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Global Existence in Time and Decay Property of Solutions
of Boundary Value Problems for Semilinear Hyperbolic
Equations of Second Order in the Interior Domain

Dedicated to the memory of Professor Yukiyoshi Ebihara

By

Akisato KuBo™

Introduction

Consider the following boundary value problem for a semilinear hyperbolic
equations of second order.
0.1) Pulul =£(t, x) in (¢t x)€[T, o) xXQ
(B.V.)
0.2) u=0 on [T, ) X082

where T2 0, £ is assumed to be a bounded domain in R” with a smooth
boundary 082,

(0.3) P.l-]1=0% — ﬁ: 0,(a,, (t,%)0, « ) +AG x;u, Au) [u]
1,j=1
0.4) A xu, Au) [ - ]=I !% aas(t, x:u, Au) A%« AE - |
al,|Bl=1

at—_-a@t, a,=52—1, i=1, - n, Au= (0m, 0w, -, Om),

a= (ao. a1, ***, &), B=(Bo, Pr. -, Ba) are multi-indices,
and A= (6?" f‘“'@f,'"u‘- a= (a'o, Ay, e, a'n)).
We next make following assumptions on P,

n
(A-I) 22 0,(a,;(t, x)0,) is an elliptic operator satisfying for all nER"

1,7=1

(O5> Za;;nﬂ];gCOZn%(cO>0)y
1=1

1,j=1

aii(t, x) =a;i ¢, x) G, j=1, -+, n) for all (¢, x) €[0, ) X Q.
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(A-II) All the coefficients and data are real valued and a;; (£, x) (G, j=1, -+, n),
aast, x; €) (lal, [BI=1) are in B~ ([0, o0) x @ X B,) where Bo={£€R"*?||€] <o}
for a positive constant po and = (€* &, &, -+, &) ERXR™L

Define a positive constant ¢ by

(0.6) i sup |8 (¢, x) | =co.

1,j=1 t20,x€Q
For 0 =T, <T; <% and non-negative integer m H, ((T1, T2) X £2) and
Hn(82) denote usual Sobolev spaces of order m on (T3, T2) X £ and £
respectively and we put for a function 4 (¢, x) defined in (t, x) € (Ty, T2) X 2

Ty
il ria= [ Wl €t
o ()= 2 lA%hllz, ().
lasm

In the course of calculations below various constants will be simply denoted by
C.

It was shown that the mixed problem for linear hyperbolic equations of
second order with (0.2) is L?-well posed by Ikawa [6]. Shibata [24] studied the
mixed problem for nonlinear hyperbolic equations of second order with a
dissipative term with (0.2) and obtained time global classical solutions for
small initial data. However nothing is known about time global classical
solutions with exponential decay property of mixed problems for hyperbolic
equations with nonlinear terms of the type of (0.4). That is to say, it seems to
be very difficult to obtain it without dissipative term and appropriate additional
condition on nonlinear terms for any given initial data (cf. Ebihara [3],
Yamaguchi[25]). In fact, blow-up solutions were obtained by many authors [see
[51,[7]-[10], [20]).

On the other hand, in case P, is a nonlinear operator, time global solutions
have been studied by quite a number of articles (see [2]-[5], [7]-1[9], [11],
[13]. [14]-[19], [22], [23], [25], [26] and further references in these papers).
In case P, [u] =Ju-+7u™ for an integer m=3 and 7=1, Sather [22] obtained a
time global classical solution of a mixed problem for P, [u] =0 with (0.2).
Sattinger [23] introduced the method of 'potential well’ to show the existence of
a time global weak solution of a mixed problem for wave equations with
non-monotonic nonlinear terms (see Lions [11]). In the case of m=n=3 and 7
= — 1, Ebihara-Nakao-Nambu [3] proved the global existence in time of
classical solutions of the mixed problem for Py [#] =0 with (0.2) (cf. Ebihara
[2]). Ebihara [3] considered (B.V.) with initial data without smallness
condition when P,=08%— A +ud:+f(t, x,u,u;) for u=0 and T=0. He proved
that there exists a solution such that in the case of £>0 it becomes a classical
solution with exponential decay property after finite time. Also in the case of u
= 0 he obtained 'modified (m) -solution’, which is not necessarily a genuine
solution of this problem.

On the other hand, recently Wayne [26] studied (B.V.) in case P, [u] =
Ou—v@)uten=0 for v(x) €EL?(2) and a small constant € and obtained
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periodic and quasi-periodic solutions of (B.V.).

The main purpose of this paper is to seek a classical solution of (B.V.)
with exponential decay property after finite time in case f(t,x) =0. Also we will
discuss the existence of a classical solution of (B.V.) with T=0. We shall
show our main result.

Theorem 1. Assume that (A-I) and (A-II) hold and that ¢ V2 (¢ x) €
H; ({0, ) X 8)) for any integer L = [(n+1) /2] +3 and a constant 6> 0. There
exists a sufficiently large constant T and sufficiently small co such that the problem

L-1
(0.1)-(0.2) admits a solulion u(t,x) € NC' ([T, o©); Hi_1—, (2)) NH, ([T, o)

1=0

X 8) having the property:

(0.7) "cmu”L,[T,w) xo <+ sup e‘”"u ”L—l,a (t) <40,
te(T,e0)

and lim ¢ lul-1.0(t) =0.

t—oco

Remark. i) Based on Theorem 1. we consider the existence of a time global

classical solution of (B.V.) with T=0. Put {; = f(; e +1/2ir|2 5 (t) dt. Then

there exists a constant 4 >0 independent of {; and T such that we may take a
constant T in [max{0. log (4{;)}, + o) arbitrarily in Theorem 1. Hence taking
€. small enough we obtain a solution in [0, ©0) X 2 in Theorem 1. Especiallv in
case f (t. x) =0, our solution of (B.V.) obtained in Theorem 1 is the trivial
solution. These arguments will be discussed in detail in §3.

ii) We consider the case where a, (t. x), i. j=1, . n and aas (t. x; &) (||, ||
=1) are independent of t. Set u(t + T, x) = V(t, 1) for a solution u(t, x)
obtained in Theorem 1 where we denote T decided in Theorem 1 by Ty. Then it
is seen that V (¢, x) is a solution of the following problem.

Py[V(t )] =/{t+Tox) in [0, o) X 2,
Vit x)=0 on [0, o) X 982

On the other hand, as stated in 1), T, is decided essentially only by {; for a
fixed constant A. Therefore we can solve a problem P, [u] =f{t — T, x) with
(0.2) in [To ) X £ by the same argument as in Theorem l and we write a
solution of this problem by u (¢, x). It is easily seen that Vit x) =0 t+To. x) is
a solution of (B.V.) in [0, o) X Q.

iii) When ¢ is sufficiently large. we obtain the same result as Theorem 1
without the smallness condition on c¢o. It will be discussed in subsection 2.1 of

82.

Now, we discuss the proof of our main result and the contents of the
remainder of this paper. It seems to be very difficult to obtain a time global and
classical solution of (B.V.) by solving the problem directly. To overcome this
difficulty we reduce our problem (B.V.) to the following mixed problem by the
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new time variable s=e¢™".

Qulul =£(s, x) in (s,2) € (0, S]x 2
(S.M.P.)} u=0 on 0, S]x a8
s7u=0, s'"70u =0 at s=0

where ¢ is a positive constant, S =¢~ T and Q. is, the so called, a singular

hyperbolic operator obtained by replacing 3; by s0s in P, which will be
specified in §1 and we write f(¢™*, x) by f(s, ) again. In the below. when there
is no danger of confusion, for any function & (¢, x) we write 4 (e™*, x) by h(s, x)
again.

That is to say, instead of solving (B.V.) directly, we will seek the time
local smooth solution of (S.M.P.) with zero Cauchy data, which gives a
classical solution of (B.V.) with exponential decay property.

In case Q, is a linear operator (S.ML.P.) has been studied by Sakamoto
[21] in a more general framework. She obtained the existence of smooth
solutions of (S.M.P.) for sufficiently large 6> 0. In this paper we obtain the
time local existence theorem of smooth solution of a mixed problem for linear
singular hyperbolic equation corresponding to (S.M.P.) for any ¢ > 0 and
apply it to our problem.

This paper is organized as follows. In the first section, we introduce all
notations in what follows and prepare some lemmas to prove our theorems. In
Section 2, we derive the energy inequality of iteration scheme of (S.M.P.) at
each step. In Section 3, we prove the time local existence of smooth solution of
(S.M.P.) by the usual Picard’s method. Going back to the original time
variable, it will be easily shown that our solution of (S.M.P.) solves (B.V.)
classically. Finally we discuss the case where non—homogenous Dirichlet
boundary condition is given instead of (0.2) . Also it will be shown that
assumptions on coefficients of P, in Theorem 1 can be relaxed.

§1. Preliminaries

By the new time variable s=e~’, P, is reduced to the following operator.

Qul - 1=0(s05)2- — znv_, 0, (a,j(s,x)0, > ) +A(s, x;u. Du) [u]

7,7=1

where Du= (s0su,0ue.**, 0a), Du= ((s0s) 0707 u: a= (oo, a1***, ). By
this change of time variable, (A-IT) and (0.5) are rewrited by (A-II)’ and
(1.0) respectively in the following.

(A-T)" All the coefficients and data are real valued and D%a,, (s, ) (i, j=1.--,
n), D'Dfaqs (s, x; €) (lal. IBI=1), |yl. lw|=0, are bounded in [0,1] X 2 x B,
where D¢ =0¢.0."+-0%" for a multi-index w.

(1.0 )rj sup sy, (s, x) [=co.

1,7=1 0<s=1,reQ
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If coefficients of P, satisfy (A-I) and (A-II), coefficients of Q, satisfy (A-I)
and (A-II)’. Then we consider the following mixed problem corresponding to

(B.V.).

(1.1) Q. lul=f(s. ) in (s, x) €(0, S] xR
1.2) u=0 on 0, S] x 08 (S.M.P.)
(1.3) sTu=0, s%9m=0 at s=0

where ¢ is a positive constant and S=¢™ T =1.

Let us explain our basic notations required to treat with (S.M.P.). u (s, x)
€ Hym ((0, S) X £) for non-negative integer m and A> 0, if and only if
s2AD% (s, x) €L2((0, S) X Q) for |a| Em. Put for s€ (0, S]

lellmo (s) =2 ID%ullzc) (),

”U“m.(o.s>xn: 2 IID"uHLmO_ S, > D
lal=m

Sometimes we denote (+.*)i2g and || * |z by (-,+) and | - | simply. Denote
I (sx) |P= X sup |DD¢n (s, x; €)| where Y is an open set in R**2 We

la|+lw|sm (s.x)e(0,1]
€

tey
define W2 ((0. S) X £: Y)to consist of functions & (s, x; &) satisfying [[1]|7 < +o0.

Lemma 1.0. For u(t,x) €H, ((T1, T2) X ), there exists 4 (t, x) €H, (R X
R™) and a constant C>0 such that i (t, x) =u (¢, x) in (Ty, T2) X Q2 and support of

it lies an arbitrary bounded open set in R™ whose intevior contains [Ty, Ta] X 0
and that it holds

(1 .4) ll it “m (—ov, c0) XR" §C[| un ”m (Ty,T,) X 2.

Proof. Applving Proposition 3.4 and Theorem 3.13 in Mizohata [13] to
u(t. 2), we extend u (¢, x) to @ (t, x) EH, BXR") and (1.4) holds.

Lemma 1.1. Assuming that |a|<m, |BIEM, m =M, i+1)2<m+M—
la| =18l for q(s, x) and 7(s. x) € Hoyr/om ((0. S) X Q) there exists a constant
C>0 such that it holds that

(1.5) ls=2=12D% D2 10, 99 x 2 S Clls ™7 V2l 10 sy < @lls ™% as, 0. 5 < 2,
(1.6) Is=2=22D" (g3 L0 v 20 SClls ™0 Y2l 0 5 ~2lls ™% ]vr 10,51 v .
Proof. Going back to the original time variable t= —logs, we write ¢ (¢~%, x)

and 7 (e™*. x) by Q(t, x) R(t, x) for t € [—1logS, o) respectively. According to

Lemma 1.0, we have extensions Q (t, x) and R (t, x) of Q@ (t, x) and R (¢, x)
respectivelv. First we will prove (1.5). We have

ls==Y2D%G D 1200, 51 x 0 SC 2 ||Is~V2D7 (s~%) D]

rsa

L2((0 S) » Q)
changing time variable from s to t

=C XA ('Q) APRliz (i1 ) v 2 SC 2 NAT (77 Q) PRzt 1—o0 o) xR?

rE=a T
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applying Dionne [1,Theorem 6.3]

é C”e—:\o"’l Q”m R™!

Rl g
by using Lemma 1.0

= Clle Q. (7. o0y x 2lRlt, (7 ) x2=Clls ™ ?glbn 0. 51 x 2lls™2ls 0 51 x0.

In the same manner we have (1.6). Hence we omit the proof of (1.6). ]
We define for Lo=[(n+1)/2] +2 and a positive constant o
(1.7) L =A{n (s, x) €EHor1/2.1.((0, §) X D) s~ ?hl100. 51 x2< 01}

From now on, o is assumed to be so small that (h, Dh) € B, for any h (s, x) €
II,. In fact, we have by the change of time variable

S (s, )= Z A%, x) | £ X sup A% (¢, %))

lals1 lal=1 |21 ¢ Y eRx<R"
by Sobolev's lemma and Lemma 1.0

<Cln(t, 1) o R =Clln (¢, 2) |, 7. 0) <@=Clls 21 (s, %) |10, 10 51 % 2.

Lemma 1.2. Assume that q (s, x; &) €W ((0, S) X QB,) and that u (s, x)
€ Hor1om+1((0, S) X Q) for mEM and n+1)/2<M—1 and u (s. x) €IL;. There
exists a constant C>0 such that it holds

llg (s, x: 0. Du) o5 xe =Clig (s, x: E) |27 % (1 +ls™ %l wrs 1,009 x2) ™.

Proof. We consider
(1.8) (Diq) (s, x; u, Du) D*{(DPu. DD?u)7}, lal+]7I=m, | 8]=1.
In case | 7 | =1 it is easily seen that

(1.9) I (Dig) (s, x; w. Du) D*{(D?u. DD?u)7} v 0 5%
§C|lq (Sv x; E) US’ (1—'—"“”m+1,(0,s)x9).

In case | 7]%", by using Lemma 1.1 we have
(1.10) I (DIg) (s. x; 1. Du) D*{(D*u, DD®u) "} iz 0 s <2

éC“q (S, X E) “gm (Z“S—Uzullfahl,m,s)xg).

Essentially. D% (s, x; u, Du) for |a|<m is reduced to the form of (1.8).
Hence by (1.9) and (1.10) we prove Lemma 1.2.0

Lemma 1.3. Suppose that V (s, x) and z (s, x) € Hesrom+1 ((0, S) X £)
satisfying V, V+ 2z €11 for t€ [0, 1]. For m <M and (n+1)/2<M—1 it holds
that for q (s, x; &) € W ((0.S) X 2; By) and a constant C>0

(1.11) s~ Y2{q (s, x; V42, D(V+2)) —q(s. 2: V. DV) Hlm-1.05x2

=Clls™ V22l 0.5 xo,
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wheve C depends on ||q (s, % &9 x 1+ (ls~ %y, (osm2+||8 iz V“M+1 0sx0) 1™

Proof. In the same way as in the proof of Dionne [1, Theorem 6.4] we
arrive at (1.11) using (1.9) and (1.10).

From Shibata [24, Theorem 4.5] we have the following lemma.

Lemma 1.4. For any, positive integer k theve exists a constant My such
that for any ¢ (x) EHyy2(2) NH, () it holds

> ¥ ¢”£Mk{“ Z 0, (a,,0,8) .o+ i1 (D 1Bl 0}

la’|=k+2

n
where k() =2 X ess suplD%, (¢, x)| and o' =0, o, ***, ) and

1,7=1|a’|Sk zeQ

ﬁ]l (Q) is the closure of C3(Q) in H,(2).
§2. Energy Inequalities

We suppose that w (s, x) is a known function satisfying for a constant >0
(2.1) s~ =12l 41,000 x0 < gt

We take g small so that it holds w €Il; in the rest of this paper. Let consider
the following mixed problem for a linear singular hyperbolic equation for a
positive constant 0.

Qulul =f (s, x) in (s.x)€(0,S]xQ
(S.M.P.)y u=0 on (0, S]xoQ
=0, s'"70u =0 at  s=0.

2.1. Basic Estimate

Put

(2.2) B lul (s) =ls@ulf? (s) + Z (ayy0a1,0m) (s).
Then define ¢, [u] (s) = Z ¢[D5u] (s) for a non-negative integer k.

Lemma 2.1. Assume that (A-I) and (A-II)’ hold. For a positive consant o,
theve exist a constant C and sufficiently small S=1 and co such that we have for u

(s. x) €2((0, S x2),0(5) =5* and s€ (0, §]
(2.3) Blsul ) +o [ T lu] (Darsc [T Qu L (2 ae

+c0() ([ T ulul (Daz)”

Proof. Multiplying Qu[#] by O and integrating by parts we have
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(2.4) 0 Isdail () + 3 (an.d) (s)} =
1 ]-
3 (aysdat, Oa) (5) =2 (A (5. 50, Dw) [10] ,Be) (5) +2 (Qu L], Bete) (s).
. =1
Term by term multiplying by s % and integrating over (0.s)

(2.5)

s72¢ [u] (s) +20 f “2071¢ [u] (1) dt= (s"2°¢p[u]) (0) + f (2 Qulul, 77%0m) (7)
+ Z (a4;:0m,772°0m) (1) —-2| IZT (@agD®wDPw, 7 %0m) (T))d’l’.
1,7=1 al,l8l=1

On the other hand, from (0.5) it follows that for a positive constant Co
Z (a,,@,u atu) (S ZCOZ”az’M“z (S)

1,7=1

For ¢;=min{Co,1} we have

(2.6) $[u] (s) Zcr (lsdalf (s) + é 18P (s)).

We have for any positive constant v

2.7 the fourth tevm of the right handside of (2.5)
-—zm%gl [ st DD, = 20) (1)

ESolV Ll B YN P 5T V2D DR P (T)dT+C»£S”T“”“/25m”2 (0)dt

0 |a}l8ls1

using Lemma 1.1 and (1.10) and (2.6)
Ser(aag) 06) 7 e gl (D) 0w [TTip el (@)

where a constant ¢, depends on Z laas Q. In the same way we have for any
LIBIs1

positive constant v

(2.8) the second and third tevms of right hand side of (2.5)
< (e3(ay) +ret?) j; 219 L] (D d oyt f; 20 Qu L] P (D) ar

n
where ¢s depends on 2 sup Is@saql and we can take c3 small enough for ¢3 to
1,j=1 (0,1)xQ2

be taken sufficiently small. Therefore we have

2.9) s 9lul () +20[ T pl) (Darse, [ Tl (Dax
07 [ e QL P (@ drtew [T g ] (Dae
+c,6(S) u‘1< j; 21 ) (T)df)z.
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On the other hand, taking cs and v so small that it holds
(2.10) c3tcw<ao,

we have
gl () +0 [ gl (Darsc [ rrlQu L (Dar
o) ([Tr 010 (Dax)

Hence Lemma 2.1 is proved.

If ¢ is taken large enough for (2.10) to hold instead of taking ¢s and v
sufficiently small in the proof of Lemma 2.1, it is easily seen that the smallness
condition on ¢ is not necessary to obtain (2.3). Therefore we have Remark—
iii).

2.2. Energy Inequality of Higher Order
Lemma 2.2. Under the same assumptions as in Lemma 2.1, for a positive

constant 0, theve exists a constant C and sufficiently small S=1 and co such that we
have for 1 (s, x) €D ((0, S] X 2) and s<€ (0, S]

(2.11) j; ~20- 1¢L[u](r)dr<c{f ~2071Qy [ul 2.0 (D) dz

+6(S) (fosr‘”‘lrm (] (T)df)z].
Proof. We derive (2.11) by induction on N. For 0SN=<L—1 suppose that
(2.12) fosr‘z”'lsbzv 1] (r)dfécﬁsr‘z”‘llle[wt]||%-m(r)dr
+C6(S) < fo e, ] (r)w)z.

Next operating (sds)% on Qu[#], in the same way as in the proof of Lemma 2.1
we have by using Lemma 1.1

(2.13) 5[ (s0) ] () +0 [ T (e ] ()

ol [To gl @act [Tl o) Qb (e
+0(5) ( [“e* gl (Dar) .

Here we used
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(2.14) I % OSZ.—Zo'—ln (zd.)*t (aaBD“wDBW> "2 (Dar
al,|8|=1

<CH(S) (f 20 [w] (r)dr)z

In fact, (2.14) is derived by the analogous way as derived Lemma 1.2. By
using (2.12) we have

(2.15) 2@ [ (s0s) *u] (s) +0‘f 2014 [ (20,) 'u] () dt
<c [ e la bl @artco) (el @)

For =2, operating (sds)“**" on Qu[#] and applying Lemma 1.4 to
n
2 0, (a0, (s0s) " "u) we have

t,7=1

(2.16) 1(s89) X " ulZ.0 (s) SCHI(s85) 27 Qu [] [B-2.0 (5) +1 (s85) 212220 (5) }
+C X [(s05) ¥ (agpDWDPw) [P_s0 (s) +Cr2-y () | (s85) X "ulf o (s).

lal.lBl=1
By the same way as derived (2.14) it is shown that the third term of the right

hand side of (2.16) , multiplied by S™%~! and integrated over (0, S), is
exceeded by

co© ([ g w) (Daz)

On the other hand we have

J;Sr‘z"'liff_l(r) [ (22) E " g(f)dfécﬁsr‘z"“@—l [u] (D)dt

using (2.12)
@11 =cf el @artcos) (T g ().

Hence from (2.16) it follows that we have

(2.18) f ~21 (28)) = ulf (7) dr<cf Qo] [0 () dz

+c0) ([ e g1 lul (Daz) +¢ [ e (@00l s (D
Since the third term of the right hand side of (2.18) for =2 and 3 are
exceeded by the right hand side of (2.15), summing up (2.18) for r=2, -
L+1 we have
s S
(2.19) J; 7720, [u] (r)dz'écj; 727 Qy [u] 3.0 () dT

+Co(S) (Lsr‘z"‘lqﬁL [w] (z')dr)z.
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This completes the proof of Lemma 2.2. B
§3. The Proof of Theorem 1

First we will show the existence of solution of (S.M.P.), in this section.
Sakamoto [21] proved the existence of a solution of the mixed problem for
linear singular hyperbolic equations of higher order with flat Cauchy data.
From her result it follows that there exists a smooth solution of (S.M.P.), for
a sufficiently large ¢> 0. We will study the time local existence of smooth
solution of (S.M.P.), for any 6>0. We have the following result.

Theorem 2. Assume that (A-I) and (A-II)’ hold and that s f (s.x) €
H ((0,1) X 2) for a constant 6>0. Theve exists a sufficiently small constant S=1
and co such that (S.M.P.), admits a solution u (s,x) in Hop1a141 ((0,S) X 2),
provided that w (s, x) satisfies (2.1). It holds that

(3.0) 52,1 [u] (s) + f *r2-14, ] (D) dr=C f r2f (2 2) o (D) dr
+Co(S) <j;sr’2”’1¢L [w] (T)dr) .

Proof. Put F (s,x) =f (s,x) — A (s, x; w; Dw) [w]. By the analogous way as
derived (1.10) we have A (s, xaw, Dw) [w] € Hor12n ((0,S] X ). Thus there
exists sufficiently smooth functions Fy (s, x), #€N such that supp F,C (0, S] x
Q and sT°7V2F, — sT7V2F strongly in Hy ((0,S] X Q) as k— 0. Then we
consider the following problem.

(599 20~ 3 B, (ay (£, x) Bpe) =Fi(s. 1) in (s, %) € (0, S] X 2
2,7=1
(S.M.P.)wx 1 ue=0 on (0,S]x0RQ

s, =0, s¥77041,=0 at s=0

It is well known that there exists a smooth solution (s, x) of (S.M.P.), with

supp u; C (0, S] X 2 (see Ikawa [6]). Since we have the energy inequality for
(S.M.P.) ,x in the same way as in the proof of Lemmas 2.1 and 2.2, we have
the following energyv inequality of it;41 — ux for solutions wuy and g1 of

(S.M.P.) s, and (S.M.P.) .1 respectively.

(3 . ].) L T_Zg_l(bL [1L/,+1 "ltk] (T) dTéCﬁ T“ZG—IHF[(_H_ Fk”ZL,.Q (T) drt.

On the other hand we have by simple computation

S
(3.2) s [ ) £C [ T g ] (D).
Hence there exists a function u (s, x) such that

L
(3.3) S%ur—>s "% strongly in N C*((0, S]; H._,(2))

1=0
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and s V2012, strongly in Hzs; ((0, S) X 2)) as k—>00.

From the energy inequality for (S.M.P.) . £=1,2,--- and (3.2) it follows that

(3.4) s*gilu) )+ [ 7] @Darsc [ T (2 0o (D

(3.4) implies that (3.0) holds. Hence u (s, x) is a solution of (S.M.P.), and
Theorem 3 is proved.

We see easily that it holds for a constant C2>0
(3.5) the vight hand side of (3.0) =C,(S¥u*+S{y).

In fact, we have for s€ (0, S]

[Femlilo@arss [T o (daz

by the change of time variable from s to the original one
=e—TfT eV rl2 o () dT =S,

where S=¢T. Through the rest of this paper we take S small enough in (3.5)
so that it holds for a solution u (s,x) obtained in Theorem 2 and a constant C3>0

(3.6) Is=0 V2% |2 41, 0.9 x0 = Cs (S22 +SE) <pe.

Note that (3.6) is necessary for the energy inequality of the type of (3.0) to
hold at each step of the iteration scheme of (S.M.P.).

Proof of Theorem 1. Let us consider the following iteration scheme of

(S.M.P.),7=12,"-

P, [uj] =f(s, x) in 0, S] xR
(S.M.P.), y u,=0 on (0, S] x 082
s7%,=0, s¥70u,=0 at s=0

where #o=0.

Theorem 2 implies that there exists a solution u, of (S.ML.P.), In fact,
since (3.6) is valid for u; and S appeared in (3.6), it is seen that u,_; €II; and
(3.0) holds for u, in (S.M.P.), j=12 . Then (3.0) implies that {ir;} are
uniformly bounded in Hor1/2.041((0, S) X 2)). From (S.M.P.), and (S.M.P.),,,
it follows that w41 —u;, j=1.2,--- satisfy

Pu, [u]+1_7/t]] + (Pu,_Pu,_,) [Mr]] :O in (O, S] X Q
li;+1~u1:0 on (O. S] X 08
sy —u,) =0, s170s (1 —u,) =0 at s=0.

In the same way as derived (3.0) we have by using (1.10) and Lemma 1.3
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(3.7 s7¥ ¢z [uj—us) (s) + j; 1 e —u) (Dde
<Cub(S) [ g0 [y =] (Daz

Taking g further sufficiently small, it is seen that {ui} is a stronglv convergent

sequence in Hoy1/22 ((0, ] X ) and {s™%;} strongly converge in ﬂC‘ (0, S1:
Hi_1-,(8)). Hence there exists a solution u (s, x) of (S.M.P.) such that u (s, x)

-1
€ NC'((0, S]; Hi-1-(2)) NHL((0, S] X ) satisfying

1=0
-1
$™%, = 5% strongly in N C' (0, S1; Hi-1-.(2))
1=0
and s V%, — 570712y strongly in H; ({0, S]) X 2) as j—oo.

Put u (™%, x) =U (¢, x). Since s u;jlz-10(0) =0, =1.2,---, it is easily seen that
U (t, x) satisfies (0.1), (0.2) and (0.7) in [T,00) X 2 for T=—1logS. Thus this
completes the proof of Theorem 1.

To obtain Theorem 1 we have to take g small in the above so that it holds
u, €11, for a solution u, of (S.M.P.), 7=1,2,--+ and that {u,} strongly converge.
We can take g further small so that Cs (¢ + S{) =g in case S, is small
enough. In fact. for a positive number x <1/(2Cs) there exists a sufficiently
small constant 6 >0 such that Csx*—x+C3<0. For such u and J there exists a
constant A independent of S and {; such that

(3.8) A=8"1 SGSA and CoA 1<y —Ca?

hold. On the other hand, even if S is any fixed constant in (0,1], we may take {;
small instead of S so that (3.8) holds. Therefore (3.8) implies that Remark-
i) holds. Especially in case f (t, x) =0 our solution of (B.V.) obtained in
Theorem 1 is the trivial solution since by Lemma 2.2 we have the solution of
(S.M.P.), u,(s, x) =0, 7=12,--.

We consider the case where the following non-homogeneous boundary
condition is imposed on (B.V.):

(3.9) wlt, x) =gt x) on [T, o) XaQ

where g (f, x) is the trace of a function G (t, x) satisfying ¢"“*V2!G (t, x) €
Hp,2((0, 00) X 2)). Then we have the same result as obtained in Theorem 1.

Corollary 1. Assume that ¢ "*Y?!G(t, x) €Hpy2((0,00) X Q) for a constant
>0 and G (t, x) €11, where 11, is defined by replacing 01 by a constant 02 <01 n
the definition of Ili. Under the same assumptions as in the Theorem 1, there exist
sufficiently small co and 02> 0 and sufficiently large T> 0 such that (0.1) and
(3.9) admit a solution u(t. x) having the same regulavity and properties as in
Theovem 1.
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Proof. Putwv(t, x) =u(t, x) —G (¢, x). Then v satisfies

afv~i O: (@i (t, x) 0w) +AQ, 2, v+G, Aw+G)) W] =F (¢, ») —a?G+i 0;(a,;(t, x) 0,G)

1,j=1 17=1
+A¢ 5 v+G AW+G) W]l —Al 2 v +G, AWw+G)) [GH+u]

vlag=0.

By the same manner as in the proof of Theorem 1, we can arrive at the desired
result. Therefore we omit it. [1

We show that we obtain the similar result as in Theorem 1, even if |aa3 (t, x; S)l
—00 (t—00) for any x€0Q and £€B,. We make the following assumption.

(A-IIE) All the coefficients and data are real valued and a,; (¢, %), i, j=1,"*", n,
e aqs(t, x; ), |a|| BI=1, satisfy (A-II) for a positive constant e <o.

Then we obtain the following result.

Corollary 2. Assume that (A-I) and (A-TII) hold for u constant ¢>0. If

VA (p ) € Hy ((0,00) X Q) | there exists sufficiently small co and sufficiently
lavge T>0 such that we have the same vesult as m Theovem 1.

Proof. By Lemma 1.1 and (1.10) we have for u(s. x) € 9 ((0,1] X Q)
satisfying (2.1)

Is=°"Y20.44 (s, x; 1, Dit) Dut®u DutPuellz, 0,510 = CS~lls*aapll®lls ™~ 2l 41, 0.5 x0.

Hence for sufficiently small S and co it is easily seen that we obtain Lemma 2.1
and Lemma 2.2, considering into 0 <o —e&. By the same way as in the proof of
Theorem 1 we arrive at desired result. Hence we omit it. [J

Acknowledgements

The author would like to express sincere gratitude Professor T. Kakita for
valuable advice and helpful suggestion. Also he acknowledges valuable
information from Professors Y. Ebihara and M. Yamaguchi and his thanks are
due to Professor Y. Shibata for helpful comments.

References

[1] Dionne, P, Sur les problems de Cauchy hyperboliques bien posés. J. Anal. Math., 10 (1962)
1-90

[2] Ebihara, Y. On the equation ty—uz=F (x.taratsuz) . Funkeial. Ekvac., 20(1977). 77-95.

. On solutions of semilinear wave equations, Nonlinear Anal., 6-5(1982), 467-486.
4] Ebihara, Y and Nakao, M. and Nambu. T., On the existence of global classical solution of

initial boundary value problem for [lu—u*=f, Pacific ] Math., 60 (1975). 63-70.

[5] Georgiev, V and Todorova, G.. Existence of a solution of the wave equation with nonlinear
damping and source terms, J. Diff Equations, 109(1994), 295 -308.

[6] Ikawa M, Mixed problem for hyperbolic equations of second order, J. Math. Soc. Japan, 20-4



[71]
[8]
[9]
[10]
(11]
(12]

[13]

[14]
[15]
[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

(261

GLOBAL EXISTENCE AND DECAY 89

(1968). 580-608.
Ikehata, R.. A note on the global solvability of solutions to some nonlinear wave equations
with dissipative term, Diff. Integral Equations. 8-3(1995), 607-616.

, Some remarks on the wave equation with nonlinear damping and source terms,
Nonlinear Anal., TM.A.. 27-10(1996), 1165-1175.
Tkehata, R. and Suzuki, T, Stable and unstable sets for evolution equations of parabolic and
hyperbolic type, Hiroshima Math. J., 26-3(1996), 475-491.
John, F., Blow-up ot solutions of nonlinear wave equations 1n three space dimensions.
Manuscnpta Math,. 28 (1979). 235-268.
Lions. J. L., Quelques méthodes de résolution des problemes aux limites non liméaires, Dunod,
Paris, 1969.
Mizohata, S.. The Theory of Partial Differential Equations, Cambridge Univ Press, London.
1973.
Matumura. A., Global existence and asymptotics of the solutions of the second-order
quasilinear hyperbolic equations with the first order dissipation. Publ. RIMS, Kyoto Unw., 13
(1977), 349-379.
Nakao, M., Convergence of solutions of the wave equation with a nonlinear dissipative term
to the steady state, Mewm. Fac. Sci. Kyushu Umr Ser. A., 30-2(1976), 257-265.
. Decay of classical solutions of a semilinear wave equation, Math. Rep. Kyushu
Unir., 11-1(1977), 39-45.
. A difference 1nequality and its application to nonlinear evolution equations, J.
Math. Soc Japan, 30(1978), 747- 762.

. Global exastence of classical solutions to the initial-boundary value problem of

the semilinear wave equations with a degenerate dissipative term. Nonlincar Anal., 15(1990) .
115-140.

. Remarks on the existence and uniqueness of global decaying solutions of the
nonlinear dissipative wave equations, Math. Z., 206(1991), 265-276
. Existence of global smooth solutions to the initial-boundary value problem for

the quasilinear hyperbolic equation with a degenerate dissipative term, /. Diff Equations, 98
(1992), 299-327.

Ohta. M., Blowup of solutions of dissipative nonlinear wave equations, Hokkaido J.. to appear.
Sakamoto, R., Mixed problems for degenerate hyperbolic equations. J. Math Kvoto Univ., 23-3
(1983). 563-597

Sather J.. The existence of a global classical solution of the imtial-boundary value problem
for Qu+u®=f Arch Rational Mech. Anal., 2211966), 292-307

Sattinger. D. H., On global solution of nonlinear hyperbolic equations, Aich. Rational Mcch.
Anal., 3011968), 148-172.

Shibata. Y., On the global existence of classical solutions of mixed problem for some second
order non-linear hyperbolic operators with dissipative term n the interior domain, Funkcial
Ekvac.. 25(1982), 303-345.

Yamaguchi, M.. Existence and stability of global bounded classical solutions of 1nmitial
boundary value problem for semilinear wave equations, Funkcial. Ekvac., 23(1980) . 289-308.
Wayne, C. E.. Periodic and quasi-pertodic solutions of nonhnear wave equations via KAM
Theory, Comm. Math. Phys . 127 (1990), 479-528.






