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§1. Introduction

Let M be an n-dimensional closed topological manifold. By # (M) we
denote the group of all homeomorphisms of M which are isotopic o the identity
by an isotopy fixed outside a compact set.

In this note we treat certain subgroups of # (M).

Let (M, N) be a manifold pair, where N is a proper submanifold of M. Let
# (M. N) denote the subgroup of homeomorphisms of # (M) which are invariant
on N.

In §2. we consider the homologies of # (M, N), that is, the homology groups
of the group # (M, N) and show that the homologies of #(R” R?) (»>0)
vanish in all dimension > 0. This is a special case of a result of
Fukui-Imanishi[F-1] which is a generalization of a result of Mather [Ma] to
foliated manifolds. We show in §3 that # (M, N) is perfect, ie.. is equal to its
own commutator subgroup, for a certain manifold pair (M. N).

In 8 and 85 we consider the group of foliation preserving
homeomorphisms. We have already discussed in [F-I] about the case of
codimension one foliations. We study here the case of compact foliations of
codimension greater than one. Let(M. %) be a C'-foliated manifold and
F(M, %) be the group of foliation preserving homeomorphisms of (M, %)
isotopic to the identity by a foliation preserving isotopy fixed outside a compact
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set. Using the results in §3 we show in §4 that F (M, %) is perfect for the case
that % is a compact codimension two foliation with no dihedral leaves on a
compact manifold M and show in §5 that F (M, &) is perfect for the case that %
is a certain compact Hausdorff codimension three foliation with 7 (L) £ Z for
each leaf L on a compact manifold M.

§2. Homologies of # (R", R?)

We recall that if G is any group, then there is a standard chain complex
C(G) whose homology is the homology of G.

Let C,(G) be the free abelian group on the set of all r-tuples (g1, .., g»),
where g,€G. The boundary operator @ : Cr(G)—C,-1(G) is defined by

0igy, .., g») = (gT'ga ..., gT g, + ;i (=1 (gr o Zrr s &)

Then we have 82 =0. The symbol H,(G) will stand for the r-th homology
group of the above chain complex.

Let R*={(x1, ..., x,) | x, SR} be an n-dimensional Euclidean space and R?
the p-dimensional subspace {(x1, ..., %5, 0, ..., 0)| r;ER} of R™.

Let U is an open rectangle in R” such that U N R? # §. We put
#y (R R?) ={re#R" R?) |supp () CU}. Let ¢: #y(R" R?)—# (R" R?)
denote the inclusion map, and let ¢x: H, (#y (R* R?))—H,(# (R", R?)) denote
the induced homomorphism. By the similar argument as in the proof of Lemma
2.2 of [F-1], we have the following lemma.

Lemma 2.1. (% 1S an isomorphism.

Theorem 2.2.  If p>0, then the homology groups H,(# (R”, R?)) =0 for
r>0.

Proof. We put U= (1, 2) X (—1, 1)*'CR" Then we note UNR?= (1, 2)
X (—1,1)*"'. Take a homeomorphism ¢ € # (R”, R?) given by ¢ (x) =3 for x
€B(0,3)={&= (. ..., #a) ERY (1) 2+ + (x,)2<9}. We set U,=¢’(U) =(5.2)
X(—%,%)H, (7=0,1,2,..). Note that Uy=U.

Then we have that U; N Uy= @ if j#k and {U;} shrinks to the origin 0 €
R” as j goes to oo.

The rest is proved by the similar way as in the proof of Theorem 2.1 of
[F-1].

Corollary 2.3.  #y(R", R?) and # (R", R?) are perfect groups for p>0.

Proof. These are immediate consequences of Theorem 2.2 because that
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H,(G) =G/[G, G] for any group G.
§3. Commutators of # (M, N)

A locally flat proper manifold pair (M, N) is by definition a pair of
topological manifolds such that N is a locally flat submanifold of M, properly
imbedded as a closed subset.

In this section, we show that # (M, N) is perfect for a locally flat manifold
pair (M, N) (dim N=0). For dim N>0. we have the following as a corollary
of Corollary 2.3.

Theorem 3.1.  Let (M, N) be a locally flat proper manifold pair. Then
# (M, N) is perfect for dim N>0.

Proof. Let f€E# (M, N). From the relative version of Corollary 1.3 of
[E-K], we have f=f;°fx—1°"°f1, where each f; is supported either in an open
rectangle U, with U,NN=@ or in an open rectangle U, with U,NN# @ .

Hence we can assume that either ;€X (R") or f,€# (R", R?).

From the theorem of Mather [Ma] and Corollary 2.3, we have that f is in
the commutator subgroup of # (M, N). Thus # (M, N) is perfect. This
completes the proof.

Corollary 3.2. Let M be a topological manifold with boundary OM. Then
# (M, OM) is perfect for dim M>1.

Let #(L X R, rel L X {—c0}) be the group of homeomorphisms of L X R
which are the identity on a neighborhood of L X {— o} and are isotopic to the
identity, where L is a closed manifold. As an immediate consequence of Theorem
1.2 of D. Mcduff [Mc], we have the following.

Proposition 3.3.  # (LXR, rel LX {—0}) is perfect.
Proposition 3.4. # (R* Q) is perfect.

Proof. Let fE# (R, 0). We denote by the same latter f the restriction of
fto R*—{0}. Since R”— {0} is homeomorphic to the product S** X R, we can
naturally regard that f is in # (S" !X R, rel S"" ' X {—00}).

From Proposition 3.3, there exist g;, 4, in #(S" !X R, rel S" ! X {—o0})
(=12, .., k) such that f=II%,[g,, h,].

Since R" is homeomorphic to the one point compactification of S" ! X R,
SPIXR/SP X {0}, we see that g, and h;: S XR—S"'XR (=12, .., k) can
be extended to homeomorphisms of R” with compact support by mapping the
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origin to the origin.
Thus f is in the commutator subgroup of # (R” 0). This completes the
proof.

Remark 3.5. Let Diff* (R, 0) be the group of C™-orientation preserving
diffeomorphisms of (R”, 0) isotopic to the identity. Then Theorem 1 of [F1]
and Corollary 1.3 of [Mc] imply that H, (Diff* (R*, 0)) =R.

Theorem 3.6. Let N be a zero dimensional submanifold of M. Then
#H (M, N) is perfect.

Proof. Let f€ # (M, N). From the relative version of Corollary 1.3 of
[E-K], we have f=/fi°fy—1°~°f1, where each f, is supported either in an open
rectangle U, with U, N N= @ or in an open rectangle U, with U, N N = {one
point}.

Hence we can assume that either /,€# (R") or f,€# (R, 0).

From the theorem of Mather [Ma] and Proposition 3.4, we have that f is in
the commutator subgroup of # (M, N) . Thus # (M, N) is perfect. This
completes the proof.

The following is a corollary of Theorem 3.6.

Corollary 3.7 (cf. Lemma 4.4 of [F-I]). Let # ([0, 11) be the group of
ovientation presevving homeomorphisms of the interval [0, 1]. Then # ([0, 1]) is
perfect.

§4. Commutators of F (M, %), Case of Codimension Two

Let M be a compact C'-manifold without boundary and % a compact
Hausdorff codimension g C'-foliation of M, where ¥ is said to be Hausdorff if
the leaf space M/# is Hausdorff. Then we have a nice picture of the local
behavior of # as follows.

Proposition 4.1 ([E2]). There is a generic leaf Lo with property that there
1s an open dense subset of M. wheve the leaves have all trivial holonomy and ave all
diffeomorphic to Lo. Given a leaf L. we can descvibe a neighborhood U(L) of L,
together with the foliation on the necighborhood as follows. There is a finite
subgroup G (L) of O(q) such that G (L) acts freely on Lo on the vight and Lo/G (L)
=L. Let D? be the unit disk. We foliate Lo X D? with leaves of the form Lo X {pt}.
This foliation is preserved by the diagonal action of G (L), defined by g(x, y) =
(x-gtg-w) for g€EGL). xELyand yED. So we have a foliation induced on
U=LoX ¢yD?. The leaf corresponding to y =0 is Lo/G (L) . Then there is a
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C'-imbedding ¢: U — M with @(U) = U(L), which preserves leaves and
¢ (Lo/G (L)) =L.

We consider here compact codimension two foliations. In this case, by the
results of D. Epstein [E1] and R. Edwards, K. Millett and D. Sullivan [E-M-S],
we have the following: There is an upper bound on the volumes of the leaves of
%. So every compact codimension two C'-foliation is Hausdorff.

Since G(L) is a finite subgroup of O(2), G(L) is either a group of k
rotations which is isomorphic to Z; or a group of I/ rotations and [ reflections
which is isomorphic to D= {u,vp’ =v*= (w)2=1}. We regard Z; as a fixed
group of rotations of D% Note that ID; which is generated by one reflection is
isomorphic to Z but it is different from Z,.

Definition 4.2. A leaf L is singular if G(L) is not trivial. The order
of G (L) is called the order of holonomy of L. Such an L is called a rotation leaf,

a veflection leaf or a dihedral leaf according to whether G (L) is isomorphic to Zx
(k>1), Dy or D, (1>1).

From now on we assume that &% has no dihedral leaves. From Proposition
4.1, there are finitely many rotation leaves in & because of the compactness of
M. Let S be the union of all reflection leaves of # and Li, ... L, all rotation
leaves of #. We denote by B the leaf space M/% which is a compact
V-manifold of dimension two and the quotient map p:M—B is a V-bundle (see
I. Satake [S] for definitions). B is also a topological manifold. Put a,=p (L,)
(1=1,2, ...7) and S=p(S). S is the boundary of B if S is non-empty. Then
we note that p: M—SUL,U~UL,—~B—SU {ay, .., a,} is a fibration with generic
leaf L as fibre.

Theorem 4.3. Let M be a compact C'~manifold without boundary and F a
compacl codimension two C'-foliulion of M. We assume that F has no dihedral
leaves. Then F (M, F) is perfect.

Proof. Every foliation preserving homeomorphism f:M— M induces a
homeomorphism f of the leaf space B such that the diagram commutes

f
M — M

| |

» P
Lo
B — B.

Let Ly, ..., L, be all rotation leaves of % and a,=p (L,) i= L2 .,7. In
this case we have the natural homomorphism m: F (M, F)—# (B, SU{ay, ..., as})
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defined by 7 (f) =f.

Let f€# (B, SU{ay, ... a;)). From the relative version of Corollary 1.3 of
[E-K], we have f=f;°fx_1°°f1, where each fi is supported either in a small
open rectangle U; with U, N (SU{ay, .., ar}) =@ or in a small open rectangle U;
with U,NS% @ and U,N{ay, .., a,} = @ or in a small open rectangle U, with
U,NS=@ and U,N {ay, ..., a,} = {one point}. Thus each f, can be lifted to f, in
F(M, %). Hence 7 is onto.

Let fEF (M, ¥). We may assume that f is close to the identity. It is
clear that 7 (f) =f(€# (B, SU {a1. ..., as})) is also close to the identity. From
Corollary 3.2 and Theorem 3.6, # (B, SU {ay, ..., a,}) is perfect. Thus f is in the
commutator subgroup of # (B, SU {ay, ..a,}), that is, f= 1., [z, b (3. b, €
# (B, SU{ay, ....a,})). Here g, and h,(i=1, 2, .., k) can be supported in small
neighborhoods in B. By lifting 2, and &, to g, and k, in F (M, %), we have f'=
521 lg., b, Since m(f= (f") 1) =id, fe (') 7! is contained in L (M, #), where
L (M, %) is the group of leaf preserving homeomorphisms of (M, ) which are
isotopic to the identitv. From Theorem 3.2 of [F-I], f° (f') ~' is in the
commutator subgroup of L (M, #). Hence f is in the commutator subgroup of
F(M, %). Thus F(M, &%) is perfect. This completes the proof.

Corollary 4.4. Let M be a compact C'-manifold without boundary and F a
compact codimension two C'-foliation of M. We assume that 7 {L) =7 for every
leaf L of . Then F (M, F) is perfect.

Proof. Take a singular leaf L of #. Then G (L) is isomorphic to a finite
cyclic group since m; (L) £Z for every leaf L of #. Thus any dihedral leaves
do not appear in # and hence the corollary follows from Theorem 4. 3.

Corollary 4.5. Let M be a compact 4-dimensional C'-manifold without
boundary and F a C'-foliation of M by orientable surfaces. If the genmus of a
generic leaf is even, then F (M, F) is perfect.

Proof. Take a generic leaf Ly and a singular leaf L of %#. Then we have a
regular covering m: Ly—L with structure group G (L). Thus if the genus of Lo
is even, then the order of G(L) is not even, hence G(L) can not be a dihedral
group. Hence the corollary follows from Theorem 4.3.

§5. Commutators of F (M, 7), Case of Codimension Three

In this section we consider the group of foliation preserving homeomor-
phisms for compact Hausdorff codimension three foliations.
Let ¥ be a compact Hausdorff codimension three C'-foliation of a compact
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manifold M. We assume that 71 (L) = Z for every leaf L of #. Then G (L) in
Proposition 4.1 is isomorphic to a finite cyclic subgroup of O(3). Then we
have the following.

Proposition 5.1 (cf. [F2]). Each cyclic subgroup G of O (3) is classified
as follows:
(1)  Type I{GCSO(3)): G is isomorphic to Z/nZ which is generated by

cos2n/n —sin2z/n 0
A=\ sin2x/n  cos2m/n 0 |
0 0 1

(1) Type II (GE SO (3), GDJ=—E;): G is isomorphic to Z/2Z which is
genevated by J.

(#43)  Type III (GE SO (3). GPJ): G is isomorphic to Z/nZ (n: even) which
is genevated by JA.

Definition 5.2. We say such a singular leaf L is of type I, type II.
type I or type M, if G(L) is of Type I, Type II. Type Il and #=2, or Type
Il and n=4.

We can clarify the local structure of the leaf space M/% using Proposition
5.1 as follows.
Let U(L) be a saturated neighborhood of L as in Proposition 4.1.

(1) In case L is of type L, U (L) /% is homeomorphic to C X (—1, 1),
where C is the quotient space of D? by a linear action of Z/nZ(CS0(2)). The
union of leaves of type I corresponds to {(0, 0)} X (=1, 1). Therefore
U(L)/% is still a topological manifold.

(2) In case L is of type I, U(L)/% is homeomorphic to the suspension of
the projective plane P%

(3) In case L is of type M1, U(L)/% is homeomorphic to D*X [0, 1). The
union of leaves of type Il corresponds to D?X {0}. Therefore the leaves of
type Il correspond to the points of the boundary of M/%.

(4) In case L is of type M2, U(L)/% is homeomorphic to C X [0, 1), where
C is that in (1). The point {(0, 0)} X {0} corresponds to the leaf of type I, the
points in 1(0, 0)} X (0, 1) correspond to the leaves of type 1 and the points in
(C—1(0, 0)) x {0} correspond to the leaves of type Il;.

In case L is of type . U (L) /% is homeomorphic to the one point
compactification of the product P X R, P2 X R/P? X {0} which is denoted by
S(PY. S(P? is not a manifold but has a manifold structure except for the
infinity point P?X {00} =00,
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Let # (S(P?) , o) be the group of homeomorphisms of S(P? which are
isotopic to the identity by an isotopy fixed outside a compact set and leave
fixed.

Proposition 5.3.  # (S(P?),) is perfect.

Proof. Let fE# (S (P?). ). We denote by the same letter f the restriction
of fto PPXR. By Proposition 3.3, we have

k
=11 lg.h]. g €EH(PPXR, rel PPX{—00}) (i=1,2. .., k).
1=1

Then we see that g, and h,: PPXR—P?XR (=1, 2, ... k) can be extended to
homeomorphisms of S (P?) with compact support by mapping the infinitv point
to the infinity point.

Thus f is in the commutator subgroup of # (S (P?), o). This completes
the proof.

Theorem 5.4. Let M be a compact Ct-manifold without boundary and F a
compact Hausdorff codimension three C'-foliation of M with leaf space B. We assume
that m(L) = Z for every leaf L of F and F has no leaves of type [ll;. Then
F(M, F) is perfect.

Proof. From the assumption, B has a manifold structure except for
points corresponding to leaves of type II. Since M is compact, such points are
finite. We denote them by a;. .. a, Let N be the submanifold of B

corresponding to the union of leaves of type | and type [, Then we have
the natural homomorphism m: F(M, F)—# (B, NU {a,, ... a,}) defined by 7 (f) =
f as in the proof of Theorem 4.3..

Let]_‘eyf (BNU{ay, .., a,}). From the relative version of Corollary 1.3 of
[E-K]. we have f=f;°ft_1°~ °f1. where each f, is supported either in a small
open neighborhood U, with U, N (N U {ay..a,}) = @ or in a small open
neighborhood U, with U,NN#* @ and U, N {uy, .., a,} = @ or in a small open
neighborhood U, with U,NN= @ and U, N {ay, ... a,} = {one point}. Thus each f,
can be lifted to f, in F (M.%). Hence 7 is onto.

Let fEF (M.%). We may assume that f is close to the identity. It is clear
that = (f) =f(€ # (B, N U {ay. ... a,})) is also close to the identity. From
Theorem 3.1 and Proposition 5.3. # (B, NU {a,....a,}) is perfect. Thus f is in
the commutator subgroup of # (B. NU {a1,...a,}) . that is, f= 5= (g h] (@1, b E
#(B,NU{ay, ...a-})). Herez, and h, (i=1. 2. ... k) can be supported in small
neighborhoods in B. By lifting g, and h, to g: and h, in F(M%) , we have f' =

-1 lgwh,) . Since w (fe (")™Y =id, f () ™" is contained in L (M%) . From
Theorem 3.2 of [F-I]. f° (f’) ! is in the commutator subgroup of L (M%) .
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Hence f is in the commutator subgroup of F (M,%). Thus F (M.%) is perfect.
This completes the proof.
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