcUXCsM^W.

//igre C3 is independent of R, p and £.

Proof. Cauchy's inequality implies

^ M
9 E !-

On the other hand, we have

with ct = supn
(n^)l+Z- Therefore (5.8) holds with C3 = Cimax{c0, ...f cw}. D

5«,40 T^rg 15 a constant C4>1 swcfi

(5.9) t • <ks(t, *) «£ C4(e+4|-)

C4 i5 independent of p, R and £.
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Proof. Since

t= (-e) + (t+e)

and

(5.9) holds with C4 = Ci. D

Let us fix #0>0 with A (2R0) <^Q and 0<R<R0 with

(5.10)

We have assumed that f (t,x\Z) is holomorphic in Q X C*4, so for each L>0,
there is a constant AL>O such that

(5.11) \ f ( t , x \ Z ) <AL for(f ,*) e4(2/?0) , and \ZLa <L ((j\a}^A).

Lemma 5.5. There is a constant C$> 0 which is independent of L and p
such that for each L>0, p>l and £=!p» we have

(5.12) /„(M) «, CsAiL-'^p-*"^,, ( / ,x ) .

Proof. Appling Cauchy's inequality to (2.2) and (2.3) with (5.11) yields

and

I/,.* to i <^-w (2R0) -(AB^) in A'

By Lemma 5.3, we have

//,.* Or) «C3AiL-w (2ff0) -"'"V)?' U)

and by Lemma 5.4

tk'+kfu,k (x) <.

) (by (5.10)).

Substitute the above inequality into (2.3) and we obtain
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This shows that the assertion holds with C5 = 2C3. D
°&-

We have assumed that u^-6 (Q-) is bounded of order a with dc (d) >0. We
divide the proof into two cases, or<0 and

5,1* In case of <® <0= We consider the following majorant differential
equation to (2.1):

(5.13a) d?U>e 2FM(t.x) (dAU}^
u^M

(5.13b) dlU(-e,x)>dlu(-e,x) for; =0.1,2 ..... m~l.

Here

(5.14) Fed.x) :

is the right hand side of (5.12) and £ ~ 2 p . If U satisfies the majorant equation
(5.13a) with (5.13b), then we have u^,s U. We take U in the form:

(5.15) U:=Kp-aRm(p($,£(t,x).

First we consider the initial condition. Since u is bounded of order <j(<0) ,
we may take a constant M>0 such that for all 0<£<1

(5.16) \dtu(-e,x)\<Mea-> for

Lemma 5060 Th^rg is a constant A"0>0 5ur/z f^zat L" defined by (5.15) with
K>KoM satisfies the initial condition (5 . 13b) . Here KQ is independent of

Proof. By Lemma 5.3 and (5.16)

9/i* (-e, x) €C3M£a-J(p(
R

m-J) U) .

On the other hand, by applying (5.6d) y-times

d{U>e CiKpj-ffRm-J(p(
p^

} (t, x) ,

which implies

3/[/(-£, x) >ClKp'-ffRm-J<p%t-J} Cr) ,

for (pp1]R.e(t,x)\t,-e = (p(
]l

}(x). Therefore (5.13b) holds if

Cj
2Kp3-ffRm-J > CsMeff-} = CMR°~3 (Zp) J~a,

that is, it is enough to take

Ko= max C3C2j2J-ffRa~m.
0<;<m-l

D

Next we consider the majorant equation (5.13a).
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Lemma 5.7. Let us take L>K. Then there is a constant p0 = pQ(L) >1 such
that U defined by (5.15) with p> p$ satisfies the majorant equation (5.13a).

Proof. By (5 .6c) , (5 .6d) , we have for all (j,a) ^A

did?U<£ Kpj-aRw->-^(p(^rw (*, x)

<£KpJ-ff(p(
P

0>
R,£(t,x) (by (5.10)

and

(dAU) "

Substituting the above inequality and (5.14) into the right hand side of
(5. 13a) , we obtain

Right hand side of (5.13&) <£ C^AL Z
fi^M

Since 5c((j) >0, by Lemma 4.5. we can take <5>0 so that

1^1 a— rtfa) +kf,>a— w-t-5 for all p^M,

which implies

Qrt(tt) -\u\ff-ku <^ f^m-a-d

Using this inequality, we obtain

Right hand side of (5 . 13aj <£ C^ALpm~ff~5 2 K^L'^^e (t. x) .
n^tl

On the other hand, by (5 .6d) , it holds

d mjr^ ^mj^fjn-a.M (+ v\
tU^e^2^P <Pp,R,e (t, X) .

Therefore the assertion is valid if

that is,

where the summation is convergent, since 0</^<L. D

Now take K>KoM, L>K and then p>p0(D and £ = ^. Then, by the above
two lemma, U defined by (5.15) satisfies the majorant equation (5.13a) and the
initial condition (5.13b), and ["converges in a domain { ( t , x ) : p\t + e\+ xi\-\ ----
+ \xd <R}, which contains the origin of C X Cd for p • |0 + £| + 0 + --+0 = f <R.
Since wC£ [/, u is also holomorphic near the origin of C X Cd. This complete the
proof in case of a<0.

5.2. In case cr>0. Since we have always dc(w — 1)>0, we may assume a
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<w — 1. For sufficiently small £, we put
W

(5.17) v(f ,*) := Z^-d/w (-£,
y-o J!

and W=M — v. Then 10 satisfies the following equation:

* (f. *)

dlw( — e,x) =

For u is bounded of order cr, we can take Mi>0 so that for all sufficiently small
£ and x^A' (2R0) we have

,y ,
9/w (-£,%)

-; y=LaJ+l , . . . ,m-l .

By the definition of v, we can take a constant M2>0, by letting R0 smaller if
necessary, so that

\dld£v (t*) <M2 in A (2RQ~e} and for all (/, a)

which implies

" m4(2#0;-£)./

This and Lemma 5.3 yield

(5.19) (dAv(t,x))*~1J<£ C3M2lul~lvl(p(p,R,e(t,x).

Using (5.12) and (5.19) we have

(5.20) /„ (t, *) (dAv (t, x))«-"<. C3CsAL L-WM^-'^-^'le (t, x).

We denote by F^(t,x) the right hand side of (5.20) and consider the following
majorant differential equation:

(5.21a) 5

[0 / = 0.1,.., LcrJ,
(5.21b) d{W(-e,x)>\

If W satisfies the above majorant equation, then w <£ W. In the same way as
(5.15), putting
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we determine K and p so that W satisfy (5.21a) with (5.21b).

Lemma 5.8. There is a constant Ki>Q such that W defined by (5.22) with
K>KiMi satisfies the initial condition (5.21b) . Here KI is independent of p>l.

Proof. The proof is the same as that of Lemma 5.6. D

Lemma 5.9. Let L>K + M2. Then there is a constant p\ = pi (L) > 1 such
that W defined by (5.22) with p^pi satisfies the majorant equation (5.21a).

Proof. We can prove the lemma in the same way as that of Lemma 5.7. D

Now take K>K1} L>K + M2 and then p> pi. Then W defined by (5.22)
satisfies the majorant equation (5.21a) and the initial condition (5.21b),
therefore we have w^£W. W is holomorphic in {(t,x) : p \ t + e + x\\-\ ----- \~\Xd\
<#}, which contains the origin of C X Crf, and so is w. This shows u=w+v is
holomorphic near the origin of C X Cd,
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