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§ 0e Introduction

The Borsuk-Ulam theorem [1] states that i f / : Sm~*Sn is an odd map
between spheres, i.e., / ( — x ) — ~~f(x) for all x^Sm, then m<n. This theorem
can be extended to a class of G~maps SU—+SW between the unit spheres of
linear representations U and W of a compact Lie group G. If G is a torus or a
j?~torus, i.e., if G is a product of circle groups, or of cyclic groups of order
p with p prime, then the existence of a G-map/: SU-+SW with the fixed point
set ^={0} implies dim [7<dim W (see [3] and the references there).

In this paper we will see that if we make an additional assumption on U, W
or / then U must be a subrepresentation of W.

Let S1 = {z & (C | \z | = 1} be the circle group of complex numbers with
absolute value 1. For any integer a let S1 act on Va

 = (C via (z, v) ^~*zav for
zGS1, t?e va. For a sequence (ai, ..., a*) of integers,denote by V(ai, ..., a*) the
tensor product Vai ® • ° • ® Vak, which can be considered as a representation of
the ^-dimensional torus Tk = Sl X -•• x S1. The set of such V(a\ a&) gives a
complete set of irreducible unitary representations of Tk, and so any finite
dimensional unitary representation U of Tk decomposes into a direct sum

where u (ai, ..., a*) is a nonnegative integer and V (ai, ..., aA)w(ci-"a&) denotes the
direct sum of u Ui, ..., a*) copies of V(ai, ..., a*).

Let E[XI, ..., Xk\i denote the ring of Laurent polynomials in xi, ..., Xk,

/Cri, ...,x*) =
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where ii, ..., ik run over the integers 2Z, and a (ii, ..., i*) 's are integers and only
finitely many of them are nonzero. / (xi, ..., Xk) is irreducible if it is not a unit
and if whenever

then one of 9 (xi, ..., Xk) and h (xi, ..., Xk) is a unit.
Using the equivariant ^-theory in the previous paper [2] , we obtained a

necessary condition for the existence of a G~map St/~-*SW in terms of the
Euler classes of U and W. Along the line of this we will do a further study for
the case of G = T*, and obtain the following results :

3.1. Let

U=®V(a, ..... a,)M(fll ..... ak\ and W=®V(alt .... ak}
ma^ak)

be two unitary representations of Tk with WT" — {0} . Assume that whenever

w(ai, ..., aj is nonzero then l—xil-°°xa
k
k is irreducible in Z[xi, ..., Xk\L> Then there

exists a Tk-map SU — »SW if and only if U is a subrepresentation of W as a real
representation.

We see that 1— xfl8°'x|& is irreducible if a /=±l for some i(l
If U is a unitary representation, S1 acts on SU via scalar multiplication.

Then we obtain

Theorem 0.2. Let U and W be two unitary representations of Tk decomposed
into direct sum as in Theorem 0.1. Then there exists a Tk~map f : SU~*SW such
that f ( z u ) =zmf(u) for any z^-S1 and u^SU where m is a fixed nonzero integer, if
and only if u (a\, ..., a/t) <w(mai ..... ma*) for any (ai, ..., a*) with u (a\, ..., a*) =5^0.

In this Theorem, if m ~ 1 then U must be a subrepresentation of W as a
complex representation.

After discussing some prerequisites in § 1 and § 2, we will prove Theorems
0.1 and 0.2 in § 3. Finally in § 4 we will correct the incorrect part of the
previous paper [2] .

§ 1. G-maps between Representation Spheres

In this section we will recall some prerequisites from [2] .
Let R(G) denote the complex representation ring of a compact Lie group G.

The Euler class A-iU of a unitary representation U of G is defined by

i
where A1 U is the t-th exterior power of U. The equivariant K-rmg KG (SU) of
the unit sphere SU of U is isomorphic to R (G) divided by the ideal generated
by 2-iU:
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KG(SU}=R(G)/(A-iU).

For a second unitary representation W of G, let/: SLJ— *SW be a G-map.
We have a commutative diagram :

identity
R (G) - >R (G)

K2 1 I TTi

tf (G)/ W-iWO =#G (SW) - »KG (SU) =R (G)/ W-iI7)

where ?TI and 7T2 are the canonical projections. Then we obtain

Proposition 1.1 ( [2; Proposition 2.4] ) . // there exists a G-map SU—*SW,
then /Li We (X-iU) inR(G).

Now we restrict our attension to the ^-dimensional torus Tk. Then

tf(T*)sZ[xi, ...,Xk\L

(see [2; Proposition 3.1]). Under this isomorphism the representation V (a\, ...,
ak) corresponds to the monomial xil-"xa

k
k

Let

be a unitary representation of Tk decomposed into a direct sum as in § 0. We
have in R(Tk] or hence in TL\x\, ..., xk]L,

where the product II is taken over the sequences (ai ..... ak) .
Proposition 1 . 1 implies

Proposition 1.2« L^^

... a*)1*^ ..... c&), and W=®V(ait ..., afc)

;o unitary representations of Tk. If there exists a Tk-map SU—*SW, then in
, ..., xk]L

(1.3) II (l-xf'"xf )w(a^ ..... "} = ablt .... xk] [I (1-xf-xf )«<-i.-^>

/or some a(x\ ..... xk) ^Z[xi} ..., xk]L.

§ 2. The Eing of Laurent Polynomials

Any unit in 7L\x\, ..., xk~\L is of the form ±xil~°xk
k for some integers a\ .....

ak. Note that 1— xf'-xf and 1— xiai-~xk
ak differ by a unit factor. In fact
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l-xf"«xf=-xf-xf (l-xl^-xr1*).

Z [xi, ..., Xk] denotes the (ordinary) polynomial ring over, Z, which is
contained in Z[xi, ..., xJi as a subring. Given /[xi, ..., xj ^Z[xi, ..., xJi, then
xf-'-xf/ (xi, ..., XH) is in Z[xi ..... x/J for sufficiently large a^ 0 (1 <i <&) .
Since Z[xi, ..., x*] is a unique factorization domain x?1 °°°xf f c/ (xi, ..., x*) is
uniquely expressible as a product of irreducible elements up to units (= ±1)
and the order of factors, i.e.,

(2.1) rf'

where/, (xi, ..., x*) (l <i <w) are irreducible polynomials in Z[xi, ..., xj and
are uniquely determined up to sign. The equation (2.1) gives

/(xi, ...,xt)=xrai-xFfl*/i(rif ...,x*)-/w(xi, ...,x*)

in S[xi, ..., X/L! L. fi (xi, ..., x/t) (l ^i 5^m) are also irreducible in Z [xi, ..., x*] L.
This gives

Lemma 2020 Z[xi, ..., xji 15 a unique factorization domain.

Lemma 2630 (i) 1 -x?1— x?* divides 1 -x\l~*xlk in TL [xi ..... xk] L if and
only if I (ai, ..., a*) = (bi, ..., 6*) /or some l^Z

(ii) // (61, ..., bk) =£ (0, ..., 0) then any factorization of I— Xi'-'-xf* has at most
one factor of the form 1 — xl1- °xlk

Proof. First we prove the necessity of (i) . This is clear if (bi, ..., bk) ~
(0, ..., 0). So we assume fr^O. Then we see a^O. We assume further that

a&>0 and 6*>0. (Noting that 1— xi^'-xj* is different from 1— xlcl°*°XkCk only
by a unit factor , the case of a&<0 or 6/ c<0 can be deduced from the case of
a*->0 and 6fr>0.) Letting m = <Zfc>0, n = bk>Q and x=Xk, then Z[xi, ..., xji
can be considered as the ring of Laurent polynomials in x over Z[xi, ..., x^-ili,
i.e.,

Letting ©= (ai? ..., a*-i) and &= (&i, ..., ̂ -i), we put a (e) = xi1 • • • xf l~i and
a (6) =xiu'ex|l~i. By the assumption, 1 — a(m)xm divides 1 — a(b)xn, i.e.,

(2.4) l-a(b}xn= (l-a(a)xm) (arx
r+ ar+1x

r+1 + -+ar+sx
r+s) ,

where r, 5^Z, ar, ar4-if .... ar+s^Z[xi, ..., x^-Ji, s is nonnegative, ar and ar+s is
nonzero. It should be asserted here that ar— 1 and r=0. Then (2.4) becomes

(2.5) l-a(6)jjf = l+aix+-+asx
s-a(fl)xw-a(c)aixlll+1 ----- a(a) <*&*+*.

If 5 = 0, we see m=n, a(m) =a(6) and hence (ab ..., a*) = (5i, ..., &*). If s>0,
then we divide into the two cases : s <w and m ^s. For the first case,
comparing the coefficients of esch x1 on the both sides of (2.5), we see that this
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case can not occur. For the second case, comparing the coefficients again, we
see that n=m + s, and s is a multiple of m, say s= (l — l)m, then a(b) =a(a)l =
a (la) . This implies I (ai, ..., a*) = (fti, ..., 5*) , and completes the proof of the
necessity

The sufficiency is easy. In fact, assume / (ai, ..., a*) = (&i, ..., &*) and let
X^xf-xf . Then

if

This shows the sufficiency of (i) , and (ii) . LH

§ 3. Proof of Theorems 0.1, 0.2

Proof of Theorem 0.1. If U is a subrepresentation of W, then there is the
inclusion map SUC^-^SW1 which is a T*-map.

If conversely there is a T*-map SU —*SW, then we obtain the equation
(1.3) from Proposition 1.2. From the assumption and Lemma 2.3 (ii) we see

that \—xa\"'x<ik is irreducible if u (ai ..... a*) or w (ai, ..., a*) is nonzero, and
further that

since S [xi, ..., x J i is a unique factorization domain. This means that U is a
subrepresentation of W as a real representation, since V (ai, ..., a/c) and V(— ai,
..., —~ak) are isomorphic to each other as real representations. [D

For unitary representations [/, W of a compact Lie group G, and an integer
m, let ^'=[701^1 and W/z= W®Vm, where Vi, ym are the representations of S1

given in § 0. Then U' and W become representations of G x 51, and we note that
the following (3.1) and (3.2) are equivalent :

13.1) There is a G-mapf: SU~*SW such thatf(zii) =zmf(u) for z^S\ u^SU.

(3 . 2) There isaG* Sl~map SU' -*S W.

X*Y denotes the join of the topological spaces X and Y. If X and 7 are
G~spaces, then X*Y admits the canonical G~action. Two G-maps/: X~*Xf and
g . Y—> Y canonically induce the G-map / * g : X * y— » T * 7'. For two
representations Ui and [/2 of G, we see SUi*Sl/2~S (Ui@Lr2). So G~maps h:
SUr^SWi and/ : SU2^SW2 induce the G-map h*j : S(Ui®U2)-*S(Wi®W2).

We will now prove Theorem 0.2.

Proof of Theorem 0.2. For unitary representations U and W of Tk

decomposed into direct sum as in Theorem 0.1, representations U'~U&)Vi and
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W'=W®Vm of Tk*Sl are decomposed as follows:

u(a* ..... ak =

where both the direct sums are taken over the sequences (a\ ..... ak) .
First we assume that u (#1, ..., ak) ^w(mai, ..., mak) if u (aif ..., a*) =£0. The

map p : S1 -+S1 with p GO = zm for z e S1 yields a T* X Sumap from S (F (ai, ...,
a*, l)) to 5 (F(wai, ..., wa&, w)) . Taking the join of such Tk X S1"maps for all
(ai, ..., aA) , we obtain a

i, .,., mak,

This yields a r*xs j-map Sir->SW, since

by the assumption. This shows the existence of a T f t~map SU— *SW with the
desired property.

If conversely there is a Tk x 5x-map Sf/'-^SW, then from Proposition 1.2
we obtain, in Z [TI, ..., xft, X]L,

0 (l-^-xfx^)^ ..... ̂ } = a(xi, ...,a:*f z) 0 (l-rf-"zftr)"tol ..... G&)

for some a (xi, ..., x/t, x) ^7L\x\, ..., x^, z] £, where both the products 0 are
taken over the sequences (ai, ..., a*). Since 1— x*1 ••• xfx is irreducible,
Lemmas 2.2, 2.3 imply u (ai, ..., ak) <w(ma\, ..., wa^) if u (ai, ..., a*) =^0. D

§ 40 Correction to the Previous Paper

Finally we should correct the previous paper [2]. On page 729 of [2] it
is asserted that U=U, but this is incorrect. If we modify the definition of \j\ as
\j\ : =ai + ~'+ak + bi + "'+bi for j= (ai, ..., ak, bi, ..., bi), we can still prove
Theorem 1.1 of [2] with this modification of \?\. The new proof can be done
along a similar line of the previous one in [2 ; § 4] .
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