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Gevrey Wellposedness of the Cauchy Problem
for the Hyperbolic Equations of Third Order

with Coefficients Depending Only on Time

By

Tamotu KINOSHITA*

Abstract

We shall show the Gevrey wellposedness of the Cauchy problem for the hyperbolic equations of
third order with coefficients depending only on time. For the proof we use the suitable energy of the

third order equations.

§ 1. Introduction

For the hyperbolic equations of second order, F. Colombini, E. De Giorgi, E.
Jannelli and S. Spagnolo got the results concerned with the relation between the
Gevrey wellposedness and the regularity of the coefficients (see[2],[3] and see
also[4], [6], [10]). In this paper we shall extend their results to the hyperbolic

equations of third order.
We shall first consider the equation of third order in [0, T] X RZ2

(1) “ttt+z az(t)1itfz;+z b <t)1ltxw1=0
' 1=1

1,7=1

1w (0. x) =uelx), 1:00, 2)=u1(x), 1.0, x)=ulx),

where a,(t) and b, (t) are the real coefficients satisfying

k+a
(necz (o1 k=0or 1
@ @t D im0 dosast (=1,
la,()|eCc 2 ([0, T]) k integer =2

(3) b,;(t) €C*** ([0, T]) with k integer =0 and 0<a<1 (i, =1, -
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Now we assume the restricted type of the weakly hyperbolic condition for
the third order equation (1)

@ 3 by ()EES0 for 1[0, T], "EERL

i,j=1

In general, the suitable weakly hyperbolic condition for the equation (1) is

n n
6 (X a0e) -1 b,08620 wor €0, 71, “EeRE

i=1 i,j=1
We can easily see that the condition (4) is stronger than the condition (5). The
third order equations have 3 real characteristic roots A; (t, £), Az (t, &), A:(t, &)
such that A;(t, &) <A:(t, &) <As(t, &) for "t € [0, T], Y EE€ RE Thanks to the
condition (4), we find that the characteristic roots of the equation (1) satisfy
AE) <0, 22 & =0, A:3(t, £) = 0. This fact gives many benefits in the
treatment of the hyperbolic equations of third order. In this paper we don’t use
the condition (5). Actually changing the characteristic direction, any type of
weakly hyperbolic equations of third order can be reduced to the equation (1)
under the condition (4).

Then we can prove the following theorem (concerning the difinitions of the

spaces of functions, see the end of § 1).

Theorem 1. Let T>0, 1to>0. The coefficients satisfy (2), (3) and (4). Then
for any uo, 1 and us € v°, the Cauchy problem (1) has a unique (global) solution
w€C ([0, T1, 7%, provided

(6) 1<s <1+%‘£.
Moveover when uo. uy and uz € 1§ (s>1), there exist the constant v>0 and lhe

positive function u(t) satisfying 1t (0) =g, such that for *EERE
1 4 2 H
(7) €O TR+ (O ST il ) < 7 Cero® ((O) Hiol + (&) kil izl

Remark 1. If k=a =0, (6) doesn't make sense. However whenever the
coefficients a; (), by, (t) belong to C°([0, T1), or even to L' ([0, T1), the Cauthy
problem (1) is wellposed in 7' (see [7] and see also [2]).

Remark 2. 1f one replaced the weakly hyperbolic condition (4) by the
condition (5), the same regularity as the coefficients by, (t) would be needed for

the coefficients a, (t), ie. a, () or |a, ()| €C*([0, T]).

Remark 3. Precisely the positive function g (t) is a strictly decreasing
function. Therefore u (T) is less than o (= (0)). However if we take large
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enough v>0, ¢#(T) can be chosen arbitrarily close to go.

With a different method, Y. Ohya and S. Tarama got more general results
for the weakly hyperbolic equations of higher order (see [11] and see also
[14]). They assume that all the coefficients of the highest order terms belong to
the same Holder class with respect to time. For the third order equation (1)
whose coefficients satisfy (2), (3) when # =0, we relax the regularity of the

a
coefficients a;(t) from C* to C%. Moreover according to their result, in order
that the Cauthy problem for the weakly hyperbolic equations of third order is
well-posed in 77, it is necessary that the Gevrey exponent s satisfies

(8) 1ss<1+% (the multiplicity r=3).

The multiplicity of the characteristic roots for the equation (1), is also 3, but
the range (6) when #=0, is wider than the range (8). We know that the range
(6) for the third order equation (1) coincides the range for the second order
equations (see [3]). This improvement is due to the fact that one of the
characteristic roots is identically equal to 0 and the regularities of the other two
characteristic roots become more smooth.

We shall next consider the strictly hyperbolic case. Instead of the weakly
hyperbolic condition (4), we assume the restricted type of the strictly
hyperbolic condition for the third order equation (1)

(9) Z by (1) E£<— S |EP(P6>0) for "t€[0. T], VEERE

ig=1

In this case we don’t need to consider the smooth coefficients in comparison
to the weakly hyperbolic case. Therefore we shall suppose #=0 in (3) and
assume the following instead of (2).

(2)’ a, () ec*([0, T]) with 0<a<1l (=1, -, n),

Then we can prove the following theorem.

Theorem 2. Let T>0, o> 0. The coefficients satisfy (2)’, (3) with k=0
and (9). Then for any uo, u1 and us € 1°, the Cauchy problem (1) has a umique
(global) solution w€C3([0, T1, v°), provided

1
(10) 1Ss<1_a.

Moreover when uo, uy and u, €75 (s>1), there exist the constant V>0 and the
positive function p(t) satisfying 1 (0) = o, such that for *EERE

A1) T Q2]+ (Ol + i) <> Ce® (&) il + (&) il +ia)
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As it is well known, the order (dimension) of the strictly hyperbolic
equations (systems) is independent of the range of the Gevrey exponent s.
Therefore the range (10) coincides the results of [2] for the strictly hyperbolic
equations of second order and [1] for the strictly hyperbolic equations of the
higher order and [8] for the strictly hyperbolic systems. In the strictly
hyperbolic case we can not improve the assumption of the regularity for the
coefficients a; (#) (see (2) with #=0 and (2)’). Thus Theorem 2 is included by
the results of [1], [8].

We also consider the more general equation of third order in [0, T] X Rz

Lu= 2. ¢y Ottt 2, di Dz +e Ouat D fi Oz g Outn@)u

1,j=1 1=1 i=1

w0, 2) =uox), u:(0, ) =uilx), uul0 x)=uslx),

(12)

where L is the operator defined as L = 8+ X, a, (t) 00y, + X\, by, (t) 0,024,
and the coefficients of the lower terms satisfy

(13) ci(t),di@®), et), (1), gt), n(t) €L ([0, T]) G.j=1, -, n).

In this case we also assume the restricted type of the weakly hyperbolic
condition (4). Generally the lower terms influence on the weliposedness of the
Cauthy problem for the weakly hyperbolic equations (see [3], [5], [9], [13],
etc.). Therefore we shall assume the following conditions corresponding to a
sort of Oleinik condition for the weakly hyperbolic equation of third order (12).

14) 2 e hes|<at o~ n0es)”
15 S a0san (S awe) 13 wnee)”
(16) S rwe|<at o~ swae)”

1,7=1 1,j=1

for some o1 (¢, &), 0,(t, & and 03¢, & such that

T
(17) sup [ o1k, £ (©%1-2 ar<+oo,
g€Rr Y 0
T
(18) sup [oi(t, &) (9B 1<+oo(1=2,3).
EeRr Y 0

Then we can prove the following corollary.
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Corollary 3. Let T>0, 1o>0, and B € [0, 1], B2 € [O, %] and B:€ [0, %]

The coefficients of the principal part satisfy (2), (3) and (4). Furthermore the
coefficients of the lower terms satisfy (13), (14), (15) and (16). Then for any uo, u1
and us € 75, the Cauchy problem (12) has a uwique (global) solution u €
C3([0, T1, v), provided

. [kt 1 1 2
(19) 1$s<1+m1n{ 2 ' 2—2B 1—2B8y 1‘—2,33J'

Moreover when uo, u1 and u; € 75 (s>1), there exist the constant V>0 and the
positive function 1(t) satisfying p(0) =, such that for *EERE
(20) 9% ((&) 2lial + (&) St +iel) <3 Ce ¥ (<&) Llimol + (&) Jiwa| +iral),
where

_ 2 2-28 1—28, 1—2p;
(1) w=marl{z ity 3—2B." 2— 2B, 3—2/33}'

Remark 4. From this corollary we can see the followings.

i) for B1=1, Bz=%— and ,33=% we can get the same result as Theorem 1.

ii) the lower term X7,-; ¢, () ua, influences on the y*-wellposedness if 32%
iii) the lower term 271 d,(t)usu, influences on the y5-wellposedness if s=2.

iv) the lower term 27, f, (t) uz, influences on the 7°-wellposedness if s=3.

v) the lower terms e (t)us, g(t)u; and h(t)u don't influence on the yS-well-
posedness.

Our proofs of the theorems and the corollary are based on the methods of
the energies for the hyperbolic equations of third order (see the definitions of
the energies (50) for the weakly hyperbolic case and (57) for the strictly
hyperbolic case). Thanks to these energies. we can get the inequalities (7), (11)
and (20) which denote the differences between the regularity of the solution
and the regularity of the initial data.
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Notations

©,=(EP+1)7  (v>0). (&= (&+1)2(=(&)).
F©=F11© = [ @)dx.

ck*e ([0, T]) (ke N, 0<a<1) is the space of functions f (t) having k&
derivatives continuous, and the k-th derivative Holder continuous with exponent
aon [0, T].

75 (R%) (s=1) is the space of Gevrey functions f (x) satisfying for any
compact set KCR",

sup |D“f(x)l£CKp}fm|a[s I for "aeN",
z€K

18 (R%) (s>1) is the space of Gevrey functions f (x) or the order s having
compact support.

§ 2. Proof of Theorem 1

When s =1, the problem (1) is well-posed in 7! which is the topological
vector space of analytic functions on R” (see [2] for the weakly hyperbolic
equations of second order and see [7] for the weakly hyperbolic systems
including the third order equations). Therefore we can suppose s> 1 for the
proof.

In virtue of Holmgren’s theorem we get the uniqueness of solutions to (1)
and can suppose that ue(x). u;(x) and u,(xr) belong to 7§. Hence by Paley-
Wiener theorem we shall assume that

(22) ESUIg 6#"@”? (& 5|1;o| +<& v|®71‘ + lﬁzb <+ oo,

Moreover Ovciannikov theorem gives the existence of solutions (see [3],
[8], [12]). Our task is to investigate the regularity for x of the solution,
namely, to derive the energy inequality (7).

By Fourier transform the Cauchy problem (1) is changed to

verr+ia (¢, Evu—blt, S)l’tzo

(23
) v(0, &) =vo(&), v:(0, & =v1(8), vu(0, & =0v;(8),

where v =1, and v;=wu; (1=0,1,2), and a(t, & =27 1a,t) & b(t, &) =27,
by () E&;.

Now we must separate the proof of Theorem 1 into three parts according to
the smoothness of the coefficients.
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2.1 Case of k=0

We first treat the case of #=0 which implies that both coefficients a (¢, &)
and b(t, € belong to Holder classes in t. Since these coefficients are not
differentiable, they can not enter into the definition of the energy directly.
Therefore we shall regularize them as follows.

(24) ae (1, Z%j:“ (t+7, & ¢(§>dr
(25) bt &=L ot 9 o(D)ar

(0< € <1). where ¢ (t) €C3(R) satisfies 05 ¢ (t) <o and [ (t)dt
Then there exists Co>0 such that for "EERE

(26) la:(t, ©1<Cos? (81, aclt, © —a (. O] <Cos? (D),
(27) be(t, &)1<Coe® 2 b (t, &) —b(t, )| S Coe®(E)2
With the coefficients a. (t, £), b. (t, £) we shall define the following energy.

(28) Ee,(t, £)2=¢" "N |v,+iac (t, E)vi—be (t, E)v+e* (E) ]2

T+lo,+ aE(t E)v, (aE(t 87 be (1, E)+E"<S>3)|v,|2].

Here o (t) is positive and determined later on. Thanks to the conditions (4) and

the term &% (&) 2 this energy can be bounded from below by the absolute values

of v, v; and v,. While we can also easily see that this energy is bounded (from

above) by the absolute values of them. Therefore the energy inequality based on

{28) can be changed into the one based on the absolute values of them.
Differentiating (28) in ¢, by (23) we get

(29) $-(EL) =0’ () (D 3FL
4201 8 2R< (@e—a) vi— (be—b)viTe*{E) v tiaw:— biv.
Vit Fiaev, —bev +e* (&) fv)
+ 20" (5”5}{(—mv“-‘-bv,+%asv“+%a;vt, u,ri—%agv,)
+2<Z—b8+6“(9 ) PR (1, vey) +e""’<5>5<%aeae’—b;>|1',|z

(=0 (t) EYEER, + T+ +ITHIV).

In order to further estimate the derivative of the energy, we shall pick up
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the term /. We first rewrite I as follows.

(30) I=2(ac—a)e’" "5\59?(1'(1)”4-%(150,), v"+iaev,—bev+8a(§>3v)
+2(qe—a) e @R (%asv,. v tiacw— b +e% (&) uzv)
~2(6a=0)e ¢ RO Fur, e HO T o Hiawi— b+ 67D
+267(0 26 OR(e () Fu, e HO T Gutiown— b+ e (O)

a 1 a -1
+2 aéép(" ‘E’\;fﬁ (i€T<E>u21’t, e <§>u z (vtt""iasT’t —bev+e* <S>511> )

_b, ) (EN _ ___1_ . _
me‘” > 9{< Vit 2051/;, Vit iaev:s b5v+8"<E>§v>

+2—_—b _*__—:Z ® ze‘”" ‘5/5ﬂ?<—%aav¢, v tiaw, — by +e% <§>§L)
& v

—i ,
_be+3a<5>le

+2

+2 DN +iaer,— b+ e (E) [
For this expression, we remark that the denominator or the fraction in the last
three terms is not zero. since —b. is non-negative by the condition (4).

Noting the definition of the energy (28), by (26). (27), (30) we obtain

i

vt lesvt

2
'H’l’u Fiacv,—bev+e® <€>L2’U!Z}

(31) 1<CeF e

g‘ [(e\x .
+Coe2 (&), e ‘{%aﬂv:lz v Fiaeve—ber + % <E>3v!2}

FCoe (B2 EHET(E) Jurd2 462 (8) 7 un Figeve— bev et (O
e (©)267" € He? (©) o2 e 2 (8) vy Figew,—ber +e () B[D
2

FCot 2 HE), & HEE (@) Ju e E (E) o Fideve — bev et (O]
B\ . 2 2
+Cos“1e""’<"’”{ +lontiaevi—bev+e* () ]

1
vt 5aev
tt 2 evt

+C05_1€pu‘ 5’5{%615le:]2+ I‘Uzt+7:aavt-bev+sa <E>5vl2}

+2C05_1€pm <§>5|1’n+iaavt— bev +& <§>3L‘l2

g Co$%<§> uEzs,u+COE% <E> uEsz.u+COE%<E> uEez.v'*-E% <§> uEezp
+Coe T EZ,+Coe T EE,+Coe T B2, +2Coe T EE,

= (3Co+1) €2 (£) B2, +5Coe'E2,,

here we used 2R (z1, z2) <|z1/2+2,/2 for %, %, €CL

Secondly we shall estimate the other terms. From the definition of the
energy (28) we also find that
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<S> ulvt,

(32) E2, 200 {_as+5a & }]v,|2>eﬂft) ®;

Dealing with the terms II, IIl and IV together, by (26), (27), (32) we
obtain
(33) H+II+I1V=2¢" " ER(( —age+b+ ae>v, vn> +e? O R (ialyy, vir)

+%e"“‘ Clacv 2TV

=ac(ae—a)e®" PR (v;, v) +2(b—be+e%(E)D) " R (1), v1y)

FIGKER ) o) &}

vt|2+age”“ & R (v, ver)

+acace”
=2(a.—a)e”" ‘,mﬂf<—2*asrt. v,t+§a51’,>
2 (1) (@ a 03 -2 e -1 i
+2(b—b.+e” <§>E) e )ER<54 <E> wg, € 4 <€> v 2 <vtt+§aevr>)
e () Ve (O ol (—) e (O % Ve (@ uil
+ 200 R (e @ Fvr. e T v+ Fane))

1
fl’,‘.

< %‘< a!t’<$:l2| 24
<Coe? (&) e 104

—%aau) <= ——;— X “third term")
)
+(Cot D) (@2 O E (@ ot +e T (D)7

+Ce8 (0,8 (@ e

+Coe™ Q)5 (82 e e () il
+Caet 0 e E @ e E ()5

+2ae'cpm (E‘:ER<

i
'U”+7)_(15’Ut
[

]

i
vutoas;
2

. '2
i +%a5v,‘ }
<Cot? @ uELA (Cot D) F @ B2 A+ e ES + Cue™ B+ Cue™'EL,

= (ZCO+ 1) 5%<E> uEg.u+%c08—1Esz,u,

here we used R (iz, z2) =R{i|z|2} =0 for 2€C.
Therefore by (29),(31),(33) we have the estimate

(34) B2 S0 (0 (O BELA+Ciet (52,4 B,
_ 15
where C1—500+2, Cz 2 Co

Thus Gronwall's inequality yields
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EZ,(t, &) <EZ,(0, &) exp [ f; '{p' (7) (§>5+Cle%<f>,,+cze"l}df] for "t [0, T].
a 2 Teat_ TeaX
Since s (=£71) <1+7, we find m—ﬁ:<0 and (E)2F <p¥e

2
Hence we take e= (£), 2*@ and obtain

B2, 9 <EL 0, Dexp| ©3[[ (0 (0 + (Crb ey ]
=E£,(0, §) em[(&)ﬁ{p (t) —po+Catu7*%““"}] for "t [0, T1,

where 00=p0(0), C3=C;+C..
_2__
Moreover we determine o (t) =po— Cs tv2+@ " and choose v>0 such that

2 __
0(T) (=po—CsTy¥a *) >0 for any given T>0.
Finally we have the energy inequality

(35) EZ, (¢, &) <E2,(0. &) for t€ [0, T] and "E€RL

2.2 Case of k=1

We next treat the case of 2 =1 which implies that the coefficient a (¢, §)
belongs to Holder class while b(t. ) belongs to C* class in ¢ at least. Therefore
we shall only regularize the coefficient a (£,§) as (24), and get

0.t £ <CoE T O laclt, £) —a e, O] <Cot ? (8),

With the coefficients ae (t. ), b(t, &) we shall define the following energy.

(26)°

(36) Ee,v(t, E)Zzep”) \Sﬁ{ I/'tt+7:a:5 (t, E)’Uf—'b(ty S)v+51+a<5>31’lz

+

1
vetsae (t, & v,

(2 g el
Differentiating (36) in ¢, by (23) we get
37) Ed; (E2,) =0’ (t) (D) U2, +2¢°" "R (i (ae—a)vy+e*(E) kv +iaw,— b,
v tiaw,—by+elt? <§>5v>
+2e"(”<€>:§R(—iav"+bv,+—;~aevt,+%a;u,, v,,-f-%aw,)
+2<£4§—b +el** (&) E)e"(” R (v, ver) +e @’5(%a5a;—b'>iv,|z

(=0 W) (EEE, AT+ +I1IT+IV').
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Noting that

e P (- o5 Y
THHEOL (—ptern() TR

= (1+a) [{(—b+e= (@ T e (9,77,

similarly as the case of #=0, we can estimate I’ and II'+III'+IV’ as follows.

(38) r=2(a.—a)e"" @fm(i (v,,+—;—a5v,), v,,+iaev,—bv+s““<§>fv)
+2(a.—a)e’? @:?R(%asv, vy tiaevs— by +et® (S)év)

Foeta(g)z, 9@@»91(5 O, 4“(&);%(v,,+iasvr"bv+e“"‘<§>51))
+ 24007 <5>5?R(ie—4—a(5>§v,, e DT (v ige, —bo e (E)Ev))

+2 —b +:111a <E> Zep(t) (E)"fo(_v“ —%as’l/‘, vu+ia€v;—bv +81+a <€>E’l}>
v

+2——————_ b +:ll:~a <§> Zep(r) (E)“xm(_%asvt, Vit +iaevt—bv+8”“<§>3v>

+2 _b +_;llia <E> zep(” (E):Ivtt+'iasvt —bv +El+a <E> 3’0!2

<C05 2 <E>LE5»+COE <§>»Esv 3 Z <E>vEey+C05—lE5y
+(+a)|{(—b+era @ T |t ez,

+ (1+a)|{ (—o+ere @ T | iR,

+2 (H—a)l —b+el*2(€)2 1+a} e & ;ﬂzWE;“.y

= Q0D T @B+ e B+ () [ (e @) T 1R,

(39) mr+mnr+iv
=2(a.—a)e” 'R (‘%asvt, Utt+iasvt>

264 ()50 O (e 5 9 B, 59 T2 (vurtSaune))

1 ’ - =\ - by a _b’ ¥ £
+§aes 2 <§> lJlep(r) @”aEE 2 <€> vlvt‘2+m€p(t) (E>u(_b+81+a <§>3) |vtlz

+2ace *Y @‘fﬁ(l _1___<§>th - :a <E>;%<vtl+%asvt))
<C05 <S> uEe u+5 <E> vEeu _lEsu

+ 1+ [{(—b+e (O Hay |e1 (O TaE2, + Cos~ B2,
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a .
= (ot D)€ T (O L + 300 B+ (L+a) | ((—b+e (9 WY |e (7 E,.

Therefore by (37), (38), (39) we have the estimate corresponding to (34)
of the case of #=0

1+a
% (Eszu) SP' (t> <§> ﬁEez.u+c45 2 <$> vEez,v+C55_1E§,u

1 2
+Cel{(—b+e*(§)f) Ha}|e7 (D), THEL,,
where C;=3Co+1, Cs=3Co. Cs=5(1+a).
Thus Gronwall’s inequality yields
t lra
40) B2 © <EL 0. Dexp| [0 (0 @1+Ce (@ Coe
1 2
+Col (= (0) +e () TR e (8,7 dz| for *te [0, 7],

Here we shall introduce the following useful lemma.

Lemma. (Colombini, Jannelli, Spagnolo) Let f(t) be a real function of class
C**® on some compact interval IC R, with k integer 21 and 0<a <1, and assume

1
that f(t) 20 on I. Then the function [+ is absolutely continuous on 1. Moreover

1 -+
I(=a) I <C e, o DIf
For the proof, refer to [3]. From the condition (4) we can apply this
2
lemma to (40). Since s (=&~") <1+‘1‘_§g‘, we find g%—x<0 and (©F <
2

2
y3+a " Hence we take e=(€),%"* and obtain

cire () -

t 2,
EZ, (1, &) <EZ,(0. §)exp [<E> b j; {0 () + (Ca+Cs5) v3+e
1 —2_ _2 _,
FCll(—0 (D) + e () )1 TFE T ad]
2,
<E%L 0, §exp[(©)Ho () —po+ (Ca+¢i (1)) 3 3] for t€ [0, T],

where C;= Cs+Cs, ¢ () is a bounded function independent of & and satisfy

1 2

$1(0) =0 and ¢ (t) =CeC (t) |— b+ (E Y (&), 1+,

Moreover we determine p (t) =po— (Cit+ ¢, (t)))ﬂ_“%_”. and choose v>0

C1+a
2 _
such that p(T) (=po— (C;T+ ¢, (T) ) v3+a *) >0 for any given T>0.
Finally we have the energy inequality

(41) E2,(t, &) <EZ,(0, &) for € [0, T] and "EE€RE



HYPERBOLIC EQUATIONS OF THIRD ORDER 261
2.3 Caseof k=2

We finally treat the case of k= 2 which implies that both coefficients
a(t, &), b(t, &) belong to C' class in ¢t at least. Therefore we don’t need to
regularize the coefficients a (¢, €), b (t, &).

With the coefficients a (¢, &), b (¢, €) we shall define the following energy.

(42) Ee,u (t, E)2=e"('”m{|v”+ia, (t, S)’Ut'—b(t, E)U+Ek+a<s>5’vlz

+ (gﬁf)j_b (t, &) +-ek*e <5>5) [v,|2].

vatsalt, v +
Differentiating (42) in ¢, by (23) we get
43) LE)=0 1) (@
+ 200 O (s"’*"‘ E & +iavi—bv, vetiav,—bv+e*e <E>5v)
260 O~ Lo, b, v, vut-Save)
+2(%z—b+ek+“ (S)f)e"m ©IR vy, ve) <5>5<—é—aa’-b')lvtlz

(=o' (t) (& rE2,+I"+I"+1IT"+1V").

Before we estimate the terms I” and II” +III"+1V”, we shall culculate the
parts concerned with the coefficient a () in advance. From the condition |a () |€

CHTa([O, T1) (2 ([0, T1)). we can see |a' (t)|=lla () |'|. Hence it holds that for
wt, & =vu+ia G, E)vi—0b(t, E)v+e (&) or v,ﬁ-%a (t. &) v,

ay e (sl o, (2ette.) )
<later | (ol @, e (400 ]

|a| "—*4 ng kg ’
= K <E> )] p(n@ (4 +Ek+a<5> )IU |z+r> ( 2 te <$> )

e BT,

32|{<||a|| m@ ) EE+2 (%ﬂi(&)”)’ B2,
(944 o.) Bl e,

o ® <£>:|w|z

<seta|[(ld+'5 @.)7) | o,
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And it also holds that

2(al 5 p,) - o (45 0),)
Y

(5+70.)]

(1245 g) p) F

<sera|((d+%@.)7 |

(45)  aa'®®hy2< ( p(r)(&)( e (g2 )|v e

<4

2
“HE) e EL,

n (44),(45) we used “—2+ek+a<s>5zz(i+ e.)
b .
—b+e k+a<$>2

using (44) with w (¢, &) =vy+ia (¢, &) vi—b (¢, &) v+e*+*(E) %, similarly as other
cases, we can estimate I” as follows.

1 __2
Noting that < (k+a) [{(—b+ee (&)Y Fa} |e71 (§), 7+, and

(46) I"=2&**(E)%" o8 vSR< <$> fu,, & <€> v g (vut+iav,—bv+e** ()} ))
+aweoon(i(laly 5y )%
(L+ RO TS

+Zm§emﬂ (9:%(_1)“_%(111:, v tiav,—bv et <§>51))
+2——IJ—+—;%“<—§—>—E o) (E)qi( 5V, v tiav,—bv+e e (ED )
+2__—;I:TI-)+?@€0(” O |y, i, —bv+eFr e (B |?

eH® ZT"*Z—EEEZ,,,

<T@ 3 6ra) (847 ©.)7

2
-1 <§> Y k+aE§'y

+ G+ | (—pter= o Pa] |

2 _
8-—1 <§> Y k+aE52,y

+ G+ [{ (—p+ a0 Tra]
O TER,
((lels f2g),) o)

2
et <S> VETEE

+2(k+a)H(—b+ek+“<$>5)ﬁ}'

eTH(&) ;Tf_“EE y

k
= 2 (E),EL+3(k+a)

+aeta)|{(preraenTa)
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Aa for I’ +1II" +1V”, using (44) w(t, & with v,,+%a (t, & v; and (45),
similarly as other cases, we can get

A7) I +0r+1v=2¢"+*(&)% "”9211( <§> Zus, € 4"<5>;%(v,,+%aut))

_{_%aa FLICE lZ+b—+~;i;_<_ES_2€p(I)(6)5(_b+ek+a<e>3) o 2

el i o (84050 )

<0042 00 [+ 0. e @7,
+ (e o) [{ (b (@9 Pa) e (9 FaEz,
£36ra{(dre @) Y o,

=& 70 B2+ (bta) [{ (—b+et*a (8D Fa)|e-1 (&) JFae,
+%(k+a)“(%+sk_?€<$>»)ﬁi]’

2
et <E> v k+aE§,v-

Therefore by (43), (46), (47) we have the estimate

(Es W) <o’ (t) (612 v+Csﬁ <E> vEZ,+Cs
((g+e't0.) ™)

where Cs=2, Co=5 (k+a), cm=%(k+a).

{(—o+ere@pTa) e orrtams,

+Cho e (& ;“—“Eez,u.

Thus Gronwall’s inequality yields

5—1 /8> k'Hl

E%(t &) <EL(0,8) eXp[f {0 (1) <E>x+08£%<§>v+09 {(_b_,_ekfa(e)g);i—a}
((lel+e5%0.)7) |- @ rear] tor w10, 71,

Hence we shall also apply the lemma in 2.2 to this inequality. Noting that

— .._1 k+a 2 _ . — _;;kzg .
s(=g ) <14+F%— 7 \3TrTa £<0]), and taking e=<&), . we obtain

+Cro

E2,(t, ©) <EZ,(0, 8

XeXP[@)ﬁj‘;l{p' (0 +Cgl)ﬁi-n+09 {(—b (1) +et*e <E>5)Wla]
(o)

=E2,(0, 8 exp| @0 ) —put+ (Cat+ 2| for e [0, 7],

(&) Faai

+Cuo

& ;ﬁ&uu;ﬂz '“]dz‘]
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where ¢, (t) is a bounded function independent of € and satisfies ¢ (0) =0 and

2z
G, e

IO P el 02+ 5 @),

@2 (t) ZCoC (1) || —b+e*+ ()]

_2
Similarly as other cases we determine o (t) =po— (Cst+ @2 (t)) V2Z¥e+a ™" and

2___
choose v>0 such that p (T) (= po— (CsT + ¢ (T)) LZ#¥+¥@ ) >0 for any given
T>0.
Finally we have the energy inequality

(48) EZ,(t, ) <E2,(0, &) for "t€[0.T] and "E€RL

2.4 Conclusion of the proof

Putting
a:(t, &) for k=0, 1

(49) aw(t &= l b (¢,

&= be(t, &) for k=0
a(t, &) for k=2, 3+,

bt &) for k=1, 2,

we can alter the definitions of energies (28). (36), (42) into the following.

(t. &) vi—bw t.E) v+ (&) [?

(50)  E.,(t &)2=¢t ga;{ '

+ v:ﬁ’%(l(s) (t. E)vtlz“l‘(a—(e)_%_&“b(sv (t, 5) +ekte <€>E>lvt|2]

Since the energy inequalities (35). (41), (48) are same, it holds that

(51) E2,(t, £) <EZ2,(0, &) for "+€[0, T] and "EERE

We shall change the energy inequality (51) into the inequality based on the
absolute values of v, v; and vy. For this aim we must investigate the relations
between the energy (50) and the absolute values of v, v; and ve.

From the definition of energy (50) we can easily see

(4 £)2 S
(2) Btz (200 (g et o e O T

We can also find

el

2
_____epm <§\:[§1vu|2+'2-|v“}2+fﬁ (Utt, ia(sﬂ’t) +gflvt|2]

- 2
(53) Eez,yzeﬂ(') o {Ivtt+ S5Ae)Vt

= <E>f{_%.,v”[2+%'v“ +i(l(e)vtl2}

2 ]-ep({) (E):[UHIZ.

2
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Moreover we can see

(54) Eez,u >0 (#) <E>c‘{

. . )
(Utt+';—a(e)'vt> + <_§_a'(e)vt_— bewterte (&) ‘
2 2

o

. . 2
=¢" (&>5Hﬁ ’Utt+%‘a(5)vt>+71_—(1§a(5)vt_b(e)v+sk+a &%)

1
+ ’Ut[+§a{e)'l)[

2
'f'% %ﬂ(s)vt bew+e*e <5>§U "f IZ}
> P <5):{% 'é_a(e)'bt b(ew‘i‘e”“ <§>u1) a(a) |v | }

1 2
= p(r)\é) 'ﬂa(a)vt ﬁ(_b(e)v+5k+a<é>5’u) +§I—b(s)v+5k+a<s>5vi}
> pﬂ)(c‘).’fl — k+a 2 z 2
2¢ 3 bete <S>u lvl
2%‘80(” ©%p2tk+a (E},‘flvl2=%epl” @:@)?EWMZ.

While the energy Ee, (0, ) can be also dominated by the absolute values of
the initial data. From the definitions of the energy (50) we get

(55)  Ee, (0)2=e”°@5{|vz i (0)vi—be (0)vote*+ (&) Zol?

. 2 2
+ 1)2+%a(z~:) (0)vy| + (9_@_)4(_@___11(5) (0) +ek+e <§>3>|v1l2]

=¢” @5{2[1’2}2'*' <%a<5) (0)2=b (0) +¢**a <€>3) |1’112+2§H<Uz~ %a e (0)01)
(=00 (0) 62 (O Aol 2R (v, (—bi0 (0) 6 () 00)
+29 liaw 01, (—bi (0) +e7(E)3) vo) )

Se”"@”{l&lvziz‘i‘ <l4%a(5) (0)2—be (0) +e*+ (&) 5) ]

2
+3<"b(e) (0) +ek*e <5>5> Ivolz}
<o (&) ol + (&) ol +lual?).

Using the energy inequalities (51), by (22) and (52) - (55) we have the
energy inequality based on the absolute values of v, v; and vy

R SR C i MO
<3 Cabem(s); ( <E> 3!110|2+ <E> 5,1)1'2+ ‘1)2,2) (< °°> ,



266 TAMOTU KINOSHITA

and by square root of the both sides we also have

(56) ep—gL(E);( <E> 3+z+a|vl + <§> 5+f+a I'Vfl + lvtt')
<3 Cae 7O (&) Huel + (8)Jual +lva]) (<o),

Putting # (t) =%—p ), ,uo=%po, we can see that (56) implies (7). In vitue of

Paley-Wiener theorem, {u ( -, t):t€ [0, T1} is bounded in 75. Thus taking into

account that # is a solution of (1), we find » € C3([0, T1, 78). This concludes
the proof of Theorem 1.

§ 3. Proof of Theorem 2
We shall only introduce the definition of the energy.
(57) Ee,y (t, 8)2_—_@00) <E>:{{Ut;+1:as (t. E)‘Ut—be (t: E)'Ulz

+ (288 9 o).

1m+%(le (t, E)Ut

We remark that for this energy there exists the constant C>0 such that

C7e? O (ol + (O Bvil +vul2<Ee, (2, §)2<Ce™ @ ((8) ool + (&) Juil +Ival?)

Similarly if s (=&™!) satisfies (10), we can get the energy inequality

(f)( x 0 /8\ x
(58) 62 (Ol + @l Hou) <3 Care® T (@it (O lorl +od) (<o0).

Putting (t) =%—p OF ﬂo=%po, we can see that (58) implies (11).

§ 4. Proof of Corollary 3

In this section our task is also to derive the energy inequality. By Fourier
transform the Cauthy problem (12) is changed to

FlLul ¢, &) =—c(t, Ev+id ¢, E)viteW)vutift, Ev+gB)vi+h(t)v
v(0, &) =v0(8), v:(0, & =0:(x), vu(0, &) =v,(8),

where ¢ (¢, E) = Z?,J‘=1Cij (t) £, d (t, S) = 2.1=d, (t) Sz.f(t, E) =201/ (t) &

In order to reduce the proof to the argument of § 2, we shall culculate the
parts concerned with the lower terms.

In (29), (37), (43) the following term also appears.

(59)
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(60) 260 O(F [Lu (1 &), w1, &) +uet, §)),

where w; (t, &) =vptiaew:—bev+e (O, w2 (¢, §) =vu+%a<e>vt.
Picking up the each term in & [Lu] (¢, €). we shall estimate.
i) the lower term —c (¢, &)v

Noting that (54), from the assumption (14) we get for [=1, 2
2¢° <m?)‘l(--c (& &v, wit, S))
<2091, E)uhl <29 ¥ —bio e+ ©3) ol
< @501(_b(e)+Ek+a<f>f>m_l{("b<e)+€k+a <E>5>Z|v!2+[w,]2}
<400 @’m(— b+t (8) 3)51-1E§.»
<4083 ( (B2 ) k@ Gi-vE2
Hence we obtain
(61) Ze"(”(miﬁ('-c(t, Ev, w ((t, &) Fuwy (t, E))Scue"(') ©3 (5, (&) 28-7) gt r-vp2
where C11=8.

i) the lower term id (¢, £)v,

Noting that (52), from the assumption (15) we get for =1, 2

Zep(:) (E)ﬁm(id (¢, E) Vs, Wi (t, E))

SZe”(') <E>:{d (t, S)U”wll Szepm <E>;02(a%s>_4b(s>+4€k+a <E>5)Bz|vt"wz|
S Y B (o ey, o
< 928100 D3 (Qf__b@ +ekta(g) 3)52'?&;’”

< 92821, () (E}:(UZ <€ 2;92—1)8(k+a)<ﬁz*%)Eg'v.

Hence we obtain

(62) Ze"“) <E>¢§R (id (t, E)v w (t, s) +w, (t, 5)) <Cu ep(f) [GH ( <$ ZBz—l) E(k+a)(ﬁ:——‘>E€y,

where Cip=2%%+2,

iii) the lower term e (¢) v
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Noting that (53), we get for [=1, 2

2670 Ot o () vne, i (¢, ) ) <2679 O (o

< o0 ®

o O (Joule-+lwd?) <220 @ ()2,
Hence we obtain
63) 2O O wr . ) Hualt, ) SC2e?® e (D22,

where Ci3=4.
iv) the lower term if (¢, )v

Noting that (54), similarly as i) from the assumption (16) we obtain
(64) 2 enu) <5)"’9?(1f(t, f) v, (t, 5) +w;1(t, 9)5 C wp(’) (E>:(03 <E> 253—1) <E>El$(k*m(&-”Esz,v.

where C14=38.
v) the lower term g (t)v:
Noting that (52), we get for I=1, 2
2¢° QR (g () e, wi (¢, €)) <262V Vg (D) vilwl

<" g (1) |39 (Dol i) <2 g () e 5O EL

Hence we obtain

k+a

gW]e2 (O'EL,

(65) 2 @“ﬁ(g ) ve, wi t, &) +uws ¢, 5))301512”(” @

where Ci5=4.
vi) the lower term A (f)v

Noting that (54), we obtain

66) 2Rk (), wy (1, &) +un (1 ) Ce?™ Ph (1) =4+ (§) 222,

where C1s=38.
Having (13), (17), (18), (19) and (59)- (66) under consideration, with the
similar methods as the proof of Theorem 1, we take

[ 2 1 1 2 )
B A Y PR R R R e AR EPRY
=, T o (Fop) T (-5

’

and determine



HYPERBOLIC EQUATIONS OF THIRD ORDER 269

L L g
2 1-8 2 P2 8

"‘“[z+k+a' 34 1-B: s_ﬁ}"‘
2

p(t) =00~ (C17t+¢3(t))v ' T

and choose v(=v,) such that

1 1,

maxlyr i, 20 2 -2 3]—,:
2FRFa 3 g TR 3,

0(T) =po— (C1sT+¢5(T)) v 2 2 >0

for any given T>0.

In conclusion we also get the energy inequality (51) if the lower terms
satisfy (13) which is the condition concerned with regularity and (14), (15),
(16) which are the conditions corresponding to a sort of Oleinik condition for
the third order equation (12) and s(=k™") satisfies (19).

. x 1 «
Moreover noting that EZ,=¢° €5 (&)2y,|2 E2,> ge" 0@ (y4]))2 we also

have the energy inequality based on the absolute values of v, v, and vy
G TR N
(67) e (&) %lv|+ (&) Ul +vel)

B0 (8 Hol + () Jonl FJoa]) (< 0)

where w is the constant defined in (21).

S 3 Cabe

Putting p(t) =%p (t), ﬂOZ%pO, we can see that (67) implies (20).
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