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Quantum Toroidal Algebras and Their Vertex
Representations

By

Yoshihisa SAITO*

Abstract

We construct the vertex representations of the quantum toroidal algebras Uq (§U+i,ro?) . In the

classical case the vertex representations are not irreducible. However in the quantum case they are

irreducible.

§1. Introduction

The classical toroidal algebras have been studied by many authors [MEY],
[S], [Y], etc. Here "classical" means q = 1. The definition of the quantum
toroidal algebras is given in [GKV]. They gave a geometric realization of the
quantum toroidal algebras without any results on their representation theory.
Recently Varagnolo and Vasserot [W] proved Schur-type duality between
representations of the quantum toroidal algebras and the double affine Hecke
algebra introduced by Cherednik [Cj. This is an analogue of the duality
between the quantum affine algebras and the affine Hecke algebras given by
Chari and Pressly [CP]. In [W] only the representations of "trivial central
charge" was studied. It is known that there are two subalgebras Ul

q
l} (&ln+i) and

Uq2>($in+i) of Ug($in+i,tor) such that there are surjective algebra homo-
morphisms Uq(%ln^i)~~*Uqt} (§l«+i) for { = 1,2. In this paper we say that M has a
level (0,0) instead of the trivial central charge. The first 0 means that M has a
level 0 as a U(

g
l) (§U+i) "module and the second 0 means that M has a level 0 as

a U(q} (&in-ri) "module. This notation is an analogue of level 0 representations of
the affine quantum algebras.

In this paper we try to consider an analogue of "integrable representations"
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in the toroidal case. Let us recall the integrability of quantum Kac-Moody
modules. Let Uq (g) be a quantum Kac-Moody algebra and V a Uq (g) -module.
We say V is integrable if V has a weight space decomposition and locally
nilpotent actions of the Chevalley generators of Uq(o). Therefore the definition
of "integrability" needs Chevalley-type generators. The toroidal algebras is
defined through Drinfeld type of generators and its Chevaliey-type generators
are not known. Therefore we are not able to define the integrability at this
moment. However, in the affine case, Frenkel-Jing [Fj] realized the integrable
representations with level 1 by the vertex representations. Thus if there are
"vertex representations" of quantum toroidal algebras, they must be interesting
example of the integrable representations still not defined. In the q = 1 case,
vertex representations of the toroidal algebras have been already considered by
Moody-Eswara Rao-Yokonuma [MEY]. In this paper we construct the
^-analogue of the representations defined by them for Q = 3ln+i with level (1,0)
and (1,1). Therefore we give a new class of the representations of the quantum
toroidal algebras. In the q = 1 case, the Fock modules are not irreducible over
the Heisenberg algebra and the vertex representations are not irreducible over
the toroidal algebra. In the quantum case, it is not the case: the Fock modules
are irreducible and also the vertex representations with level (1,0) are
irreducible.

The algebra Uq (Qt0r) has infinitely many generators satisfying infinitely
many relations (See §2). It is preferable that Uq (Qtor) is written by finitely
many generators with finitely many relations. According to [GKV] there are
finitely many generators of Uq (toi&tor) but the relations among these generators
are highly non-trivial. In this paper we give an explicit form of finitely many
generators of Uq (Sl&tor) and closed relations of them (See §4). They coincide
with the generators by Vasserot [V].

§2<, Definition of Quantum Toroidal Algebras

2oL Notations,, Let g be a complex semisimple Lie algebra of type An and g
an affine Kac-Moody Lie algebra of type An\ We denote their Cartan
subalgebras by I) and f respectively. We denote by #1, ..., an the simple roots of
g, by /?i, ..., hn the simple coroots of g, by /ii, ..., An the fundamental weights of
g, by ao, ..., (%n the simple roots of g, by too, .. .» hn the simple coroots of g and AQ,
.... An the fundamental weights of g. Let Q=®1}=iZai be the root lattice of g, P=
07=iZA, the weight lattice of g, Q - 07=oZa,- the root lattice of g and P =
07=0ZA*0Z5 the weight lattice of g. Here 5 is the null root.

We denote the pairing of I) and lj* (resp. § and lj*) by ( , ). The invariant
bilinear form on P is given by (at\a,} — — dtj~i + 2dij —dtj+i and (5\5) = 0. The
projection form P to Pis given by At=At—Ao and (5 = 0.
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2.2. We will give the definition of the quantum toroidal algebra Uq(Qtor) •

Definition 2.2.1. Let M~ (mtj)o<ttj^n be a skew-symmetric (w + 1) X (n +
1) -matrix with integral coefficients and let K. be an element of Q(g) *. Uq (Qt0r)
is an associated algebra over Q(#) with generators:

E1tk, F,tjfc, Hu, Kf. $*K q±d\ q*d\

for &eZ, /eZ\{0} and t = 0,l, ..., n.
We introduce K?,k as the Fourier components of the following generating

functions:

K? (z) = ZKtkZ-*=Kt exp
k>0 k

K7 (z] = ZKT.kZ-k=KT exp (- (q-q~l)
tie k>\

The defining relations of Uq(Qtor) are then written as follows:

(2.2.1) q*^0 are central,

(2.2.2) 7C+A7=/C/C = 1.

(2.2.3) [At.At]=0,

(2.2.4) [Kt,H,.,]=Q,

, / f C _ -*C

(2.2.5) [ft.

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11) KtE1,kKT=q<h"a'yE,,l!

(2.2.12)
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(2.2.13)

(2.2. 14)

(2.2.15) 2 E(-D
r

i.k,,i, ••• Ei,kmEj,iEi,kniHt ... £(.*„,„ — 0,

m

for i 3=j,

m = —

k_ .k \ m 1
/n £/7£S£> relations we denote [k] = ~r , [n] ! == II?=i M,

^—<7 [ r J

203o Let L/g' (Qtor) be the subalgebra of Uq (Qfor) generated by Et,k, Ft,k, K?, Ht,i,

q^c. Let U$ (Qwr) (resp. U'$(Qtor)) be the subalgebra generated by ifq (Qtor) and

q±dl(resp. q±dz) . Let U(
Q

ir (lu+i) be the subalgebra generated by El}k, F/.fc. JRCf, /f,./f

^lc(l <i<n, fcez, /ez\{0}) and U^&n+i) the subalgebra generated by

U(
q
ir (iin+i) and ^±rfl. Let [/f (gi«+i) the subalgebra generated by £*,0, F,.0, A7 (0

<i <n) and [/^2) (f[»+i) the subalgebra generated by U(
g

2y (Sin+i) and q±d\ By
the definition it is clear that there are surjective homomorphisms Ug (SU-ri)"-*

Uf (§ln+i) and ^;(i^i)-^Lrf («in+i).

The following are straightforward.

Lemma 2.3X For 1 <i <n let El k=El,kK
L]-im'-\ Fttk = Fttkic

Zl"in'-l't HtJ =

Hi,iK^'=im'~1J. Then the relations between Et,k,Ft,k,Hi,i and K? are precisely the relations

of Drinfeld generators of Uq(§ln+i). That is, there are surjective homomorphisms

Uq(§{n+i)-*U(
q
1}(§ln+i) and lf(!(§in+i)-»U(

g
iy(§in+i).

Lemma 203020 Let K%= Ilf=o Kf. Then K^ are central elements of Uq (gfor) .

Note that q±c is the central elements of Uq^ti&in+i) and K* the central
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elements of U(
q
2) (§1 n+l) .

§3. Vertex Representations

3.1. Heisenberg algebras. In this section we shall give the vertex
representations of Uq(§tor) • We assume c = l.

Consider a Q (q) -algebra Sn generated by //,./ (0 <i <n, I e Z \ (0))
satisfying:

(3.1.1) [Ht.*ja,.,] = d^A [k<hltaj}]qk~qk
lK-km".

K Q~~Q

We call Sn the Heisenberg algebra.

Let Sn (resp. Sn) be the subalgebra of Sn generated by Ht,i (0<i <n,l>0)
(resp. 0<i<n, /<0 ) .

We introduce the Fock space

^n = SnVQ

with the defining relations:

(3.1.2) Ht,,vo = 0, f o r Z > 0 ,

(3.1.3) q2cvv — q2v§.

Note that 2Fn is a free S«-module of rank 1.
Let F be a field of characteristic zero and let Q be an associative F-algebra

generated by xp, yp (p^Z>o) , z and its inverse z~l with the following relations:

[xp.z] = \yp.z]=Q,

[xp,xr] = [vp,yr] =0f

[xp,yr]=8prz.

Let a+ (resp. a~) be the subalgebra of a generated by xp (resp. yp) . We set b = a+

^FU,^"1]. This is a maximal abelian subalgebra of a. Fix a nonzero scalar A&
Fx. Let F^ be the one-dimensional space F viewed as a b-module by:

z-l = A, a+ • 1 = 0.

Let FU) be the induced a-module

By the defining relations of a we obtain an F-linear isomorphism
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Since a" is abelian we may regard it as the algebra of polynomials in the
variables yi, y%, — . Then we see that z acts on a~ = F [yi, y%, — ] by the

multiplication of A, xp acts by X^. By this realization we immediately have the

following lemma.

Lemma 3oLL F(X) is an irreducible a-module.

Fix an skew-symmetric (n + 1) X (n + 1) -matrix with integral coefficients
M~ (w/,)o<^,;<«. We say that /c^Q(g)* is generic with respect to M if for any k

eZ>0 the matrix ([k{hl,a]}]K~km"} is invertible,
Note that if n = 1 any K is not generic with respect to any M. Since the

matrix ([k (/&*,#,)]) o <*,;£« is invertible for n>l , there exists a generic £ for

Lemma 3.1.2. (1) For a fixed M, we assume that £^Q(#) * is generic with
respect to M (in particular n>l) . Then ^n is an irreducible Sn-module.
(2) 2Fi is not irreducible.

Proof. (1) Set G(/c) = (g(K)tj) ([&<X «,->] tc~km"). Since K, is generic with

respect to M there exists its inverse G(k)~L= (g(k)1*) for any k. Note that by

the definition Zo<s<w g ( k ) t s g ( k ] SJ = 5iJ.
We set

* - / f-X f S /f s .*, for

,.*, for A<0.

Then we have

for ftf/>0. Since all G (A) are regular, Ht,k(Q<i<n, k>0) generate S%.

We shall use Lemma 3.1.1. Put F = Q (q), a = Sn, a
± = S%, yl = l, xP = Hitk

(k>Q),yr=H,.i(l<ti) where #= (ft-l) (n + l)+t + l and r= (-/-I) (n + 1)+;
-rl.

Then it is clear that F(l) =^'». By Lemma 3.1.1 we conclude that ^n is an
irreducible 5«~module.

(2) It is easy to see that /r*WolF0,-* +#i,-* is a central element of Si for
each A:^Z>0. Therefore S^i has infinitely many singular vectors. D

3«,2o Construction of level (1,0) modiiles8 In this subsection we assume /c =
1. Note that l^Q(^) is generic with respect to any M with n>l.
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Note that one can rewrite P= ©?=2Zo]"© Z/l«. We introduce a twisted

version of the group algebra Q (q) [P] by Z/2Z. We denote it by Q (q) {P} . This

is the Q (q) -algebra generated by symbols ea2,ea3, ..., ean,eAn which satisfy the
following relations:

(3.2.1) e^e* = ( - 1) G^ e«>e*>

(3.2.2) A^=(-1)'VS*

For a=Z?=2W,o;+w«+iA; we denote e" = (e**) m2 (e*?) m* - (e"'*)m*(er*)m™. For
example e"~l = e^e"3"* - g-«^<"+i>^f ^-^-5^-25^ ... ^-(n-o^oi-f-n)^ where

ylj is the t~th fundamental weight. We denote a 0 — ~~ 2?=ia « and /IQ —

-2?.ifcl.
Note that </t,, a;> = </z(, a;> for 0<i,j<n.

We denote by Q (q) {Q} the subalgebra of Q (q) {P} generated by ea' (l <i
<n).

Set

W(p)n = &n®Q(q){Q}eTt> for l<p<n

and

We define the operators H,,/,e" (a^Q), d^t on W(p)n for i — 0,1 ..... n as follows:
for i7®ep=f?ll._tl ... Hw.-twt;

Wre have the following lemma.

Lemma 3.2.1. ^5 operators on W(p)n,

forQ<i,j<n.
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We introduce the following generating functions:

F,(z)=ZFlltz-*.
A-eZ

Proposition 302020 Let c = l and tc=l. Then for each p and n, the following

action gives a Drf (Qt0r) -module structure on W(p)n\

E, (z) » exp S f (<T1/2*) * expW Ltfj /

F, W - exp ( 2 -%^ (1/2^ A exp 2 (
\ii L«J /

^(«)•-* exp ((g-g-

JfT («)•-» exp (-(9-?

forO<i<n.

The proof will be given in Appendix.
We have immediately the following lemma.

Lemma 302030 The Uf (Qtor) -module W(p)n is cyclic:

Theorem 302040 If n>l then W(p)n is irreducible for any p.

Proof. Since ^n is irreducible with respect to the action of S». it is enough

to show that for any non-zero v= ^o^Zaeoaa^V1' (a«eQ (q)) there exists X^

U*' (Qtor) such that Xv=vQ®eAp. Let Sn be the subalgebra of Sn generated by #,,/

(l<i<n,/eZ\{0}) and ^ic. Let 9n be the 5w-submodule of 2Fn generated by VQ

®eT>, and let W(p)n = $n® Q (q) (Q} eTp. As already known W(p)n is an

irreducible U(
q

1} (^U+i) -module. It is obvious that v ^ W(p)n . Therefore there

exists Xe^^i^^CLf (gfor) such that ^v=v0®^. D

Remark 3.2.5. Since ^i is not irreducible as an Si-module W(p) i is not
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irreducible.

Remark 3.2.6. Since U(
q
v(Sin+1) and U(fy(§ln+i) are subalgebras of

Uq (Qtor) we can regard W (p) n as a U(
q
l) (§l»+i) -module or as a U(

q
2y(iin-ti)-

module. As a L^D (ii«+i) -module, M7(/>)w is a level 1 module. On the other hand

it is a level 0 module as a U(£Y (§tn+i) -module.

3.30 On the structure of level (1,0) modules* In this subsection we will
study the level 1 Uq(&in+i) -module structure of W(p)n.

Let M be a U(q} (§U+i) -module. We can regard M as a Uq (iu+i) -module via

a surjective homomorphism Uq(&in+i)—*U™($ln+i). As a £/9(<iU-ri) -module, we
denote the character of M by chM.

Let L (Ap) be the irreducible highest weight Uq(&ln+i) -module with highest
weight Ap. Note that the following identity holds:

Here yU) = n*>o(l-^*).
We denote d by the null root of Uq(%[n+i) •
By the definition of W(p)n and (3.2.1) it is immediate to see the following

proposition.

Proposition 3.3.L As a Uq(§in+i) -module, we have

_ chL(Ap}

~ <p(e-5)'

Lemma 3*3,2,, For each I e Z\{0} there exist HI = Z?=o«u#*./ (atj e Q

for any l<j<w and /c^Z\{0}. Moreover such HI is unique up to scalar.

Proof. Note that tc=l. The rank of n X (w + 1) -matrix ([K/i<,tf,>]) i< z<«,o<;<«
is equal to n. The lemma follows form this fact immediately. D

By the definition of HI we have

(3.3.2) [HhMi]=dM,tfk,
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where 7*^Q(g) . We fix a normalization of HI by putting ft = l for all k.

Let 5» be the subalgebra of Sn generated by HI. By the definition, Sn acts on
W(p)n.

The following two lemmas are easy to see.

Lemma 3.3.3. For I > 0, Hi (t>0®/) = 0.

Lemma 3,3=4, TTie action of lfq(%\n+\) on W(p)n commutes with the action

0/Sn.

Let §» be the subalgebra of Sn generated by Hi(KQ).

Proposition 3.3o50 As Uq (%ln+i) -module

Proof. Set deguffr) —k. Let Mk—Mk (H-i,H-2, ...) be a monomial of degree A:

in variables H-i,H~2, ••• - Then by the above two lemmas, MkVQ®eAp is a singular

vector of U(q} (§U+i) -module W(p)n. Let H^4 be the Uq (8i,+i) -submodule which

is generated by MkV$®eAp. Then by the definition of the action of Uq($ln+i) on
W(p)n, we have

WMk=L(Ap-kd}=L(AP).

The vectors {M 0̂ 0 £ M are linearly independent The number of the
monomials of degree k is equal to the &~th partition number p (k) . Therefore

there is a U(
q
1} (^U+i) -submodule W of W(p)n which is isomorphic to 0^>oL (Ap

— kd)ep(k). By Proposition 3.3.1 it coincides with W(p}n. This completes proof.
D

By Lemma 3.3.4 and the proof of Proposition 3.3.5, the following
corollary follows immediately.

Corollary 3.3o60 As lfq($in+\) ®Sn-module W (p) „ is isomorphic to L (AP)

3o40 Construction of level (1,1) modules.. We introduce a twisted version of
the group algebra Q (q) [Q] by Z\2Z. We denoted it by Q (q) {Q} . This is the

Q (q)~ algebra generated by symbols eao, eai, ..., ean which satisfy the following
relations:

(3.4.1) *«'**= (-])<*''«VVr'.

Similarly to §3.2, we denote ea= (ea°)mQ(eai)mi ... (ean)mn for a=Z?=
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Let

Here we regard eAp only a symbol indexed by p.

We define the operators Ht,i(Q<i^n, I * 0). ea (ore Q), 9a, and
<w) on F(p)n as follows:

for v

The following lemma is easy.

Lemma 3.4.1. As operators on V(p)n,

Proposition 3.4.2. Assume c — \ then for each p and n, the following action
gives a Uq (Qtor) 'module structure on V(p)n\

ql <-+ q\

qd2 ^ qd\

E, (z) - exp Z f (q'l/2z) k exp 2 -f G?1/2
v^i L/cJ / \>! L/cJ

f U) ̂  exp ( 2 -^(q1/2z) k) exp ( 2 % (^1/2^
\^>! L«:j / N^! IK]

/ft U) ^ exp ( (q-q-1} EHttkz~k)qd°',
> i . ̂  i '
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KT (z) *-> exp ^ — (q—q~l)

forO<i<n.

The proof will be given in Appendix.
It is easy to see the following lemma.

Lemma 3.43. V(p)n is a cyclic Uq (gter) -module. V(p)n—Uq (g,or) (v^®eAp).

Lemma 3>AA0 V (p) n has level I as a Uq^(§ln+i) -module and as a

U(
q
2)($ln+i)-module.

Proof. It is clear that V (p) „ is a level 1 Uq1}(2ln+i) -module. The center of

U®} (SU+i) is ][Ift=o/C By the definition it acts as the scalar q on V(p)n. Q

4010 In this section we assume that g = Sl2. We shall try to find finitely many
generators of Uq(&i2,tor).

Let

,=E,.o, F?=F,,0, q
±kt=K?, for i = 0,l,

Proposition 41.1. Uq factor) is generated by £,, Fff q±hl (i = -1,0,1), q^

Proof. Let s& be the subalgebra of Uq (^.tor) generated by £,, Ft, q±hi (i -

-1,0,1), g±ic, q±d\ q±d2. By the definition we have £0,-i = q~h°F-i and F0,i:

E-iqh°. Since

r T-, j-, -| I _ic r^-f
LJC/O.Oa O.lJ — _i<? 2 ^-0,1

fl-tf

and

Tr- r^ 1 1 ^r.rs-

We deduce #0,i, and H^-i^d. We recall (2.2.7)
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By these formulas we have Etik, Ftlk&s& for i = 0,l, k&Z in inductively.
On the other hand we know

[EO.I, F0lJ = — — <ricft"(u-

Therefore we get HQ>2^^- Similary we have Hiti^sd for any ij.
This completes the proof. D

Lemma 4.1.2. The following relations hold in Uq (^iz.tor) '

(4.1.1) [q±kt,q±h']=Q,

(4.1.2) [q±d\q±kl]=Qt

(4.1.3) qdlEjq-
dl = qd)^E},

(4.1.4)

(4.1.5) qhtEjq-ht = qa"E^

q^q-^^q-o-F,,

where

2 -2 2

(a«) -1^1,^1= ~"2 2 —2 .

2 -2 2

(4.1.6) [£„ F,] = 8,,

(4.1.7) Elf, -q~2 [3] EiiFiE-! +<T4 [3] E-f.E^-q^F.E3-, = 0,

(4.1.8) £?F_1-9
2[3]£!F-1£1+9

4[3]£1F_1£f-?
6F_1£? = 0,

(4.1.9) F3-^! -?-
2 [3] Fij&F-i +9~4 [3] F^EiF2-! -q^Ef3^ = 0,
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(4.1.10)

(4.1.11) £?£,- [3] £?£/£,+ [3]£J5/£?-£,£?=0, for |i-/| = l,

(4.1. 12) F?F,- [3]F?F,Ff + [3]FlF/Ff-F/F?=Ol for |;-/| = 1,

(4.1.13) E-iFi-^E-^O,

(4.1.14)

Proo/. By the definition of [7g (g^r) and £,-, F,- and gAt it is easy to check
these relations. D

Let °U be an associative algebra over Q (q) generated by £,-, F,-, q±ht (i =

-1,0,D, q*^. q*d\ q±dz with relations (4.1 .1) - (4.1.14). Then we have,

Corollary 4.L39 There is a canonical surjective algebra homomorphism W'M— *

Remark 4.1.4. ?F has a highly nontrivial kernel. It is important to
determine it. For example the following formulas holds in Uq (%l2,tor) '

So,o -
7? _ Z71

0, -1^1,0 •C'l.

and

Therefore we have

-i. £1] —

= 0

in t/4(8l2.wr). Thus XSKerf. But , as an element of °U, X is not equal to 0.

4.2. Let

Eo*=Fi.i#r, Fo*=/rf£i.-l, q±h°'=q±cKl

Proposition 4.2.1. T/te subalgebra generated by E,, F,, and 9*' /or t = 0,l,

£0*, Fo*, g*°\ ?±c, q±d\ q±d\ is equal to Uq(^,tor}. That is, they are generators of



QUANTUM TOROIDAL ALGEBRAS 169

Uq(&l2,tor). Moreover these generators satisfy relations similar to the ones in Lemma
4.1.2.

Proof. This proposition is proved in the same way as Proposition 4.1.1 and
Lemma 4.1.2. D

We have immediately the following lemma.

Lemma 4.2.2. Let U(
q
l) be the subalgebras generated by £„ F,-, qhtfori = I,Q*

and q
±(Md*\ U(

q
2} the subalgebras generated by Elt Ff, qhl for i = 0, 1 and q±(dl+d2\

[/f the subalgebras generated by £,, Flf q±hl for t = 0*, - 1 and q
±(*i+d*\ and U(

q
4}

the subalgebras generated by £„ F,, q±hi for i = 0, — 1 and q±(d^+d*\ Then U(
q
} (i =

1,2,3,4) are isomorphic to

Those four algebras are schematically visualized by Fig. 1.

v /> <vV/
o< >o

1 rjC\) U

Fig. 1.

Let Uq (312) (i) (i = -1,0,1,0*) be the subalgebra of Uq (%[2,tor) generated by Et, F,,

q±ht. All Ug(&lz.<t)) (ie {—1,0,1,0*}) are isomorphic to Ug (812) - The upper left
circle in Fig. 1 means Uqfalz) <o), the upper right one means ^(§l2)a), the lower
left one means Uq(<ol2)(-u and the lower right one means L/g(s>l2)(o*). The diagram

o<«=^0 ' (tf ye {-1.0,1,0*})

means the algebra generated by Uq (§b) (?) and Dr
9 (§b) o> is isomorphic to Dr

g (
For example O ° <=^> o 1 means the algebra generated by [7?(§l2)(o) and

Uq (s>l2) (-D which we call Uq
2} is isomorphic to Uq (§fe). The meaning of the

diagram

O'======* OJ

is as follows: In the algebra generated by Uq (^12) d) and ^(§[2)o), the following
relations hold

(4.2.1) qhtEiq-
hl=q2E^ qh}Eiq-

hl = q2Elt
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(4.2.2) qh>Fjq-ht=q-*Fj, qk'Fiq-'"=q-2F,.

(4.2.3) ElFj-q'2 [3] E2F,Ei +<T4 [3]£^E?-?-6F^E?= 0,

(4.2.4)

F?£,- 9
2 [3] F?£,F, +<?4 [3] F, E,F?-<?6£,Ff = 0,

(4.2.5)

(4.2.6)

A.l. Proof of Proposition 3.2.2 and 3.4.2. For the proof we rewrite the
defining relation V9 (Qtor) generating function level.

(A. 1.1) 9*2* are central.

(A.1.2) KtKT=K7Kt = l,

(A. 1.3) A:* U) ̂ f (w) =X? (w) ^* (z)

(A. 1.4)

5-<»na^(9-
e/c-»"j)7fT (z)^; (w) = 6-«,,,aj>(qcK-m'>^)K} (w)KT U)

(A. 1.5) q^Kf(z)q~
d^=Kf(q-lz),

(A. 1.6) [<7*A?U)]=0,

(A. 1.7) qd*E,(z)q-'l=Ei(q-lz').

qilF,(f)q-il = Fj(q-1z),

(A. 1.8) qd2E,(z)q-dz = qs">E,(z),

q"F,(z')q-'t = q-l*Fl(z'),

(A. 1.9) ^r («) £, (w) = 8-<w (q-^K'm"~)E, (w) Kt (z)

K- U) E; (w) = e<hl,a,) (q-2CKm«~)E, (w) KT (z)

Kt U)F, (u;) = d<h,,a,yq^K-m-'Fj (w)Kt (z)
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KT (z)Fj (w)=6-<h,,tt,->q-2cKm"F, (w)K7 (z)

(A. 1.10)

[E, (z) , F, (w) ] = d,,, —^-r\d(<f-)Kt (qbv,) ~ d(qc~)KT (<?
Q - l I \ Z / \ W/Q - Q

(A. I . 11) (Km''z-q(-h"tt>>w)Et (z)E, (w) = (q<h'-a>} Km"z~w)E, (w)E, (z)

(Km"z-q-{""a>>w)F, (z)F, (w) = (q-<h"a'>Km"z-w)F, (w)F, (z)

(A. 1.12)

m I

where i^j and w — 1 —

In these formulas we denote 6m(z) =——— for m ^Z, d(z) =Z*ez^A.
z—q

If Proposition 3.4.2 holds, then, from Lemma 3.2.1 and 3.4.1, we have

Proposition 3.2.2 by putting h^Wt, a^cTt . ic*~*l and zfll'°*-+zdt. Therefore it is
enough to show Proposition 3.4.2.

The relations (A.1.1), (A.1.2) and (A.1.3) are trivial. (A.1.4) is just
the commutation relations of Heisenberg algebra 5«. Therefore, by the definition
of V(p)n, it is clear that (A. 1.4) holds. The relations (A. 1.5), (A. 1.6)
immediately follows from the definition of d\ and dz.

Let us show (A. 1.7) and (A. 1.8). Take vf&eW*^ V(p)n where /3 =

?. Then we have

Therefore we have

l = qdl exp ( 2 Vv exp

exp
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Similarly we have qdlFJ(z)q"dl=FJ(q'1z).
It is clear that

(A.I . 13) q'*e
±aiz±H>*+1q-d* (v®eBeA>) =q*'»e±

From (A. 1.13) and the fact that qd* commutes with Hj>k, we have (A .1.8).
We shall show (A. 1.9). We denote

Let us proof

K} (z) E3 (w) = 6-<h(,a}> (q-iKT-^Ei (w) /C

We have

- -

= log —

and

We recall Campbell-Hausdorff formula: let A and B be noncommutative

operators and C= [A, B]. If [C, A] = [C, B]=Q then we have eAeB=ece*eA.
By Campbeli-Hausdorff formula we get
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-E+WETdtiexvUq-q-1) Z Ht.kz~k)

* 2

On the other hand, by Lemma 3.4.1 we have

q\a>iv
a>.°=q<l'"a'>ea"u/'^qd".

Thus we get

Kt(*)E,(w)

= exp ((q-q-1) 2 H,.**-*)E} (w)E7 (w)
k^l

l~q-^,a,>-\K-m^

= *ES (w)Kt (z)

The other formulas in (A. 1.9) can be checked by similar arguments.
Let us show (A. 1.10). We have

[_ y Ht.k -±t-k __ y HJ-Z^ rj-iq 2 z , z
k>l

log
a l^N /-, -lt^\

-9— ) (1-^ ^J

For example we will show in the case of (ht,a.j} = — 2. By Campbell-
Hausdorff formula we get

and
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E7 k)F? (w) = l -qK~m"~ l -q-^-^'F? (w)E7 (z) .

On the other hand, by Lemma 3.4.1, we have

JtiSp -a} — 2^mu -otjJHi.o

Therefore we get

Ei (z}Fj (w) =ET (z)E7(z)ea*zH<»+lFt (w)F7 (w} e^w^^1

-q-*wic-im")Et (z)Ff (w)E7 (z)Fj (w)

By a similar argument we have

; (w)Et (z) = (wK-^-qz^™") (wK-\mi'-q-lziC2m»)EJ[ (z)Ff (w)E7 (z) FJ (w)

Therefore we get

Similarly one can check the other formulas.
We will show (A. 1.11). We have

[ ~ H i ]r __Lfr

log

log -l._-«..tt'

For example let us show in the case of Oij,a/) = — 2. If <fo;,a/> =£ ~2 one
can show the formula by a similar argument. By Lemma 3.4.1 we get

(ztcm^-q<h^w)El (z)Ej (w)
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t (V) F~ (x") t,at-Ht.o+lpT (w\ p- (w\paj Hj.o+1I \ZjLLi \4jV Z ILij \W)£jj \W)V W

r-£,+ (z)Ef (w)ET (z)EJ (w)

-L ,-,J. / \ y-,J. / \ ,-,_ / \ 7-^_

-——T-L, (z)E, (w)Ej (z)Ej

On the other hand we have

q~2Kmt}z-w

wl\ * wl

•^ 6 *£ }W }' Z '*

1
_ -fi^ (z) £;

+ (u;) ET (z) EJ (w} eaieaizHl'^livHt 0+1.

Thus we have ^""-^^^^fi, (z)E3 (w) = (q{h^Km"z-w)E} (w)Ei (z).

The formula (ztcm" — q~<hl'a^w)Ft (z}F3 (w) — (q~<hl>a^Km"z — w)F3 (w)Fi (z) is
proved similarly.

Let us prove (A. 1.12). Assume that </i^,a;> = — 2. This is the most
complicated case. The other cases can be proved similarly.

We have following formulas:

Et (zi)Et (Z^EI (z3)E} (w)

x

+ (w)E7 (zi) ET

Et(z1)Ei(z2)EJ(w)Et(z2)
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XE+ (z^Et (z2)Et (z3)E? (w)ET (zjET fe) ET (z3)E7 (w)

X eto'eB'zf'^zg'

E i ( z 1 } E J ( w ) E l ( z 2 ) E t ( z 3 )

t (z*)Ef (w)E7 (z^ET (z2}ET (z3)E7 (w)

, (zi)Et (

Therefore it is enough to show that

(A. 1.14)

n ( \ ( —2
t< ~
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This identity is proved by a direct calculation.
Thus the proposition is proved.
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