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Singular Solutions with Asymptotic Expansion of Linear

Partial Differential Equations in the Complex Domain

By

Sunao OUCHI*

Abstract

We consider a linear partial differential equation with holomorphic coefficients in a

neighbourhood of z— 0 in C"*"4"1,

P(z,d)u(z)=f(z),

where u(z) and f(z) admit singularities on the surface K= {ZQ = $}. Our main result is the following:

For the operator P we define an exponent 7* called the minimal irregularity of K and show that

if u(z) grows at most exponentially with exponent 7* as ZQ tends to 0 and if f(z) has a Gevrey type

expansion of exponent 7* with respect to zo, then u (z) also has the same one.

§1. Introduction

Let P(z, 9) be a linear partial differential operator with holomorphic

coefficients in a neighbourhood of z=0 in Cd+1 and K— {zo=0}. Let us consider

P ( z , d ) u ( z ) = f ( z ) .

Suppose that f(z) is holomorphic except on K. Then one of the important
problems is the existence of solutions with singularities on K. We refer results
concerning it to Hamada, Leray and Wagschal [2], Kashiwara and Schapira [3],
Ouchi [7], Persson [11] and other papers cited in those papers.

Another problem is to study behaviours of singular solutions near K. The

asymptotic behaviours of some singular solutions were considered in Ouchi [4]
and [5] and we showed that they grow really exponentially as z tends to K in
some region and behave mildly as z tends to K in another region, which is
similar to Stokes phenomenon in the theory of ordinary differential equations.
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We discussed in Ouchi [8] and [9] solutions that grow at most exponential
order as z tends to K in some region. It is the main result in [9] that for some

class of operators if f(z) behaves asymptotically f(z) ~ 2 n=o fn (z) ^o as ^— »0 in
a sector, where \fn(z

f)\<Affir(n/f* + ^) and 7* is determined by P(Z, 9) and if
u(z) grows at most some exponential order near ZQ — 0, that is, for any £>0

\u(z)\<CB exp(aUo|~r ) near zQ=Q, then u(z) has also the asymptotic expansion
like f(z) as zo tends to 0.

In order to show the results in [4], [5], [8] and [9] we used an integral
representation of solutions with sigularities on K.

This paper follows [9], where we imposed more strict conditions on P(z,
d) than Condition 1 in this paper. Our purposes are to improve the results in
[9], that is, to weaken conditions on P(Z, 9) as possible as we can and to show
them by another method, which is simpler than that in [9].

Now in order to state results let us give notations and definitions. The

coordinates of Cd+1 are denoted by z= (ZQ, zi, • • - , zd) - Uo, *') ̂ CxCd. \z\ = max
{\Zt\\ 0<i<d} and |/| = max{|^,|; l<i<d}. Its dual variables are £= (f0, £') —
(?o, ?i, —, fo). W={0,1,2,-"}. The differentiation is denoted by d^d/dz,, and
9= (90, 9i,-°°, dd) = (90, 90. For a linear partial differential operator A(z, 9) we
denote its principal symbol by P.S.A(z, £). Let Q~Qv*Qf be a polydisk with

and Q'={zf^Cd\\z\<R} for some positive constant R. Put
; larg^oK^} and Q(0)=QQ(ff) XJ7.

Let K be a nonsigular complex hypersurface through the origin 2 = 0. We
choose a coordinate system so that K— {ZQ = 0} . So the coordinate £0 plays a
distinguished role. 0(fl) (^(fl')» 6(Q(0}}} is the set of all holomorphic
functions on Q (resp.ff, Q(0}) . 6(Q(6}} contains multi-valued functions, if

In the following of this paper we consider an w~th order linear partial
differential operator P(z, 9) with coefficients in ff(Q) in the form:

(1.1) PU 9):-a^oU)9oA*+ ^ ^k)9".
aqfc(**,0)

where aa (z) 's are holomorphic on Q and a** o (0, z'} 3= 0. Let ;a ^ N be the
valuation of a«Gr) with respect to ZQ, that is,

(1.2)

We put ja=^, if Oa(z) =0.
We suppose that P(Z, 9) satisfies the following condition:

Condition 1. For all a with &*< |a| < m the sum of the valuation ja of aa (z)
and k* is greater than the order a0 of differentiation with respect to z$:
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(1.3) fa+k*>a».

We understand that Condition I is satisfied when k*=m.

Note that if Condition 1 is satisfied, inequality (1.3) holds for every a=£
(fe*. 0, 0, • • • , 0), because (1.3) holds trivially for any a with a\<k*. Condition
1 is obviously satisfied, if P(z, d) is normal with respect to 9o, that is, aa(z)
vanishes identically for every a with a0^J?* with a^ (k*, 0, 0, • • • , 0). Examples
are given after Theorem 1.4 and Corollary 1.5. Now we define an exponent 7*,
which plays an important role in our results.

Definition 1.1. The minimal irregularity 7* of the surface K— {zQ = Q} is
defined by

(1.4)
7*= min

a ^ \a\— k*
\a\>k*

r*=oo if k*=m.

If fe*<m, Condition 1 means that K is an irregular characteristic surface defined
in Ouchi [6] . If k* = m, K is noncharacteristic. 7* is named the minimal
irregularity of K in Ouchi [10] .

Let us define some spaces of functions in order to give the main result.

Definition 1.2. We say thai u(z) &0 (Q (&)) grows at most exponentially
with exponent /c>0 if for any £>0 and Q<6' <6 there exists a constant C = C(e,
0') such that

(1.5) t tU) I^Cexp(e |*o l~*) f o r z ^ Q ( 6 ' } ,

We denote by CM (Q (6)) the set of all u (z) e 6(Q(6)) which grow at most
exponentially with exponent K. If fc=oot we put CM (Q (&) ) =0 (D (ff) ) .

We note that if u(z] e 0(K} ( f l (0)) f then dau(z) e 0(x) (W(Q)} for any
polydisk W<£LQ with center 2=0.

Definition 1.3. We say that u(z) ^6(Q(ff)) has a Gevrey type asymptotic

expansion 2~=o Uk (z')zo with exponent K, 0<^:< °° where Uk (z) &-0 (ff) , if for any
0 < f f < d there exist constants A= A (6f) and B=B(ff] such that

(1.6)

holds for every n — 0 ,1 ,2 , • • • . In this case we write u (z) ~ 2?=o Uk (Z')ZQ. We denote
by Asy{K] (&(6)) the set of all u(z) ^6(Q(6)) which have Gevrey type asymptotic
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expansion exponent K.

It is obvious that u(z) ^ Asyw (Q(6}) means that it is holomorphically
extensible to z=Q. Let u(z) ^ Asy(K} (Q (6}} . Then from (1.6)

(1.7) M/ ) |<AFT+I for z'

and dau(z) ^Asy{K}(W(6)) and

(1.8) \dSu(z)\^Affrl+n+l for

for any polydisk W<£LQ with center z=Q.
Now let us consider

(Eq) P ( z , d ) u ( z ) = f ( z ) .

where u(z) , f(z) ^6(Q(ff)} . We give our main results:

Theorem 1040 Suppose that Condition 1 holds. Let u(z) &G(Q(ff)) be a
solution of (Eq) . // u (z) e 6(r*} (@(6}} and f(z) e Asy^y (Q(ff)), then u (z) has a
Gevrey type asymptotic expansion with exponent 7* in W(0) , where WClQ is some

polydisk with center z=0 in Cd+1.

From Theorem 1.4 we obtain that if /Car) is holomorphic near the origin
and 6 is sufficiently large, then u(z) is also holomorphic at the origin.

Corollary L5,, Suppose that Condition I holds and 8> (it/ 2?*} + re. Let
u(z) e 6(Q(&)} be a solution of (Eq). // u(z) e ff(r*) (Q(0)) and f(z) is
holomorphic in Q. Then u(z) is also holomorphic in a neighbourhood of z—Q.

For another subspace 3F(Q(ff)} of 6(Q(6}) we can also show the
following result, which is similar to Theorem 1.4 and Corollary 1.5:

This topic will be discussed more generally in the forthcoming paper.
Let us give some simple examples satisfying Condition 1.

Examples,

(Ex.1) df+£Am(o>,z'<&),

where Am Uo, z, 9') is an operator with order m(k*<m) and P.S.Am (0, z, ?')
0. We have 7*- ( ;+Jfe*)/(w-^).

(Ex.2) d$+#Ami (z<>, z, 90 90+4°Amo U, ^ , 90 ,
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where Amt(zo, zf, 9') 's are operators with order mt, mo>2, wi>l, and P.S.Amf

(0, z't ?) *0. We have fe* = 2 and r* = min{(^ + l)/(»fe-l) f ( jb+2)/Owo-2)}.

>Ai exp(ciUol~r*) for z^O(d) H {/ =

(Ex.3)

which is not normal with respect to 90 and fc* = 0 and 7* = 1/2.

Remark. We give a comment concerning the condition that the solution
u(z) belongs to 0(r*) (Q(&)). Let us show the necessity of this condition by a

counter example. Put QK
=@~K and denote by QK its universal covering space.

Let us return to (Ex.1). Put-PC?, 9) = 9o + z\>Am(zQ, z, 90, where we assume P.
S.Am(Q, 0, fO ^0. Then 7*= (j+k*)/(m-k*) and let 0<8<n/2r*- We can

show that there exists u(z) ^@(QK) in a polydisk Q such that

(1.9) P U 9 ) « U ) = O f

(1.10) U(Z)\<AO
(1.11) u(z0.

where At and a are positive constants. It follows from (1.10) and (1.11) that
u(z) &@(r*) (&(&)) and do not have an asymptotic expansion in Q(6).

The results similar to Theorem 1.4 and Corollary 1.5 were obtained in
Ouchi [8] and [9] under more strict conditions than Condition 1. We showed
them by detailed analysis of an integral representation of solutions with
singularities on K. In order to do so, several conditions were imposed on the
operator P(z, 9), and the proofs were long and not easy. Operators such as
(Ex.l) for j>0, (Ex.2) for jo, /i>0 and (Ex.3) do not satisfy the conditions in
those papers.

On the other hand we assume in this paper the only one condition,
Condition 1. We can improve the results in the former papers and state the
main results very simply. The proof is different from those in [8] and [9], that
is, we do not use integral representations to show Theorem 1.4, but estimate the
derivatives of u(z) and apply the following Theorem 1.6, which is itself
interesting. You will find the proof less complicated.

Theorem 1.6. Let K: be a positive rational number. Suppose that v(z) ^
0(Q(6}} satisfies the following estimate: For any £>0 and 0<0' <6 there exist
constants C=C(e, ff) and B=B(6') such that

(1.12) |yy%
holds for all w = 0, 1, 2 , - - * . Then v(z) ^ Asyw ( W ( 6 ) ) for some polydisk W with

center ^=0 in C^1.
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In §2 first we estimate the derivatives d$u(z) for all n&N. Secondly, by
using the estimates and Theorem 1.6, we show Theorem 1.4. In §3 we give the
proof of Theorem 1.6. In §4 we show a proposition, which is assumed in the
proof of Theorem 1.6. The author thanks the referee who read the manuscript
carefully and gave him advice.

§2. of Derivatives of u(z) Proof of Theorem 1.4

In this section first we obtain estimates of derivatives of a solution u(z) of (Eq)
and secondly show Theorem 1.4 by assuming Theorem 1.6, which we prove in
the next section. For this purpose the method of majorant functions is available.
Let A(x) = Sa^aZor and B(x) =lLaBa3f* be formal power series of N variables
x= U, x2, • • • , XN) and a<^NN. A(x)>0 and A(X) <B(x) mean Aa>0 and UJ
^Ba for all a, respectively.

Lemma 2.1. Let 6(t) be a formal power series of one variable t such that

6(t) > 0 and (K ~ t) 6U) > 0 for some R'> 0. Then for derivatives 0y) (t) = (d/dt) J0
(t), y=0, 1, - - 0 , we have

(2.1)

and for RQ with

For the proof of Lemma 2.1 we refer to Wagshal [13].
Define for 0<R<1 and r>0

(2.3)

We see that

(2.4) e^n-r}(t)

We have from (2.4)

Lemma 2o2« LetO<c<l. Then there is a constant C=C(c) such that

n
^—^ -„?

(2.5)
r=0

Now let v(z) ^6(Q(6}}. For a fixed zoe^?o(0) let M2o be sup{|f(z)|; z £•

\. Then v(z) <M2o 0^0)(zi-h^2H Hz d ) , where C means the inequality holds
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as functions of z. In the sequel for simplicity we put t—zi+Z2~\ ----- 1~^.

Lemma 2.3. Let v(z}^6 (Q(0) ) . Suppose that v(z) < M (|*0|) ®R} (t) for all
z'

z$^Qv(ff), where M(s) is a positive nonincreasing function on (0, R\ . Then for any
6' with 0 < & < 6 there are positive constants C and 0< <5 < 1/2 such that for ZQ €=
flo (00
(2.6)
holds for all

Proof. Let v(z) = Ea>va' U) (z] «' and @a) (t) = E^cd' (z) "' • Then |

l) ca
r> Let us estimate doVar (ZQ)

Let 0<25<min{(9-^, 1}. Choose the path L={C=^+N(sin5)^;
Then we have

7/ "ka'
^o

Ca'
\ZQ sind\l

Hence

Therefore for a fixed ^0, taking C=l/|sin5|, we have

zf z'

Now we return to our equation

(Eq) P ( z , d ) u ( z ) = f ( z ) .

We need the following inequalities that Condition 1 implies to prove Proposition
2.5.

Lemma 2.4. Suppose that Condition 1 holds and put 5=1 + 1/7*. Then we
have for a^ (jfe*. 0), ;a-a0 + fe*>l and s(ja-a0+1?*) > ( \ o f \ + j a ) .

Proof. The first statement is obvious. It follows from the definition of 7*
that ja ~ otQ + fc*> 7* ( |a |— /?*). The second inequality follows from this
inequality.
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Let us estimate the derivatives of u(z) in (Eq).

Proposition 2050 Suppose m> k* and a**,o U) ^ 0 in Q. Let u(z) e ff(r*}

(Q(6)} be a solution of (Eq) and assume f(z) e Asy\r*} ( Q ( 6 ) ) . Let W be a
poly disk with center 0 such that W^.Q. Then for any £>0 and 0<$'<$ there exist
constants A = A(ff, W), B=B(0', W) and C=C(e, ff, W) such that

(2.7) 4dl+nu(z) <Cexp(B\z0\-
r":}Al+snffl0^+sn}(t) for

holds for all /, n^N, where 5=

Proof. Since m>^*, 7*^00 and 5>1. Put N0= [(m~ k*} / (s~l)] +1 and
6'<6i<d, where [a] means the integral part of a^R. For 0<w<maxOVo, k*}
we may assume

dSu(z) €Cexp(e\zo\-7*)tflOksn}(t) for

By Lemma 2.3, the inequality (2.7) holds for 0<n<max{,¥0, &*} and for all je
JV. Now we assume (2.7) holds for 0<n<N— 1 and all l&N, where N^. max
{A/0, ^*}. We have, by differentiating (Eq) n times, n— l+N— fe*, with respect to

(2.8)

(E2)

f>-n'+ldSba (*) 9"'9S~"'~r+'">M U)

(II)

To estimate ( I ) we divide it into two cases: (El) < (E2) and (El) > (E2). If
(E1)<(E2) , we have

(E2)-(El)=n+aQ-ja-r-l=N-k*+aQ~-]a-r<N-l.

Therefore we can apply the inductive hypothesis to ( I ) and obtain

(E3)

« C exp (
z'
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(E5)

where BI is a constant depending only on ba (z) . From Lemma 2.4 we see that
(E3) < (E5) <l+s(N-r} -n'<l+sN-r-n and (E4) <]V-l~r. Hence

(2.9) ( I ) «C exp(ekl'r*)BI+VM'+^-r-"/BAr-1-rei/+5lv-r-*') (t) .
zr

Suppose that (El) > (E2) . Then

(E6) <E7)

( I ) <C exp (£\z<>\-r*')Br
1
+1rlAn-n'

We have (E6) < (E7) = / + J V — fc* + |a| — n' — r. It follows from the assumption
that a\-k*<(s-l)NQ<(s-l)N and (E7) <l+sN~r-nf. So

(2. 10) ( I ) < C exp (B\zQ\-r^
zr

Thus in both cases

(2.11) ( I ) «C exp (B\z^}Bl
zf

We proceed to estimate ( H ) . We have

_
-r* V W "E ) «C exp (

by choosing B with Bi/B<I/2 and by Lemma 2.2,

exp

«C exp Ui2o!-
z'

Therefore, we have for A >2 and large B

4dfNu (z) «C exp (z

n

z'

l^sNr>N-lB

exp (<-\Zo\-**)A'+sNBN6jt
t+sN'' (t) .
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It follows from Lemma 2.3 that dd&+N-k*f(z)<CAlfff-1e}il+5N} (f) and we obtain
z'

the desired estimate for Zodo+Nu(z).
We have immediately from Proposition 2.5

Corollary 2060 Suppose that the same conditions as in Proposition 2 . 5 hold.
Then there exists a poly disk U— {z\z\ < r} such that for any £>0 and any 0< $'< 6

(2.12) |9?M(

holds for z^ U(&} and all n^N, where B=B(6') and C=C(e, 00.

Now let us proceed to the proofs of Theorem 1.4 and Corollary 1.5,
assuming Theorem 1.6.

Proof of Theorem 1.4. Suppose a^,o(z) ^0 in Q. If m=k*, then 7* = 00 an(}
Theorem 1.4 follows from Cauchy Kowalevskja's Theorem with precise
estimates of the radius of convergence (see Zerner [14] ) . If m> k*, by
combining Corollary 2.6 and Theorem 1.6, we have Theorem 1.4. Otherwise let
a** o(0, z] ^0. Then there are positive constants rt s(l<i<d) such that a**fo(0f

z) ^0 on M={^'; U«| = r/f I<i<d}. Suppose that m>k*. Then for each point ?
^M there exists a neighbourhood V?={z\\zo\<R?, \z' — z'\<R?} of (0, ?) such
that (2.12) holds on V? (0'} . By maximal principle of holomorphic functions
estimate (2.12) holds on V(ff} > where V— {z; *, |<n, 0 < i < d ) for some r0.
Hence it follows from Theorem 1.6 that u(z) ^Asy{r*\(W(d)) for some polydisk
W. If m=k*, u(z) ^-6(Q(6)) is also holomorphic in a neighbourhood of (z^

Cd+l\ ZQ = 0, / ^ M) by Cauchy Kowalevskaja's Theorem. So it follows from
Hartogs extension Theorem that u(z) is holomorphic at 2=0.

Proof of Corollary 1.5. u(z) ^Asy(r*}(W(d)) by Theorem 1.4. Put 60=d-n.

Then by the assumption we have $0>^/27*. Define w(z] =u(zoe*t, z'} ~u(zoe~7rt,
z'} for (ZQ, I arg20| <#<)}• Then we have w(z) €=Asy{T*}(W(6o)) and w(z)~0, that
is, there are some constants B and C such that for z^ W(6\) with n/2y*<6i
<6Q

(2.13) w(z)\<CHl\z,\nr(n/r^+l} for ^e W(61)

for all n^^V. This implies that there is c>Q such that \w(z) |<Cexp (— c\zQ\~r )

(see [9]). Since 6i>K/2y*. we have w(z) =0, namely wUo^', ^0 =u(z0e~nt
j z) .

Therefore u(z) is single valued and holomorphic at (ZQ = 0}.

§30 Proof of Theorem 1.6

In this section we prove Theorem 1.6. Only the variable ZQ is essential in
Theorem 1.6. So by replacing z0 with t, we write v(t) instead of 1^(20, z) and
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regard it as a function of one variable t and other variables z— (z\, Z2, *", Zn)
may be considered as parameters. To clarify the situation we restate the
assumptions on v(t) . v(t) e0(fl0(0)) with QQ(6}=(t, 0<\1\<R, \argt\<6} and
for any £>0 and any Q<6'<6 there exist constants C=C(e f 00 and B-B(ff]
such that

(3.1)

holds for t^@o(6'} and n=0, 1, 2, •-.
Now put K=q/p, where />, <?^]V and they are relatively prime. Define

We can easily see the following properities on F(^, 0-

Lemma 3.1. (t). There is a constant r^>0 swc^ that V(t, Q is holomophic
i n { ( t , Q ; t ^ Q , ( f f ) , \ t t < r & > } .
(ii). V(t, 0 satisfies

/ 3\Q / 3 \P+Q
(3.3) ^O- KUC)=0.

We omit the proof.
Define a modified Laplace transform of V(t, 0 by

(3.4) V($,Q=ejv (-&-*) V(t,Qdt

and put (7(0) = {?=£(); |arg^|<0}. Let us investigate the properties of F(?f 0.
in particular, its behaviour near 5=0.

Lemma 3,2, (i). V(£, 0 eC(C(icff-rx/2) x

(it). F(f, 0 satisfies an equation of Fuchsian type

(3.5) U-9e)' («?9«-h)}7(f. 0-(9c)'
+«t>(e,0=f(f. 0.

/. Since V(t, 0 is holomorphic in {(t 0; t^Qv(&}, I C l ^ r ^ } , by
deformating the integration path, we have (i) . We proceed to show (ii) . It
follows from integration by parts that

ef 0= o
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where /<>(?, 0 =~RV(R, £). By repeting integration by parts, we have

Q,

where /«-i(?, 0 is a polynomial in f whose coefficients are determined by {df V
(£, Ole=/e; 0<n<<?— -I}. Hence we have by Lemma 3.1

, 0 = exp(-tr*)f-'*dtV(t. Qdt+F(£, 0
Jo

= P
o/O

exp -

0

where F(£, 0 is holomorphic in

Since V (£, 0 satisfies an equation of Fuchsian type, we have a

representation of V (£, 0 near ? = 0 from Proposition 4.1 given in the next
section.

Lemma 3038 V(^ Q is represented around £—0 in the following form:

q-l

0.6) v(t. o=?fo(f, o + f * / x s r * ^ - o+?#iog?^(e, o.

where Wh(^, 0 U=0, 1, 2, • • • , ̂ ) arg holomorphic in {(f, 0; |?|<r0,
positive constants n> and n and in particular for 1 <h<q Wh (?, 0
in f^:

(3.7)
s=0

Next proposition concerns functions defined by integral of Laplace type and
their asymptotic expansion.

Proposition 3o40 Let tc = q/p be a positive rational number, where p,

and are relatively prime. Let (/) (f) — 2r=o o<s^ps be a power series in ^p which

satisfies \as <ARlps for all s^N with some Ri>0. Let 0< r0<#i and h^N with 1
<h<q and

(3.8) vk (t) = r1-* f \xp (-rt~K) r^/K(/) (r) dr.
J o
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Then vh (t) e= Asy{K} (C (n/2ic) ) .

Proof. Define

N

(3 . 9) <$ (?) =
s=0 s=N+l

We have for some constants A and C independent of N

(3 10)

Put

b(t) = r1-* exp (- rT*) //x<^ (r) dr.
•/ 0

w ( t) = r1- [""exp ( - rT") //X0f (r) dr.
J 0

(3.11)

Then

(3.12) vh(t}=IN(i)-Jl,N(t)+J2>N(i).

We have

JV

(3.13) IN(t)= V^-1+?sa, r+°°exp(-r)?J>s

AaaaS J 0

(r) dr.

5 = 0

Let us proceed to estimating /uvU) and/ 2 ,A?(^ . Suppose jarg fi<6f<n/2tc. Then
we have from (3.10)

and
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Hence

for some positive constant B=B(ff}, which implies Vh(i)

Now we have prepared to prove Theorem 1.6.

Proof of Theorem 1.6. We have the inversion formula

rt—l—x fa+i°° ^
(3.14) V(t,0=—exp&-x)V(%,Qd% a>0.

Let us deform the integration path. Take a constant 0o so that 7t/2<(f>o<min
', ft} and define contours A», y— ±0, ±1, ±2 by

: 00/ A + l— if—

i-Q={^=re~m: 0<r<r0} 4+0={f =r^lsr; 0<r<r0}

Put

(3.15) V,(f, 0 =

where y=±2, ±1, ±0, and

(3.16)

It follows from Lemma 3.3 that V (f, 0 is integrable at £ = 0 and
holomorphically extensible around £ = 0. Therefore we can deform the
integration path in (3.14) to ~A-2~A-i~A-Q+A+Q —A+I +A+2 and we have

(3.17) 7(f, 0 = V*(t 0 + y°U 0-

V*U 0 decays exponentially as £ tends to 0. More precisely let Q<6"< (00~~

7T/2)c~I and |argf|<^. Then there are positive constants A = A(6"} and d=d

(6") such that V* (t,Q \ <Aexp (- d\t\'K) for t£E.@Q(0"}. As for ^(t, Q we
have by Lemma 3.3

(3.18)

V°U 0 =J^-f 4 +A exp(erx) F(f, Q d?

-l-K /- q~l

— 0 . I exp (£r*) (Fo (f, 0 + x M$h/K^°h (£, 0 +6^ log ?^P« (£» 0) d?.^7^^ j -A-o+/4+o z^2=:d
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We have

(3.19) f
J -jt-o+

On the other hand it holds that for h=l, 2, •••q—l

(3.20)

-. f exp (fr«) t1"*^ (?, 0 tf= "sin tor/* p (_rt_x
7tlJ -A-o+A+t, K ^0-A-o+A+t,

and

(3.21)

TT^ f exp(£r«)?'(log£)S'i(5, Otf=- f %>(-ZTTi J _^_0+yi+0 J o

It follows from Proposition 3.4 that the integrals (3.20) and (3.21) have
Gevrey type expansion. Hence we see that V°(j, Q nas the desired asymptotic
expansion as t tends to 0 in {p,\argt\<TC/2ic} and v(f) = V° (t, 0) + V* (t 0) e

(fio (^*) ) . By applying the same method to v9(i)
 =v(tet(p), we have v(f) €=

Remark. The author conjectured that the conclusion of Theorem 1.6 would
hold for all real K> 0. Prof. Honda (Hokkaido Univ.) indicated him that the
conjecture was valid by using regularizers in Gevrey class.

§40 Solutions of Some Fuchslan Equations

In this section we consider a special Fuchsian equation which appeared in
Lemma 3.2,

(4.1) ((-9e)> («£$-*)) Sr(f, 0 - ($)*+«8r(£. 0 =F(f, Q,

where F(^, Q e^(Cx {|£|<r}) and K = q/p with relatively prime integers A g.
The structure of solution of Fuchsian equations was investigated in Tahara
[12] , where he imposed a condition on zeros of the indicial polynomial. The
operator (4.1) is simple but does not satisfy his condition. So we give the
structure of solutions of (4.1) in a neighbourhood of f = 0. We can apply our
method employed to show Proposition 4.1 to general Fuchsian operators.

Proposition 4.1. Let V(£, Q e^({0<|?|<r; |arg?]<0) x {|Cl</» be a
solution of (4.1). Then W(^, Q is represented around f =0 in the following form:

Q-I
(4 . 2) ST (£ Q - Fo (?, 0
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where K = q/p. F* (?, Q's (fc = 0, 1, 2, • • - , q) are holomorphic in {(£
<fo) /or sow£ positive constants fo and fo. Jn particular for 1

(4.3)

&>s(0's are holomorhic in

The operator ((-9e)*IIiUiOs:?9e-;0) - (9C)*+* is Fuchsian in the sense of
Baouendi-Goulaouic [1]. Its indicial polynomial is #U) = ( — 1)PA U~ 1) ••• (A —

/> 4- 1) IliUi (£>? — /&) and its indicial exponents are {0,1,2, • • - , p — I,p/q,2p/q,~°,

Lemma 4.2. Let Hn (A
(i} All the zeros of Hn(X) (n>l) are in the interval In — [~~pn, 0] on the real

(ii) Let 2f be the set of zeros of Hn(X~np). Then 2?= U f=o2^, where ^o={0, ]. • • - ,
p— 1, p, •••, np — 1, np} and ~£h = (h/fc, p + h/tc, • • • , (n — l)p + h//c} for 1 <h <g.
We have ^q — {p, 2p, • • • , np} ^2?o and the zeros in ^g are double and other zeros are
simple.
(Hi) Define for complex numbers c=£0 and wo,f, ; — 0, 1, •••, p+q — 1,

(4.4) u>(£*) = o;

the path L\ is a Jordan curve surrounding the interval /i. Then for

(4.5)

(?9f) hw (f, c) ie=c — ~~ ~—^+linear combinations of
K

(iv) Let w (X) —g (X) /Hn (X) be a rational function in X, where g (X) is a polynomial

in X with degree p+q and \g(X) \ <Mg (l+\X\)p+Q. Then

(4.6) w(X-np)
np g-1 n-1 ^-1

/=0 h = l /=0

and there are constants A and B such that

(A H\ \ \^ MsABn

(4.7) \wh.i\<> / / _/

Proof. It is easy to show (i). So we omit the proof. Since
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(4.8)
n-1

En (X -np) = U —np) J| H U - lp)
/=o

np n—l q—l n—1

11 11 1111
/=0 /=0 h = l 1=0

we have (ii). Let us show (iii). We have by calculating residue at ^ = 00

d (X-^pyg(X-np) _g'(lop-np)G(lop)-g(l0p-np)G'(l0p)
™tdl Hn(A-np) ' G ( /op )3

f — - c w
= hlinear combinations of {1^0^; 0</</i).

/c9

Finally we show (iv). The identity (4.6) is the representation ofwn(A~np) by
the partial fractions. We only show (4.7) for Wo,ioP. As for other cases we can
show more easily. Put

g-l n-l

Then

and

Since

A'B-(w-n (w (p+q) ~ 1)! < |G Oo#) I <AB^1 (n (p+q) -1)!

for some constants A, A' and 5, we have (4.7) for wQ,i0p.

Proof of Proposition 4.1. Let F0 (£) =F (0, Q and F* (f, C) =F (?, Q ~F0 (Q -
Since H(X) ^0 for A=p + l, p + 2, ••• and F*(0, 0 =0, it follows from the theory
of partial differential equations of Fuchsian type that there exists W*(£, 0
which is holomorphic in a neighbourhood of £—0 such that
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(4.10) ((-9 t)> (*£9e-ft))W*(e 0
*=1

(see [1] or [12] ) . Therefore we may assume that ¥(£;, Q satisfies

g
(4.11) ((-dt)*VI (K&t-h))v(e, 0- W*'̂ . 0=n(0.

Now let c> 0 be a small constant and WQJ (£, c) '5 (0 </ ^/> + # — 1) be
functions determined by Lemma 4.2 so that

satisfies for all h = 0, 1, • • • , p+q~l

(|9{)^(e C<:)le.£=(f

Define «;„(£. /i, c) = E^r1^"'^,, (C, c) and

-i (C ^> g) ^ \o- forn>2.

Then we have for

(4 13^ w((4.13; W.(

which is a rational function in /! whose denominator is Hn(X] . Let Ln be a
Jordan curve surrounding the interval !„= [~pn, 0]. Define for w>l
(4.14)

(C c) +Fp(Q)

and put

00

Let us calculate Wn (£, C c) and show the convergence of the series W (£,
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We have for some A =A (c) and 0<r</

1*0 (C, *, c) +F0(0 <A
c

and

Let ICl ̂ r/2. Then there are constants A=A (c) and 5 which is independent of c
such that

U(C^,c)+Fo(0)i^^((n-l)(p+^))!(l + UI)^.

We have by partial fractions of wn(£>, %~np, c}

(4.17) wn(C A-np,c)
np q-1 n-1 n-l

1=0 h = l 1=0 1=0

where by Lemma 4.2 and (4.16) there are constants A—A (c) and B such that
wn,h,i (C» ̂ ) I^^4£W. We have from (4.17) and calculation of the residues

(4.18) Wn(£,C,,c}
g-i

=c»n (WnM c, c] + V (?/c) *
/xwK,, (e, c, c) + (e

where

(4.19)

Wn,h (?, C f ) = (f/c) ;^B,A,, (C, c) for
rfSrrmiO

/=0

Note that M^n,* (£. C c) '5 (0 — ̂  — ̂ ) are polynomials of £. Let us show the
convergence of W(?, C < " ) • Let |§|<2r. Then

n=l 1=0

So if c is small, Zm=ic**W»,o(ff C» c) converges on {§; |f <2c}. We can show by
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the same method convergence of J^n=icnpWn,h(^ C c) for l^*h<q. Hence W(£
£, c} converges and holomorphic in {f; 0<|^|<2<:} and from (4.12)

We also have

f3J in
n=l

It follows from the definition of w0tj (C c) that for

Both V^d, C ^) and F(£, Q satisfies (4.1) and the same initial conditions on £
-c. Hence W(f, £, c) = f($, C c) and it follows from (4.19) that F(f, C c) is
represented in the form (4.2) with (4.3).
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