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Gevrey Wellposedness of the Cauchy Problem

for the Hyperbolic Equations of Third Order

with Coefficients Depending Only on Time

Bv

Tamotu KiNOSHlTA*

Abstract

We shall show the Gevrey wellposedness of the Cauchy problem for the hyperbolic equations of

third order with coefficients depending only on time. For the proof we use the suitable energy of the

third order equations.

§ 1. Introduction

For the hyperbolic equations of second order, F. Colombini, E. De Giorgi, E.
Jannelli and S. Spagnolo got the results concerned with the relation between the
Gevrey wellposedness and the regularity of the coefficients (see [2], [3] and see
also [4], [6], [10]). In this paper we shall extend their results to the hyperbolic
equations of third order.

We shall first consider the equation of third order in [0, T] X RS

(1)
M (0, x) =UQ(X) , «f (0, .r) = M i G c ) , ttff(0,:r)=i

where a* (t) and 6f, (0 are the real coefficients satisfying

k+a _

(2) A+a ' with and 0<a<l (1 = 1,
a, (t) e= C"^ ([0, T]) ^> integer > 2

(3) MOeC*+a([0, T]) with k integer >0 and 0<a<l ( i , j = :
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Now we assume the restricted type of the weakly hyperbolic condition for
the third order equation (l)

(4) >«(t)&&£0 fo r v t e [0 , T], v$eRf.
u=i

In general, the suitable weakly hyperbolic condition for the equation (1) is

(5) 2 ^ W f t 2 - 4 2 5 w ( 0 f t & ^ 0 f o r v f € = [ 0 , T ] t

We can easily see that the condition (4) is stronger than the condition (5). The
third order equations have 3 real characteristic roots AI (t, f) , ^2 (*, f) , ^3 (t, ?)

such that /U(f, f) <;b(£, f) ^3(f, f) for V£G [0, T] , v £<EBf . Thanks to the-
condition (4) , we find that the characteristic roots of the equation (1) satisfy
^i(f ,f) <0, X2(t, ?) = 0, A3(t, ? )>0. This fact gives many benefits in the
treatment of the hyperbolic equations of third order. In this paper we don't use
the condition (5). Actually changing the characteristic direction, any type of
weakly hyperbolic equations of third order can be reduced to the equation (1)
under the condition (4) .

Then we can prove the following theorem (concerning the difinitions of the
spaces of functions, see the end of § 1) .

Theorem 1. Let T>0, 00>0. The coefficients satisfy (2), (3) and (4). Then
for any UQ, u\ and U2^YS> the Cauchy problem (1) has a unique (global) solution

W€EC 3 ( [0 , T], rs), provided

(6) l<s<l+JM^.

Moreover when UQ, u± and u2^To (s>l), there exist the constant v>0 and the

positive function /jt(t) satisfying #(0) =^0, such that for vf ^Ef

(?) ^-KtffHr+^^MHIwttD^c^

Remark 1. If k — a = 0, (6) doesn't make sense. However whenever the
coefficients a/0), b<,(t) belong to C°([0, T]), or even to L l ( [ Q , T]), the Cauthy
problem (1) is wellposed in f1 (see [7] and see also [2]).

Remark 2. If one replaced the weakly hyperbolic condition (4) by the
condition (5) , the same regularity as the coefficients btj (t) would be needed for

the coefficients a t ( t ) , i.e., at (t) or al (t) \ e Ck+a ( [0, T] ) .

Remark 3. Precisely the positive function jj. (t) is a strictly decreasing
function. Therefore fjL (T) is less than ^0 (= fJ. (0)) . However if we take large
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enough y>0, #(T) can be chosen arbitrarily close to fa.

With a different method, Y. Ohya and S. Tarama got more general results
for the weakly hyperbolic equations of higher order (see [11] and see also
[14]). They assume that all the coefficients of the highest order terms belong to
the same Holder class with respect to time. For the third order equation (l)
whose coefficients satisfy (2) , (3) when k — 0, we relax the regularity of the

a_
coefficients ai(t) from C* to C2 . Moreover according to their result, in order
that the Cauthy problem for the weakly hyperbolic equations of third order is
well-posed in 75, it is necessary that the Gevrey exponent s satisfies

(8) !<5<l+ (the multiplicity r=3).

The multiplicity of the characteristic roots for the equation (l) , is also 3, but
the range (6) when fc = 0, is wider than the range (8). We know that the range
(6) for the third order equation (1) coincides the range for the second order
equations (see [3]). This improvement is due to the fact that one of the
characteristic roots is identically equal to 0 and the regularities of the other two
characteristic roots become more smooth.

We shall next consider the strictly hyperbolic case. Instead of the weakly
hyperbolic condition (4) , we assume the restricted type of the strictly
hyperbolic condition for the third order equation (1)

(9) S M*) £,&<-<* If I2 (33>0) for v f € = [ 0 . T], v?eE?.
/ j=i

In this case we don't need to consider the smooth coefficients in comparison
to the weakly hyperbolic case. Therefore we shall suppose k = 0 in (3) and
assume the following instead of (2) .

(2)' a f ( t ) e=C f l r ( [0 , T]) with 0<a<l (i = l, -, n),

Then we can prove the following theorem.

Theorem 2. Let T>0, ^0>0. The coefficients satisfy (2)', (3) with k = 0
and (9). Then for any UQ, u\ and HZ e 73, the Cauchy problem (l) has a unique
(global] solution u&C3([Q, T], rO , provided

(10) l-a

Moreover when UQ, ui and W2^7o (s>l), there exist the constant p>0 and the

positive function fi(t) satisfying ^(0) =^0, such that for v^eR|

(ID ^j(e)t(<e,w+^
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As it is well known, the order (dimension) of the strictly hyperbolic
equations (systems) is independent of the range of the Gevrey exponent s.
Therefore the range (10) coincides the results of [2] for the strictly hyperbolic
equations of second order and [l] for the strictly hyperbolic equations of the
higher order and [8] for the strictly hyperbolic systems. In the strictly
hyperbolic case we can not improve the assumption of the regularity for the
coefficients a i ( t ) (see (2) with k = Q and (2)'). Thus Theorem 2 is included by
the results of [1] , [8] .

We also consider the more general equation of third order in [0, T] X E%

../-I ,-1
U (0, X) =UQ (x) , Ut (0, x) =Ui (x) , Utt (0, x) —

where L is the operator defined as L = df+ 2"=1 a, (t) dfdxt 4- E",=1 btj (t) dtdlix,,
and the coefficients of the lower terms satisfy

(13) ^ - to^ /W^W^.W^W^W^L^tO, T]) (*,/ = !, -.n).

In this case we also assume the restricted type of the weakly hyperbolic
condition (4). Generally the lower terms influence on the wellposedness of the
Cauthy problem for the weakly hyperbolic equations (see [3], [5], [9], [13],
etc.) . Therefore we shall assume the following conditions corresponding to a
sort of Oleinik condition for the weakly hyperbolic equation of third order (12).

(14)

(15)
n

1 = 1

(16)
n

I/, a) i,
for some Oi(t, £), a2(t, ?) and (J3(t, £) such that

(17) sup

(18) sup a/a, e) <f>M|-1dK + ~(/ = 2l 3).
0

Then we can prove the following corollary.
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Corollary 3. Let T>0, ̂ 0>0, and fae [0, 1] , 02e [o, TT] and 03e [o, -|] •

coefficients of the principal part satisfy (2) , (3) and (4) . Furthermore the
coefficients of the lower terms satisfy (13), (14), (15) and (16). Then for any MO, wi
and W2 e 7s, £fr0 Cauchy problem (12) /ias a unique (global) solution u G
C3([0, T], f), Provided

1 1 2 1__ __
-20i' l-202' 1-203J'

Moreover when MO, wi and z*2e7o (s>l), tfiere m"s£ t/i^ constant y>0 anrf

positive function fjt(t) satisfying j«(0) =^0, 5wc^i that for

(20) ^ ( f ) < ( < f > ^ + < f > ? l u H l u » | ) ^ 3 C

!

Remark 4. From this corollary we can see the followings.

i) for 0i = l, 02~ 2" and 03— y we can get the same result as Theorem 1.

3
ii) the lower term 2?,;=ic,;(f)M^fcr, influences on the 7s-wellposedness if s>y.

iii) the lower term 2?=i^ f(0^^« influences on the 75-wellposedness if s>2.

iv) the lower term ^=ift(t]uXl influences on the 7s-wellposedness if s>3.

v) the lower terms e ( t ) u t t , g ( t ) u f and h(t)n don't influence on the 7s~well-
posedness.

Our proofs of the theorems and the corollary are based on the methods of
the energies for the hyperbolic equations of third order (see the definitions of
the energies (50) for the weakly hyperbolic case and (57) for the strictly
hyperbolic case). Thanks to these energies, we can get the inequalities (7) , (11)
and (20) which denote the differences between the regularity of the solution
and the regularity of the initial data.
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C*+ar([0, T]) (fceN 1 , 0<a< l ) is the space of functions / (t) having k
derivatives continuous, and the k~ih derivative Holder continuous with exponent
a on [0, T].

Ts (K3) (s^ 1) is the space of Gevrey functions f (x) satisfying for any
compact set K^W1,

sup |D*/Or) | <CKplKl as I for vaeMw

7*0 O&J) U>1) is the space of Gevrey functions / (x) or the order s having
compact support.

When 5 = 1, the problem (1) is well-posed in 71 which is the topological
vector space of analytic functions on W1 (see [2] for the weakly hyperbolic
equations of second order and see [7] for the weakly hyperbolic systems
including the third order equations). Therefore we can suppose s> 1 for the
proof.

In virtue of Holmgren's theorem we get the uniqueness of solutions to (1)

and can suppose that UQ(X) , u\(x) and u2(x) belong to 70- Hence by Paley-
Wiener theorem we shall assume that

(22) sup ̂ (<5>,Vol + <e>Juil + |u2|) < + «>.
§e=R?

Moreover Ovciannikov theorem gives the existence of solutions (see [3] ,
[8] , [12] ) . Our task is to investigate the regularity for x of the solution,
namely, to derive the energy inequality (7) .

By Fourier transform the Cauchy problem (1) is changed to

,

where v = u, and vi=ui (l = 0, 1, 2) , and a (t, £) = IXi at (t) &, b (t, f ) = Z?,,=i

Now we must separate the proof of Theorem 1 into three parts according to
the smoothness of the coefficients.
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2.1 Caseoffe=0

We first treat the case of k = 0 which implies that both coefficients a (t, $)
and b (t, £) belong to Holder classes in t. Since these coefficients are not
differentiate, they can not enter into the definition of the energy directly.
Therefore we shall regularize them as follows.

(24) ae (f .£) =7/_j» 0 + T, ?) <p(f )dr,

(25) b£(t&=

(0< £ <1), where <p(i) ^CS(R}) satisfies Q<.<p(t) <°° and f"*,<p(t)dt=l.
Then there exists C0>0 such that for

(26) \a's(t, al^Co"1^). . \a.(t. ?) -a(t. ? ) ! < C o £ > . ,

(27) \b't(t, ^Coe"-1^2. \b.(t, f) -b(t, e)I^C0£a<?)v2

With the coefficients a£ (t, ?) , 6E (t, £) we shall define the following energy.

(28) ££,,(f, f)2

Here p(t) is positive and determined later on. Thanks to the conditions (4) and
the term £a(£)y, this energy can be bounded from below by the absolute values
of v, vt and VH- While we can also easily see that this energy is bounded (from
above) by the absolute values of them. Therefore the energy inequality based on
(28) can be changed into the one based on the absolute values of them.

Differentiating (28) in t, by (23) we get

(29) ~r(

( = p'(t) <?)jE

In order to further estimate the derivative of the energy, we shall pick up
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the term /. We first rewrite / as follows.

(30) /=2(ae-a)0p(0^^;^^

jvt,e-*(&^(vn+^

>^
+2

a 2
b£~r£ \s/ v

+2 _ ~k
&£ i £ \s/ P

For this expression, we remark that the denominator or the fraction in the last
three terms is not zero, since — bs is non-negative by the condition (4).

Noting the definition of the energy (28) , by (26) . (27) , (30) we obtain

(31)

"1£L+ C<>e-lEl,

(3C0+D £

here we used 29? U, z2) <\Zl\
2 + \Z2\2 for

Secondly we shall estimate the other terms. From the definition of the
energy (28) we also find that
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(32) £|,,>/!')

Dealing with the terms //, III and IV together, by (26), (27), (32) we
obtain

(33) II+III+IV=2ep(t''*lft-at + b+aivt, vtl 4Vlt) ;?i'"9? (iaiv,, vtt)

f>("

t. vtt) +2(b-b, + £a(^)ep(t](Q^(vt, v,,)

2(aB—a)e(l'l> 9i(-rr

1, tv!2+ (-

: 9 t , . — s a . t ' , = — 5"x"third term
Ll I \ £*

<C0£

r<£ •• 2•/y y*

2

<Co£f f -

here we used SRfc, 2) =9MiN2}=0 for ̂ eC1.
Therefore by (29) , (31 ) , (33) we have the estimate

(34) ~t
(EU -P (

where Ci = 5C0+2, C2 = ̂ C0.

Thus Gronwall's inequality yields
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£?*(*. f) <El,v(0, £)exp[/"oV(r) <?>£+C1£%»+C2e-1}dr] for v*e [0, T].

Since s ( = *-') <l+f , we find "ff<0 and <f >

Hence we take e= (£>iT^ and obtain

?*(*. f) ̂ 2,,(0, £ ) e x p < e > 5 ( r ) + (Ci+C2) y

for vfe [0, T],

where /00 = |
2

Moreover we determine p(t) =pQ — C^tv2+a , and choose v>0 such that'
2

p(T) (=pQ~C3Tv^~x) >0 for any given T>0.
Finally we have the energy inequality

(35) Et.v(t, f) <EL(0, f) for vte [0, T] and

We next treat the case of k = 1 which implies that the coefficient a (t, £)
belongs to Holder class while b (t, £) belongs to C1 class in t at least. Therefore
we shall only regularize the coefficient a (£,£) as (24) , and get

(26) ' |o'. (f, ?j | ̂ C o e " " 1 <f)p, k (f, ?) -« (f.

With the coefficients a£ (t. ?) , b (t, £) we shall define the following energy.

(36) Eti,(t, &
2=e

Differentiating (36) in t, by (23) we get

foyx —-f/?2 \ — n
f (t\ /E\KF

w'/ jx vC'E^/ —p v>/ \s/yA

>, V«) '
\ *± /

(=p' (^ <f > jE|,y+r +/r+///'+/y).
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Noting that

similarly as the case of fe=0, we can estimate /' and II'+III'+IV as follows.

(38) r = 2(ae-a)ep(l}

+2£i+a (&y(t) ^ e ^ . (e)? (t»,,+ia.v,- bv +£1+a (f)^)

+2 _&+

+2 ~

14. g l+cr~ " "

(39) II'+III'+IV

_,
t? i £

-b +£l+a (
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= (C0+l)e^<0,£.%+f^^

Therefore by (37), (38), (39) we have the estimate corresponding to (34)
of the case of fc=0

where C4 = 3C0+1, Cs^co , C6 = 5(l+a).

Thus Gronwall's inequality yields

(40) E**(t, & <EL(0, f)exp[/oV(r) (

+C6\{(-b(T}+e1+a(^)^}\e-i^)~^}dT] for vfe[0,T].

Here we shall introduce the following useful lemma.

Lemma0 (Colombini, Jannelli, Spagnolo) Let f (t) be a real function of class

Ck^a on some compact interval /CR, with k integer >1 and 0<a<l, and assume

that f ( t ) >0 on L Then the function fk+a is absolutely continuous on I. Moreover

For the proof, refer to [3]. From the condition (4) we can apply this

lemma to (40). Since s ( = ft~1} <ljr^~, we find ^r^-/c<0 and (f)^~X<

ys+zr-* Hence we take e= <?)/+a and obtain

O, 5)expf <?>; f *{pf (r) + (
L o/O

rt)y'sr>t}] for vf£ [0, T],

where C7 = C4 + C5, 0i (f) is a bounded function independent of ? and satisfy

0i (0) =0 and &(0 >C6Ca)l|-&+£1+a<?)lP<?):1^.
2

Moreover we determine p ( t ) ~po~~ (Cit + (j)i (t)) V3+OC x. and choose

such that p(T) ( = /o0- (CyT+0! (T)) y^~K) >0 for any given T>0.
Finally we have the energy inequality

(41) Eiv(t, $) <££%(0, ?) for v£e [0, T] and v?eEf.
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2.3 Case of k>2

We finally treat the case of k> 2 which implies that both coefficients
a(t, ?), b(t, ?) belong to C1 class in t at least Therefore we don't need to
regularize the coefficients a (t, f), b (t, f).

With the coefficients a (t, f), 6 (f, f) we shall define the following energy.

(42) Et*(t, &2

Differentiating (42) in t, by (23) we get

(43) ^(El,v)=p'(

t;(|
2

(= p' (0 (?) JEl.,4-7" +11" +III" +IV").

Before we estimate the terms /" and II"' + III"+ IV", we shall culculate the
parts concerned with the coefficient a (t) in advance. From the condition \a (t) \ ^

€^([0, T]) (CC1([0, T])) , we can see \a'(t}\ = \\a(t)\'\. Hence it holds that for

w(t, |) =VH+ia(t, &v,-b (t, &v + £k+a(&tv or vtt+\a(t, $Vl

(44)

<2
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And it also holds that

(45)

^4

In (44), (45)

Noting that _ ~b
+ ' £ (k + a)\{(-b + ek+a(&*)T^}'\£-1(&-^, and

0~rS \s/i;

using (44) with w (t, $) =vtt+ia(t, £~)vt — b(t, £;)v + sk+a (f)^, similarly as other
cases, we can estimate /" as follows.

(46) I" =

+ (t+a)

+ (fe+a)
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Aa for II" + III" + IV", using (44) w(t, £) with vtt + ̂ a(t, ?) vt and (45),

similarly as other cases, we can get

(47)

Therefore by (43), (46), (47) we have the estimate

where C8 = 2, C9=5(k+a), Cio=

Thus Gronwall's inequality yields

V (r) (

' for *t* [0, T].

Hence we shall also apply the lemma in 2.2 to this inequality. Noting that

( = /Tl) < l + ^ - - / c < o , and taking s= ^J"2-1-*^. we obtain

, a
; f V (r) +c8v^^-"+c9| I (-6 (r)
Jo I I

=£e^(0, f) e x p ^ j p W - p o + C C r f + ^ W ) ! 3 * for
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where ^(t) is a bounded function independent of f and satisfies 02(0) =0 and

Similarly as other cases we determine p ( t ) = p<> — (C^ + 02 W) y2+*+a'~!', and
2

choose v>0 such that p (T) ( = p0 — (C8T + 02 (T)) y2+*+«~*) >Q for any given
T>0.

Finally we have the energy inequality

(48) £t,(t, f) <£f(i,(0, f) for vte [0, T] and

204 Conclusion of the proof

Putting

a. (tf f) for £ = 0,{.Q}
(49) i

 8 i ff ^ * i,-i[ a U , ?) for fe = 2, 3"-, [ b ( t , ?) for fe = l,

we can alter the definitions of energies (28) , (36) , (42) into the following.

(50)

Since the energy inequalities (35), (41), (48) are same, it holds that

(51) Ei»(t, ?) <££
2p(0, f) for vte [0, T] and V?^E?.

We shall change the energy inequality (51) into the inequality based on the
absolute values of v, vt and vtt. For this aim we must investigate the relations
between the energy (50) and the absolute values of v, vt and vtt-

From the definition of energy (50) we can easily see

(52) El,v>ep(t}{q *( (£) V b(o (t,

We can also find

f
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Moreover we can see

(54) El,»>ep(t}(^l\(vtt+^a(£)v] + (^ *
LI \ ^ / \LI

2 a2£) I

+^a(£^+~(~a^vt-b(,}v + e/!+a(0^) *

2

4

While the energy £SJ, (0, ^) can be also dominated by the absolute values of
the initial data. From the definitions of the energy (50) we get

(55) £.4,(0)2=e'*
<

ff\\2 L /n\ _L^ fe+a / e \2H 2_Lo«Jf °* /A\
^•(e) wJ — U ( s ) (0)~r£ Xs /y / l^ i ' ^^l^2» ~o~#(£) ^ U j t

Using the energy inequalities (51), by (22) and (52) - (55) we have the
energy inequality based on the absolute values of v, vt and vtt
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and by square root of the both sides we also have

(56) e*$L<

Putting jji(t) =yp(f), /^o—ypo, we can see that (56) implies (7). In vitue of

Paley- Wiener theorem, (u ( * , t)\ t ̂  [0, T]} is bounded in 7*0- Thus taking into

account that u is a solution of (l), we find u&C3([Q, T], 70). This concludes
the proof of Theorem 1.

We shall only introduce the definition of the energy.

(57) £.„(*, &2

t I 0"'£ U, W

We remark that for this energy there exists the constant OO such that

Similarly if s( = c~1) satisfies (10), we can get the energy inequality
(t} /A

(58) e

Putting fJi(t) —^(t) , ££o="o"po, we can see that (58) implies (11).

§ 40 Proof of 3

In this section our task is also to derive the energy inequality. By Fourier
transform the Cauthy problem (12) is changed to

(59)
, f) =

where c (t, f) = EL'=i^7 (0 f,&, d (t, f) = S?.̂ , (t) f f. /ft, f) = E?=i/, (0 ft.
In order to reduce the proof to the argument of § 2, we shall culculate the

parts concerned with the lower terms.
In (29) , (37) , (43) the following term also appears.
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(60) 2e'w <f>W^ [Lu (t, &, wi (t, I) +w2 (t, i

where wi(t, ^> —
Li

Picking up the each term in & [Lu] (t, f ) , we shall estimate.

i) the lower term —c(t, ^)v

Noting that (54), from the assumption (14) we get for 1 = 1, 2

Hence we obtain

(61) 2^(f)({

where Cn^S.

ii) the lower term id (t, f ) v t

Noting that (52), from the assumption (15) we get for 1 = 1,2

> -46,

Hence we obtain

(62) 2/UJ<5);3d(id (t, &v, w,(t,

where C12=22m2.

iii) the lower term
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Noting that (53) , we get for 1 = 1,2

(t)v,t, w, (t, ?) ) £2^ ®'*\e (t)vtt\\w\

<e^ ®'V (t) I (k,l'+ kla) £ V w ®"\e (t) |E?,

Hence we obtain

(63) 2*'w <?>*R (« (f) »„, wi (f, f) +w2 (t, f)

where Ci3=4.

iv) the lower term if(t, ?)v

Noting that (54), similarly as i) from the assumption (16) we obtain

(64) 2eft(!){^f(t, £)„. i^a. ?) +1*2^, SJ^C^®'"

where Ci4
=8.

v) the lower terra g(t)vt

Noting that (52), we get for 1 = 1,2

Hence we obtain

(65) 2e>W

where Ci5=
:4.

vi) the lower term / i ( f )v

Noting that (54) , we obtain

(66)

where Ci6=8.
Having (13), (17), (18), (19) and (59) -(66) under consideration, with the

similar methods as the proof of Theorem 1, we take

f 2 1
mnl2+H^'-

and determine
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. . . maxl2+it+a' 3
p(i)=Po-(Cl7t+fo(t))v 2"

and choose y(>y0) such that

f 2 1-& 2
max* =*- —

>0

for any given T>0.
In conclusion we also get the energy inequality (51) if the lower terms

satisfy (13) which is the condition concerned with regularity and (14), (15),
(16) which are the conditions corresponding to a sort of Oleinik condition for

the third order equation (12) and s( — tc~l) satisfies (19).

Moreover noting that Elv>ep(t} ^'(^kl2, Et,>\ep(t}{^(^\v\\ we also

have the energy inequality based on the absolute values of v, vt and vtt

(67) e 2

Putting fi(i) — ~ p ( t ) , / ^ o — p o , we can see that (67) implies (20).

where a) is the constant defined in (21) .

~p
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