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Singular Solutions and Prolongation of Holomorphic
Solutions to Nonlinear Differential Equations

By

Takao KOBAYASHI™

§1. Introduction

We consider nonlinear differential equations with holomorphic coefficients
in the complex domain. They admit interesting singular solutions. First of all we
give two concrete examples.

Example 1.1. For any holomorphic function ¢ (x), put T=t—¢ (x). Then
KdV equation

(1.1a) Wi —6un; +uz=0 G, 2€C)
has a family of solutions which are singular on 7=0:
1 1 1
(1.1b) u=2T‘2—§¢I+gTz—§6-gouT3+h T“—2—4gIT5+~--,

where g=¢{x) and h=h (x) are arbitrary holomorphic functions.

Example 1.2. The equation
(1.2a) e Atung Tun gz Hau =0 (t, x€C)

has a solution which is singular on t=0:

(1.2b) =t—2_Lt+ P 4 1 #54 x> §T 4o
: " 24' 72304 T 188928" ' 926208"

The Laurent series (1.1b) and (1.2b) are not formal ones, but do converge
to define exact solutions (see Theorem 3.1). On the other hand linear
differential equations, since the surface ¢ — (p(x) =0 or t =0 is non-
characteristic, never admit such singular ones (see [15]).
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Formal series such as (1.1b) are used by Weiss [13], [14] et al. But their
point of view is to study the algebraic structure, for example to obtain Backlund
transform, which is called Painlevé analysis, and they were not concerned with
the convergence of the series itself.

Ishii [4] studied singular solutions to general nonlinear partial differential
equations and showed first the convergence under certain conditions. But the
above two examples do not satisfy them: in Example 1.1, arbitrary functions ¢
and h are not allowed, and in Example 1.2, the exponent by his definition is not
—2 but —1 and we can show that there exist no singular solutions with
exponent —1 (see Theorem 4.7).

Motivated by this, after changing the coordinates suitably if necessary, we
consider nonlinear differential equations which may be written in the form:

(1.3) 6{”1«L=f<t, x; (a;agu)jgm_l) (teC, x€CY).

J+lal<m

We define an exponent to (1.3) with respect to t =0 (see Definition 2.5). (1)
construct singular solutions with this exponent (Theorem 3.1), and !u) show
that there exist no singular solutions whose singularities on t =0 are weaker
than this exponent (Theorem 4.7).

We finally remark that Leichtnam [7], Nabaji-Wagschal [9]. Nahaji [8]
constructed solutions which are singular on a characteristic surface.
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§2. Notations and Characteristic Exponent

We use N for the nonnegative integers, while Nso denotes the positive
integers. The variable in C is denoted by t and x = (x1, ..., x4) in C¢ with d €N
(d =0 means we consider an ordinary differential equation). We write 8, = 0/0¢
and 0z, = 0/0x,. and use the standard multi-index notation: if &= (ay, ... @s) €
N9 we set

lal =ar+Fa;, o =alad,
1% 1 =xfreexgl, 0F =071+ 03/,
a=B if a2, for 1<i<d.
For m €N5,, we define a set of multi-indices A by
A:={(, o) ENXN? :j<m, j+|a|<m},

and for u=u(t, x), we put
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0 = <at’a§1t> (@ eA.

The variable corresponding to 9/08u is denoted by Z,, and the totality of Zj4's
by Z. It is convenient to extend the multi-index notation to variables with suffix
(7., a) EA if ﬂz (,uj,a) (/,a)eAEN#A. we set

=2 tha pi= I pal

(,a)€A G.ared

Zﬂ = H (Zj.a>u’a‘ ag = H (azm)”’".

(o)A (.)€

(@4)* = T1 (0/0%u)*-.

(ra)ed

uzy if .=y, for all (j, a) €A

We study nonlinear differential equations of the form

(2.1) O =f(t x; 0%u).
locally near the origin in C X C% We assume f (t,x; Z) is holomorphic in £ X
C*4, where 2 is an open neighborhood of the origin in CX C% We may write

(2.2) flt.x: Z)= 2 £, (t.x) Z*,

ue

with a subset Ml CN* and f, €0 (2), where 0 () is the space of holomorphic

functions in £2. For simplicity, we exclude ¢ from 4 if f,=0. We expand f, in ¢
and denote by k,(EN) the vanishing order of f, on t=0, namely,

me; - v () +k,

/7 /7
/
/
/
—2 U m =

Iy
/7
'/ c—m

—m
/ i/

~—
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g

Figure 1. Characteristic exponent of Example 1.2
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(2.3) Flb ) =3 fa ()t with  fuole) 20,
k

=0
For each €M, we write 7; (ﬂ for the total number of the differentiations with
respect to ¢t in (9%u)* ie.,

(2.4) ?’t(ﬂ) = ZA] * U *

G,a)e

Now we define a characteristic exponent, which plays an important role in
the following sections.

Definition 2.1. The characteristic exponent o; of (2.1) with respect to
the surface +=0 is

C— () —m—k
& o= P
=22

We assign u weight o, 0; weight —1 and ¢ weight 1, then the total weight of

the term f, (8%u)* is |ulo—7: () +k,. Draw lines defined by o~ (g,|plo—71: (1)
+k,). Then the term in the right hand side of (2.5) is the coordinate of the
intersection with the line ¢ —m, which is the weight of the left hand side of
(2.1) (see Figure 1).

Example 2.2. In Example 1.1 we have
m=3, 1.(w) =1 |u/=2 k,=0 and o,=-2,
where g corresponds to the term wuu,.
Although the characteristic exponent of (1.1a) does not depend on the

surfaces, in general it depends on them.

Example 2.3. The characteristic exponent of (1.2a) is —2 with respect
to t=0 and is —1 with respect to f—ax=0 if a #0. In fact, if we change t—t—
ax, (1.2a) becomes

(2.6a) e+ (4 (t+ax) +a?) une +u (Wge— 200:2) +xu =0,
whose exponent is —1, and (1.2a) has the following solution:

(2.6b)
48y 48(a®+4ax—1617)

—gx) e
a?(a+4x)3 adla+4x)°® (t~az) ’

-3 -
oty pprnypy (t—ax)
which is singular on t—ax=0 with exponent —1.

Proposition 2.4. The characteristic exponent O is invaviant with respect to
coordinate changes which keep the variable t.

Proof. Let s =t, y =y(t,x) be such a coordinate change. Since ;= ds+
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2kax0y, and 0z, = kb, 0y, where ay, b, are holomorphic near the origin, we
have

2.7) Giosuyma=( =
<
LBl +al

HUsa
§ - 0L0fu)"

with some holomorphic functions c¢}4. Notice that the total number of
differentiation with respect to s of each nonlinear term in the right hand side of
(2.7) is less than or equal toj * ftj.a. Therefore we can write

(0%u)"= l le Ay * (aéy“>yv
V=l
re(w <1l

with some holomorphic functions a,,. Because the vanishing order k, of f, is

invariant with this coordinate change, the one Eu of fu * auy is greater than or
equal to k,. These imply that

W) =m—k 7@ —m—k,
-1 = Jd-1

where the left hand side is the exponent of the nonlinear term f, * ay, (08,u) >
Taking the supremum on all g, v such that g€ JM, |v|=ul, 7. (v) <7/ (), we
obtain that the characteristic exponent with respect to the new coordinate
system is less than or equal to the original one.

By exchanging the role of coordinate systems we obtain the reverse
inequality. So the two characteristic exponents are equal. O

Lemma 2.5. If f(t.u; 0%) includes only tevms of which the order of
differentiation with vespect to t are less than or equal to mo(Sm—1), then 0. <mio.
Especially it always holds o.<m—1.

Proof. By the assumption and the definition (2.4), we have 7 (¢r) <molpl.

Hence
() —m—k, _ m—mo) +k
]—1‘—[’——“# = <my —l—[———&ﬂ —q <.

Remark. The above proof shows that g; is strictly less than mo if M is a
finite set.

In the following sections, mo (Sm — 1) denotes the maximum order of
differentiation with respect to ¢ in (¢, x; 0%u).

O

§3. Construction of Singular Solutions

3.1. Formal solution. In this section we construct a solution which is
singular on =0 to the equation

(3.1) oru=f(t, x, 0%u).
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To do this, we need to assume that

(A-1) f(t, 2, 2) = Zpeufult.x) Z* is a polynomial in Z, that is M is a finite set,
and 1is of degree greater tham or equal to 2, ie., (3.1) is wnot a linear
equation.

Since Jl is a finite set, the characteristic exponent
(3.2) 0.=max £ )__Tnl_k”
vt 1%
422
is a rational number strictly less than mo, and the subset ¥ of  defined by
(3.3) M =M | Yo.— 1 (w) +k,=0.—m}

is not empty. We call the nonlinear term corresponding to g in J* principal
nonlinear term. The second assumption is

(A-2) If uEM* then t; =0 for |a| =1, namelv. all principal nonlinear terms do
not contain the devivatives with respect to x.

Remark. The condition (A-2) seems somewhat strong. However if (A-2)
does not hold, we replace the surface t =0 with another one. For example, the
equation

(3.4a) et unetu=0 (t,x€C),

whose characteristic exponent is —2, does not satisfy (A-2). But if we make a
coordinate change, (¢, z)— (t—ax.x) with a#0, the above equation becomes

(3.4b) wer —auwity +unztur—au, =0.

This equation satisfies (A-2), because the characteristic exponent is —1 and
the principal nonlinear term is auu, In fact, we have the following solutions to
(3.4a) for a#0:

Qo

(t—ax)'—1+g- (t—ax)l"f—%;(t'—ax)z—i-...‘

(3.4c) u=—
where g=¢g(x) is an arbitrary holomorphic function.
Now for pER and j EN, we set

3.5)  [o:j] :==plp—1)-(o—j+1) =7%%41:)1—) ([p; 0] :=1),

and introduce two polynomials which depend only on principal nonlinear terms:

(3.6) P (xn) :=[os;m] — qu,o(x>< I [m:j]“’“)n“‘"l

peM* (ra)eA

= lozm) = % oo (T Lo )= by(a-2).

peM*
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(3.7) Q:(x:m: p)
=lotoiml = Z fuol( T lo1)( £ g5 )

e v, el (el 0]

= [p+00; 771] -2 Sfuo (X) . ( m;—olyj’o [p-‘f—o‘c;j] [0—6; O] U1000s

ue Mt

- Log; j1#oree (o, ;m—1] ”’”'1"’)77'”‘"1 by (A-2).

Note that P, and Q. are of degree maXue_,{,{*lﬂ‘_ 1 in 1 and that Q. is also a
polynomial in o of degree m.
We construct a solution to (3.1) in the form:

(3.8) u (t,x)3=ta‘iun (x)1™?,
n=0

where p € N, is the denominator of the reduced fraction o, u,'s are
holomorphic in a common neighborhood of the origin of C¢ and u,#0.

Substitute (3.8) into (3.1) and equate the coefficient of t°™*"? to 0 for
each nEN, and we obtain the following recurrence equations:

P. (x: 1) * uo=0 n=0)

(3.9) Qc<x: "o, %) *un=Rn(x; ..., 0%, ..., 0%Un—1) |y <m w=12, ).

Here R, is a polynomial in and depends only on u, ..., ts—1 and their derivatives.
Let us assume the following:

(A-3)  The equation P, (x; ) =0 in 7 has at least one solution =1 (x) which is
holomorphic in a neighborhood of x=0 and uy{x) FO0.

(A-4) Owe of the following holds for each n=1,23, ...

(=) Qc(0:10(0): %) %0,

p

(b) Qc<x: 1o (%) ) 0 and Ry (x: .... 0%uo, ..., 0%un_1) =0,
(c) @c(o;uo(m;i;—) 0.Q (x o (x )p)E‘EOaMd

Qc(x: uo (%) %) divides Ry (x: ..., 0%uq, ..., 0%n-1) .
Remark. In case of (a) or (c), un is determined uniquely, and in case of (b).
#x (%) may be any holomorphic function.

Note also that since Q. (x;7: 0) is also a polynomial in o of degree m, the
equation
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Qc (0;40(0); p) =0
has at most m distinct roots.

Theorem 3.1. Suppose (A-1), (A-2), (A-3) and (A-4) are satisfied. Then
we can construct a solution to (3.1) of the form:

(3.10) W=t 3 (1) £,

n=0

where uns are holomorphic in a common neighborhood of the origin in C% and uyZO0.
Moreover all formal solutions of the above form converge near the ovigin in C; X CZ.

Example 3.2. KdV equation (1.1a) has

0c=—2,Pc(x; ) =—24+121, Q:(x;n=2;0)=(0+1) (0—4) (0—6).
In this example, @ (x; 2;n) vanishes identically for n = 4,6, and Rqly,=2 and
R |u0=2 also vanish identically. Therefore us and u#s may be any holomorphic
functions.

Example 3.3. Equation (1.2a) has

0.=—2, P(x;n)=—24+24yn, Q. (x;n=10)=p(—2) (p—3)+24.

In this example, Q. (x; 1;n) #0 for all n €Ns¢ and ua’s are determined uniquely.
On the other hand, Equation (2.6a), which comes from (1.2a) after a
coordinate change, has

o.=—1, P.(x;n)=—6+2a(a+4x)7,
(s 1= yi0)= (0+1) (0*—dp+6)
c\4, a (a +4x) Y 0 Y 0 .
and u,'s are determined uniquely.
Example 3.4. Equation (3.4b) has

o.=—1, P.le;n)=2+an, Qlxn= —% 0)=(o+1) (p—2).

In this example, Q. (x; —%;n) vanishes identically for » =2, and R, Im,:_% also

vanish identically. Therefore uz; may be any holomorphic function.

3.2. Convergence of formal spolution. By the assumptions (A-3) and
(A-4) the existence of a formal solution is trivial, so we need only to show the
convergence of (3.10).

We will use the following result by Gérard and Tahara (see [2], [3,
Chapter 8]): Consider the following nonlinear differential equation:

(3.10) (t0) mw=F(1x; ((10)/020) g0e).
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where F(t,x;Z) is holomorphic in a neighborhood of (t,x;2Z) = (0,0;0) and
satisfies

(3.12) F(0.x:0) =0,
oF A = .
(3.13) m(o,x, 0)=0 if |a|>0.
The characteristic polynomial of (3.11) is
m—1
(3.14) Clp.0)=0" S 20 (0,5,0) .
j=0 0410

Theorem 3.5 (Gérard-Tahara). If C(n, 0) #0 for all n €Nso, then (3.11)

has a unique formal solution w= 2oy-1w, (x) t" with w(0,x) =0, where w, (x) are
holomorphic on a common neighborhood of the origin in C° Moreover this power
sevies is convergent and holomorphic near the origin in C,; X C&.

For NENs,, we set

« e
(3.15) wy (%) = 2unensr (1) tnp

r=0

Proposition 3.6. If the formal series (3.10) satisfies the equation (3.1),
then wy satisfies the following differential equation:

(3.16) Qc<x: o (x); tarl'%)w;v:tw . G(tw, x: ((£0)’0%wy) u,a)eA),

where Q. is a diffevential operator of order m oblained from (3.7) by replacing (3.5)
with j=th order ones

[t6;+0; ].] = (t8¢+p) (tat+p_1) (tat+p_]+1) ,

and G (t,%, Z) is a polynomial in Z with coefficients holomorphic near the ovigin in

d+1
o -

Proof. Put

N (=]
an(t. x) =17 2, (x) 172, byt x) =19 20 u, (x) ™2,
n=0

n=N+1
then u=ay+by and by=1""2wy. Using the identity

(3.17) of (tbw) =t*~7 « ([t0:+p;7]w) for all J€EN and pER,

we obtain

(3.18) (0%ay) = 11 (af’ﬁfc' (% o+ Pur +++ +thuy) ) )ll
(,a)ed
:tlllltn—n(u)[ H ([O'c; ]'] aguo>#:.a+t%0 (t%, x) ]'

a)ed
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with some function O (7, x) holomorphic near (z,x) = (0,0), and

(3.19) @%w)= 11 (626';: (t"”]_gumr))vm

G,ared

:tlu!oc—n(u)-rlvl%'- H ( [tﬁf +O‘c+ﬂ; ]'] Q@‘uw) v, «

(r,a)€A p

By (3.18), (3.19), (2.3) and by the identity 7: (g—v) =7 () —7:(v), we have

(3 . 20) f/l. N (aAaN) u-y (aAbN> v— tlaloc—n(u)+ku+|ul%

T fuot Lo dazuo) e ([10+ 0+ 2 ] agw)

(.a)eA P

+BP(13, 5 ((10)02ux) vavren ) |-

where P (7, x; Z) is a polynomial in Z whose coefficients are holomorphic near

(r.x) = {0,0). In the following we will use the same O(z,x) or P(r.x;Z) to
represent some functions as above.

Substituting # =ay+by into (3.1) yields
oFu—f(t. x; M)

=0lay+orby— % 3 fu - (ﬁ)(aAaN)ﬂ-%aAw

NEM OLSy=<py

=0Pay— 2 Z"'+tz”_’”+%[t6’,+0‘c+%; m]uw— PIEDINTE

neM VS}H uedl v<u
v=0 —
(3.21) ! =1
(1) (1)
- 3 =3 3.

PEFAVAREY] neEM v<p

=1 BE

(1) (IV)

Since u,'s satisfy the recurrence equations (3.9), the first term is
(3.22) (1)=0Pay—f(t x; 0%y) =ta°_m+%+%@ (2‘%, x).
The definition (3.2) of o, implies

(3.23) lelo.— 7. () +ky=0,—m if uEM*,

(3.24)  lelo.—7 +kﬂ206~m+% i pe MM

By (3.23). (3.20) and the definition (3.7), the second term is

(3.25) (1) =toe-m+§ [Qc<x. e t@,-i—%)wp;-l—t?}ﬂ)(t%. x ((¢0,)0%wy) o.a)eA)]-
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By (3.24), the third one becomes

(3.26) () ===+ 5+5P (15, ((18)/05un) poen).
and by |v| =2, the fourth one

(3.27) (V) =75, 5. (6008 n) aven).

Substituting (3.22), (3.25), (3.26) and (3.27) into (3.21), we obtain the
desired equation (3.16). a

Let us put 7=¢"? and

(3.28) wy (T, %)= Z“N+n~r1 (’f) "

n=0
Then wy(0,2) =0, and by substituting the relation 9, = %T&T to (3.16), Wy
satisfies the following differential cquation:

(3.29) Qc<x; 1o (x); %Tar“}‘%)l’[}]v:‘[ . G.(T. x; ((%r&,)’ SLFN> (m)eA>.
Obviously the above equation satisfies the conditions (3.12) and (3.13). and its
characteristic polynomial is

L
P
Therefore if we take N sufficiently large, C (n,0) # 0 for all n € Ny, Now

applying Theorem 3.5 to Equation (3.29), we obtain that Wy converges near
(z,x) = (0,0). This completes the proof of Theorem 3.1.

(3.30) Clo.x) ZQc<x; uo(x); = (0+N) )

§4. Prolongation of Holomorphic Solutions

In this section we show that if # is holomorphic in
2 ={(tx) €02 :Re t<0}

and satisfies Equation (2.1) and if u satisfies a certain boundedness condition
which is closely related to the characteristic exponent o, then 1 is holomorphic
near the origin.

When o, is positive, by a change of unknown function w=u—h, where h is
some holomorphic function, the characteristic exponent of the new equation for
w may be greater than the original one and we may obtain a singular solution of
the form:

u =holomorphic function + singular solution by Theorem 3.1

(see Example 4.2). So we need to define a modified version of characteristic
exponent.
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Definition 4.1. For (2.1), we define 6 by

—m—k

v<pulu|=2

Example 4.2. The equation
(4.2a) s+ 6uni+an?+uuy=0

has 0.=7% and 0F=1, and
2
P (x r])—§ n%—1), Qc<x n=1, wor w? ) —(n+2) n+3).

So, for example, putting uo=1, we obtain the following solution with exponent %:

2774t
—_—1/3 __ /3 L3/ .L4/3 15/3
(4.2b) w=po—Jr i+ 240 gt " saazs000

On the other hand, if we replace the unknown variable » with w+%g2, where g
=g(x) is an arbitrary holomorphic function with g(0) #0, then (4.2a) becomes

wat 29w+ Buwwi + 1wt + (w+ Bg)(uz 3mh) =0,

which has
1 1 1 n)_1
0c=, Pc(x; m) _—Z(gznz—l), Qc<x; n= i’;; ‘2‘) __Z<”+1) (n+2).

Therefore (4.2a) has the following singular solutions with exponent %z

1 1 x 5 Tx £*
1.20) w=ggtt ot (o ) (A )
(4.2¢) u= 39 2g* 6g2) 8g" 244° 36g3>

Lemma 4.3. The characteristic exponents o, and 6. enjoy the following:
(1) 0. L0F<me(Em—1).
(i) If 0.0, then o.= 0.

Proof. (i) The first inequality is trivial. The second one is the same as that
of Lemma 2.5.
(ii) It always holds

o) —m—k, <1 () —m—k,  for v<y,
and if 0.<0,
7: () —m—k,<0 for all uE M.
These inequalities imply for all #E M and v<p with [ =2
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Tt(l)) —m— ky<]f() M T Ry T (ﬂ){m k”<0'¢

[W[—1 Iﬂl—l lu—1

This shows o< a.. : O

Definition 4.4. For c€R, we define &, (o) by
(43) 5(;(0') = inf (Il)l—'l)O'_Tt(V) +m+ku

gE‘”
v<guu =2

= inf (‘Ulo“" T (U) +ku) - (O'_WL) .
uSﬂ;jjI{ZZ

Lemma 4.5. 0.( * ) enjoys the following properties:

(1) 0c(0) 20 if and only if 0=07.

(i) If 0> 0F, then 0. (0) >0.

(111 (mo) >0.

W) If 8:(0) >0 and o<my, then therve is a constant 0 >0 such that

(4.4) vlo—71:(v) +k,=0—m+06  for all ueM, v<p.

Proof. (1) is clear, because 0, (o) =0 means
(=1 o=7(v)—m—k, forallucM, v<y, |v|=2.
(1) Note that for [v|>2

(W=D o=70) +m+k,= (v|—1) 6F—7:(v) +m+k,+ (c—0XF).

This implies 6. (o) 20— 0 >0.
(u1) follows from

(W=D mo—71: W) +m+k,= (|v] — 1) mo—|vlmo+m+ky =m —mo.

Here we have used the inequality 7:(v) <|vlmo.
(iv) It is enough to show (4.4) for |v|=01. For |v|=0, (4.4) follows
directly from 0<m—1, and for |v|=1, it follows from 7, (v) <ms,. O

Definition 4.6. Let # be holomorphic in £- and 6 € R. We say that u is
bounded of order o if there is a constant M >0 such that the following estimates
hold for (t,x) €0

lu (¢, x) | <M|Re t|° if 0<0,
or
M for j=0,1,...lal,
|0t (¢, 2)|< , if 6>0.
M|Re |77 for j=lol+1,

Here Lol is the greatest integer less than or equal to a.
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For example, t° * h(t,x) with a holomorphic function & (t,x) is bounded of
order 0, and log t * h(t,x) is bounded of order —¢& for any & >0.

Remark. If u is bounded of order ¢ in §£2-. then by Cauchy's inequality and
by shrinking £2_ if necessary, we may assume that for (t,x) EQ_
forj=01,..m—1 if 00,

4.5 b (tx) | < o
4.5) 191 1.0) | < MIRe for j=lal+1,.m—1 if 0>0,

Note that if # is bounded of order o, it is also bounded of order & for all
< 0. Now we can state the second main theorem.

Theorem 4.7. Suppose that u is holomorphic and bounded of order 0 in £
and that w satisfies Equation (2.1) in Q-. If 6.(0) >0, then u is holomorphic n a

neighborhood of the ovigin in C X C% Especially if 0> 0 or 0= myo, then u is
holomorphic near the origin in C X C¢,

Corollary 4.8. If u€0 () satisfies Equation (2.1) and the derivatives of u
up to order mo ave bounded in -, then u is holomorphic near the origin in C; X Cé.

Example 4.9. Examples 1.1, 1.2 and 2.3 give singular solutions which
are bounded of order o. = 0. and Example 4.2 gives ones of order ¢ with
0F>0,. On the other hand, for the equation

u,=exp(—u),

we have g,= 0, =0 and &, (0) =1>0. This equation has a solution « = log ¢.
which is bounded of order —e for any ¢>0. However Theorem 4.7 implies that

this equation has no solutions of bounded of order ¢=0.

§5. Proof of Prolongation Theorem
We use the method of majorants. For two formal power series centered at
x=0
g=Zga ° x'g, G=ZG3 ° xB,
8 8
we write <G or G»g if |gs| <G4 for all BEN? For two formal ones centered
at (tx) = (—e0)
9= 2gks = (t+e)¥sP, G=2Grp  (t+e)*P,
.8 k.8

we write g&. G or G g if |gisl <Gy for all (k. B) EN X N¢.
The following auxiliary functions are very useful to study nonlinear
differential equations (cf. [6], [12]). For i=0,1, ... m, we put
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) — °° Z" 1
(5.1) 60Gr=2F o S0

Lemma 5.1 (Lax). There exists positive constant C1>1 such that

(0“‘(z>>z<<clﬁ“>(z> i=01, . m

Proof. 1t follows from

l?l J
Z( nt1 )1<2 §< nt1 )1
SN (k1) (n—k+1) (k+1) m—k+1)
'.ﬂ J
—o ! ( nt+l >’<2,+1§ 1
“iso (k1) \n—k+1) T T (k1) O
With this C; we define
(5.2) 0" (z) =Crt 6" (2) (=01, ...m),
and for €>0, p>1 and R>0
(5.3) oF (x) Z=¢(l)<%€l\x1+“'+xd)>.
(54) w;’}es(tﬂ) ;:(p(”(% (p(t+8) +‘(1++’(d)>

Lemma 5.2. (1) For all n€Nsq the following majorant incqualities hold:

(5.5a) (¢ @) <o (2.
(5.5b) <(p1(e”(x))n<<(p1(€) (x),
(5.5¢) (fpff}es t, x)>”<<e @SRt x) .

(n) There exists a constant C2>0 such that for i=1, ..., m
(5.6a) o9 () <L (2) € (2),
(5.6b) Co087Y (x) <<R%_k<p§e” (r) g™ (x).
5.6¢) Cagli (1. 2) <. R%q»ff}mt 0 <. ol (0 x),

0

(56d) CZ@é’,Rls) t, x) ¢ at "Pp.Re (t, x) < QD;()IRls (t x)
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(isi) The following series of majorant inequalities hold:
(5.7a) ™ (2) K™V (2) €K pP (2) €9 (2),
(5.7b) o (x) KoV (x) € Lo (v) € (),
(5.7¢) e (t ) €c IR (¢, 1) e+ Ke ke (b 1) Ko Pfke (. x).

Proof. (1) follows directly from Lemma 5.1.
(u) It is enough to prove (5.6a), which holds with C,= (3)”*% because

2 : 1+2
<%)1+ g(Z::_'%) <1 for all nEN.,

(i) is trivial by the definition. ]
We use the following polydiscs.
AR:—e) :={(t.x) ECXC?: |t+¢| <R. |0,/ <R, i=12. .., m},
AR) :={(t,x) ECXC*: [t|<R, x| <R,i=12, ... m},
4(R) :={HEC: <R =12, .,m}

Lemma 5.3. There is a constant C3>0 such that if g(t,x) €0 (A (2R;—¢))
and |g(t, 2) | <M, or h(x) €EG (A" (2R)) and |h (x) | <M, then for i=0,12, .., m. we
have

(5.8a) g(tx) € CsM@sre(t. x) for all p21,
(5.8b) h(x) KCsMo (x).
Heve Cs is independent of R, 0 and é.

Proof. Cauchy’s inequality implies

M
—o= ((t+e) +ar o +xa)

g<<51

On the other hand, we have

1—2R_‘§§;(—) <c’§@f1—)3(%>ﬂ C‘CW(')(R)

with ¢, =sup, *=2. Therefore (5.8) holds with Cs=Cimax{co, ..., cm). O

Lemma 5.4. There is a constant C4>1 such that

(5.9) - 0k 6,0) o Cule 4 ) o (1, 5).

Here Cy is independent of p, R and .
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Proof. Since

1= (=) (1+e) € e+ (o le) ot

and
Pokee (£.5) =cr1<1+$(p (t+e) +ate+xa) +>
(5.9) holds with C4=C,. O
Let us fix Ro>0 with 4 (2R,) €2 and 0 <R <R, with
(5.10) O<RSmin{1. %c;‘ Ro}.

We have assumed that f (¢, #; Z) is holomorphic in £ X C*, so for each L>0,
there is a constant A;>0 such that

(5.11) 1 ft,x2)|<A4r  for(t,x) EA2R,), and |Z;al <L  ((j, @) €A).

Lemma 5.5. There is a constant Cs> 0 which is independent of L and p
such that for each L>0, p=1 and s=“2%, we have

(5.12) futx) e CsALL™ ™0 e (1, x).

Proof. Appling Cauchy’s inequality to (2.2) and (2.3) with (5.11) yields
[, ()| <AL in A(2Ry),

and

[ure () | SALL7T™ (2Ro) ~®*P in A"(2R).
By Lemma 5.3, we have
fuie (x) KCALLT™ (2Ro) ~*+ R 0 (x)
e C3A LM {(2Rg) =P 0 o (8. 1)
and by Lemma 5.4

Prekr, () Ko Cod gL HICH™ <e+4§> btk (2Rg) "B o0 (1 1)

B gc4R>ku+k R
ul { ZC 4 (0 —
KL CaALL™H <4pR0 Do.R.e (t, x) <by 3 20)

K CALLTH(20) ~®* P ol o (1, %) (by (5.10)).

Substitute the above inequality into (2.3) and we obtain

70, e AL (20) 2 (50) 088 (0.0

k=0
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K 2C3A LMo R ¢ (8, %)
This shows that the assertion holds with Cs=2Cs,. O
%

We have assumed that u €6 (£_) is bounded of order ¢ with §,(g) >0. We
divide the proof into two cases, 0<0 and ¢=0.

5.1. In case of ¢ <0. We consider the following majorant differential
equation to (2.1):

(5.13a) orU». 2 F.(t.x) (04U)*,
ue.M
(5.13b) PiU(—¢,x) >0u(—e x) for j=01.2, ...m—1.
Here
(5.14) Fult,x) :=CsA L ™o % ¢ (t, x)

is the right hand side of (5.12) and 82%. If U satisfies the majorant equation

(5.13a) with (5.13b), then we have u &, U. We take U in the form:
(5.15) U =Ko R™iR:(t,1).

First we consider the initial condition. Since # is bounded of order ¢(<0),
we may take a constant M >0 such that for all 0<e<1

(5.16) 10u (—e, x) | <Me™? for x€4 (2R,). j=01.2.. , m—1.

Lemma 5.6. There is a constant Ko>0 such that U defined by (5.15) with
K2 KM satisfies the initial condition (5.13b). Here Ko is independent of p=1.

Proof. By Lemma 5.3 and (5.16)

Ofu (—e, x) KCsMe” @ (x).
On the other hand, by applying (5.6d) j-times

01U>e CLEO" ™ R™ 7 @kl (t. %),
which implies

0lU(—e,x) DK R™ " (x),
for @yke(t, x)|i=—e=@@ (x). Therefore (5.13b) holds if
CiKo'™"R™ 7 2 (C3Me’’=CsMR°™7 (20)’°,
that is, it is enough to take
Ko= max CsC3/2’7R°™™

0<7<m~—1

Next we consider the majorant equation (5.13a).
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Lemma 5.7. Let us take L>K. Then there is a constant 0o= 0o (L) =1 such
that U defined by (5.15) with 0= 0o satisfies the majorant equation (5.13a).
Proof. By (5.6¢), (5.6d). we have for all (. a) €A
010FU K Ko R™ =\l (¢, x)
K Ko™ 0% (t,x)  (by (5.10) and j+|a|<m).
and
(04U) K KMprit=lkiog Op (¢, x) .

Substituting the above inequality and (5.14) into the right hand side of
(5.13a). we obtain

Right hand side of (5.13a) €. Csd; 2 KWL oraw=llo=kupy(@ (f ).

reM
Since 0. {g) >0, by Lemma 4.5, we can take 6 >0 so that

lulo—7(w) ¥k, =20—m~+6  for all uE M,
which implies
pn(w-—lalrf—kugpm—a——a.
Using this inequality, we obtain

Right hand side of (5.13a) €. CsAr0™ 7% 22 K¥IL 0% (¢, %) .

neEH

On the other hand, by (5.6d). it holds
OU»e CPKO" ke (8, 1)

Therefore the assertion is valid if

CPKE"=9 > CsA 1o™m=0=8 30 KWL~ 14,

e i
that is,
00> C3"CsK A 20 KWL
HeH
where the summation is convergent, since 0 <K <L. O

Now take K=K oM, L>K and then p=p,(L) and e=3;. Then, by the above
two lemma, U defined by (5.15) satisfies the majorant equation (5.13a) and the
initial condition (5.13b), and U converges in a domain {(t,x) : plt+¢|+|as|+ -+
+ x4/ <R}. which contains the origin of CXC? for p - [0+e|+0+--+0=E<p.
Since u <, U, u is also holomorphic near the origin of C X C% This complete the
proof in case of 0<<0.

5.2. In case 6=0. Since we have always 0. (m —1) >0, we may assume ¢
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<m—1. For sufficiently small &, we put
Lol

(5.17) »(tx) = Z%ﬁ{u(—a,x) (t+e),

j=

and w=u —v. Then w satisfies the following equation:
atm'wz ZV(Z#EJ,Lfa (t, x) ( ij > (BAV)A—U) (aA’w) p,
u=y

(5.18) , {0 i=01, .. lal,
Olw(—e x)=
olu(—e x) j=lol+1, ..m—1

For u is bounded of order o, we can take M;>0 so that for all sufficiently small
e and x€4"(2R,) we have :

a{% (—-5, x) S[MI ]'=O,1, . I.O'J

M j=lol+1, . m—1.

By the definition of v, we can take a constant M;>0, by letting Ry smaller if
necessary, so that

| ..
;a;agv (t,x)!SMz in A{2Ry;—¢) and for all (j, @) €A,

which implies

(6% e.0)) | <ha#in 4 (2Ri—).
This and Lemma 5.3 yield
(5.19) (0% (t, %)) K CsM "M% (¢, %)
Using (5.12) and (5.19) we have

6.200  fuln) (4)@% )€, oooas (X )L b, (. 2).

We denote by F,,(t,x) the right hand side of (5.20) and consider the following
majorant differential equation:

(5.21a) WS, z( S F x)) @4 W)4,
Lo
0 =01, ..., Lal,
(5.21b) 6:’W(—s,x)>>( , !
olu(—e x) j=lol+1, . m—1

If W satisfies the above majorant equation, then w €, W. In the same way as
(5.15), putting

(5.22) W =Kp°R™pR.(t %),
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we determine K and o so that W satisfy (5.21a) with (5.21b).

Lemma 5.8. There is a constant Ky,>0 such that W defined by (5.22) with
K2 K\M, satisfies the initial condition (5.21b). Here K, is independent of p=1.

Proof. The proof is the same as that of Lemma 5.6. a

Lemma 5.9. Let L> K +M,. Then there is a constant 0y =01 (L) =1 such
that W defined by (5.22) with p=p; satisfies the majorant equation (5.21a).

Proof. We can prove the lemma in the same way as that of Lemma 5.7. O

Now take K=K, L>K + M, and then 0= p;. Then W defined by (5.22)
satisfies the majorant equation (5.21a) and the initial condition (5.21b),
therefore we have w €:W. W is holomorphic in {(¢, x) :p|t+s]+|x1|+---+|xd|
<R}. which contains the origin of C X C?, and so is w. This shows » =w+v is
holomorphic near the origin of C X C%
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