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Spherically Symmetric Dirac Operators with

Variable Mass and Potentials Infinite at Infinity

Karl Michael SCHMIDT* and Osanobu YAMADA*

Abstract

We study the spectrum of spherically symmetric Dirac operators m three-dimensional space

with potentials tending to infinity at infinity under weak regularity assumptions. We prove that
purely absolutely continuous spectrum covers the whole real line if the potential dominates the

mass, or scalar potential, term. In the situation where the potential and the scalar potential are

identical, the positive part of the spectrum is purely discrete : we show that the negative half-line is

filled with purely absolutely continuous spectrum m this case.

§ 1. Introduction

In a recent paper [20] the spectral properties of the three-dimensional
Dirac operator

(where p — ~i F, i2— ~~ 1, ln is the n Xn unit matrix, and ao — j8, a\, a^ 0.3 are
Hermitian 4x4 matrices satisfying the anti-commutation relations

ajak+akaj = 25Jk (/, *e{0, 1, 2, 3}))

were studied under the condition that the real-valued coefficient function m
tends to °° (or — °°) as \x — *°°. For constant m, H is the Hamilton operator
describing a relativistic quantum mechanical particle of mass m moving in an
external force field of (real-valued) potential q. As a non-constant function, m
can also take the role of a so-called scalar potential, which has been discussed
in the physical literature as a model of quark confinement (cf. the references in
[20], Thaller [14] p. 305).
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In [20] it is shown that if m dominates q and tends to infinity as \x\ ~ * °°,
then the spectrum of the Dirac operator H is purely discrete ; if m coincides
identically with q, and tends to infinity (in addition to certain regularity
requirements), then the positive part of the spectrum of H is purely discrete.
Furthermore, if m=q is of at most quadratic growth, the negative half-line is
filled with purely continuous spectrum of H. It seems to be a rather more
delicate question to determine the quality (absolute continuity or otherwise) of
the continuous part of the spectrum of H in the case m=q, or even the overall
structure of the spectrum in the situation where q dominates m and tends to
infinity. It is the purpose of the present paper to address this question under
the additional assumption that m and q are spherically symmetric functions ;
then the operator H is spherically symmetric in the sense that rotations in space
lead to unitarily equivalent operators.

By the well-known procedure of separation in spherical polar coordinates
(cf. Weidmann [18] Appendix to Section 1) , H is then unitarily equivalent to
the direct sum of the countable family of one-dimensional Dirac operators on
the half-line r>0,

where p= ~~i~fr> and t7i= (^ j 0 /' ^2 \ i 0 /' °*~ \0 — 1 / are the Pauli

matrices. If m and q are regular, i.e. locally integrable on (0, °°) and integrable
at 0, this Dirac system is in the limit point case at 0 for all &^2S\{0} by virtue
of the singular angular momentum term ka\/r ([11] Lemma 1); moreover, it is
in the limit point case at °° as well (Weidmann [18] Corollary to Theorem
6.8), and consequently the minimal operator associated with the formal
expression hk is essentially self-adjoint by the Weyi theory (Weidmann [18]
Theorem 5.8). We denote the unique self-adjoint realization again by hk\ H :
~ © f e e z \ { o } fok is a self-adjoint realization of the three-dimensional Dirac
operator.

The study of the spectrum of H can then essentially be reduced to that of
the individual one-dimensional operators hk. The spectral properties of half-line
Dirac operators with potentials which do not approach a finite limit at infinity,
have been studied previously in the literature in different special situations. For
example, Hinton and Shaw [8] , extending the work of Roos and Sangren [9] ,
give conditions for a Dirac system with dominant m to have purely discrete
spectrum. On the other hand, Evans and Harris [4] derive lower bounds on the
absolute value of eigenvalues in a situation with dominant q. In the case of the
electron Dirac operator (m = const), Erdelyi [3] has established that the
spectrum of hk is purely absolutely continuous and covers the whole real line
provided q is locally absolutely continuous,
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thus refining a result of Titchmarsh [15] that had been anticipated, in a formal
way, by Rose and Newton [10]. Recently a different proof of this assertion (for
m = 1), based on the Gilbert-Pearson method, was given by [12] under the
slightly weaker hypotheses g^J3Fioc(0, °°),

l img( r )=oo t and — e£F(- ,°°) .
r-*oo y

(Here BV(l) denotes the space of functions of bounded variation on the interval
/ C M , and BV\oc (/) is the corresponding local space. Generally, if X (/) is a
space of functions on the real interval /, we here and below use the notation

X ( - , oo) :={/| there i s a ^ M s u c h that/^X([a, oo))}.)

In this paper we consider, following the methods of [12], the case of
non-constant m ; this also requires that the angular momentum term be handled
in a different way than the perturbative treatment indicated in [12], (cf.
Remark 6 below). We prove that (under certain weak regularity assumptions)
the negative part of the spectrum of H is purely absolutely continuous if

m (r) =

and that the whole real line is filled with purely absolutely continuous spectrum
o f / / i f

§ 2, Results

We prove the following theorem in Section 3.

Theorem 1. Let q^Lloc([0, °°)), m^ACioc([0. oo)) ̂  ana assume that

(Al) l i m < ? ( r ) = o o ,
Y—>oo

m(r)
(A2) lim inf m (r) I >0, lim sup

f \ O\ ^ /— n T/ ( c nrA ( W 3 r~ TT|)\IriO J •) ̂ D V \ . "-^ / I V A tr iKiy ,^-x

(A4) -^-ei^-. oo).rmq

Then aac(H) =ffi, and (J5(//) =0.

Remark 1. By unitary equivalence, the same result holds true if, instead of
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(Al), we assume Hindoo q (r) = — °°. In view of the condition (A3) we may
rewrite the latter condition in (A2) as follows ;

r™ q(r)

Remark 2. If m is constant, (A3) is true for all /l^IS if it is true for one
real value of A (cf. Remark 8 in the Appendix). This does not hold in the

general case; for example, choosing m (r) '•= 2 + sin r, q (r) = r1/4w (r) (r ^
[0, oo ) ) t we find that (Al), (A2), (A4) and (A3) for /1 = 0 are satisfied, but
(A3) for ^=£0 is not.
However, Proposition 5 (in the Appendix) shows that it is generally sufficient
to assume (A3) for two distinct values of A. Alternatively, if we assume, in

addition to (Al), that q^AC]oc(
0, oo) and mqq~3^Ll(", oo) f then m/q e

BV(°, oo) implies m/ (q — X) <EBV(\ oo) for all X effi, by a straightforward

application of Proposition 3 in the Appendix to - _ 3 = _ 3 ° —.
q A q A q

Theorem 1 (cf. also Theorem 2 below), as well as the results of [12],
Weidmann [16] § 8, and Weidmann [17], strongly suggest that a condition of
bounded variation of the coefficient functions is a natural setting for statements
on absolute continuity of the spectrum of one-dimensional Hamiltonians.
Nevertheless, assuming higher regularity of the coefficients (as will usually be
given in concrete applications) one can reformulate the conditions of bounded
variation in terms of integrability of derivatives, yielding hypotheses which may
be more convenient to verify than (A3) itself. Thus we note

Corollary 1. Let q, m^AC\oc([Q, oo)) and assume (Al), (A2), and

Then Oac(H) =ffi, as(H) =0.

n j- T^I • • / m Y m'q—q'm — Am^Tlf ^ . .Proof. The assumption gives __ 3 I = — *-—* — — - GL (*, °°) for each
\^ A/ (q~X)2

/i^IR, which implies (A3). Furthermore, by (A2) we have r|m (r) | — *°° (r— *°o) f

and thus

i .
rmq rm q

As a borderline case between the two situations in which either q
dominates m (giving rise to purely absolutely continuous spectrum as shown
above) , or m dominates q (with purely discrete spectrum as a consequence of
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[20] ) , we then study the case in which m and q coincide identically. In Section
4 we prove the following result.

Theorem 2. Let m^q^AC]0c([^, °°)), and assume

(El) I im0(r)=oo,
r-+ao

(B2) -^r€=B7(- , oo) n i 2 ( < , oo).

Then aac(H) = (-°ot 0], as(H) fl (-00, Q) = 0.

For the convenience of the reader, we include a corollary in which
assumption (B2) , which involves bounded variation, is replaced by a condition
of integrability of derivatives.

Corollary 2. Let m=q& C2 ( [0, °o) ) , and assume (El) and

(B2)'

Then aac(H) = (-oot 0], as(H) H (-oo, 0) =0.

3/2 ' 5/2

Proof -- = -- - e L1 (• oo) and;" ^3/2/ ^3/2 2^5/2 ' J

L1^ oo ) imply (B2). D

Remark 3. Under the hypotheses of Corollary 2, every solution u of h^ — Xu
is twice continuously differentiable, and satisfies the ordinary differential
equation system

w'H — ui — Xuz, -~«i' + 2^#MiH -- ; - ui = A2ui.r ft

Along the lines of Dunford and Schwartz [2] Theorem XIII. 6.20, one can then
prove the existence of a fundamental system w+, u~ with asymptotic behaviour

o (1)

as r_>00^ ^^h implies the non-existence of subordinate solutions for negative
L In order to achieve weaker regularity requirements, our proof of Theorem 2
follows a different approach, remaining fully in the context of Dirac systems
without recourse to associated second order differential equations.
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§3o The Case m<q

In this Section we prove Theorem 1. We proceed as follows. As indicated in
the Introduction, the spherically symmetric Dirac operator H is unitarily
equivalent to the countable direct sum of half-line operators with angular
momentum term :

H= © hk\

therefore we have

oac (H) = U Oac(hk), as (H) = U as(hk)

(cf. [11]), and hence it is sufficient to prove that for each nonzero integer k,-
hk has purely absolutely continuous spectrum throughout the real line.

By the following proposition, this can be reduced to showing that all
solutions of the eigenvalue equation for hk, for all real values of the spectral
parameter, are bounded at infinity.

Proposition 1. Let a> — °°, l,mt q^L\QC((a, °°)) be real-valued functions,
and 7^IS an open interval. Let h be a self-adjoint realization of the Dime system

on (a, °° ).//", for every 2^1, every solution u of

2) U = Au

is an element of L°°( e , °°), then we have lCL(jac(h) , ffs(ti) fl/=0.

Remark 4. It is possible to give a direct proof for this special case of the
Gilbert-Pearson method for Dirac systems (Behncke [1] Lemma 1) along the
lines of Simon [13] , cf. the Appendix of [12] , bypassing the complications of
the general theory. Note that only a condition for each separate value of X is
imposed in the above Proposition ; however, in our situation, one could also
apply Weidmann's theorem [19] instead of Proposition 1, after showing that the
bounds on the solutions are locally uniform in X.

The heart of the matter is contained in Proposition 2, in which a sufficient
condition for the boundedness of all solutions of a general Dirac system

with limr_ooQ(r) =0°, is given.
After proving Proposition 2, we finish the Proof of Theorem 1 by showing

that Q'- = q — /t, M'- = m and L '- = k/r satisfy the hypotheses of Proposition 2 for
all real X and all non-zero integers k.
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Proposition 2. Let a^. — °°, Q, M, L ^L\oc (&, °°) be real-valued functions
such that

(Cl) l imQ(r)=°°,

(C2) li

(C3)

where W- = jM2+L2. Then every solution of (*) is bounded at infinity.
J/M=0[L = 0], condition (C3) can be replaced by

(C3)' 77ITJ

Corollary 3. L/ntf<?r tfzg hypotheses of Proposition 2, let rQ>a. Then there is a
constant C>0 such that

(r>r0)

holds for every solution y of (*) .

Proo/. By Proposition 2 every fundamental system of (*) is bounded on
[r0, °°). Consequently, there is C>0 such that

| t / ( r ) 2 < C | y ( r 0 ) 2

holds for all solutions y of (*). Let z be the solution of (*) with initial value
zi (ro) — ~t/2 (^o), £2 (PO) =yi (^o)," as the Wronskian is constant, we have

2
~ ~ ~ 2 / 2 v r o ) _ yi x

2/iW 2/2 -

and the assertion follows. D

Remark 5. If we specialize L = 0, M=l , Proposition 2 states that for all
real X, all solutions of the differential equation

are bounded at infinity provided iimy-«» # (V) = °° and I/ (^ — X) ^BV(*, °°)
(which is equivalent to l/q^BV(\ °°), cf. Remark 8 in the Appendix). These
assumptions are equivalent to the hypotheses of Theorem 1 of [12] , since a
bounded function of locallv bounded variation has bounded total variation if and
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only if it has bounded positive variation.

Remark 6. Conversely, seeing that, in contrast to the rather large mass
term (J3 w, the angular momentum term (k/r)Oi in the eigenvalue equation for hk

is a smooth function on (0, °°) decaying at infinity, one may at first be tempted
to treat it as a perturbation of the equation without angular momentum term,
which can be handled by a simpler version of Proposition 2 (this line of attack
was sketched in [12] Remark 2, for the case m — 1) . However, the unitary
transformation used to turn the angular momentum term into an integrable
perturbation ([11] Lemma 3), involves the derivatives of both the angular
momentum and the mass (or scalar potential) term, leading to the stronger
requirement

(A4)' -^eiK-, oo)
rm2

instead of (A4) in Theorem 1. (For example, if q (r) >cr£ for some c, £>0, and
m is periodic, then (A4) is satisfied, but (A4) ' is not.) Therefore we prefer this
strong version of Proposition 2, in which L and M enter in a perfectly
symmetric way. On quite different grounds, Proposition 2 will also prove useful
in Section 4.

The basic idea for the proof of Proposition 2 is essentially that developed
in the proof of Theorem 1 of [12]. Instead of the pointwise norm u '• =

J\ui\2+ u2\
2 of the solution itself, we study the behaviour of an associated

quantity R (r) , which may be interpreted as the major radius of the elliptical
orbit in the (HI, n^ plane on which the (real-valued) solution would be
running if the coefficients were held constant at their value at r. In the case
L = 0 considered in [12] the major axes of the ellipse coincide with the ur,
Mz-axes ; in the general situation captured by Proposition 2, however, the ellipse
is oblique, which renders the function R, as expressed in terms of the solution
u, considerably more complicated. — Note that our R corresponds to the R2 of
[12].

Proof of Proposition 2. Let u ^ AC\OC ([a, °°)) be a solution of (*) with
real-valued components. By hypothesis, there is fo>0 such that Q(r) — W(r) >0
(r>
and

On [ro, °°) we consider the function

„._ 1 / / l~u® M+2lilM2L) •
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Note that

Thus we have R^BV[oc([rQ, °°)) by Proposition 3 in the Appendix.
For t 2>£i>ro, the formula for integration by parts for Stieltjes integrals

(Fichtenholz [5] § 577) and the local absolute continuity of u yield :

R (tz) -R (f i) = f* ( (ut+u$) 'Q+ (ut-u!) 'M+ (2MlM2) 'L) -Q~

L

As u is a solution of (*) and hence

tt'i= — Lui~ (Q~M)u2, u'2—

a straightforward calculation shows that the integrand of the first integral

vanishes identically. Estimating [MI— wil, %\uiu^<\u 2, and

i+ (sgn

and noting that Var/= I \df\ holds for every function/ of locally bounded
[*i,fe] •/ 1\

variation, we find

R (tz) -R (h) < var 7+Var + Var su- — -(h) < (var 77^7
Wj Q-W

By Lemma 2 of [12], it follows that R, and consequently M, is bounded in
[r0, °°). This concludes the proof in the general case.

In the case M=0, we consider the function

R : =

By virtue of (C2) and (C3)' there is some se (0, 1) and r0>0 such that |L(r)
<£Q(r) (r>r0), and L / (Q-L) eBF([r0, oo)) . Therefore
and it is not difficult to check that

2L(r) -2g.

and hence /? (r) ^irflw (r) ( 2 ( r>r 0 ) . By essentially the same calculation as above

we infer that for £2 — £1— ^o»
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R (fe) -R (*i) ^2y sun R • Var
-L £ Di,£l [ti,fe]

and the assertion again follows by Lemma 2 of [12] .

For L = 0, take

R ' = u l 2

and proceed as above. D

Now we conclude the proof of Theorem 1, showing that under hypotheses
(A1)-(A4). Q'- = q-t, M'=m and L (r) ' = k/r(r>a : = 0) satisfy (Cl)-(C3),
for every ^eff i and &eZ\{0}.

(Cl) and (C2) are obvious from (Al) and (A2), respectively. As in'

Proposition 2, abbreviate W'= V/M2+L2 . We first prove W/ (Q — W) e
5F(°, °°), which is equivalent to W / Q e ^ F f 0 , °°) by Proposition 4 in the
Appendix. By Proposition 3, W/Q= (W/M) • (M/Q) <^BV(-, °°) , since

oo) by (A3), V^/MeL°°(- f oo) fUCiocK °°), and

.k2q (m
Q \Ml QMW rWQ\qmr

Similarly, we have Ml (Q - W) = (M/W) • (W/ (Q~ W)) ^ B F C 0 , ooj, since

(., oo) nACioc(% °°). and

/ M V
\WI

MQ L(M'L~ML') l

Q-W\WI W(Q~ W) QMW

Finally, L/(Q-W) = (L/M) e(M/(Q-W))e5l/(», oo), since L/M^L00 (% oo) n
(°, °°). and

m

Q-W \Ml r2(Q-W) Q-W qmr

§4, The m = q

In this section we prove Theorem 2. Since it is shown in [20] that a(H) D
(0, oo) is purely discrete, and since the spherically symmetric operator H
admits separation in spherical polar coordinates, it is sufficient to prove that,
for each non-zero integer k, ( — °°, 0) C0-flf (hk), and ffs(hk) H ( — °°, 0) =0.

We shall make use of the Gilbert-Pearson theory (Gilbert and Pearson [6],
Gilbert [7], Behncke [1]), showing that for negative /L the differential equation

/ k \
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does not possess a subordinate solution at °° , i.e. that any two non-trivial
solutions v and w of (**), /i<0, satisfy

for some r0>0. We have to go back to this more general definition, bacause
unlike the situation of Section 3, the solutions will be unbounded, as suggested
by the asymptotics given in Remark 3.

By a transformation which takes into account this expected growth, or
decay, behaviour of the solutions, we obtain a differential equation which is
again of Dirac type, with coefficients which (with the help of Lemma 1 below)
can be shown to satisfy the hypotheses of Proposition 2. As in Section 2, we can
therefore conclude that all solutions of the transformed equation are globally
bounded at infinity ; indeed Corollary 3 shows that all solutions of the
transformed equation are of the same size. This does not immediately imply that
the original equation has no subordinate solutions, since the transformation is
unbounded ; yet considering the oscillatory behaviour of the solutions, it turns
out that the growing and decaying components are sufficiently well distributed
between solutions to prevent the existence of a subordinate solution.

Lemma 1. Under the hypotheses of Theorem 2, let /i^lBL and set j'- = 2q — X.
Then T^^C[OC([0, °°)), and

°°) -3-—^i}(« oo)
'< ^ " ''

Proof. There is r0> 0 such that j(r}>q (r) > 1 (r>r0) , and g '=2q'q~3/2

BV([rQ, o o ) ) f i L 2 ( [ f o , « > ) ) .

Applying Proposition 3 in the Appendix with/ := (q/f)3/2 (noting that |/|<1,

we obtain r'r~3/2=f 9

Furthermore, \ j f j ~ 2 / 2 \ < g , and thus the second assertion follows by the
Schwarz inequality. Finally, the last assertion follows the fact that g, as a
square integrable function of bounded variation on [r0, °°), must converge to 0
at infinity. D

Proof of Theorem 2. Let A <0, fc^Z\{0}, and u, y nontrivial solutions of
(**) with real-valued components. On a right half-axis on which Y'- — 2q — X is
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positive, we consider the functions

\ (A/r) 1/4*i2 /' \ (A/r) l/\
then v and w are solutions of the differential equation of Dirac type

where L = (k/r) - (r'/4r) , Q =
We observe that limr-,00Q(r) = 00, and

L(r) = k r'(r)
Q(r)

moreover, L/Q^BF(°, °°) as a result of Lemma 1, since

In particular, by Proposition 4 in the Appendix, there is TO> 0 such that
2|L(r)|<Q(r) (r>r0) and L/ (Q~L) ^BV([rQ, oo)). Therefore L and Q satisfy
conditions (Cl), (C2) and (C3)' of Proposition 2 with M^O.

Corollary 3 shows that there is a constant OO such that

i.e. that v and 10 are of the same size ; we now use this estimate to prove that

l iminf ^ >0.

To this end, we study the oscillation behaviour of v by means of the Priifer
transformation.

There are locally absolutely continuous functions p: [ro, °°)—> (0, °°), and
$:[ro, °°)-»IR, such that £(r0) e [-37T/4, 5^/4), and

v=^
V sin£ /

-& is a solution of the differential equation

Introducing a new independent variable by the transformation s (f) : = /ro'Q, and
setting 0 (s (r) ) =•$ (r) , we have
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From the definition of r0, we find that ^ (s) e [1/2, 3/2] (s>0) .
For n^Kf we define

e(s)e[-3jr/4. -ff/

#„ := (s>0 6>(s) e [-7T/4, 7T/4] +nn} ;

then f<m fc|<?r (neN0)

(| • here denotes the length of the interval) . Adjusting r0 if necessary, we can
assume that 0 = inf ]\.

Observing that y>A, and Q== \fjA, we find for r^r0

\

X>2+yl) £(vW7w2+

fVi
J Q >

fs(w?+w|)
Jo

'Ck(r0)|2
S(r)'

where f (r) = V(s (r)), M; (r) = V7(s (r)) and C is the constant from Corollary 3.
Now setting N(r) ^maxin^N | Kn^ [0, s(r)]} and noting that on/»,

V^ 2 " 2C '

we conclude that

2^n=ijjn 2 TT| t'(r0)|2iV(r)

> ^ ( fo ) l 2 . N(r) > c / v / o / i >n

Appendix

The great advantage of regularity assumptions on coefficient functions in
terms of their differentiability is based on the existence of a linear and
multiplicative differential calculus, by which subsequent estimates of terms
containing these coefficient functions are conveniently accessible. Unfortunately,
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such a calculus does not exist for the variation of functions on the real line,
which generally behaves like the integral of the absolute value of the derivative
of the function, but cannot be treated as such unless the function is
differentiable or at least locally absolutely continuous. The approximation of
functions of bounded variation by differentiable functions, as in Weidmann [16]
p. 368, is of limited scope (and can hardly be effected in conditions like our
(B2) ) , whereas going back to the definition of the variation,

N

Var/: = sup /(x,0 ~ f ( x j - i ) I
1=1

(where the supremum ranges over all finite partitions a=x0<Xi< ... <xN = h,
JV^N, of the interval /— [a, b]} , is tedious and tends to obscure the line of
reasoning. On the other hand, it appears unsatisfactory to assume different-
iability of coefficients in situations where only their variation, but not their
derivatives occur naturally. Therefore we have collected in this appendix some
properties of functions of bounded variation which have served as a substitute
for the differential calculus in the main body of this paper, so that any
approximation or reference to the definition above could be avoided there, while
working with minimal regularity requirements. In particular, Proposition 3 is
interesting as a weaker surrogate for the product rule, and is frequently used in
both Sections 2 and 3. Similarly. Proposition 4 replaces the quotient rule in
several instances in our proofs. The outlook of Proposition 5 is more restricted
to the purpose of our paper ; it shows that condition (A3) of Theorem 1 is
valid for all ^^f f i if it holds for two distinct values of /?.

3. Let /c IS be an interval and Q ̂  BV (/), f & ACloc (/)
L00 (/) . Then

V a r 0 ;
I /

in particular, f'g ^Ll (/) implies fg

Proof. Let x, y & I, x < y. By the Jordan decomposition theorem
(Fichtenholz [5] § 570), there are non-decreasing functions g+, 9- : /—*ffi such
that g=g + —g-, and Var^i g = g + ( y ) -\-g~ (y) — g ^ ( x ) ~~g- (x) . The formula for
integration by parts for Stieltjes integrals gives

f(y)d(y)-f(x}g(x) = [*fg + f'fdg+- f'fdg-.
<J X <J X "J X

The mean value theorem for Stieltjes integrals (Fichtenholz [5] § 582) implies
that there exist 2+, z.^ [r, y] such that
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thus

W

Applying this estimate to the individual intervals of partitions of /, we obtain
the assertion. D

Remark 7. The simpler estimate Var/ fg <||/U Var/ g + ||0|U Var/ /
(for f,g& BV (I) ) is tempting ; but using this instead of Proposition 3 in the
final step of the proof of Theorem 1 requires the slightly stronger condition
(A4)' (cf. Remark 6) instead of (A4).

Proposition 48 Let /cijg be an interval and f, 9 : /— >ffi. Assume g>0 and
: = sup/|/|/0<l. Then

in particular, f/g ^BV(I) if and only iff/ (g -/) e J37 (/).

Proof. For x, y^I we have

/(.y) f ( x ) _ g ( x ) m g ( y ) f ( y ) f ( x )
(x)-f(x) g(x]-f(x] g(y)-f(y) g(y) g(x)

and the assertion follows observing that

>~^H7^Tirr. D

Proposition 5a Let a>Q,m,q:(a, o0)—*^ functions such that

— -SUp

{/I ̂  ffi - ^ -^J3V( 8 , °°)} is either empty, or the whole real line, or hasq — A
exactly one element.

Proof. Assume this set has two distinct elements ^i, /U : we then show that
it is all of ffi. Let AeM. Then there is r0>0 such that m/(q-Aj) ^BV[rQ, cx>) ,
and

j je{l, 2}).
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•j _
—

_
Defining fa :— •/_ 3 (;'£(1, 2}), and noting that l=^2~~/*i, & = %ijJ>2~~ ^[Ai,

A2 Al

_ \m(y}q(x) — Xm(y) —m(x)q(x) —/bn(x)
(q(y)-X}(q(x}-X)

•M_ m (y) m(x)

for x, y ̂  [r0, °°). Thus we obtain

Var —^-<4\U2\ Var .
[ro,oo)<7 ^2

Remark 8. If m is constant, the >?m terms in the numerator cancel, and it
is easy to see that m/ (q — /C) is of bounded variation either for every, or for no
real value of X (as observed in [12]).

The greater part of this work has been done during the visit of the second
author at Munich University. He would like to express his gratitude to
Professors H. Kalf, E. Wienholtz and A. M, Hinz for their hospitality.
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