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On the Hydrodynamic Limit of the Enskog Equation*

By

Mirosiaw LACHOWICZ1"

Abstract

The Enskog equation in the hydrodynamie limit is investigated. If the Knudsen number e and

the scale of diameter a of the hard sphere particles are of the same order, the resulting system of

hydrodynamie equations (the Enskog-Euler system) is different from that for the Boltzmann

equation. The existence and uniqueness theorem, in this case for the Enskog equation, is proven on

the time interval independent of the small parameters. As £ 1 0, the solution of the Enskog equation

tends to the Maxwellian whose fluid-dynamic parameters solve the Enskog-Euler system. As a
by-product — the existence theorem for the Enskog-Euler system is obtained.
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§ 1. Introduction

In the Boltzmann equation, which is a model of kinetic theory, the overall
dimensions of the particles are neglected (cf. [8] and [5]). In the case of dense
gases, however, one should replace this mass-point model by a model which can
take into account the overall dimensions of particles.

One such attempt leads to the Enskog equation — a quite successful model
of kinetic theory of moderately dense gases (cf. [8,4] and [1,2,7]), in which
each particle is assumed to be a hard sphere with a nonzero diameter.

The Enskog equation, in the dimensionless form (see [10]), reads

D/=j£.ffl (/;/,/), (1.1)

where D is the free-streaming operator
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t, x and v are, respectively, the time, the position, and the velocity variables ;
f=f(t, x, v) is the one-particle distribution function ; e is the Knudsen number ;
a is the scale of diameter of the hard sphere ; EB,a is the Enskog collision
operator

£*,«(/; /,/) (t, x, v) = f I (Ve*(f\ ^ x, x+an)/(f, x+ami, w') /(t, x. v')
tt/ C/

I.3 s2

— ̂  «,«(/; *, x, x— aim) /(f, x— an, w)/(f, x, v)) (m- (w— v) V0)dmdw.

The standard notation is used — a particle with the center at x and the velocity
v collides with a particle with the center at iL—an and the velocity w ;

w' and w' are functions of v and w as well as on n €= g according to

v'=v+ (m° (w—v))m,
wf=w— (m° (w— V))HL

The collision kernel corresponds to the hard sphere model ; a\ V a2 means the
maximum of the two numbers a\ and a2 (whereas a\ Aa2 = min(ai, #2)).

^£,G represents the pair correlation function. The different ways in which
one models the pair correlation function give rise to the different kinetic Enskog
equations found in the literature (see [4] ) .

The present paper considers only the simplified case of ^/s,a = 1, in the
literature referred to as the Boltzmann-Enskog equation. However, the analysis
is also valid for a general case, under a suitable assumption about the behaviour
of the factor ®/£,a (cf . [10] ) .

The mathematical theory for the Enskog equation can be found in [1, 2, 4,
7] (see also references therein) .

It is very well-known (cf. [8, 10]) that the hydrodynamic limit of the
Enskog equation (1.1) in the regime a~e i 0 should be different from that in
the regime a <C£ 1 0 (e.g. for a~~£q with #>1). In the latter case the Enskog
equation results in the classical system for compressible fluid (see [10]),
exactly like the Boltzmann equation, whereas in the former, "Enskog terms"
appear in the resulting hydrodynamic equations.

The present paper is a first step towards a rigorous description of the
hydrodynamic limit when the Enskog effects are not negligible.

Introduce a new dimensionless parameter 5>0 such that

a = bs. (1.2)

In this paper the parameter b is assumed to be fixed in the (hydrodynamic)
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limit £ I 0, but not greater than some critical constant (independent of e) — cf.
(3.26a). Such a smallness assumption admits of a clear physical interpretation.

The Paper is organized in the following way. In § 2 the formal expansion
procedure is described, and the (Enskog-Euler) system of hydrodynamic
equations is defined. § 3 presents mathematical preliminaries and establishes the
existence and uniqueness of classical solutions (for initial data close to a global
equlibrium) for the Enskog equation, on the time interval [0, to] , where to does
not depend on e (i.e. the time interval has a "macroscopic" character) . In § 4 the
main convergence result is stated and proved — the solutions of the Enskog
equation tend to the Maxwellian whose fluid-dynamic parameters solve the
Enskog-Euler system of hydrodynamic equations. As a by-product, the
existence (however without uniqueness) of a classical solution for the Enskog-
Euler system is obtained. The present result is the first (according to the
author's knowledge) existence result for it (cf. Remark 4.1).

Throughout the paper, the small letter c is reserved for a positive constant,
independent of all the relevant variables and parameters. Appearing of the
letter c, with or without subscripts, in a formula, is understood that the formula
is valid for some constant c>0.

§ 2B Formal Expansion Procedure

Consider the following singularly perturbed problem for the Boltzmann-
Enskog equation

0 / = / e (/,/), (2. la)

where £>0 is a small parameter ;

h (/i, /2) =\(n (/i, /2) +Jt (/2, /i) -/i* (/2) -/2u« (/i) ),

n (/i, /2) U, x, v) =///i (*< x+fren, w')/2 (*, x, v ) (n • (w-v) VO) dndw,
m3 s2

v£(f) (t, x, v) = f f f ( t , x-6£n, w) (n - (w-v) V0)dndw
E3 §z

and the scale of the diameter a is related to the parameter b by (1.2).
The parameter b is assumed to be a fixed positive number.
According to the theory of perturbed problems, the behaviour of the

solutions of Problem (2.1), in the hydrodynamic limit e I 0, can be studied by
comparing a solution of (2.1) with a solution of the corresponding degenerate
problem, which is obtained by formally putting in (2. la) the small parameter £
equal to 0. This leads to
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0, (2.2)

where /O==/£|E=O is the classical Boitzmann collision operator.
A unique class of solutions of Eq. (2 . 2) is that of Maxwellians

M[p, M, T] (t, x. v) =p (t, x) (27TT (j, x) ) ~3'2 exp -

where p (local density) , e (macroscopic velocity vector) , and T (macroscopic
temperature) are the fluid-dynamic parameters of the Maxwellian M = M[p, ui,
T].

One can expect that in the limit e I 0 the solution of Eq. (2 .la) should tend
to the Maxwellian M[p, u, T], whose fluid-dynamic parameters solve a system
of equations of continuum theory.

Assume that p, m, T are known, smooth, and that p together with T are
positive. For fixed t and x consider the space L^ {M} equipped with the norm

If l L2{M}||=||/M-1/2; L2(M3)|, and with the inner product (/i,/2)i2{M}= (/lAT1,
/2)L2(ffi3), where ||° ; L2 (IS

3) || and ( ° , ° ) LZ (i
3) are the norm and the inner product,

respectively, in the space L2 (ffi3) .
Define the "hydrodynamic" and "nonhydrodynamic" subsets in L2(M}

^ = lin{/lf0i : / = 0 ..... 4},

and

where 00,..., 04 are the collision invariants

(P0=l,<pl (v) =1;, (/ = 1, 2, 3), 04 (v) = M2, (2.3)

and f / is the /-th component of the vector v.
Define in L2(M} the orthogonal projection operators 9 and ^>J- = 1 — ̂  onto

J\f and 3?, respectively.
In the Hilbert procedure, although Problem (2.1) is singularly perturbed in

the limit £ I 0, the solution is searched in the regular form

jfj\ (2.4)
j=Q

where/o")=#0')-h&°') for />l and

This leads to the following set of equations

7o(/<0),/(0))=0; (2.5)

2/0(/
<0), ^(1)) =^1D/(0)-6^/0

1) (/0),/(0)) ; (2.6)
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tfv.J™) =0; (2.7)

where

/o" (/i, f,) =4(/oI)+ (A. /*) +/o"+ (/,, A) -/X" (/2) -rf (/O ),

/o')+ (/i, A) (t, x, v) =rn ' '/i <t, x, W)/2a, x, V) (n • (w-v) V0)dndw,

yin(/) (t. x v) = y r - r a ' / (fi x< w) (n ' (w~v) v°)dndw-
ffi3 §2

Equation (2.5) yields

/O)-M[A u, r], (2.8)
for some parameters p, u, T.

Hence, System (2 . 7) assumes the form (cf. [8] )

w
3

^r~W/)=0; (2.9a)

=0, / = !, 2, 3 ; (2.9b)

System (2.9) is referred to, in the present paper, as the Enskog-Euier
system. Note that if one set b — 0 it becomes the classical system of Euler
equations for compressible fluid.

The justification of the Hilbert procedure for the Enskog equation, in the
case of b—const as £ i 0, still remains an open problem. In fact, the convergence
rate which can be found by the methods of the present paper (as well as those
of [14] for the Boltzmann equation) is not sufficiently strong for such a
justification. On the other hand, the justification was proved for b = 0(s9} (<?>^o,
for some #o>l)-see [10].

Remark 2.1. Let b : S2xM3->Mi be continuous function such that

b (n, w—v) = b (n, v—w) = b (n, w'—v') = b (n, v'—w') = b (—n, w—v)
2, Vv, w^is3. (2.10)
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Moreover, let b (m, w~w) =% (n° (w~ v) >0) b (m, w—v) satisfy Grad's cutoff
hard potential assumption ([9] — (55)). Consider Eq. (2.1) with the general
collision kernel b (m, w — v) instead of the hard sphere kernel (n ° (w — v) V
0) ) . Under Assumption (1,2), such an equation results in the following system

=0- >=1' 2- 3 ;

(2. lie)
where

— v))exp(— kl2 — |w|2)dimdwd¥.n ,
27T

Remark 2.2. The Enskog equation with the symmetrized ^kernel
|m ° (w~~v) | instead of inr (w~ v) VO (or more generaly with the one b as in
(2.10)), results in a different type of hydrodynamic equations. In fact, for b~c

(i.e. a~ce) it results in the classical Euler system ([10]), whereas for b — j=

(i.e. a — c </e) — in the Navier-Stokes-type system at the 0-th order
approximation (see [11]). The viscosity and heat conduction terms, in the latter
system, are not 0 (1) as £ I 0.

§ 3o Existence of Sotatioes

The existence and uniqueness of solutions as well as the convergence for
£ 1 0 is proved by applying the concept of Ukai and Asano [14] .

Throughout the paper a) is a global Maxwellian, i.e.

for some constants
The initial datum is assumed in the form

F=o)+a?G. (3. la)

where G is independent of £, and the solution to (2.1) is looked for in the form
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In terms of 9 Problem (2.1) reads

%=-*-J£+&+^Q*3+^r.{g,g), (3.2a)

0Uo=G, (3.2b)

where

Lg=2aT*Jo(a), a)*g},

_! , 1
Qeg=2a) 2J£(a), a)2g)-Lg,

rB(ffi,gj=Q)~*Je(o)*gi, a>*02),

(note that/e(a>, <y)=0) .
Throughout the paper, for simplicity of notation, we continue not to

indicate the £-dependenee of the functions, where no confusion can arise.
Consider the following integral version of Problem (3.2)

g (0 =«*G+ -"'*(Qrf (t.) +r*(g, g) (h) )dt1, (3.3)
c % / 0

where /B' denotes the semigroup (see [6] and [13, 14]) generated by the linear
operator

In the present paper, Problem (3.3) is considered for £> 0, x £ ffi3 and
v^M3. However, the proofs are applicable to the case f>0 , x^T3 and v^Ig3,
where T3 is the three-dimensional torus (this case corresponds to the
rectangular domain with the specular reflection boundary condition) , with the
modifications given in [15] and [13] .

The operator L can be split into "regular" and "singular" parts ([9])

Lg=Kg-vg, (3.4a)

where

y(y) =v£(o)) (v)|e=0=J J <w(w) (n- (w-v) V0)dndw
E3 Sz

is such that

). (3.4b)
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The Banach spaces used in [14] (see also [13]) are needed. Let EBa be the
space equipped with the norm

where
Let g=3Fg denote the Fourier transform of a function 0 ̂  j4' (IR3 x ffi3) with

respect to the position variable x,

, v) =9g (k, v) =7^^ fe~*'~*'*

Let XJft! denote the space equipped with the norm

£? = sup

where a, A r^Mi-.
The space X^r is the closed subspace of Xjfi! such that

^ & ^ - 1 ( % ( k - > e ) ^ ( k , y ) ) f c ) ^ 0 , as

where x (|k| + kl>?) is the characteristic function of the domain

Then let

^;?(D={g=g(t) • *€=$(/; X^}) ; ft(ff x, v) =5F-J

be the space equipped with the norm

for 17 >0 and an interval /dffi1, where C|(/; X) denotes the space of X~valued
continuous bounded functions on /.

Finally the Banach space of £-dependent functions is introduced

with the norm

For simplicity of notation, the parameters a, /?, 7, 77, to, are assumed to be
properly chosen (cf. (3.25-26)) and fixed, and the spaces as well as the norms
are denoted
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and

Define

B.(k)0(k, Y) =&B£g(k, v) s(-ik-v+~L) 0 (k, v).

For each fixed £>0 the semigroup ^Be(k) is such that ([6, 13, 14])

t, k), (3.5)
/•=o

where x (e|k|^/c) is the characteristic function of the domain (k^IR3: e|k|</c} ;

K is a positive constant; A* e C°° ([— /c, /r]) (for / = 0,...,4) are such that

SJUy(k) ^0 and have the asymptotic expansion

, |k|-»0, (3.6)

with coefficients A^SM1 and /?)2)>0;

2|k|2P}2)(k), |k|-0, k^O, (3.7)

For each fixed k the operators P/0) (k) are orthogonal projections on L2(ffi3) ;

(3.8)

is the orthogonal projection onto Af(Q} = lin{a)*(pi: 1 = 0,...,4) in L2 (M3), <I>i are

given by (2.3); P(0) is independent <

satisfies (for J = 0, 1, 2 and/ = 0f...f4)

k
given by (2.3); P(0) is independent of TJ-T; For each fixed a, the operator P)

llPJ'W^clkir, Va'>|; (3.9)

The operator Ue can be decomposed

" t ,k). (3.10)
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~ / 1 \ 5 ~
where A£ (k) = — (ik ° w + — V (v) j, and for each fixed a>y the operator UB

satisfies

II I/. (f. k)g\\M<cexp(-c^)Ma-l\ (3.11)

for some cr>0.
Put p<0)J- = l-p«» and note that

p(o)±pjo)=0j p(0)±/>(i)F(o)j.=:0j y = 0,...,4; (3.12)

F(0)L =LP(0) = 0, L =P(0)J-L =LP(0)1. (3 . 13)

The following elementary inequalities are needed throughout the paper (the
proofs are straightforward)

(i) For any x e ffi1 - {0} and d e [0, 1]

(ii) For any x e ffi1 - {0} <wd 5 e [0, 1]

tx

(iii) For any jSi>3 and any /?2

(iv) For§, 7,

exp (- (r-r?f)|k|). Q]

One has

Lemma 3.2 ( [14] ) „ Let o>-| awd G e X.

(i)
(ii) |kB'GL<c||G||x.

Define the operators 2f£ and ^£ by
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and

o

The nonlinear operator F£ can be decomposed as follows

r£(0!, 02) =r0(0if 02) +A£(0i, 02), (3.14)
where

A (0!, g 2) (t, x, v) =-|//(0i (*, x, w')02 (f, x, v') +0i (f, x, v002 (t, x, wO -
E3 §2

9i(t, x, w)g2(t, x, v) —0i (f, x, v)02(f, x, w) jco¥(w) (n- (w— v) V0)dndw

and

Ae (0!, 02) (f, x, v) =-£//( (0i (f. x+feen, wO -^! (f, x, wO J02(t, x, v7) +
m3 s2

0i (f, x, v') (02 fc x+6£n, w7) -02 (f, x, w') j -

(0i (f, x-^sn, w) -0i (t, x, w) J02 (t, x, v) -

Qi(t, x, v)(0 2 ( f , Ji—bem, w) — 02(t, x, w) }a)*(w) (n- (w— v) V0)dndw.

The operator FO satisfies ( [5, 9] )

P(0)r0(0i,02)=0, (3.15)

for 0i and 02 such that the integrals make sense.

Ukai and Asano proved

Lemma 303 ( [14] ) „ Let a>~, ^>3 and git g2^%. Then,
LJ

(i)

_ w^(l+—jll^lltell02 l lz .1

On the other hand, the operator AE lacks the property like (3.15), but is
such that
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0 Let a>— j8>4 and gif 92^Z. Then
£j

(i)

(ii)
II £

Proof. First we prove (ii) . One has

k
(exp (iben • ki) — 1) \?i (t, klf\

Hence, using Grad's estimates ([9]) and Lemma 3.l(i),

?2) (t, k,-)

for a>l, d^ [0, 1], *e [0, fa],
Then, by Lemma 3.1(iii),

Ii (t, k, (3.17)

provided that $>3 + d.
One can now proceed analogously to the proof of Lemma 3.3 (cf.

Proposition 2.6 in [14]).
Combining (3.7), (3,9), (3.4b), (3.16) (with 5=1) and Lemma 3.1 (iv)

(with 5=0) yields

(3.18)

Similarly, by (3.11), (3.4b), (3.16) (with 5 = 0) and Lemma 3.1 (iv) (with
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g2) (t, k, -)dti < ^nwi^iu _ (3>ig)
11 (l + |k|)* exp((7—qt)|k|)

Finally, by Lemma 3.1(iv) (with £=—),

) , x II ^ C\\ 01 \\m\ QonW / \I4- \r i J J- I ^ I' ^ •*-l»^"il " ^li^" /O OAi
\ii K " / u.ti\\ -^ \o . 60)11 (H-|k|)^exp((r-)?t)|k|)

Hence (ii) is obtained.
We will have established the lemma if we prove (i) . But this follows in

much the same way as Lemma 3.3 (i). US

A similar consideration can be applied in order to prove

3*5. Let a>-|, j8>0 and g &Z. Then
Lt

(i) -
£

(ii) l^^rfL <cb(l+-)\\
II £ IlZi \ fl ffl f

Proof. One has

g (t, k, v) =//( (exp (iben - k) - 1) ,̂ k, wO <tf (Y') -
E3§2

k) — 1)̂ , k, w)o>2(y) o>2(w) (no (w-v) V0)dedw.

The same estimation (with respect to the v-variable), as that for the operator K
defined in (3.4a) — cf. [9], works for the linear operator Qs. Therefore, by
Lemma 3 . 1 (i) (with 5=1), one obtains

L (3.21)

Thus, by (3.5) and Lemma 3.1 (iv) (with $ = 0), (ii) follows. Then (i) is
standard. SH

By (3.14) and (3.15), Problem (3.3) can be rewritten in the form

g (t) =e'B'G+-%sQeg(t) +-^F0(g, g) (t) +-%sAs(g, g) (t). (3.22)
S B £

For fixed G, let 91. (0) (f) be defined by the right-hand side of Eq. (3.22).
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Combining Lemmas 3.1-3.5 yields

ll^e(0)llz^»Ci||G||z;+C2&(lH—)IMIz+c3(l+H—jIMIl (3.23)

as well as

ll%(0i)-^£(02)lk<^^ (3.24)

where the constants Ci, c2 and c3 are independent of b, J] and to.
Let now Of, /? and 7 be such that

(3.25)
LI

moreover let b, r] and £o be fixed such that

—, (3.26a)
C2

>0 (3.26b)
~c2

and

fo=j:. (3.26c)
i)

Assuming that

l - c 2 6 l + l 2

(3.27)
4c,c3

one has

(3.28)

and

B9l.((7i) -WML£#ifoi-9JL V9i,92^%0, (3.29)

where

with
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and

2c3(l+fc+-)V r?/

Hence SR£ is a contracting operator on ZQ and therefore it has a unique fixed
point inZQ. This is the unique solution of the integral equation (3.3). Actually
this solution is a unique classical solution of Problem (3.2) as the arguments of
Ukai and Asano [14] show. Moreover, it follows, by these arguments, that the

solution is continuously differentiable in ^0-1$ ([0, to]). Summarizing, one has

Theorem 3.1. Let a, j8, 7, 6, 17 and t0 te such that (3.25-26) hold. If the

initial datum G€EX0?r satisfies the smallness condition (3.27), £fow there exists a
unique classical solution g of Problem (3.2) on the time interval [0, t0] such that

g<E%fJ;l llflteft^ (3.30)

- * e E C ° Q O , 1]; YfrtMtO, t j)) . (3.31)

§ 4. Hydrodynamic limit

Still following [14] , consider the subspace W = Wf,f;/0 of the space

=Zj;?;i defined as

O as e I 0}

(the numbers a, /?, 7, 5, r] and to are chosen such that (3.25-26) are satisfied).
The following two lemmas were proved by Ukai and Asano

Lemma 4.1 ( [14] ) . Let G eS. Then eiB*G e W uritfi ^ /twit E (t) G,
(t) is given by

te]0, to].
y=o

Lemma 4.2 ([14]). Let g eW wiffe f^ /iwtt f?0. Tten 5l£r0 (^, g) e W

t/ig Ziwif 2lo/o(^o, fl^o),
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4 *

for fe] O.foL El

It remains to prove

4o3o Let g^Wwth the limit go. Then ~^£A£ (g, g) ^W with the

limit SoA) (#o, ̂ o) , where

and

3 m3 s2

)1(w) (n ° (w— v)

for

Proo/. Repeating the argument of the proof of Lemma 4.1 (cf. [14] —
Proposition 3.1) and applying (3.17) with 5=1, as well as Lemma 3.1 (iv)
with f =0 yield

' 4

Hli. (4a)

By (3.10), (3.11), (3.16) with 5 = 1 and Lemma 3.l(iv), one has

i, k)^yi£(^,^)d^i|k(ro,0])<^<klll (4.2)

Let 5€=]0, t0[ be fixed. Proceeding analogously to the proof of Lemma 304,
and applying the argument of Lemma 3.2 in [14] give

(4.3)
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for each 5ie]0, <5[.
Since g^W, both terms in the right-hand side of (4.3) may be made arbitrarily
small by choosing di and £ to be small enough. Therefore, (4.1), (4.2) and
(4.3) yield

as eiO, (4.4)

for each de]0, hi

Similarly, applying Lemma 3.1 (ii) with 5=1 (for|k|<-rj and with 5 = 0

(for |k|>— r), one obtains
N 4'

0 as e i O . (4.5)

for each d e] 0,£0 L
Finally, as in the proof of Lemma 4.2 (cf. [14]), one has

as e iO, (4.6)

for each d e] 0, *0 L
Combining (4.4), (4.5), (4.6) completes the proof. H

In the same manner one can prove

4.4. Let 9 ̂ W with the limit 9Q. Then —%&£ e W with the limit

, where

tK v) =
r r i i -i

i^J J n-kCo)2^)^^, k, V) +o>2(v)£)(/, k, w))o>2(w) (n- (w-v) V0)dndw,

f .

Combining these lemmas, one concludes, that !J?g maps W into itself and
therefore 3le is a contraction in W fl S0 (provided Conditions (3.25-27) are
satisfied). Hence the solution g of Theorem 3.1 is in W and #— >#0 as £ i 0, in
the space Y ( [5, t0] ) , for any <5e] 0, t0] . The limit gQ satisfies

gQ (t) =E (i) G +»0Qo ̂ o (t) +ioT0 (g0,gQ) (t)+80A (0o.0o) (0, (4.7)

on ] 0, ^0] • One can apply the contracting mapping principle in ¥ ( [0, £0] ) to
(4.7) in order to see that (4.7) is satisfied on [0, tQ] and g Q ^ H ( [ Q , tQ]).

From (3.12) one has
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P(ou£ toG=P(ouS0Qo0oto =P(ouSoIo(0o, flfo) (0 =0 (4.8)

and from (3.12), (3.15) it follows that

P(0)±foF0(0o, 0o) = -P(0)±L-T0(0o, g 0 ) . (4.9)

Hence, the limit gQ satisfies

p(ou00=-p(0)1L-^Po(0o,0o), ' (4.10)
and by (3.13)

0o)=0. (4.11)

Therefore /o — (t)+a)* gQ satisfies Eq. (2.2) and thus is a Maxwellian

fo=M[p, li, T], (4.12)

for some fluid-dynamic parameters p, 11, T.
On the other hand, by (4,7), one has

P(0)0o(0)=P(0)G. (4.13)

The solution /of Problem (2.1), given by (3.1b), satisfies

(^Df}L2(^=~(^J£(fJ)-h(fj})L^}, ;=0,..,4. (4.14)

where the notation of Section 2 has been used.
Passing to the limit s i 0, one obtains

(0,, /o W ) i2(ffio ~ (0/, F) Ll(

t

f (~(to> v ' ̂ /0 (^l} J^

and hence concludes that the parameters p, u, T of /o are a classical solution of
the initial- value problem for the Enskog-Euler system (2.9).

Summarizing, one has

Theorem 4.1. Let the hypotheses of Theorem 3.1 be satisfied. Then

(i) g (t)-*0o(0, as £ i 0, strong in ¥f;?([5, fj) for any

(ii) /0(0 =O)+a)%o (t) is a Maxwellian (4.12) such that (p, ua, T) is a classical
solution of the Enskog-Euler system (2 . 9) with the initial datum

pUo= (0o, F)Lz(m3), (4.16a)

w,|,-o= (0;. ̂ i^OE3). / = 1' 2' 3' (4.16b)
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(4.16c)

Remark 4.1. Theorem 4.1 delivers an existence result for the
Enskog-Euler system (2.9). For the Euler system (i.e. for 5 = 0), which is a
symmetric hyperbolic system provided that p> 0, the (local) existence and
uniqueness theorem is available for the Cauchy problem with analytical initial
data (p, u, T) \t,o such that

pU>0. (4.17)

This assumption was essential in the proof by Nishida [12] of the convergence
of solution of the Boltzmann equation to the Maxwellian, which fluid-dynamic
parameters solve the Euler system. This type of assumption was also essential
in the methods reviewed in the lecture [10] . On the other hand, Assumption
(4.17) was removed in methods by Ukai and Asano [14]. Certainly it is
necessary neither in this paper. The existence result, which follows from
Theorem 4.1, seems to be the first for the Enskog-Euler system.

Remark 4.2. Similarly as for the Boltzmann equation ([14]) , when the
initial layer vanish, i.e. for

<?o=P(0)0o, (4.18)

Theorem 4.1 hold with 5=0. On the other hand the structure of the initial layer
can be studied as in paper [3] .

Remark 4.3. The reasoning of this paper applies to both cases given in
Remarks 2.1 and 2.2, when b~c. On the other hand, it breaks down for the
symmetrized equation, when it results in the Navier-Stokes~type system at the
0-th order approximation (i.e. for b~c<fe, c.f. Remark 2.2).
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