Commutators of Foliation Preserving Homeomorphisms for Certain Compact Foliations

Dedicated to Professor Hiroyasu Ishimoto on his 60th birthday

By

Kazuhiko FUKUI*

§1. Introduction

Let M be an *n*-dimensional closed topological manifold. By $\mathcal{H}(M)$ we denote the group of all homeomorphisms of M which are isotopic to the identity by an isotopy fixed outside a compact set.

In this note we treat certain subgroups of $\mathcal{H}(M)$.

Let (M, N) be a manifold pair, where N is a proper submanifold of M. Let $\mathcal{H}(M, N)$ denote the subgroup of homeomorphisms of $\mathcal{H}(M)$ which are invariant on N.

In §2, we consider the homologies of $\mathcal{H}(M, N)$, that is, the homology groups of the group $\mathcal{H}(M, N)$ and show that the homologies of $\mathcal{H}(\mathbb{R}^n, \mathbb{R}^p)$ (p > 0)vanish in all dimension > 0. This is a special case of a result of Fukui-Imanishi[F-I] which is a generalization of a result of Mather [Ma] to foliated manifolds. We show in §3 that $\mathcal{H}(M, N)$ is perfect, *i.e.*, is equal to its own commutator subgroup, for a certain manifold pair (M, N).

In §4 and §5, we consider the group of foliation preserving homeomorphisms. We have already discussed in [F-I] about the case of codimension one foliations. We study here the case of compact foliations of codimension greater than one. Let (M, \mathcal{F}) be a C^1 -foliated manifold and $F(M, \mathcal{F})$ be the group of foliation preserving homeomorphisms of (M, \mathcal{F}) isotopic to the identity by a foliation preserving isotopy fixed outside a compact

Communicated by K. Saito, April 30, 1997.

¹⁹⁹¹ Mathematics Subject Classification (s): 57R30

^{*}Department of Mathematics, Kyoto Sangyo University, Kyoto 603-8555, Japan.

e-mail: fukui @cc.kyoto-su.ac.jp

set. Using the results in §3 we show in §4 that $F(M, \mathscr{F})$ is perfect for the case that \mathscr{F} is a compact codimension two foliation with no dihedral leaves on a compact manifold M and show in §5 that $F(M, \mathscr{F})$ is perfect for the case that \mathscr{F} is a certain compact Hausdorff codimension three foliation with $\pi_1(L) \cong \mathbb{Z}$ for each leaf L on a compact manifold M.

§2. Homologies of $\mathcal{H}(\mathbb{R}^n, \mathbb{R}^p)$

We recall that if G is any group, then there is a standard chain complex C(G) whose homology is the homology of G.

Let $C_r(G)$ be the free abelian group on the set of all *r*-tuples $(g_1, ..., g_r)$, where $g_i \in G$. The boundary operator $\partial : C_r(G) \rightarrow C_{r-1}(G)$ is defined by

$$\partial(g_1, ..., g_r) = (g_1^{-1}g_2, ..., g_1^{-1}g_r) + \sum_{i=1}^r (-1)^i (g_1, ..., \hat{g}_i, ..., g_r)$$

Then we have $\partial^2 = 0$. The symbol $H_r(G)$ will stand for the *r*-th homology group of the above chain complex.

Let $\mathbb{R}^n = \{(x_1, ..., x_n) \mid x_i \in \mathbb{R}\}$ be an *n*-dimensional Euclidean space and \mathbb{R}^p the *p*-dimensional subspace $\{(x_1, ..., x_p, 0, ..., 0) \mid x_i \in \mathbb{R}\}$ of \mathbb{R}^n .

Let U is an open rectangle in \mathbb{R}^n such that $U \cap \mathbb{R}^p \neq \emptyset$. We put $\mathscr{H}_U(\mathbb{R}^n, \mathbb{R}^p) = \{f \in \mathscr{H}(\mathbb{R}^n, \mathbb{R}^p) | supp(f) \subset U \}$. Let $\iota: \mathscr{H}_U(\mathbb{R}^n, \mathbb{R}^p) \to \mathscr{H}(\mathbb{R}^n, \mathbb{R}^p)$ denote the inclusion map, and let $\iota_*: H_r(\mathscr{H}_U(\mathbb{R}^n, \mathbb{R}^p)) \to H_r(\mathscr{H}(\mathbb{R}^n, \mathbb{R}^p))$ denote the induced homomorphism. By the similar argument as in the proof of Lemma 2.2 of [F-I], we have the following lemma.

Lemma 2.1. ι_* is an isomorphism.

Theorem 2.2. If p > 0, then the homology groups $H_r(\mathcal{H}(\mathbb{R}^n, \mathbb{R}^p)) = 0$ for r > 0.

Proof. We put $U = (1, 2) \times (-1, 1)^{n-1} \subset \mathbb{R}^n$. Then we note $U \cap \mathbb{R}^p = (1, 2) \times (-1, 1)^{p-1}$. Take a homeomorphism $\phi \in \mathscr{H}(\mathbb{R}^n, \mathbb{R}^p)$ given by $\phi(x) = \frac{1}{3}x$ for $x \in B(0, 3) = \{x = (x_1, ..., x_n) \in \mathbb{R}^n | (x_1)^2 + \dots + (x_n)^2 < 9\}$. We set $U_j = \phi^j(U) = (\frac{1}{3^j}, \frac{2}{3^j}) \times (-\frac{1}{3^j}, \frac{1}{3^j})^{n-1}$, (j = 0, 1, 2, ...). Note that $U_0 = U$.

Then we have that $\overline{U}_j \cap \overline{U}_k = \emptyset$ if $j \neq k$ and $\{\overline{U}_j\}$ shrinks to the origin $0 \in \mathbb{R}^n$ as j goes to ∞ .

The rest is proved by the similar way as in the proof of Theorem 2.1 of [F-I].

Corollary 2.3. $\mathcal{H}_U(\mathbb{R}^n, \mathbb{R}^p)$ and $\mathcal{H}(\mathbb{R}^n, \mathbb{R}^p)$ are perfect groups for p > 0. *Proof.* These are immediate consequences of Theorem 2.2 because that $H_1(G) \cong G/[G, G]$ for any group G.

§3. Commutators of $\mathcal{H}(M, N)$

A locally flat proper manifold pair (M, N) is by definition a pair of topological manifolds such that N is a locally flat submanifold of M, properly imbedded as a closed subset.

In this section, we show that $\mathscr{H}(M, N)$ is perfect for a locally flat manifold pair (M, N) (dim $N \ge 0$). For dim $N \ge 0$, we have the following as a corollary of Corollary 2.3.

Theorem 3.1. Let (M, N) be a locally flat proper manifold pair. Then $\mathcal{H}(M, N)$ is perfect for dim N > 0.

Proof. Let $f \in \mathscr{H}(M, N)$. From the relative version of Corollary 1.3 of [E-K], we have $f = f_k \circ f_{k-1} \circ \cdots \circ f_1$, where each f_t is supported either in an open rectangle U_t with $U_t \cap N = \emptyset$ or in an open rectangle U_t with $U_t \cap N \neq \emptyset$.

Hence we can assume that either $f_i \in \mathscr{H}(\mathbb{R}^n)$ or $f_i \in \mathscr{H}(\mathbb{R}^n, \mathbb{R}^p)$.

From the theorem of Mather [Ma] and Corollary 2.3, we have that f is in the commutator subgroup of $\mathcal{H}(M, N)$. Thus $\mathcal{H}(M, N)$ is perfect. This completes the proof.

Corollary 3.2. Let M be a topological manifold with boundary ∂M . Then $\mathcal{H}(M, \partial M)$ is perfect for dim M > 1.

Let $\mathscr{H}(L \times \mathbb{R}, \text{ rel } L \times \{-\infty\})$ be the group of homeomorphisms of $L \times \mathbb{R}$ which are the identity on a neighborhood of $L \times \{-\infty\}$ and are isotopic to the identity, where L is a closed manifold. As an immediate consequence of Theorem 1.2 of D. Mcduff [Mc], we have the following.

Proposition 3.3. $\mathcal{H}(L \times \mathbf{R}, \text{ rel } L \times \{-\infty\})$ is perfect. **Proposition 3.4.** $\mathcal{H}(\mathbf{R}^n, 0)$ is perfect.

Proof. Let $f \in \mathcal{H}(\mathbb{R}^n, 0)$. We denote by the same latter f the restriction of f to $\mathbb{R}^n - \{0\}$. Since $\mathbb{R}^n - \{0\}$ is homeomorphic to the product $S^{n-1} \times \mathbb{R}$, we can naturally regard that f is in $\mathcal{H}(S^{n-1} \times \mathbb{R}, \text{ rel } S^{n-1} \times \{-\infty\})$.

From Proposition 3.3, there exist g_i , h_i in $\mathcal{H}(S^{n-1} \times \mathbf{R}, \text{ rel } S^{n-1} \times \{-\infty\})$ (i=1,2,...,k) such that $f=\prod_{i=1}^k [g_i, h_i]$.

Since \mathbf{R}^n is homeomorphic to the one point compactification of $S^{n-1} \times \mathbf{R}$, $S^{n-1} \times \mathbf{R}/S^{n-1} \times \{\infty\}$, we see that g_i and $h_i: S^{n-1} \times \mathbf{R} \longrightarrow S^{n-1} \times \mathbf{R}$ (i=1,2,...,k) can be extended to homeomorphisms of \mathbf{R}^n with compact support by mapping the

KAZUIIIKO FUKUI

origin to the origin.

Thus f is in the commutator subgroup of $\mathscr{H}(\mathbb{R}^n, 0)$. This completes the proof.

Remark 3.5. Let $Diff^{\infty}(\mathbb{R}^n, 0)$ be the group of C^{∞} -orientation preserving diffeomorphisms of $(\mathbb{R}^n, 0)$ isotopic to the identity. Then Theorem 1 of [F1] and Corollary 1.3 of [Mc] imply that $H_1(Diff^{\infty}(\mathbb{R}^n, 0)) \cong \mathbb{R}$.

Theorem 3.6. Let N be a zero dimensional submanifold of M. Then $\mathcal{H}(M, N)$ is perfect.

Proof. Let $f \in \mathcal{H}(M, N)$. From the relative version of Corollary 1.3 of [E-K], we have $f = f_k \circ f_{k-1} \circ \cdots \circ f_1$, where each f_t is supported either in an open rectangle U_t with $U_t \cap N = \emptyset$ or in an open rectangle U_t with $U_t \cap N = \{one point\}$.

Hence we can assume that either $f_i \in \mathcal{H}(\mathbb{R}^n)$ or $f_i \in \mathcal{H}(\mathbb{R}^n, 0)$.

From the theorem of Mather [Ma] and Proposition 3.4, we have that f is in the commutator subgroup of $\mathcal{H}(M, N)$. Thus $\mathcal{H}(M, N)$ is perfect. This completes the proof.

The following is a corollary of Theorem 3.6.

Corollary 3.7 (cf. Lemma 4.4 of [F-I]). Let $\mathcal{H}([0, 1])$ be the group of orientation preserving homeomorphisms of the interval [0, 1]. Then $\mathcal{H}([0, 1])$ is perfect.

§4. Commutators of $F(M, \mathcal{F})$, Case of Codimension Two

Let M be a compact C^{1} -manifold without boundary and \mathcal{F} a compact Hausdorff codimension $q \ C^{1}$ -foliation of M, where \mathcal{F} is said to be *Hausdorff* if the leaf space M/\mathcal{F} is Hausdorff. Then we have a nice picture of the local behavior of \mathcal{F} as follows.

Proposition 4.1 ([E2]). There is a generic leaf L_0 with property that there is an open dense subset of M, where the leaves have all trivial holonomy and are all diffeomorphic to L_0 . Given a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on the neighborhood as follows. There is a finite subgroup G(L) of O(q) such that G(L) acts freely on L_0 on the right and $L_0/G(L)$ $\cong L$. Let D^q be the unit disk. We foliate $L_0 \times D^q$ with leaves of the form $L_0 \times \{pt\}$. This foliation is preserved by the diagonal action of G(L), defined by g(x, y) = $(x \cdot g^{-1}, g \cdot y)$ for $g \in G(L), x \in L_0$ and $y \in D^q$. So we have a foliation induced on $U = L_0 \times G(L)D^q$. The leaf corresponding to y = 0 is $L_0/G(L)$. Then there is a

68

 C^{1} -imbedding $\varphi: U \to M$ with $\varphi(U) = U(L)$, which preserves leaves and $\varphi(L_{0}/G(L)) = L$.

We consider here compact codimension two foliations. In this case, by the results of D. Epstein [E1] and R. Edwards, K. Millett and D. Sullivan [E-M-S], we have the following: There is an upper bound on the volumes of the leaves of \mathscr{F} . So every compact codimension two C^{1} -foliation is Hausdorff.

Since G(L) is a finite subgroup of O(2), G(L) is either a group of k rotations which is isomorphic to \mathbb{Z}_k or a group of l rotations and l reflections which is isomorphic to $\mathbb{D}_l = \{u, v; u^l = v^2 = (uv)^2 = 1\}$. We regard \mathbb{Z}_k as a fixed group of rotations of D^2 . Note that \mathbb{D}_1 which is generated by one reflection is isomorphic to \mathbb{Z}_2 but it is different from \mathbb{Z}_2 .

Definition 4.2. A leaf L is singular if G(L) is not trivial. The order of G(L) is called the order of holonomy of L. Such an L is called a rotation leaf, a reflection leaf or a dihedral leaf according to whether G(L) is isomorphic to \mathbb{Z}_k (k>1), \mathbb{D}_1 or $\mathbb{D}_l(l>1)$.

From now on we assume that \mathscr{F} has no dihedral leaves. From Proposition 4.1, there are finitely many rotation leaves in \mathscr{F} because of the compactness of M. Let S be the union of all reflection leaves of \mathscr{F} and $L_1, ..., L_r$ all rotation leaves of \mathscr{F} . We denote by B the leaf space M/\mathscr{F} which is a compact V-manifold of dimension two and the quotient map $p:M \to B$ is a V-bundle (see I. Satake [S] for definitions). B is also a topological manifold. Put $a_i = p(L_i)$ (i=1, 2, ..., r) and $\overline{S} = p(S)$. \overline{S} is the boundary of B if S is non-empty. Then we note that $p: M - S \cup L_1 \cup \cdots \cup L_r \to B - \overline{S} \cup \{a_1, ..., a_r\}$ is a fibration with generic leaf L as fibre.

Theorem 4.3. Let M be a compact C^1 -manifold without boundary and F a compact codimension two C^1 -foliation of M. We assume that F has no dihedral leaves. Then F(M, F) is perfect.

Proof. Every foliation preserving homeomorphism $f: M \rightarrow M$ induces a homeomorphism \overline{f} of the leaf space B such that the diagram commutes

Let $L_1, ..., L_r$ be all rotation leaves of \mathscr{F} and $a_i = p(L_i)$ (i = 1, 2, ..., r). In this case we have the natural homomorphism $\pi: F(M, \mathscr{F}) \to \mathscr{H}(B, \overline{S} \cup \{a_1, ..., a_r\})$

defined by $\pi(f) = \bar{f}$.

Let $\bar{f} \in \mathcal{H}(B, \bar{S} \cup \{a_1, ..., a_r\})$. From the relative version of Corollary 1.3 of [E-K], we have $\bar{f} = \bar{f}_k \circ \bar{f}_{k-1} \circ \cdots \circ \bar{f}_1$, where each \bar{f}_i is supported either in a small open rectangle U_i with $U_i \cap (\bar{S} \cup \{a_1, ..., a_r\}) = \emptyset$ or in a small open rectangle U_i with $U_i \cap \bar{S} \neq \emptyset$ and $U_i \cap \{a_1, ..., a_r\} = \emptyset$ or in a small open rectangle U_i with $U_i \cap \bar{S} = \emptyset$ and $U_i \cap \{a_1, ..., a_r\} = \{one \ point\}$. Thus each \bar{f}_i can be lifted to f_i in $F(M, \mathcal{F})$. Hence π is onto.

Let $f \in F(M, \mathscr{F})$. We may assume that f is close to the identity. It is clear that $\pi(f) = \overline{f} (\in \mathscr{H} (B, \overline{S} \cup \{a_1, ..., a_r\}))$ is also close to the identity. From Corollary 3.2 and Theorem 3.6, $\mathscr{H} (B, \overline{S} \cup \{a_1, ..., a_r\})$ is perfect. Thus \overline{f} is in the commutator subgroup of $\mathscr{H} (B, \overline{S} \cup \{a_1, ..., a_r\})$, that is, $\overline{f} = \prod_{i=1}^{s} [\overline{g}_i, \overline{h}_i]$ ($\overline{g}_i, \overline{h}_i \in$ $\mathscr{H} (B, \overline{S} \cup \{a_1, ..., a_r\})$). Here \overline{g}_i and \overline{h}_i (i = 1, 2, ..., k) can be supported in small neighborhoods in B. By lifting \overline{g}_i and \overline{h}_i to g_i and h_i in $F(M, \mathscr{F})$, we have f' = $\prod_{i=1}^{s} [g_i, h_i]$. Since $\pi(f \circ (f')^{-1}) = id, f \circ (f')^{-1}$ is contained in $L(M, \mathscr{F})$, where $L(M, \mathscr{F})$ is the group of leaf preserving homeomorphisms of (M, \mathscr{F}) which are isotopic to the identity. From Theorem 3.2 of [F-I], $f \circ (f')^{-1}$ is in the commutator subgroup of $L(M, \mathscr{F})$. Hence f is in the commutator subgroup of $F(M, \mathscr{F})$. Thus $F(M, \mathscr{F})$ is perfect. This completes the proof.

Corollary 4.4. Let M be a compact C^{1} -manifold without boundary and \mathcal{F} a compact codimension two C^{1} -foliation of M. We assume that $\pi_{1}(L) \cong \mathbb{Z}$ for every leaf L of \mathcal{F} . Then $F(M, \mathcal{F})$ is perfect.

Proof. Take a singular leaf L of \mathscr{F} . Then G(L) is isomorphic to a finite cyclic group since $\pi_1(L) \cong Z$ for every leaf L of \mathscr{F} . Thus any dihedral leaves do not appear in \mathscr{F} and hence the corollary follows from Theorem 4.3.

Corollary 4.5. Let M be a compact 4-dimensional C^1 -manifold without boundary and \mathcal{F} a C^1 -foliation of M by orientable surfaces. If the genus of a generic leaf is even, then $F(M, \mathcal{F})$ is perfect.

Proof. Take a generic leaf L_0 and a singular leaf L of \mathscr{F} . Then we have a regular covering $\pi: L_0 \rightarrow L$ with structure group G(L). Thus if the genus of L_0 is even, then the order of G(L) is not even, hence G(L) can not be a dihedral group. Hence the corollary follows from Theorem 4.3.

§5. Commutators of $F(M, \mathcal{F})$, Case of Codimension Three

In this section we consider the group of foliation preserving homeomorphisms for compact Hausdorff codimension three foliations.

Let \mathcal{F} be a compact Hausdorff codimension three C^{1} -foliation of a compact

70

manifold *M*. We assume that $\pi_1(L) \cong \mathbb{Z}$ for every leaf *L* of \mathscr{F} . Then G(L) in Proposition 4.1 is isomorphic to a finite cyclic subgroup of O(3). Then we have the following.

Proposition 5.1 (cf. [F2]). Each cyclic subgroup G of O(3) is classified as follows:

(i) Type $I(G \subseteq SO(3))$: G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ which is generated by

$$A = \begin{pmatrix} \cos 2\pi/n & -\sin 2\pi/n & 0\\ \sin 2\pi/n & \cos 2\pi/n & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

(ii) Type II ($G \oplus SO(3)$, $G \ni J = -E_3$): G is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ which is generated by J.

(iii) Type III ($G \subseteq SO(3)$, $G \not\supseteq J$): G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ (n: even) which is generated by JA.

Definition 5.2. We say such a singular leaf L is of type I, type II, type II and n=2, or Type II and $n\geq 4$.

We can clarify the local structure of the leaf space M/\mathcal{F} using Proposition 5.1 as follows.

Let U(L) be a saturated neighborhood of L as in Proposition 4.1.

(1) In case *L* is of type I, $U(L)/\mathcal{F}$ is homeomorphic to $C \times (-1, 1)$, where *C* is the quotient space of D^2 by a linear action of $\mathbb{Z}/n\mathbb{Z}(\subseteq SO(2))$. The union of leaves of type I corresponds to $\{(0, 0)\} \times (-1, 1)$. Therefore $U(L)/\mathcal{F}$ is still a topological manifold.

(2) In case L is of type \prod , $U(L)/\mathcal{F}$ is homeomorphic to the suspension of the projective plane P^2 .

(3) In case L is of type III_1 , $U(L)/\mathcal{F}$ is homeomorphic to $D^2 \times [0, 1)$. The union of leaves of type III_1 corresponds to $D^2 \times \{0\}$. Therefore the leaves of type III_1 correspond to the points of the boundary of M/\mathcal{F} .

(4) In case *L* is of type \coprod_2 , $U(L)/\mathscr{F}$ is homeomorphic to $C \times [0, 1)$, where *C* is that in (1). The point $\{(0, 0)\} \times \{0\}$ corresponds to the leaf of type \coprod_2 , the points in $\{(0, 0)\} \times \{0, 1\}$ correspond to the leaves of type 1 and the points in $(C - (0, 0)) \times \{0\}$ correspond to the leaves of type \coprod_1 .

In case L is of type Π . $U(L)/\mathcal{F}$ is homeomorphic to the one point compactification of the product $P^2 \times \mathbb{R}$, $P^2 \times \mathbb{R}/P^2 \times \{\infty\}$, which is denoted by $S(P^2)$. $S(P^2)$ is not a manifold but has a manifold structure except for the infinity point $P^2 \times \{\infty\} = \infty$.

Let $\mathscr{H}(S(P^2), \infty)$ be the group of homeomorphisms of $S(P^2)$ which are isotopic to the identity by an isotopy fixed outside a compact set and leave ∞ fixed.

Proposition 5.3. $\mathcal{H}(S(P^2),\infty)$ is perfect.

Proof. Let $f \in \mathscr{H}(S(P^2), \infty)$. We denote by the same letter f the restriction of f to $P^2 \times \mathbb{R}$. By Proposition 3.3, we have

$$f = \prod_{i=1}^{k} [g_i, h_i], g_i, h_i \in \mathcal{H}(P^2 \times \mathbb{R}, \text{ rel } P^2 \times \{-\infty\}) \ (i = 1, 2, ..., k).$$

Then we see that g_i and $h_i: P^2 \times \mathbb{R} \to P^2 \times \mathbb{R}$ (i = 1, 2, ..., k) can be extended to homeomorphisms of $S(P^2)$ with compact support by mapping the infinity point to the infinity point.

Thus f is in the commutator subgroup of $\mathscr{H}(S(P^2), \infty)$. This completes the proof.

Theorem 5.4. Let M be a compact C^1 -manifold without boundary and \mathcal{F} a compact Hausdorff codimension three C^1 -foliation of M with leaf space B. We assume that $\pi_1(L) \cong \mathbb{Z}$ for every leaf L of \mathcal{F} and \mathcal{F} has no leaves of type \mathbb{H}_2 . Then $F(M, \mathcal{F})$ is perfect.

Proof. From the assumption, *B* has a manifold structure except for points corresponding to leaves of type II. Since *M* is compact, such points are finite. We denote them by a_1, a_r . Let *N* be the submanifold of *B* corresponding to the union of leaves of type I and type II_1 . Then we have the natural homomorphism $\pi: F(M, \mathcal{F}) \rightarrow \mathcal{H}(B, N \cup \{a_1, ..., a_r\})$ defined by $\pi(f) = \overline{f}$ as in the proof of Theorem 4.3.

Let $\bar{f} \in \mathcal{H}(B, N \cup \{a_1, ..., a_r\})$. From the relative version of Corollary 1.3 of [E-K], we have $\bar{f} = \bar{f}_k \circ \bar{f}_{k-1} \circ \cdots \circ \bar{f}_1$, where each \bar{f}_t is supported either in a small open neighborhood U_t with $U_t \cap (N \cup \{a_1, ..., a_r\}) = \emptyset$ or in a small open neighborhood U_t with $U_t \cap N \neq \emptyset$ and $U_t \cap \{a_1, ..., a_r\} = \emptyset$ or in a small open neighborhood U_t with $U_t \cap N \neq \emptyset$ and $U_t \cap \{a_1, ..., a_r\} = \emptyset$ or in a small open neighborhood U_t with $U_t \cap N \neq \emptyset$ and $U_t \cap \{a_1, ..., a_r\} = \{one \ point\}$. Thus each \bar{f}_t can be lifted to f_t in $F(M,\mathcal{F})$. Hence π is onto.

Let $f \in F(M,\mathcal{F})$. We may assume that f is close to the identity. It is clear that $\pi(f) = \overline{f} (\in \mathcal{H}(B, N \cup \{a_1, ..., a_r\}))$ is also close to the identity. From Theorem 3.1 and Proposition 5.3, $\mathcal{H}(B, N \cup \{a_1, ..., a_r\})$ is perfect. Thus \overline{f} is in the commutator subgroup of $\mathcal{H}(B, N \cup \{a_1, ..., a_r\})$, that is, $\overline{f} = \prod_{i=1}^{s} [\overline{g}_i, \overline{h}] (\overline{g}_i, \overline{h}_i \in$ $\mathcal{H}(B, N \cup \{a_1, ..., a_r\}))$. Here \overline{g}_i and \overline{h}_i (i=1, 2, ..., k) can be supported in small neighborhoods in B. By lifting \overline{g}_i and \overline{h}_i to g_i and h_i in $F(M,\mathcal{F})$, we have f' = $\prod_{i=1}^{s} [g_i, h_i]$. Since $\pi(f \circ (f')^{-1}) = id, f \circ (f')^{-1}$ is contained in $L(M,\mathcal{F})$. From Theorem 3.2 of $[F-I], f \circ (f')^{-1}$ is in the commutator subgroup of $L(M,\mathcal{F})$. Hence f is in the commutator subgroup of $F(M,\mathcal{F})$. Thus $F(M,\mathcal{F})$ is perfect. This completes the proof.

References

- [E-K] Edwards, R. D., Kirby, R. C., Deformations of spaces of imbeddings. Ann. of Math., 93 (1971), 63-88.
- [E-M-S] Edwards, R., Millett, K., Sullivan, D., Foliations with all leaves compact, Topology, 16 (1977), 13-32.
 - [E1] Epstein, D.B.A., Periodic flows on three-manifolds, Ann. of Math., 95 (1976), 68-82.
 - [E2] -----, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble, 26 (1976), 265-282.
 - [F1] Fukui, K., Homologies of the group $Diff^{\infty}(\mathbb{R}^n, 0)$ and its subgroups, J. Math. Kyoto Univ., **20** (1980), 475-487.
 - [F2] —, Stability of Hausdorff foliations of 4-manifolds by circles, Math. Japon., 34-6 (1989), 925-932.
 - [F-I] Fukui, K., Imanishi, H., On commutators of foliation preserving homeomorphisms, to appear in J. Math. Soc. Japan.
 - [Ma] Mather, J. N., The vanishing of the homology of certain groups of homeomorphisms. Topology, 10 (1971), 297-298
 - [Mc] McDuff, D., The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold, J. London Math. Soc., 18-2 (1978), 353-364.
 - [S] Satake, I., The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9-4 (1957), 464-492.