
Publ. RIMS, Kyoto Univ.
34 (1998), 75-89

Global Existence in Time and Decay Property of Solutions

of Boundary Value Problems for Semilinear Hyperbolic

Equations of Second Order in the Interior Domain

Dedicated to the memory of Professor Yukiyoshi Ebihara

By

Akisato KUBO*

Introduction

Consider the following boundary value problem for a semilinear hyperbolic
equations of second order.

(0.1) P*[u]=f(t, *) in (t, x) <= [T, oo) X Q

(0.2) u = Q on [T, oo)x9
(B.V.)

where T^ 0, Q is assumed to be a bounded domain in W1 with a smooth
boundary dQ,

(0.3) P * [ - ] = 9 ? - - Z 9, (a „(*,*) 9,- )+A( t ,* ;u ,A*)[w]
«,/=!

(0.4) A ( f , * ; u , / l K ) [ - ] = S aaB(t.x\u.Au)A*- AB- ,

9t=="a~, ^~ir~> i — 1, '",n, Au= (dtu, d\u, • • • , 9Mti),

a= (a0, ai, • • - , a«), /J— OSo, A, • • • , ^8W) are multi-indices,

and Aaw= (dfdT'"dnnu- a— (a0, ai, • • - , aj).

We next make following assumptions on PM.
n

(A-I) 2 d l ( a l j ( t , x}d}) is an elliptic operator satisfying for all r] ^W1

u=i

(0.5) Zfl, /)7,)?^CoS7??(Co>0)I
u'=i »=i

fliy(t, ^) =ay< (t, x) (i, ; = ! ,—, n) for all (t, *) e [0, oo) x Q,
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(A-II) All the coefficients and data are reaj_ valued and au(t, x) (i,j = I, • • • , n),
aae(t, x\ & (|a|, |0|S1) are in #"([0, oo) x£?xB0) where B0=
for a positive constant p0 and ?= (?* £0. ?i, — , &)

Define a positive constant CQ by

(0.6) Z SUp \dfCL tj(t, X)\=€Q.

For 0 ^Ti <T2 <°° and non-negative integer m Hm ((Ti, T2) x fi) and
#w (i3) denote usual Sobolev spaces of order m on (Ti, T2)

 x Q and ,0
respectively and we put for a function h (t, x) defined in (t, x) ^ (Ti, T2)

 x .0

In the course of calculations below various constants will be simply denoted by
C.

It was shown that the mixed problem for linear hyperbolic equations of
second order with (0.2) is L2~well posed by Ikawa[6]. Shibata [24] studied the
mixed problem for nonlinear hyperbolic equations of second order with a
dissipative term with (0.2) and obtained time global classical solutions for
small initial data. However nothing is known about time global classical
solutions with exponential decay property of mixed problems for hyperbolic
equations with nonlinear terms of the type of (0.4). That is to say, it seems to
be very difficult to obtain it without dissipative term and appropriate additional
condition on nonlinear terms for any given initial data (cf. Ebihara [3],
Yamaguchi [25]). In fact, blow-up solutions were obtained by many authors [see
[5],[7]-[10], [20]).

On the other hand, in case PM is a nonlinear operator, time global solutions
have been studied by quite a number of articles (see [2] - [5], [7] - [9], [11],
[13], [14] -[19], [22], [23], [25], [26] and further references in these papers).
In case P«[w] —Dw + T^ for an integer M = 3 and 7—!, Sather [22] obtained a
time global classical solution of a mixed problem for Pu [u] ~0 with (0.2).
Sattinger [23] introduced the method of 'potential weir to show the existence of
a time global weak solution of a mixed problem for wave equations with
non-monotonic nonlinear terms (see Lions [11]). In the case of m=n~3 and J
= — 1, Ebihara-Nakao~Nambu [3] proved the global existence in time of
classical solutions of the mixed problem for PM [u] =0 with (0.2) (cf. Ebihara
[2]). Ebihara [3] considered (ILVD) with initial data without smallness
condition when Pu — d2

t ~ A +fjtdt+f(t, x,u, ut) for ^^0 and T = 0. He proved
that there exists a solution such that in the case of ^>0 it becomes a classical
solution with exponential decay property after finite time. Also in the case of fj.
~ 0 he obtained 'modified (m) -solution', which is not necessarily a genuine
solution of this problem.

On the other hand, recently Wayne [26] studied (ILVo) in case PM [u] =
DM — v (x) u + eu3 = 0 for v (x) e L2 (Si) and a small constant e and obtained
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periodic and quasi-periodic solutions of (B.V.).
The main purpose of this paper is to seek a classical solution of (B.V.)

with exponential decay property after finite time in case/(t, x) ^0. Also we will
discuss the existence of a classical solution of (B.V.) with T = 0. We shall
show our main result.

Theorem 1. Assume that (A-I) and (A-II) hold and that e ( a + 1 / 2 ) t f ( t , x ) e
HL ((0, oo) x £?)) /or any w/^r L ^ [(n + l)/2] +3 and a constant tf>0. There
exists a sufficiently large constant T and sufficiently small c0 such that the problem

(0 . 1) - (0 . 2) admits a solution u (t, x) e Y/C' ( [T, oo) ; tf^., (fl) ) D #£ ( [T, oo)
1=0

X Q) having the property.

(0.7) ' t t [ r . ~ ) x f l < + « > , sup
te[r,t»)

lim <? f f1|M||i_u>(f) =0.

Remark, i) Based on Theorem 1, we consider the existence of a time global

classical solution of (B.V.) with T = 0. Put Ci = f "k(*+1/2)'/1za(0 df. Then
Jo

there exists a constant /I > 0 independent of Ci and T such that we may take a
constant T in [max{0. log(A£i)}, +°°) arbitrarily in Theorem 1. Hence taking
£L small enough we obtain a solution in [0, °°) X Q \\\ Theorem 1. Especially in
case / (t, x) = 0, our solution of (B.V.) obtained in Theorem 1 is the trivial
solution. These arguments will be discussed in detail in §3.
il) We consider the case where atj (t, x), i, j = l, • • • , n and aa& (t, x\ 5) (|«|, |/J|
^1) are independent of t. Set u (t + T0, x) = V(t, x) for a solution u(t, x)
obtained in Theorem 1 where we denote T decided in Theorem 1 by T0. Then it
is seen that V(t, x) is a solution of the following problem.

Pv[V(t.x)]=f(t+To*) in [0, oo) Xfl f

V(t,x)=Q on [0, oo) xdfi.

On the other hand, as stated in i), TQ is decided essentially only by CL fc>r a
fixed constant A. Therefore we can solve a problem Pu[u] =f(t — T0, x) with
(0.2) in [To, °°J X Q by the same argument as in Theorem 1 and we write a
solution of this problem by u(t, x). It is easily seen that V(t, x) =11 (t + T0, x) is
a solution of (B.V.) in [0, oo) xfl.
iii) When a is sufficiently large, we obtain the same result as Theorem 1
without the smallness condition on CQ. It will be discussed in subsection 2.1 of
§2.

Now, we discuss the proof of our main result and the contents of the
remainder of this paper. It seems to be very difficult to obtain a time global and
classical solution of (B.V.) by solving the problem directly. To overcome this
difficulty we reduce our problem (B.V.) to the following mixed problem by the
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new time variable s=e~f.

Qu [u] =f(s, x) in (5, x) e (0, S] X Q
w = 0 on (0, S] xdQ

where o is a positive constant, S — e~T and QM is, the so called, a singular
hyperbolic operator obtained by replacing dt by sds in PM, which will be
specified in §1 and we write f(e~*> x) by/(5, *) again. In the below, when there
is no danger of confusion, for any function h (t, x) we write h (e~*, x) by h (s, x)
again.

That is to say, instead of solving (B0V0) directly, we will seek the time
local smooth solution of (S.M.P.) with zero Cauchy data, which gives a
classical solution of (B.V.) with exponential decay property.

In case QM is a linear operator (S<,M0P<>) has been studied by Sakamoto
[21] in a more general framework. She obtained the existence of smooth
solutions of (S.M.P.) for sufficiently large (7> 0. In this paper we obtain the
time local existence theorem of smooth solution of a mixed problem for linear
singular hyperbolic equation corresponding to (S.M.P.) for any a > 0 and
apply it to our problem.

This paper is organized as follows. In the first section, we introduce all
notations in what follows and prepare some lemmas to prove our theorems. In
Section 2, we derive the energy inequality of iteration scheme of (S.M.P.) at
each step. In Section 3, we prove the time local existence of smooth solution of
(S.M.P.) by the usual Picard's method. Going back to the original time
variable, it will be easily shown that our solution of (S.M.P.) solves (B.V.)
classically. Finally we discuss the case where non—homogenous Dirichlet
boundary condition is given instead of (0.2) . Also it will be shown that
assumptions on coefficients of Ptt in Theorem 1 can be relaxed.

By the new time variable s=e ', Pu is reduced to the following operator.

n
Q o — ( Q / y I o — 7 /^ (n ( ^ v I f^ o ) —|— A ( c v 11 Di i \ \ 1 /

U L J — w^S/ <<-• J "1 \U-lj w ? %) *-*J / 1 ^ - i * - \O» ^v 5 **, LsU ) L.W'J

where Du= (s95u,9iM/--f 9nu) t D
au= ((sds)

a°dT"°dnn u' a= (a0, ar", a»)). By
this change of time variable, (A-II) and (0.5) are rewrited by (A-II)' and
(1.0) respectively in the following.

(A-II)' All the coefficients and data are real valued and D7at} (s, x) (i, / = !,•••,

M), DrDfaap(s, x\ ?) (|a, |j8|^l), I r l , M^O, are bounded in [0,1] X Q x I0

where Df = d™*d^-°d^ for a multi-index a>.

(1.0) E sup
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If coefficients of PM satisfy (A-I) and (A-II) , coefficients of Q« satisfy (A-I)
and (A-II)'. Then we consider the following mixed problem corresponding to
(B.V.).

(1.1) Qu[u]=f(s.x) in (s, x) e (0, S] x fl
(1.2) M = 0 on (0, S]x9,Q (S.M.P.)
(1.3) 5-^ = 0, s1-ff9SM = 0 at s^O

where (J is a positive constant and S=e~T^l.
Let us explain our basic notations required to treat with (S.M.P.) . u (s, x)

e H*tm ( (0, S) x 12) for non-negative integer in and /t > 0, if and only if
s~xDan (s, x) <^L2 ( (0, S) X fi) for |a| £m. Put for 5e (0, S]

||u|U.fl(s) = Z ||D«u||L'<fl)(s),

Sometimes we denote ( ° , B ) L 2 f £ ) and | ° \\i2 (& by ( ° , 9 ) and || e || simply. Denote
\\h(sjc) ||LW)= Z sup iD^Lf/i (5, x: ?) where Y is an open set in Rw+2. We

\a\+\a>\£m (5j)e(0,l]
?eF

define WJ?I) ((0, 5) x 1^ Y)to consist of functions h(s, x: ?) satisfying |

Lemma 1.00 For tt (^, x) ^Hm ( (Ti, T2) x Q) , ^^ m5fe w (t, x) ^Hm (R x
Rw) and a constant C>0 sue ft £foa/ H (^, %) =M (f, j) tw (Ti, T£) X ,0 awd support of

it lies an arbitrary bounded open set in Rw+1 whose interior contains [Ti, T2] X Q
and that it holds

(1.4) ||zl||m (-~ c»,xR-^C| |M| |m (T.TJX^

Proof. Applying Proposition 3.4 and Theorem 3.13 in Mizohata [13] to
u ( / ,*) , we extend u ( f , . r ) to ii(t, x) <^Hm(RxRn) and (1.4) holds.

Lemma 1.1. Assuming that \a\^m, |j8|^M, m ̂ M, (n + l)/Z<m+M —
I OL | ~ | ̂ 8 |, for q (s, x) and r (s, x) ^ Ha+i/2,M ((0, S) X Q) f jfo^re ^;ds£s a constant
C>0 swcfi f/iaf if /iotas

(1.5)

(1.6)

Froo/. Going back to the original time variable t= ~~log5, we write q(e"t, x)

and r (c~*, x) by Q (f, ^) J? (t, x) for f^ [— log.S', °°) respectively. According to

Lemma 1.0, we have extensions Q (t, x) and R (t, x) of 0 (t, x) and R (t, x)
respectively. First we will prove (1.5). We have

changing time variable from s to t
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applying Dionne [1, Theorem 6.3]

^C|k~fOL»--ll^lU.B-

by using Lemma 1 .0

£C\\e-fftQ\\m. (r.oojxjMv. (T ao)xfl=C|k*-1/20L fo.s)xjs-1/2r|lv (o s>x f i .

In the same manner we have (1.6). Hence we omit the proof of (1.6) . D

We define for L0= [(n + l)/2] + 2 and a positive constant pi

(1 • 7) Hi = (h (5i *) e//a+i/2. Ln ( (0, S) x 0) \\\S'°-1/2h |Lu>. s) x^<pj.

From now on, pi is assumed to be so small that (h, Dh) ^ Bo for any h (s, x)
Hi. In fact, we have by the change of time variable

Z \Dah (s, *) I = Z \Aah (t, x) i ^ Z sup |yni U,

by Sobolev's lemma and Lemma 1.0

t, X)\LO V^C\\h (t, %} \\Lo. 'T, oc, ^ = C||5-1/2ll (5, X) |k .0 * xfl.

Lemma 1.2. Assttmg tfeaf g (5, jc; f ) e W(™] ( (0, S) x &Bo) and ffeaf u (5,
+i/2,M+i((0, 5) xfl) /or m<M and (n + l)/2<M-l a^d M (5, jc

a constant C>0 5t^c/i f/za/" it holds

. f x ; f ) ||LW) X

Proof. We consider

(1.8) ( D r t f ) ( s t x ; u . D u ) D a ( ( D * u . D D * u ) T } , \ a\ + \ r l ^m. I 0| = 1.

In case | 7 i ^1 it is easily seen that

(1 . 9) || (DJ0) (5, ^; «. Du)D*{(D*u. DD*u)T} ||r (o 5, x*,

In case | 7 1 S 2, by using Lemma 1 . 1 we have

(1-10) \\(D\q) (s.x\ u,

Essentially, Daq(s, x; it, Du) for a\^m is reduced to the form of (1.8).
Hence by (1.9) and (1.10) we prove Lemma 1.2.Q

Lemma 1.3. Suppose that V (s, x) and z ( s , x) ^Ha+i/2,M+i ((0, S) X Q)
satisfying V, V + TZ&Ti\ far re [0, 1]. For m^M and (w + l ) / 2 ^ A f — 1 it holds

that for q (s, x: ?) e W(™} ( ( 0 , S) X Q- B0) and a constant C>0

(1.11) \\s-
a-1/2{q(s,x; V+z,D(V+z))-q(s,x; V, DV)}\\m-L{0,s}^
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where C depends an \\q(s,x; f)||lm) X {1+ (\\S-
1/2z\\M+i,(o,s^+\\s-1/2V Uuo^x^)}^1.

Proof. In the same way as in the proof of Dionne [1, Theorem 6.4] we
arrive at (1.11) using (1.9) and (1.10).

From Shibata [24, Theorem 4.5] we have the following lemma.

Lemma 1.4. For any^positive integer k there exists a constant Mk such
that for any <p (x) ^Hk+2 (O) fl HI (Q) it holds

Z \\D°'<l>\\<Mk{\\ 2 9,(aw9,0) w + K*+ia)||0||u,}
\a'\=k+2 iJ=l

n
where Kk(t) =2 2 ess sup|Z)a'au (t, x) \ and a = (0, a\> • • - , aw) and

i,;=l |a'|^* J?efi

Hi (Q) is the closure of C" (Q) in HI (Q) .

§2. Energy Inequalities

We suppose that iv (s, x) is a known function satisfying for a constant

We take jW small so that it holds w^Hi in the rest of this paper. Let consider
the following mixed problem for a linear singular hyperbolic equation for a
positive constant a.

(S.M.P.),
Qw [u] =/(s, x} in (s, x) e (0, 5] X Q

on (0,
1-(7dsu = Q at 5 = 0.

20lo Basic Estimate

Put

(2.2) 0[w] (5) =lsdsu\\2(s) + Z (aw9,wf9/tt) (s).
*,;=i

Then define 0^[it] (s) = I] 0[D*n] (s) for a non-negative integer /?.

Lemma 2.1. Assume that (A-I) <md (A-II)' /io/d. For a positive consant a,
there exist a constant C and sufficiently small S ^ 1 and CQ such that we have for u
(5, x) e$((0, S] x®),d(S) =S2a and 5e (0, S]

(2.3) 0[5-^] (s) +afV2ff-10M (r)dr^C rSr-2ff-1||Q»[u]||
•/ 0 •/ 0

+ce(S)(/oVaf-10LM Wdr)2.

Proo/. Multiplying Q«; [u] by 9sw and integrating by parts we have
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(2.4) ds{lsdsu\\2(s) + Z (atfa

Z (aijsd<u, dp) (5) -2 (A (s, x\ w, Dw) [w] ,dsu) (s) + 2(QW [u] , dsu) (s) .
2J = 1

Term by term multiplying by s~2ff and integrating over (0,s)

(2.5)

s~2a(f> [u] (s) +2(7 f V2*-1^] (r)dr= (5-
2cr0M) (0) + f Y2(Qw[ti], r~2^) (r)

a/O o/O \

+ I] (ottT9<u.r~*'9|u) (r) -2 E (aaSD
awDsw,T-2adTu) (r))dr.

<j=l |o|,l/J|si x

On the other hand, from (0.5) it follows that for a positive constant Co

E (a,,dfu,d,u) (s) ^
«,;=! 2=1

For £i = min{Co,l} we have

(2.6) 0k] (s) ̂
Z = l

We have for any positive constant v

(2 . 7) the fourth term of the right handside of (2 . 5)

= 2 Z [S (aa&T-ff-1/2DawDBw, T~ff+1/2dTu) (r)dr

^^0

using Lemma 1.1 and (1.10) and (2.6)

^c2(aa&)d(S)^1( [ST-2a-l<t>L[w] (r)rfr) +Cv pr-^'VM (r)dr\ J 1 o / J o

where a constant c2 depends on 2 lla^H^. In the same way we have for any
laUBl^l

positive constant v

(2 „ 8) the second and third terms of right hand side of (2.5)

^ (cs(aw)

where ^3 depends on 2 sup |s9s0,/| and we can take c3 small enough for c3 to
zj = l (0,1) xQ

be taken sufficiently small. Therefore we have

(2.9) s~2a<p [u] (s) +2a Pr-^-VW (r)dr^c3 f ^-
o/O J 0
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On the other hand, taking c$ and v so small that it holds

(2.10)

we have

+Cd(S) I f V^i\J o

Hence Lemma 2.1 is proved. I

If G is taken large enough for (2.10) to hold instead of taking €3 and v
sufficiently small in the proof of Lemma 2.1, it is easily seen that the smallness
condition on r0 is not necessary to obtain (2.3) . Therefore we have Remark-
in).

2.2. Energy Inequality of Higher Order

Lemma 2.2. Under the same assumptions as in Lemma 2.1, for a positive
constant a, there exists a constant C and sufficiently small S^l and CQ such that we
have for u (s, x) e $ ( (0, S] X Q) and s e (0, S]

(2.11)

Proof, We derive (2.11) by induction on N. For O^W^L — 1 suppose that

(2.12) fV2ff-V»
»/ 0

+C0(S)( fV^Vi\Jo

Next operating (sds}
L on Q»[M] , in the same way as in the proof of Lemma 2.1

we have by using Lemma 1.1

(2.13) s-'WsdJM (s) +a fST-2a-1<p[(TdT)Lu] (r}dr
Jo

Here we used
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(2.14) ^
\<*\,\B\=:

In fact, (2.14) is derived by the analogous way as derived Lemma 1.2. By
using (2.12) we have

(2.15) s-2a(j)[(sds}
Lu\ (s) +a

J

SSC fST~2"-1\\Qa,[u]\\l0(T)dT+C6(S)( r T-^-^L[W
Jo \ J 0

For r^2, operating (sds)
L+1~r on Qw[u] and applying Lemma 1.4 to

n
Z di(alid](sds}

L+l~ru} we have
i,j=i

(2.16)

+C
l

By the same way as derived (2.14) it is shown that the third term of the right
hand side of (2.16) , multiplied by $~2a~l and integrated over (0, 5), is
exceeded by

On the other hand we have

fST~2a-lK2-1(T)\\(Tdr)L+1-rU\\i0(T)dT^C f V '̂̂ -l M
o / O J O

using (2.12)

(2.17) ^ C/oV
2<r-1||Q.[tt]||!-i.fl(T)dr+C<?(S) (f^-^-^i

Hence from (2 . 16) it follows that we have

(2.18) fV2<'-1||(r3r)
i+1-'M|(r)dr^C

Jo

( f V2"->L
\a/ 0

Since the third term of the right hand side of (2.18) for r=2 and 3 are
exceeded by the right hand side of (2.15), summing up (2.18) for r = 2, •",
L + l we have

(2.19)
Jo

/ r^
I r-^-

\Jo
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This completes the proof of Lemma 2.2. I

§3. The Proof of Theorem 1

First we will show the existence of solution of (S.M.P.)» in this section.
Sakamoto [21] proved the existence of a solution of the mixed problem for
linear singular hyperbolic equations of higher order with flat Cauchy data.
From her result it follows that there exists a smooth solution of (S.M.P.)«, for
a sufficiently large cr> 0. We will study the time local existence of smooth
solution of (S.M.P.)^ for any <7>0. We have the following result.

Theorem 2. Assume that (A-I) and (A-II)' hold and that s~ff~1f(s,x) e
HL(((), 1) X Q} for a constant a>0. There exists a sufficiently small constant S^l
and CQ such that (SoMeP.)w admits a solution u (s,x) in Hff+i/2,L+i ((0, S) X Q) ,
provided that w (s, x) satisfies (2.1). It holds that

(3.0) s-2a<>L-i[u] (s)

Proof. Put F (s, x) =f (s, x) — A (s, x\ w; Div) [w] . By the analogous way as
derived (1.10; we have A(s,x;w,Dw) [w] e Hff+i/2J. ((0,5] X Q) . Thus there
exists sufficiently smooth functions F k ( s , x ) , fc^N such that supp F*c: (0, S] x
Q and s~a-l/2Fk -> s~a-l/2F strongly in HL ( ( 0 , S] X Q) as fe -> °o . Then we
consider the following problem.

( s d s ) 2 i t k - Z 9,(a,A x)djuk) =Fk(s, x} in (5, x) e (0, S] X £

(S.M.P.)«u • ti/c^O on (0, S]xafi

It is well known that there exists a smooth solution 1^(5, x) of (S.M.P.)w,jt with
supp M f r C i (0, S] x ,0 (see Ikawa[6]) . Since we have the energy inequality for
(S.M.P.)«,,jfc in the same way as in the proof of Lemmas 2.1 and 2.2, we have
the following energy inequality of U A + I — uk for solutions uk and nk+i of
(S.M.P.)«u and (S.M.P.)«,f^i respectively.

rs rs
(3.1) I T~2a~l(f>L[uk+i—uk] (r)dr^C I r~2(J~l

Jo Jo

On the other hand we have by simple computation

(3.2) s-2l70L-i[ttJ(s)^(

Hence there exists a function u (5, x) such that

(3.3) s-auk-+s-au strongly in n Cl ( ( 0 , 5]; HL-t (Q))
1=0
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and s~a-1/2k-»s-a-1/2u strongly in HL+l ( (0, S) x Q) ) as k-»°°.

From the energy inequality for (S.M.P.)«,,A, k — l,2,"° and (3.2) it follows that

(3.4) s-^fa-M (s)

(3.4) implies that (3.0) holds. Hence u(s, x) is a solution of (SJMUP.) «, and
Theorem 3 is proved. 1

We see easily that it holds for a constant C2>0

(3.5) the right hand side of (3.0)^ C2

In fact, we have for s^ (0, S]

0

by the change of time variable from 5 to the original one

where S=e~T. Through the rest of this paper we take S1 small enough in (3.5)
so that it holds for a solution u (s,x) obtained in Theorem 2 and a constant Cs>0

(3.6) IU-ff-1/2u||i+uo.S)

Note that (3.6) is necessary for the energy inequality of the type of (3.0) to
hold at each step of the iteration scheme of (SdMLPo).

Proof of Theorem 1. Let us consider the following iteration scheme of

(SJM.PJ;

in (0 ,S ]x f i

on

s~au} = 0, sl~adsuj = 0 at s = 0

where Wo^O.
Theorem 2 implies that there exists a solution u3 of (S0MLP0) 3. In fact,

since (3.6) is valid for iii and S appeared in (3.6), it is seen that Hj-i^Iii and
(3.0) holds for Uj in (§0M0P0);, ; = 1,2, —. Then (3.0) implies that (uj) are
uniformly bounded in Ha+1/2,L+1 ((0, S) X f i ) ) . From (S.M0P0); and (S0M0P0);+1

it follows that uj+i— HJ, j = 1,2,--- satisfy

P«, k+i-wj + (P«,-Pi.J M =0 in (0, S] x Q

M, = 0 on (0, S]x5S

(ti;+1-u;) =0, s^S^w^i-M;) =0 at 5 = 0.

In the same way as derived (3.0) we have by using (1.10) and Lemma 1.3
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(3.7) 5-̂ 1-2 [«/+i-wy] (s) + f r-2"-Vi-i
«/ 0

Taking ££ further sufficiently small, it is seen that {«;} is a strongly convergent
L-l

sequence in Hff+1/2,L ( (0, 5] x fl) and {s~ffuj} strongly converge in fl C ( (0, S] ;
1 = 0

EL-I-I (fl) ) . Hence there exists a solution u (s, *) of (S.M.P.) such that u (5, x}

e n C1 ( (0, 5] ; #z_i-, (fl) ) n /ft ( (0, 5] x fl) satisfying
j=0

s-*u, -» s-°u strongly in ClC1 ( (0, S] ; //i_i_, (fl) )
1=0

and 5-ff-1/2w; -> 5-ff-1/2ti strongly in HL ( (0, 5] ) X fl) as y-^oo.

Put u(*~', x) = UU, x). Since ||s~%-||i-u?fO) =0, / = l ,2 f - - \ it is easily seen that
U ( f , * ) satisfies (0.1), (0.2) and (0.7) in [T,°o) xfl for T= -logS. Thus this
completes the proof of Theorem 1. 1

To obtain Theorem 1 we have to take p, small in the above so that it holds
U j ^ H i for a solution u3 of (S.M.P.) ;, ; = 1,2/" and that {u3} strongly converge.
We can take fjL further small so that C3 (p

2 + 5"Ci) ^^ in case S^L is small
enough. In fact, for a positive number *<1/(2C3) there exists a sufficiently
small constant 5>0 such that C3.v2— # + C3d<0. For such p. and 5 there exists a
constant ^4 independent of S and C,L such that

(3.8) A=5~\ S&^A'1 andCsA-^v-Csfjt2

hold. On the other hand, even if S1 is any fixed constant in (0,1] , we may take CL
small instead of S so that (3.8) holds. Therefore (3.8) implies that Remark-
i ) holds. Especially in case / (t, x) = 0 our solution of (B.V.) obtained in

Theorem 1 is the trivial solution since by Lemma 2.2 we have the solution of
(SJMJPO,M,(s ,*)=Oj = l f2,--- .

We consider the case where the following non-homogeneous boundary
condition is imposed on (B.V.):

(3.9) u(t,x)=g(t,x) on [T, oo)x9fl

where g (t, x) is the trace of a function G (t, x) satisfying e
(a+U2]iQ (t, x) e

#1+2 ( (0, °°) x f l ) ) . Then we have the same result as obtained in Theorem 1.

Corollary 1. Assume that eia+1/2]tG (t, x) ^HL+2( (0,°o) x fl) for a constant
a>0 and G (t, x) ^Hz where H2 is defined by replacing p\ by a constant p2<pi in
the definition of Hi. Under the same assumptions as in the Theorem 1, there exist
sufficiently small c0 and p2>0 and sufficiently large T>0 such that (0.1) and
(3 . 9) admit a solution u (t, x) having the same regularity and properties as in
Theorem 1.
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Proof. Put v (t, x) =u (t, x)—G (t, x). Then v satisfies

d?v-2 dt (ati(t, x)djv) +A(t, x; v+G,A (v+G)) [v] =/(*, x) ~d?G+E 9,-(a t j(t, x) djG)

+ A(t,x;v + G,A(v+G)) [v] ~A(t, x\ r+G, A(v + G)) [G+v]
'U=0.

By the same manner as in the proof of Theorem 1, we can arrive at the desired
result. Therefore we omit it. Q

We show that we obtain the similar result as in Theorem 1, even if \aa& (t, x; ?) |
—ooo (/-—>oo) for any x^Q and £^Bo. We make the following assumption.

(A-III) All the coefficients and data are real valued and a t j ( t , x), i,/ = !,•••, n,
e~Btaa$(t, x\ f), a ,| j8|^l, satisfy (A-II) for a positive constant e<a.

Then we obtain the following result.

Corollary 20 Assume that (A-I) and (A-III) hold for a constant cr>0. //
e(a+l/2)tf (t, x) e/ /L((Q,oo) x Q) , there exists sufficiently small CG and sufficiently
large T>0 such that we have the same result as in Theorem 1.

Proof. By Lemma 1.1 and (1.10) we have for u(s. x) e $ ((0,1] X Q)
satisfying (2.1)

||s~c'~1/2aa£(s, x\ u, Du)DiiauDu&u\\L^o,s)xa = CSa~£\\seaa0\\£^^

Hence for sufficiently small 5 and CQ it is easily seen that we obtain Lemma 2.1
and Lemma 2.2, considering into 0<(J—£. By the same way as in the proof of
Theorem 1 we arrive at desired result. Hence we omit it. Q
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