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Quantum Toroidal Algebras and Their Vertex
Representations

By

Yoshihisa SAITO*

Abstract

We construct the vertex representations of the quantum toroidal algebras U Bly+1,0,) . In the
classical case the vertex representations are not irreducible. However 1n the quantum case they are
wrreducible.

§1. Introduction

The classical toroidal algebras have been studied by many authors [MEY],
[S]. [Y]. etc. Here “classical” means ¢ = 1. The definition of the quantum
toroidal algebras is given in [GKV]. They gave a geometric realization of the
quantum toroidal algebras without any results on their representation theory.
Recently Varagnolo and Vasserot [VV] proved Schur-type duality between
representations of the quantum toroidal algebras and the double affine Hecke
algebra introduced by Cherednik [C]. This is an analogue of the duality
between the quantum affine algebras and the affine Hecke algebras given by
Chari and Pressly [CP]. In [VV] only the representations of “trivial central
charge” was studied. It is known that there are two subalgebras U (8 ,41) and
U# (Blns1) of Uy(Blusryy such that there are surjective algebra homo-
morphisms Uy (81 ,41) — U (8l ,4,) for i=12. In this paper we say that M has a
level (0.0) instead of the trivial central charge. The first O means that M has a
level 0 as a UL (8l,41) -module and the second 0 means that M has a level 0 as
a U®? (8l ,.1) -module. This notation is an analogue of level 0 representations of
the affine quantum algebras.

In this paper we try to consider an analogue of “integrable representations”
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in the toroidal case. Let us recall the integrability of quantum Kac-Moody
modules. Let U, (g) be a quantum Kac-Moody algebra and V a U, (g) ~module.
We say V is integrable if V has a weight space decomposition and locally
nilpotent actions of the Chevalley generators of U, (g). Therefore the definition
of “integrability” needs Chevalleyv-type generators. The toroidal algebras is
defined through Drinfeld type of generators and its Chevalley-type generators
are not known. Therefore we are not able to define the integrability at this
moment. However, in the affine case, Frenkel-Jing [FJ] realized the integrable
representations with level 1 by the vertex representations. Thus if there are
“vertex representations” of quantum toroidal algebras, they must be interesting
example of the integrable representations still not defined. In the ¢ =1 case,
vertex representations of the toroidal algebras have been already considered by
Moody-Eswara Rao-Yokonuma [MEY]. In this paper we construct the
g-analogue of the representations defined by them for g =8I, with level (1,0)
and (1.1). Therefore we give a new class of the representations of the quantum
toroidal algebras. In the ¢ =1 case, the Fock modules are not irreducible over
the Heisenberg algebra and the vertex representations are not irreducible over
the toroidal algebra. In the quantum case, it is not the case: the Fock modules
are irreducible and also the vertex representations with level (1.0) are
irreducible.

The algebra U, (gw,) has infinitely many generators satisfying infinitely
many relations (See §2). It is preferable that U, (gw,) is written by finitely
many generators with finitely many relations. According to [GKV] there are
finitely many generators of U, (8l25,) but the relations among these generators
are highly non-trivial. In this paper we give an explicit form of finitely many
generators of U, (8la0r) and closed relations of them (See §4). They coincide
with the generators by Vasserot [V].

§2. Definition of Quantum Toroidal Algebras

2.1. Notations. Let g be a complex semisimple Lie algebra of type A, and §
an affine Kac-Moody Lie algebra of type AY. We denote their Cartan
subalgebras by § and 5 respectively. We denote by &7, ..., & the simple roots of
g, by Ry, ... by the simple coroots of g, by Ay, ... A, the fundamental weights of
g, by o, ... @ the simple roots of §. by ho. ..., ks the simple coroots of § and Ao,
.. /A, the fundamental weights of §. Let @=®7-1Za, be the root lattice of g, P=
@7, ZA, the weight lattice of g, Q = D?=oZa; the root lattice of § and P =
D0 ZADZD the weight lattice of §. Here § is the null root.

We denote the pairing of § and §* (resp. § and §*) by <, ). The invariant
bilinear form on P is given by (a]a,) = —8,;-1+20;,— 8,41 and (6]) =0. The
projection form P to Pis given by A,=A,—A, and 6=0.
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2.2. We will give the definition of the quantum toroidal algebra U, (gror) .

Definition 2.2.1. Let M= (m,,) 0<:,j<n be a skew-symmetric (n+1) X (n+
1) -matrix with integral coefficients and let £ be an element of Q(g) *. U, (gior)
is an associated algebra over Q{g) with generators:
Ei.kv Fi,k- Hr,h K;i qx—;—c‘ q:td]‘ q:dz,
for kEZ, 1€Z\{0} and i=0.1, ..., n.

We introduce Kiy as the Fourier components of the following generating
Sfuncltions:

Ki(z) = 2Kz " =K exp((g—q™") ZH2™"),

k>0 k>1
K; () = 2K *=K; exp(— (g—q™) 2 H,_42").
k<0 k=1

The defining velations of Uq(Qrer) are then written as follows:

(2.2.1) q"%‘ are central,
(2.2.2) K Ki=K7 K =1.
(2.2.3) (K. K¥] =0,
(2.2.4) (K. H,,]1=0,
ke __ ,—kc
(2.2.5) (Hoi Higl = 5k+l,0% (khna] g‘qjq‘(;_'l—ff—km”y
(2.2.6) lg** K3] =0,
(2.2.7) q“H,.""=q'H,,,
(2.2.8) lg** H,.] =0,
(2.2.9) q“E,vq “=q"E; .,

qle],k(]—dl :quj,k.

(2.2.10) 4“E, g~ " =q""E, 1.
q"F g~ =q""F 1,
(2.2.11) KYE K7 =q"E,

KIF K7 =q~ " Fj,

(2.2.12) [, Byi] = 5 @) 1q $ e =om,
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[Hz,ka;,l] = __%[k<htvaj>}q%‘klc’f_km”F;.k+l-

S — b, —
(2.2.13) K™E; k1B i—q " K™ E ;1 Eipir =q " Es4Ej 11— Ej1+1E 1k,
KPR F,,— —<hasd mup. F o —<h¢.a’:)F_ F —F; F
L+ 7074 K il L e+1—4 ik 041 Fa+id gk

1

1

(2.2.14) [Evi Fri) =08, ——Aqt* DK fsr— g2 Ky},
a—q
m m
(2 2 15) Z Z (—1> " E’:kvm . El’kﬂM‘E]:IEi:kmrH) e E"kumn=0'
0EG,, =0 v

m ¥
Z Z (_1>7[ W :l F”Kﬂlh e F’-kmnFJrlFi:ka(nD f;‘,,k”(m,=o.

for i#7,

where m=1—<h,a,>.
¢—q* m
In these relations we denote [k] = ra n] ' = I3 (K], =
q9—q ¥

[m]!
[r]tm—r]1
2.3. Let Uy (gwr) be the subalgebra of U, (grr) generated by E.x, Fix KF, H,.,
qi%“. Let US (guwr) (resp. U'2(giy)) be the subalgebra generated by Uy (grr) and
g* % (resp. q*%). Let USY" (81 ,41) be the subalgebra generated by E, . Fix K, Hou.
qi"if'c(l <i<n. k€Z 1€7Z\{0}) and UY (81,4, the subalgebra generated by

UL (8l ,41) and g=%. Let U (8l,4,) the subalgebra generated by E, g Fio K& (0

<;<n) and UY (8l,,;) the subalgebra generated by U2’ (8l,4+1) and ¢**2. By
the definition it is clear that there are surjective homomorphisms Uj (8l4s1)—

1D (8 41) and Uy (8l,e1) = U2 (8l 441).

The following are straightforward.

Lemma 2.3.1. For 1 <i<n let E, s = Esxk="""", Fyp=F, k=" H,, =

H, k"™ Then the relations between E;F,—kf? and KT ave precisely the relations
of Drinfeld genevators of Uy (8l,41). That is, there are surjective homomorphisms

Up Blps1) = UL (Bl ps1) and Uy (Blpsr) = UL (8l pey) .

Lemma 2.3.2. Let Ki=[17-o Kf. Then K§ are central elements of Uy (Gor) .

Note that g*¢ is the central elements of U’ (8l,+;) and K% the central
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elements of U® (8l ,41).

§3. Vertex Representations

3.1. Heisenberg algebras. In this section we shall give the vertex
representations of U, {gy,). We assume c=1.

Consider a @Q (q)-algebra S, generated by H,, (0 <i <u, 1 € Z\ {0})
satisfying:

b~k
(3.1.1) [HixH;i) = 5k+1,o‘,1; [k <hyya,) ] 'q—'"g_—lc"‘m”.

g—q"
We call S, the Heisenberg algebra.

Let Sy (resp. S») be the subalgebra of S, generated by H,; (0 <i<n1>0)
(resp. 0<i<n, 1<0).

We introduce the Fock space

gnzsnl'o
with the defining relations:
(3.1.2) H,i10=0, for 1>0,
(3 . 3) q_%cu0=q%1ro,

Note that %, is a free Sy -module of rank 1.
Let F be a field of characteristic zero and let a be an associative F-algebra

generated by xp, » (pEZs0). z and its inverse z~* with the following relations:
[x5. 2] = [35. 21 =0,
[xp. %] = [¥5. 9,1 =0,
(%5, y¢] =0p02.

Let a* (resp. a~) be the subalgebra of a generated by x, (resp. y,). We set b=a"*

QF [z,z7']. This is a maximal abelian subalgebra of a. Fix a nonzero scalar A€
F*. Let F; be the one-dimensional space F viewed as a b-module by:

z°1=24, at - 1=0.
Let F(1) be the induced a-module
F(A) =Ind: F;=a®F..
By the defining relations of a we obtain an F-linear isomorphism

FQQ) =a.
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Since a~ is abelian we may regard it as the algebra of polynomials in the
variables y1, yz, - . Then we see that z acts on a~ = F [y1, y2, ~] by the
multiplication of A, x, acts by /Yaya-,. By this realization we immediately have the

following lemma.

Lemma 3.1.1. F(Q) is an irreducible a-module.
Fix an skew-symmetric (#+1) X (n+1) -matrix with integral coefficients
M= (mi,) 0<1,<n. We say that £ €Q(g) * is generic with respect to M if for any k

€7 the matrix ([k<h,a,0]x7%™) is invertible.

Note that if » =1 any & is not generic with respect to any M. Since the
matrix ([k<h,a,>]) o<1, <n is invertible for n>1, there exists a generic & for
n>1. :

Lemma 3.1.2. (1) For a fixed M, we assume that k €EQ(q) * is generic with
respect to M (in particular n>1). Then F, is an irreducible Sy,~module.
(2) &1 is not irreducible.

Proof. (1) Set G (k) = (g(k),;) ([k<h,, a;>] £7%™). Since k is generic with
respect to M there exists its inverse G (k) ™= (g(k) ) for any k. Note that by

the definition Zo<s<n (k) g (k) 5,=d,,.
We set

ks
ﬁm____ Zossgn [k]g(k) Hs.x, for k>0,

Hi . for £<0.
Then we have
[H, s, H,0] = [, B;-1]=0,
[y, Hy-1] = 6410,

for k.1>0. Since all G (k) are regular, H,, (0<i<n, £>0) generate S;.

We shall use Lemma 3.1.1. Put F=Q(g), a=S,, a*=S% A1=1, x,=H,,
(k>0), y,=H,,(1<0) where p=(k—1) a+1) +i+1 and r=(—1—1) (n+1) +f
+1.

Then it is clear that F (1) =%,. By Lemma 3.1.1 we conclude that %, is an
irreducible S,-module.

(2) Tt is easy to see that k¥ uf, .+ H;_, is a central element of S, for
each k€ Zs. Therefore #, has infinitely many singular vectors. O

3.2. Construction of level (1,0) modules. In this subsection we assume £ =
1. Note that 1€Q (g) is generic with respect to any M with n>1.
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Note that one can rewrite P= @®L,Za; DZA,. We introduce a twisted
version of the group algebra Q(q) [P] by Z/2Z. We denote it by Q(g) {P}. This

is the @ (g) -algebra generated by symbols 0% 0@ pan M which satisfy the
following relations:

(3.2.1) o= (—1) R g%
(3.2.2) ea_'e‘/z: (._1) 5meXneE.

For @= Sor— gm0, +mar1d, we denote ¢ = (¢%2) ™2 (¢83) Ms ... (p%) Mn (o&n)mne1 For

example eal_ ~203,~303 ... p=nly,n+D Ay o= =1, =2 .. o~ =1 any (n—1+ 1Ay where

A, is the i-th fundamental weight. We denote @ o= — >r1@, and ho =
n

- lhz

Note that <y, a,> =<, @,> for 0<i, j<n.

We denote by Q (g) {Q} the subalgebra of @ (q) {P} generated by % (1<
<n).

W®)»=F.QQ (q) Q)™ for 1<p<m
and
W(0),=Z.8Q (g) {Q}.

We define the operators H,.(@asQq), 0z, on W(p), for i=0,1. ..., n as follows:
for v®e =H, -k - Hin, k,,vo®eﬁ€ Wp)

H, (0®F) = (H,0) &,
e (1 Qe’ ) =1 Re%eP,
0, (QeP) = (i, B Re,
d (W®ef) = <-— éks——(‘%‘@+——£—p—(/l ;A ) )v@eg.

We have the following lemma.

Lemma 3.2.1. As operators on W(p) »,
o= (—1) T gy

e?iqa?, :q@quBzeE_
0% 705 = Z o) 107, o,

Sfor 04, 7 <.
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We introduce the following generating functions:

E, (Z) = ZEz,kZ—ky
keZ

F,(z) = ZF 2"
keZ

Proposition 3.2.2. Let c=1 and £=1. Then for each p and n, the following
action gives a US (ror) ~module structure on W (p) :
q'zl" ’—’q%,
qdl ,,__,qd

E.(z) = exp ( > %‘Cj—"(q”l’zz) ") exp < = —-%’j(gl”z) "‘)ezzaz”,

k=1 k=1

Fi(z) — exp (kZI“H[—'/'Cj—k(qmz) ") exp (Z %;]L V%) “”)e‘zz‘E'*l,
=

k=1

K ()= exp ((g—¢7") Z Hiuz™") g%,

k21

K (z)exp (—(g—q7Y) Z Hi42")q™ ™

k=1

for 054i<n.

The proof will be given in Appendix.
We have immediately the following lemma.

Lemma 3.2.3. The U} (g10,) ~module W (p) » is cyclic:

w (ﬁ) n Ugl (gmr> <'UO®9AP) .

Theorem 3.2.4. If n>1 then W(p), is irreducible for any p.

Proof. Since %, is irreducible with respect to the action of S,. it is enough
to show that for any non-zero U=00®Zfieﬁa&'€aell—’ (az€Q(g)) there exists XE
U? (guwy) such that Xv=v,Re". Let S, be the subalgebra of S, generated by H,.,
(1<i<n,1€Z\{0}) and q%c. Let Z, be the Sy,-submodule of %, generated by v,
®e’ and let W_n=§n®Q (@) {Q}e”. As already known W), is an
irreducible U (81 ,41) -module. It is obvious that v € W(p),. Therefore there

exists XE UL (8l n41) CUY (gror) such that Xv=vo®e/1—»_ 0

Remark 3.2.5. Since Z; is not irreducible as an S;-module W (p) 1 is not
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irreducible.

Remark 3.2.6. Since UL (8l,4y) and UP" (8l,4,) are subalgebras of
U (810) we can regard W (p) » as a UP (8l,+1) -module or as a UP’ (8l,.1) -
module. As a U (81 ,41) -module, W (p) , is a level 1 module. On the other hand

it is a level 0 module as a U®" (8l 1) -module.

3.3. On the structure of level (1,0) modules. In this subsection we will
study the level 1 U, (8l ,4+1) -module structure of W (p),.

Let M be a UY (81 ,41) -module. We can regard M as a U, (8l ,41) -module via
a surjective homomorphism U, (5[,,+1)——>U;” (Bl,e1). As a U.,(é[nﬂ) -module, we
denote the character of M by chuy.

Let L(A,) be the irreducible highest weight U, (81,+1) -module with highest
weight A,. Note that the following identity holds:

1 oy e
eA,, Zaeaea—(z (ala) —(a|Ap))E

(3.3.1) ChL(Ap)= go(e_a)n

Here ¢ (x) = 1450 (1—x%).

We denote 0 by the null root of Uy (8(,41).

By the definition of W (p), and (3.2.1) it is immediate to see the following
proposition.

Proposition 3.3.1. As a Uy (8,41) -module, we have

-4 —(alA,
€A’Zae§€a Glala) —(aldp)é

1) (e—§>n4-1

chwp),=

_ ChL(A,,)

)"
Lemma 3.3.2. For each 1 EZ\{0} there exist H,= 2 _oa,,H,; (@, €Q(g))
such that
[ﬁl'HJ,k] :O

for any 1<j <n and kEZ\{0}. Moreover such H; is unique up to scalar.

s1sn0s7=<

is equal to #. The lemma follows form this fact immediately. O

By the definition of H, we have

(3-3-2) [ﬁkﬁl] = 0k+1,07k
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where 7. €Q(g). We fix a normalization of ﬁ; by putting 7x=1 for all k.

Let S, be the subalgebra of S, generated by H. By the definition, Sy acts on
W) n.

The following two lemmas are easy to see.
Lemma 3.3.3. For 1>0, H, (veQe?) =0.

Lemma 3.3.4. The action of Uy (841) on W (p) , commutes with the action
of §n
Let §; be the subalgebra of §n generated by ﬁ; (1<0).

Propesition 3.3.5. As U, (8l ,41) -module
W) n=L(A,)®>.

Proof. Set deg (ﬁk) =k. Let My=M, (ﬁ_l,ﬁ_z, ...) be a monomial of degree k
in variables ﬁ_l,ﬁ_g, .... Then by the above two lemmas, Mkvo®e’T’ is a singular
vector of UL (81,41) -module W (p) .. Let Wi, be the U, {8l41) -~submodule which
is generated by Mwo®e?®. Then by the definition of the action of U, (8l,4+1) on
W (p) n, we have

W =L (Ay—k6) =L (Ay).

The vectors {Mkvo®e”—i'} are linearly independent. The number of the
monomials of degree k is equal to the k-th partition number p (k). Therefore
there is a UL (8l,4;) -submodule W of W (p), which is isomorphic to Dol (A,
—kd8)®*'® By Proposition 3.3.1 it coincides with W (p) . This completes proof.

O

By Lemma 3.3.4 and the proof of Proposition 3.3.5, the following
corollary follows immediately.

Corollary 3.3.6. As Uy (8l ns1) S,-module W (p) » is isomorphic to L (Ap)
®S;.

3.4. Construction of level (1,1) modules. We introduce a twisted version of
the group algebra @ (q) [Q] by Z\2Z. We denoted it by @ (¢) {Q}. This is the

@Q (g) -algebra generated by symbols e®, ¢®, .., ¢® which satisfy the following
relations:

(3.4:. ].) p&ip® = (_] ) <hu,a;>emea;-

Similarly to §3.2, we denote e¥= (¢®)™ ()™ . (¢%")™ for a= 200 mia, €Q.
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Let
V) =%.2Q (g) {Q}e.

Here we regard ¢?” only a symbol indexed by p.

We define the operators H,; (0<i<n, 1 #0). ¢* (@ €Q), 04, and 27 (04
<u) on V(p), as follows:

for v@efe* =Hyy 4, ... Hiy—ix0o@ePe? €V (p) , (B= Z%-omiat €Q),
H,i (vQePe?) = (Hyw) Qefe’s,
e® (v®efel?) =1 Q@ (") "7,
B, (v@ePe) = (i, B+ A, v@elet,

1 5, \
ZHI.O <v®eﬂe/1p) :Z<hl’B+AP>K§ Zheo ‘humycty) "1uv®eﬁellp'

Bohte) = (““ %ks_‘—(%@'_ (BlAp) )1*®e'ge’“’,

d2 wQePet?) =mo (vQePe??) .
The following lemma is easy.
Lemma 3.4.1. As operators on V(p),,
¥ = (__1) <h,‘a,>ea,ea,

qaa. ar— @)y Ba,

e =q eq

o = G a,>l€§ ) a1, Hio.

Proposition 3.4.2. Assume c =1 then for each p and n

. the following action
gives a Uy (gmy) ~module structure on V (p) u:

qzc — q%
qdl — qdly

qdz — qdz’

E,(z) = exp (Z b{'kjk (g7Y%2) ") exp (Z [k] E(gV2%) >0mZH. o1

k=1 k21

F, (z) — exp <‘§1 _%I,Cj_k(ql/zz> k) exp (g %;.L(q—l/zd _k>e_“'z_H"°+1,
k> k>1

I(?(z)'—’exp((l{—q Y X Hiaz" )a"

k21



166 YOsHIHISA SAITO

K7 (2) = exp (‘ (@—q™" ZH,,-kZ")q_a‘“

k=1
Jfor 0<0<n.

The proof will be given in Appendix.
[t is easy to see the following lemma.

Lemma 3.4.3. V), is a cyclic U, (gor) -modulc: V) n= U, (Gror) 0o &e??).

Lemma 3.4.4. V (p) » has level 1 as a UL (8lns1) -module and as a

U® (31 p41) ~module.
Proof. It is clear that V (p) , is a level 1 U® (8 ,41) -module. The center of
U® (81 ,41) is [17=0 K,. By the definition it acts as the scalar ¢ on V (p) . O

§4, 0[1 Uq (‘3{2,:07)

4.1. In this section we assume that g =28l;. We shall try to find finitely many

generators of Uy {8lar0r).
Let

E,=Eo0 Fi=Fo. qihrszi, for 1=0,1,

E_1=Fo1Ks, F-1=KiEo-1, ¢*" ' =q*K§.

Proposition 4.1.1. U, (8ly,0,) is generated by E,. F,, ¢*" (i=—1,0]1), qi’%ﬁ

+d1 ,tdz

a.q
Proof. Let & be the subalgebra of Uy (8lz40,) generated by E,, F,, ¢** (i=

—-1,01). q*%‘. g*%, ¢*. By the definition we have Eo—; =¢ "F_; and Fo, =

E_ig". Since
—_ 1 ~Lors
[Eo.0Fo.] =49 Ks.
a—q
J— —LC ho
=q72°¢""Hoa
and

1
[EO.—1~F0,0] = —;It;: q%cKE,—l

1
=q2»cq‘hoH0’Mlv

We deduce Hoy, and Ho-1€4. We recall (2.2.7)
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-1

1
(H,xE.1] '—'EUC Chap]g Mg =kmE, ),
[Hz.k.FJ,I] = _'%[k<hivaj>:‘q%Iklclf_km"F,’kH.

By these formulas we have E,x, Fi. €4 for 1=0,1, kE€Z in inductively.
On the other hand we know

1 1.
[Eou. Foul = 4 2K
a—9q

1
=5 (g—q ™) He1+Hoa.

Therefore we get Hy,€4. Similary we have H, ;€4 for any i,l.
This completes the proof. O

Lemma 4.1.2. The following relations hold wn U, (8ly.s00) :

(4 . 1 . 1) [qth,, qih,] =O,
(4.1.2) [g*%, g**] =0,
4.1.3) gPE;q~ " =4¢"E,,

qPFiq~ =g,
(4.1.4) gUE, =g~ E,

¢"Fq~*=¢""""F;,
(4.1.5) §Eq "=,

qhxF]q—hx —_— q—auFJ ,

where
2 —2 2
(@) icjar=| —2 2 =2
2 -2 2
hy . —hs
(4‘1-6) [Ez- F]] _‘:51] g—_q;—l—. fO'r ;1_]|£1,
qa—q

(4 . 1 . 7) EilFl_q_z [3] E2_1F1E-.1 +q—4 [3] E_lFlEz_l_q_GFlEil =V,
(4.1.8) EIF_1—q* (3] EfF-\E1 +¢* [3] E\F - E}—¢°F_,E3=0,

(4 1. 9) f“ilEl—q_z [3} Fz_lElF_l +q_4 [3] F..]_Ele_l—q“eElFi]_ =O,
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(4.1.10) F3E_,—¢*[3]F3E_,F, +4¢* [3) FLE_\F3—¢°E_,F§=0,
(4.1.11) E¥E,—[31E!EE,+ [3]E.E;E}—E,E}=0,  forli—j|=1,
(4.1.12) F¥F;— [3]F!F,F,+ [3]F.FF—F;Fi=0,  forli—j|=1,
(4.1.13) E_E\—q¢*E\E_,=0,

(4.1.14) FoiF1—g*FF_1=0.

Proof. By the definition of U, (gm> and E;, F; and g™ it is easy to check
these relations. 0O

Let U be an associative algebra over @ (g) generated by E;, Fy, ¢** (1=
—-1,0,1), qi%‘, g=%, ¢*%* with relations (4.1.1) — (4.1.14). Then we have,

Corollary 4.1.3. There is a canonical surjective algebra homomorphism -U—
Uq (S[Z,mr) .

Remark 4.1.4. W has a highly nontrivial kernel. It is important to
determine it. For example the following formulas holds in U, (8lz.0r):

K™ Eoo E1,-1—¢ 2™ E1,1E0.0=¢ *Eo,-1E1,0—E1,0 Eo.-1,
Eo—1=q ™F_,

and

—moL

El.—1=[—_“?]“ [F_\Fo—q *FyF-1, E1].
Therefore we have
1 _ -2
X='[:§]“Eo [F—lFo—q 2FoF—x. El] —TE_T] [F—lFo“q_ZFo Fy, El] Eo

—q %" By~ ExgTh R
=0
in Uy (8l240r). Thus XEKer ¥ But , as an element of U, X is not equal to 0.
4.2, Let
Ew=F11Ki, Fes=K{Ei-, ¢ "™=¢*K7.

Proposition 4.2.1. The subalgebra generated by E,, Fy, and ¢" for i=0,1,
Eo, Fox, g"", ¢*¢, ¢*%, ¢*®, is equal to U, (8ly,0,). That is, they are generators of
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Ug (813,10r) . Moveover these gemerators satisfy relations similar to the ones in Lemma
4.1.2.

Proof. This proposition is proved in the same way as Proposition 4.1.1 and
Lemma4.1.2. O

We have immediately the following lemma.

Lemma 4.2.2. Let U be the subalgebras generated by E,. Fy, ¢* for i=1,0%
and g= @1 U2 the subalgebras genevated by E,, Fi, ¢" for i=0, 1 and g+
U the subalgebras gemerated by E,, Fi, ¢*" for i =0% —1 and ¢*'‘4*%? and U
the subalgebras generated by E, F.. ¢** for i=0,—1 and ¢*“*%. Then UY (i =
1.2,3,4) are isomorphic to U, (3h).

Those four algebras are schematically visualized by Fig. 1.

U[f}

— *
1 U({;) 0

Fig. 1.

Let U, (8l) () 1= —1,0,1.0%¥) be the subalgebra of U, (8ly,,) generated by E,, F,,

g™, All U, (8lp0) (€ {—1.01,0%}) are isomorphic to U, (8l;). The upper left
circle in Fig. 1 means U, (8;) «, the upper right one means U, (8l) ), the lower
left one means U, (8lz) 1 and the lower right one means U, (8ly) o%. The diagram

ot 0’ (i, j€{—1,0.1,0%)

means the algebra generated by U, (8ly) oy and U, (8ly) () is isomorphic to Uy (8L).
For example O ®<= O ! means the algebra generated by U,(8l2) @ and

U, (81y) p which we call U? is isomorphic to U;(8L). The meaning of the
diagram

is as follows: In the algebra generated by Uq(8lz) ) and U, (8l2) ), the following
relations hold

(4.2.1) q"E,q"=¢’E;,  ¢"Eiq""=¢’E,
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(4.2.2) "Fa™=q"F;,  ¢"Fuq"=q"F.

(4.2.3) E3F,—q 2[3]E*F,Ei+q*[3)EF;E}—q °F,E3=0,
E3Fi—q¢*[3)E?FE;+¢*[3) E,F E?—q°F E3=0,

(4.2.4) F3E;—q 2 [31F2E;F+q*[3]FiE,F2—q °E;F3=0,

FEi—q*[31F?E.F,+¢*[3]F, EFi—¢°EFi=0,

(4.2.5) E.E,—¢°E,E,=0,
(4.2.6) F\F,—g?F,F,=0.
Appendix A.

A.1l. Proof of Proposition 3.2.2 and 3.4.2. For the proof we rewrite the
defining relation U, (g,,) generating function level.

(A.1.1) q%c are central,
(A.1.2) K K7 =K; Kf=1,
(A.1.3) K# (2) KF (w) =K7 w) K7 (2)
(A.1.4)

0—<hua’,> (q_clf—m"l%)l(,_ (2) K} (w) = 0-(;;,,0(,) (qcﬁ_m"i‘)Kf (w)K7 (2)

(A.1.5) ¢ K (z)g =K} (g7'2),
(A.1.6) l¢* K7 (2)] =0,
(A.1.7) q“E,(2)g"=E;(¢7%2).

q“F,(2)g=F;(q7"2).
(A.1.8) q“E, (z) g*=¢""E, (z),

qszj (Z) q—dzzq—dyoF] (Z) ,
(A.1.9) K7 () B, (0) =60 (4732 )E, ) K7 (2
K7 (2)E;(w) = 0o (qﬁﬁf’”"i)E, W) K7 (2)

K () Fy ) =600 (352 )F ) K (&)
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K7 (&)F; ) =01, (adK™ 2 )F, W) K: (@)

(A.1.10)
[Ei(z), F,(w)]=46,, q—lq‘l {5<qc%>KT (q%‘w) ‘-5(q‘§)KT (q%‘z)}

(A.1.11)  (k™oz—qm%w)E, (2) E; (w) = (¢* k™z—w)E, (W) E, (2)
(kMiz—q~ M) F, (2) F, lw) = (g~ %% g"iz—w) F, (w) F, (2)

(A.1.12)

Z Z ( 1) [ ] E, (Zml)) - E, (Za(r))Ej (U)>Et (Za(r+n) - By (er(m)> =0

0ESy, r=0

> Z(_l)r[ ] ]Fi (zon)  Fy (zoon) Fy W) Fi(zoiren) = Fi(2o0m)
q

0eGy, =0
where 1#4 and m=1—<{h,.a,.
In these formulas we denote O, (z) = _zq___ for mE€Z, §(2) =2pey 2~

If Proposition 3.4.2 holds, then, from Lemma 3.2.1 and 3.4.1, we have

Proposition 3.2.2 by putting &=, a,—a; . k1 and 29—z Therefore it is
enough to show Proposition 3.4.2.

The relations (A.1.1), (A.1.2) and (A.1.3) are trivial. (A.1.4) is just
the commutation relations of Heisenberg algehra S,. Therefore, by the definition
of V(p)a it is clear that (A.1.4) holds. The relations (A.1.5), (A.1.6)
immediately follows from the definition of d; and do.

Let us show (A.1.7) and (A.1.8). Take v @ efe?» € V(p), where B =

2 ok €Q. Then we have
qdleia,ziH,,o+lq~d1 (’U®€B€AP>

—_-q:F(d,lﬁ-r/lp)—lZ:t(h,.B+Ap)+1I€EZA ol miad my U®€ialeﬂeAP

1
- /-1 )i(h,-B+Ap)+1,c72k:o<h;"Hm)m,kv®

\q 'z 8oy

ot %,
ot (q z) tH,o+1 (U®QB€A,) )

Therefore we have

quEJ (Z) q—dl =qd1 exp (Z %k;]“q”sz > exp (_ Z i[lﬁq_%z_k)ea’ZH"°+lq—d1

k=1 k>1
- —lj__k - Ej’_k' ——l-k =1\ -k, (,—1,)Hp+l
P (k>1 L] T : Hlye) > exp ( k§1 (k] 477" (q7'%) >e (¢g7'2)
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=Ej (q" Z).

Similarly we have ¢“F, (z)g~=F,(g"'2).
It is clear that

(A . 1 . 13) qdzeia;ziH,'o+1q—d2 (’U®€BQA’) =qi5;oei“;ziH;,o+1 (,U®eﬂe/1,,) )

From (A.1,13) and the fact that 4?2 commutes with Hj,, we have (A.1.8).
We shall show (A.1.9). We denote

Ef (z) =exp< = %ﬁ%‘%"z"),

k=1
Ei (2) =exp< ’El i[l—‘-']iq—sz—k).
P =exp(~ T fitaiea)
F7(z) =exp <k21 %ﬁq%"w"‘)

Let us proof
KT (Z) E, (’UJ) = (9-(;,"%) ((]—%Ifm'”‘g'>Ej (w) K:' (Z) R
We have

[(q—q'l)ZHf.kz ".121 [l] q‘f’w’] %(q—q‘l)ﬁ]—[HW H, -z k2!

k=1

N zk: g—¢™) 1k <h/;aj>]"f g3t (%)k
% g ((h,.a,}—%)_qk(—<h,,a,>—%)) K—km,,(_“_{)k

r4

Prl}—‘

-1 w
1— q —<hy,a,) ZIC m,,;

=log
1 q<h: a1>"zﬁ-"muﬂ
F4

and
[(q_q_l) 2 Houye ™ — 2 —rl’%q“flw"] 0.
k=1 I1>1 b

We recall Campbell-Hausdorff formula: let A and B be noncommutative

operators and C=[A4, B]. If [C, A]=[C. B] =0 then we have ¢%¢® =¢ %"
By Campbell-Hausdor{f formula we get
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exp((g—¢™) 20 Hyuz ") Ef w) Ef (w)

k=1
1— q-(h,,a,>—%lc—m,,%'_
= ; EF w)E; w)exp((g—¢™") 2 Houz™).
1 —q<h"a’)—7x—m"*‘ k=1
2

On the other hand, by Lemma 3.4.1 we have
qaa,ea,ij,o=q<h,‘al>ea,ij,0qaa,‘
Thus we get
Ki (2) E; (w)

=exp ((g—¢7Y) 2 H,z ") Ef w)E; (w) g%t

k=1

1 ,_._q— Shuas? —%E-m‘jﬂ

= i, E; (w) K{ (2)

1 _q—— $hypay -——é—,c—m,,;

=0 (hay (q“%ﬁm'”%>E; w) KT (2).

The other formulas in (A.1.9) can be checked by similar arguments.
Let us show (A.1.10). We have

log— 1 : hoap =2 (i=j),

(1=¢) (1—=¢™%)

= log(1—gr™"s2) (1=¢7 k™), (@) ==2,

log (1 -x‘m"’l@ . Shiay =—1,
“ O, <h,’,a’;> = O
For example we will show in the case of <h,@;7 = —2. By Campbell-

Hausdorff formula we get

Ef (2) Ff (w) =Ff (w)E¥ (2)
and
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E; @) Ff w) = (1 qlc"""—“) (1 q"ll'r"""—)F+ W) E7 (2

On the other hand, by Lemma 3.4.1, we have
ZHto —ay-_:z K™ip —a;ZH:o
Therefore we get
Ei(z)Fj(w) =Ey (2) E7 (z) e%2"* ' F} (w) F; (w) e~ %w™Ho+1
= (zx2™—quk~2™) (zk2"—q w7 Ef (2) F} () E7 (2) F7 (w)
X e“’e""’zH""“w'H"""'{
By a similar argument we have
F,(w)E,(z) = (wic'%’""—qzif%m”) (wlc'%’””—q'lzxém”) Ef (2)F} w)E7 (2)F; (w)
X eale_arZH|.0+1w‘Hl.0+1_
Therefore we get
[Et (Z) ) F; (w)] =0.

Similarly one can check the other formulas.
We will show (A.1.11). We have

- K

[ [k] q‘f"z k2 H[kj 2Fy }

k>1 k>1

=> k[k] kol m,,(Z)k

k=1
_Wh\(4_ 2 W —
log<1 z)(l q z)’ v
1 —
log , o) =—
<1 —_ E—muf> (1 q—zﬁ—muﬂ)_>
= V4 z
1 —
log —————, gy =—
1 —q—llc_”l”i
z
0, o =0.
For example let us show in the case of <h,.a;) = —2.If <h,.a;> # —2 one

can show the formula by a similar argument. By Lemma 3.4.1 we get

(2™ — gy E, (2) E, (w)
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— (zlc’”"—'q'zw) ET (Z) E,— (Z) eatZHhO"}'lEjT (w) E]— (w) eaij;.oH
My =2, .
= v —E? (&) Ef ) ET (2) Ef (w)
z /c"‘w(l /c"""—> (1 q‘zic‘”‘"—>
z z
Xea;ea;ZHzo-t-le;o*l
— 1_ E+ (Z) E+ E_, \Z) E, (w)ea‘ea’ZH'UHU‘H’ o+1
(Z—IC iy )
On the other hand we have
(gt gmiuz—w) E; (w)E, (2)
=2y,
= 4.8 27U —Ef W)Er (2)E; () E7 (2)
w /f mu(l ,Cmu—> (1 q_zﬁ:mu—)
w w
X ea,ea,u,Hz.o+le.,o+1
— _._,J-:___,__._E;i- (Z) E;i— (w> E;— (2) E] (W/ pagemth o+1wa 0+1
(Z_IC muw)
Thus we have (ze™—q* W) E, (2) E,w) = (¢** k™ z—w)E, (w) Ei(z).
The formula (zk™ —q~ W) F, (2) F, (w) = (g= " gmz—w)F, (w) F, (2) is
proved similarly.
Let us prove (A.1.12). Assume that <h,a,> = — 2. This is the most

complicated case. The other cases can be proved similarly.
We have following formulas:

E, (Zl) E, (ZZ)EI (z3) E, (w)

_ (z;1—25) (21—q%3) (21—23) (21— q7%23) (22— 23) (2a—q %23)

(K272, — £ ™2"w) (K272 — g2k 2™ w) (KT™2,— £~ 7"w)

% 1
1 1 1 1
(ICZ muz __q :‘C—Em” ) (ICZ”“"ZS K*Emuu,) (/Cfm"Zg _q—Zﬁ:*Emu.w)

X Ef (z1) Ef (22) EY (23) Ef (w)E7 (21) E7 (22) E7 (23) E7 (w)

XeScnga; zH-o+l ZH.0+1 Hio+l  Hj, u+1v

w
E, (21) E; (Zz) E, (’W)Ez (23)

_ (a1—2) (a1—q %) (21— 2s) (21—¢7%25) (22— 25) (25—g %25)

1 1 1
(If%m"21 K 2mu ) (Iiffm”21 _q—ZK—%muw) (Ii‘im"Zz— K —‘muw)
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1

X
1 1 1 1 1 1
(K—Z muzz_q—zlf——mz uw) (/C_Em',w_lfzmuzg) (K——?Z nuw___q—zh.—mz dZs)

X E} (21) E} (22) E} (23) E} (W) ET (21) E7 (22) E7 (23) E; (w)

X es"“e“’z{’""" 1212‘1|.o+lz§i;,o+le;,o+1,

E; (21) E, (w) E, (Zz) E, (23)
— (21— 22) (&1—q %3) (21—23) (21—q %23) (22— 23) (22—q %)
(K%m"zl—h‘—%m"w) (E%‘muzl—q—zx——%ﬂluw) (K—%muw__lc'%muzz)
1

~1 _g L -1 1 -1 g 1
(k™2™ —q 2k2™vz,) (72w — K2™iz3) (K™ 2"vw—q 2K2™z;)

X

XEY (21) Ef (22) EY (23) E} (w) E7 (21) E7 (22) ET (23) ET (w)

X e3a|eayz{11,o+lz§11,0+lzg,,o+lwH;,(H-I’

E; (‘W)Et (Zl)Ex <32>E1 (23)

— (21— 22) (21— q %) (21— 23) (21—q %23) (22— 23) (22—q %23
(e =smo— g¥msz,) (5™ 8mw =g RE™021) (™30 — K2"™zr)

1

(k=50 — q'zlc%m"zz) (k™2™ — K3™oz3) (™20 — q D

X

X Ef (21) Ef (25) Ef (23) Ef (w)E7 (21) E7 (22) E7 (23) E7 (w)

X eaa‘ea, z{’"”“zﬁ“"’*lz§1"°+1w‘q"°+"

Therefore it is enough to show that

(A.1.14)

IIi<; Gowr —2000) (Zowy —q %200)

1 1
o3 H =1 (’ffm'jzo(t) - ff—-fm"'w)

X

1
Lm =2, —5m (im -2, —1m Lo ~2,.-1im
(K225 —q 2k 72™0) (K2™20 —q 26 2™ W) (K2™200) —q 2K~ 2")

¢*+14472

1 2 -1 1 -2- -3 23
(k21250 —q 267 2"w) (K2"200 —q 2k 7 2"w) (K72™w —q k2™ 20(3))

4 q2+1+q;2

T
1 1 1 Y 1 Y
(k2™240)—q 2k~ 2™w) (k™2™ —q k2™ 200)) (K72™w—q 2™ 2,03




=0.

+
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1
%mu

1 _ _1 9 1 _1 o 1
(k™2™ —q k2™ 200) (K72 —q K2 2000) (K72™ 0 —q 22 20(3)

This identity is proved by a direct calculation.
Thus the proposition is proved.
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