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Topology of the Configuration Space of Polygons
as a Codimension One Submanifold of a Torus

By

Takanori HINOKUMA* and Hiroo SHIGA™* *

Abstract

We study the topology of polygons with fixed side length in Euclidean plane by Morse theory.

§ 1. Introduction

We study the space of oriented congruence classes of polygons with fixed
side length in Euclidean plane E?. Set

n+2

Xns2= {(21, v, Znyn) ECME Z z¢=0}

1=1
and

n+2
Nea=Xoea— ({0, =+, 0)}/C* ={lar, =+, zpad €CP: ) 2=0),

=1

where C* (=C—1{01}) acts on X diagonally. Then Ny, may be regarded as the
space of oriented similarlity classes of (n+2)-gons in E°.
For a positive number 7, we set

Mn-a-z,r:{[zl, o, zmea) ENpaz t |zl =22l =+ =24 = | 2042/ %0, 5zn+11=ﬂzn+zl].

Then by setting ——=w,, we have
Zn+2
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lunl =+ =|unl =1,
Mysay =1 (0, uz, =, wner,1) € (C*)™: wpr=— (w+-+uw+1),
Iwn+1!=7'

={(w, wo,, w) ET": i+ +u+1]=7)

where = means diffeomorphic. Hence the space of similarlity classes of (n+42)
-gons whose (n+1)-sides have equal length may be regarded as a torus 7% if
we regard (n+1)-gons as a degenerate (n+2)-gons.

Set

Woszo={(wr, =, wn) ET*: |+ +u+1[27},

where 7 is a nonnegative real number. Wy+2, is the configuration space of (n'f-
2) -gons whose (n+1) -side length are 1 and the other one is greater than or
equal to . We define a smooth function fon 7" as follows :

f (e, e, &) =— (cos xy+ - +cos x,+1)%— (sin y +---+sin z,,) 2

Then ' (—1) = M4z may be regarded as the space of oriented congruence
classes of (n+2) -gons whose length of (n+2) -sides are 1. The critical points
of f: T" — R are non degenerate except maximum. The value —1 is regular
value if # is odd and is critical value if # is even. By using standard Morse
theory for £ we have a handlebody decomposition of Wyis, If—# is a regular
value of f, My+2,,= 0Wysz, is obtained from a sphere by succesive surgery. We
give a cell structure of 7" by the product complex of S*=¢"U ¢'.

By observing attaching maps of handlebodies, we get the following results.

Theorem 1. For 0 < v < n+1, the space Wyiz, is homotopy equivalent to
1 —
(T"4) % the k-skelton of T"Y, wheve b= [”_"’2*__7] If r £ 0, Wyea, is the whole
space T" and Wyes,= @ if v > n+1.

By using Theorem 1 and Lefschetz duality, we are able to know that the
relative homotopy groups, @y { Wasz, Mysz,) =0 for i < n—k—1, where k is the
integer such that n—2k—1 < 7y < n— 2k+ 1. Then we have the following
results on the fundamental group of M,, for n = 4.

Corollary 2. Let n = 4. Then

V/as if 0 < r < p—=3
Tt (Maszr) = | Fast fn—3 < vr< n—l1
{e} ifn—1 < v < ntl.

In case nw=3, the inclusion i: Ms, — Ws1 = (T induces surjection (but not
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isomorphism) on the fundamental groups.

We can also calculate the homology group of Mu42, easily by Theorem 1.
Since manifold Mpiz, (—#® is regular value of f) is closed orientable
codimension 1 submanifold of 7" which bounds W, it is a w-manifold and
oriented cobordant to zero. The manifold M+, is obtained from a sphere by
successive surgeries, in particular we have the following from table 1 (in
Section 2) :

Proposition 3. Forn 2 3, we have

Mpsoy = S*0 ifn—1 <r <n+l
Musor F (S1XS"%) ifn—3 < r<n—1,
n+l

Where £ denotes the connected sun (n+1)~times and = denotes homeomorphic.
n+1
In case n=4, more general information was obtained by M. Kapovich and J.
Milson ([K-M] Theorem 3). In particular, we have Ms, is diffeomorphic to 2.4,
the closed orientable surface of genus 4. ([T-W], [Hav]). The homology group
of My+2, is also calculated in [K-T-T].

v

# Sl X Sn—Z
/

n+l

§ 2. Critical Points of f

We study the critical points of the function

fle™, o o) =— (cosx1t - +cosxnt1)2— (sinx;+-- +sinxn) ?

on T". Then
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5@5—=2 (cosxit+++cosxz,+1)sinx;—2 (sinz;+-+++sinx,) cos x;

and

) %=£sinxi .

1 i=1

Hence the set of critical points of f are the union of
A={(e™, -, ™) ET": sinx; =-+=sinx, =0}

and

n n
B.—_{(ewl’ oo, ewn) eT"n: ZCOSxi =—1 and Zsmxi :0}.
1=1

i=1

On the set B, f attains the maximum value O and B is homeomorphic to My+1,1 X S,
Set

Si=1{(eq, -, &) ET": &,=1 or —1 and the cardinality of —1 is k.}.

Then
n n
ANB*cU Sy and AUB DUS,.
k=0 k=0
Lemma 2.1. At the critical point xo= (—1, =--, =1, 1. -, 1) (¢=0, 1. -+,
k n—k

n), the characteristic polynomial of the Hessian (of f) is:
(A —=2)"F (A 4+20) 1 (A242n A —4b),

wheve b=n—2k+1. Therefore the index of the critical point xo is kif b > 0 and n
— kif b < 0. (Note that in the case that b=0 f attains the maximum value 0)

Proof . Since

b —2cos (zi—x,) (i=7)
O0x0r; |94 (C+1) cos x,—2Ssinx, G=y)

where C=cosx; + -+ coszr and S =sinx; + - +sinx, at the point xo=
(_1, e =1, 1, oo, 1)_

k n—k
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k n—=k
[ —2—2(+1)
—~2 -2 2
D= —2—2(c+1)
—2+2(+1)
2 -2 -2
—242(+1) |
[ —1—(c+1)
-1 . —1 1
—9 —1—(c+1)
—1+{+1)
1 -1 -1
| —1+(c+1)
:2D1

where ¢ =n — 2k. We calculate the characteristic polynomial of D, instead of D

for simlicity.

1
|AI—Dy|=

A+1+0b

A+1+0b
A+1—0b

1
A+1—b

where b=c¢+1=n—2k+1. We substruct the first column from the i-th (4=1,
-+ k) and add it to the j-th (G=k+1. :--.n). Our determinant is equal to

A+1+0b
1

—1

-1

—2—b
A+
0

—A—b A+0D

0
A+b
A—b
0 0

A+b

0
A—b

We then add the rows of from the second to the k-th to the first row and add

A=b

times the rows of from the #+1-th to n-th to the first row also. This yields
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A+b

/I+k+b+2__b(n—k) 0 0

1 A+b

s 0 0 0
|AI—Dy|= 1 A+b

~1 A—b

: 0 0 0

~1 A—b

bbb+ A (k) (1)t (1—b)

A—b
= QA+ 1 (A—b) "1 (2 4+nd— b2+ (n—2k)b)
= (A+5)* (A—b)"*" (22402 —b)

where the last equality is obtained by using & =#un — k + 1. Therefore the
characteristic polynomial of D(=2D;) is:

(A—2b) "+ (A+26) <L (24202 —4b). [

By Lemma 2.1, we have the following table :

Critical value index the number of critical points
—(m+1)? 0 1
- (n—l) 2 1 n+1C1
- (n _3) 2 2 n+1C2

— (n-?.k-l—l)z k 2+1Ck

table I

The number of critical points of index % is the cardinality of the union of
Sk and Sn—k+1.

We denote the binomial coefficients »+:Cx= ("}%) by P (k).
§ 3. The Homotopy Type of Wiz,

In this section, we study the homotopy type of

Wz, ={(e™®, - ¢™) ET": f<—1%}.

By Morse theory and Table I, Wz, is obtained from Wj4s,+42 by attaching
P (k) handle bodies of k-dimension.

Let n—3 <7 < n—1 then W, is homotopy equivalent to D" (= Wy, 2,+2)
with P(1) (=n-+1) 1-cells attached. Hence Wy, is homotopy equivalent to -+
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1 times wedge of S!, which is homotopy equivalent to 1-skelton of 7", Wyian-1

is also homotopy equivalent to (7"**)%. (See Milnor [M: 1]Remark 3.4., p.20)

In order to study the case n—5 < r £ n—3, we must observe the attaching
maps of 2-cells. We examine at the critical point P=(—1, —1, 1, ---, 1) of
index 2. We can treat similarly at other critical points. Set

T2={(e™, %2 1, .-, 1) ET": 71, 2ER}

and let f; be the restriction of fon 7% Then f attains maximum value— (n—3)?
at P. For a small positive number €, we set

DE={f, > —(n—3+¢)?}C T2

Then D% is diffeomorphic to a closed 2-dimensional disk containing P as an
interior point. We show that the attaching sphere of the 2-cell at P may be
regarded as 0DZ

Around the critical point P, there is a local coordinate (y1, **, ya) of T"
with P= (0, ---, 0) such that fis expressed as

—yi— ittty (0=3)%

The attaching sphere S} of a 2-cell in Wyszyr 1—3 < v < n—1) can be
regarden as

(g, . yn) B H9E=0% ys=+= =0}
(See [Mi2]). Set
C={(ys, =, y) ER": —f— 1+ i+ -+ 42 = 0}
Then we see
ODICR"—C.

The sphere S} and 0D? both generate the group m, (R"—C) = m; (R2—{(0, 0)})
= Z. Hence the two inclusions

ih: St — R"— C and
T 6D3—>R"—C

are homotopic. Hence we have the following.

Lemma 3.1. The attaching map of 2-cell at P is (free) homotopic to the
composition of mclusion

71 o 12
2 2__ N2 e
aDg — T Dg— Wasan-s+e
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for some small positive number €.

Set
S,={(1,1, - &% 1 - 1)ET: 5ERYC Wyagney (§=1, =+, 0)
and
Sps1={ (e« ) ET . 2ER}C Wipszm1.

Since Wa+2.n-1 is homotopy equivalent to D" with n+1 1-cells attached and each
1-cell can be regarded as the arc of S, containing the critical point of index 1,
Wa+2n—1 is homotopy equivalent to the wedge of S*

St VoV Span

Hence m; (Wy424-1) is isomorphic to the free group Flay, **, @z+1) of rank n+1,
where a; (j=1, -, n+1) is represented by S;. Let 8,(;=1, ---, ) be the
element of m (7" represented by S;, Then the inclusion 4: Wytzns — T°
induces a homomorphism

ig 1 T (Waaan—1) — T (T
such that i (@;) = B; and is (@n+1) = 2271 B;. By Lemma 3.1, the attaching map
of 2-cell at the critial point P=(—1, —1, 1, -+, 1) is the composition
o
ODEC T?— DIC Wyrsn—sse (~ Waran-1) .

The inclusion j induces homomorphism

o J#
T (TZ—DE ) —— S (VVn+2,n—3+s)

| |

Flr, 720 — Flay, =, Q1)
such that ji (71) =a; and js (72) =as, where 7,(j=1,2) is represented by $;C T2

Since the inclusion dDZ — T? — DZ represents the commutater 717271 7z ! in
the fundamental group, its image in (7"*%)? is trivial. The manifold Wpszas+e is
homotopy equivalent to (7%*!)! and it has the same homotopy type as U pe (T2

—D2) (C T"). Since (T"1)2=Upy,T? (C T"*') the homotopy equivalence
M Waszn-zee — (T"*1)* can be extended to a map

he: Wasonege — (Tn+1) z
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such that the induced map
hz* LTk (Wn+2,n—3—sv Wn+2,n—3+e> > % ( (Tn+1) 2, (Tn+1) 1)

is isomorphic (both groups are isomorphic to Z*®). Then from the long exact
sequence of homotopy groups and five Lemma, we obtain that h, is homotopy

equivalence. We continue the above arguments for n—2k—1 < r < n—2k+1
(2 = 3).

Proposition 3.2. Let v < n— 5 and assume that there is a homotopy
equivalence

. +1\ k-1
Brsz: Warzpee = (T"F) 1

where k is the integer such that n —2k—1 < v < n—2k+1. (Note that k = 3.)
Then hyys can be extended to a homotopy equivalence

hy: Waaar — (Tn+l> k

Proof . By Morse theory W4z, is homotopy equivalent to Wyyz,42 with
P(k) cells of dimension £ attached. We consider at the critical point P, =
(=1, -+, —1,1, -, 1) of index & Set

———
k n—k

T"={(em, - eix", 1, -, 1) S e, IkER}
and let f; be the restriction of fon T*. For a small positive number &. we set
Di={fi, 2 —(n—2kt+1+e)% .
As in the previous case, the inclusion
ODEC T*—DEC Wiszm—sir14e (= (T *71)

is homotopic to the attaching map at Pp. Since mrp—y ((T71) %) = 7y {T71) =0,
“for £ = 3. Hence we have an extension of 42

Pk
hy + Wasan-sk+14¢ U (U ef) - (Tn+l> k
1=1
such that 4, induces isomorphisms on the relative homotopy groups
. Pk
Bose » s (Waigmezisrse U (U df) = (T™)
1=1

such that &, induces isomorphisms on the relative homotopy groups

hyse @ T (Waszm-zksr, Wasamziaree) — 7w ((TPH)E (TP E-D)
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Hence &, is homotopy equivalece by Whitehead Theorem.
Then by Proposition 3.2, proof of Theorem 1 is completed.
§4. Topology of Mz,

By Theorem 1, we can compute the homology group of M4z, For 0 < 7
< n+1, we choose an integer k such that n—2k—1 < v < u—2k+ 1. By
Theorem 1, ' (Wysay, Z) =0 for j = k+1. We assume n—2k—1 < v < n—2k
+ 1. Then Wy+zr and M4z, are smooth compact connected manifolds such that
0 Wy+2,,= My+s,r. By Lefschetz duality and Theorem 1,

(4.1) Hi(Waszr, Musay) = H™ (Wyis,) =0

for it £ n—k—1 When r=un—2k+ 1, M,ss, has singular points and it is
homotopy equivalent to

P
(4.2) Mo n-ak+14e X IU < U é’f’)

where [ is the closed interval [0, 1], & (=1, ---, P(k)) are k-cell and ¢ is a
small positive number. Hence by excision, we have

H1 (Wn+2,n—2k+1, Mn1—2,n—2k+1)

:H(Wn+z.n—zk+1+s U Myszn-zisree X TU (Uef), Muszn-zes14e X IU (Uef) )
J J

~

- H (VVn+2.n—2k+1+s, Mn+2,n—-2k+1+s)
=0if i £ n—k+1.
Proposition 4.1. Let n be odd. Then Myis,1 is an n-1 dimensional connected

closed manifold whose homology is as follows :

(1) B (Myor. B) =P for0 < i < ”51

(2)  Hy(Mysn1, Z) =Z2EY  for i= n*z‘l

(3) H, (Myuzi, Z)=0 fori > n—1.

Proof . By Theorem I, we have Wy.py = (T”“)n‘z——l. From the long homology
exact sequence of the pair (Wysa1, Mys21) and Poincaré duality we have (1).
From the exact sequence
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- H"—“Z‘l(Wn+z,1) - H”T“(Wn+2,1, Mys21) — Hi;—l (Mys2.1) — H”—’2‘1<Wn+z,1) —0
I§ If Lefschetz dual I§

Het ((T")"5) Hagt (W) Zr7o
I I
0 ZP(ﬂ;—I)
we have (2). By the dimensional reason, we have (3). B
Proposition 4.2. Let n be even. Then

(1) Hi(My420,Z) =2F° for0 < i < g
@) HMuan ) =27 forg < i< a1
(3)  Hi(Myi21,2) =0 for i > n—1.

Proof . By (4.3), Hi (W1, Mus21) =0 for ¢ < % Then from the long

homology exact sequence, we have (1). From (4.2) and Lefschetz duality,
Hyot (Wasz1, Muso) = Hur (Waazire Muszare) = H ™7 (Wasaiee) = H7H((TH) %“1).

For i = %, from the exact sequence,

SIS

— Hy ( Warz) = Hivt (Waszn, Maazi) = H (Myiz1) —0

I [
0 Hyeioa (7)) 571

1§

ZP(n—I—l)

we have (2). {3) is dimensional reason. B

By (4.1) and (4.2), we have m (Wysz1, Muszn) =0 for i < 5

odd and 7, (W21, Mysz1) =0 for i < —g- if n is even.
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Corollary 2. Let n be odd and n = 3. Then

T (Mpr2,1) :Tfi«’[nﬂ)%l) ifi < %53.

Let n even and n = 4. Then
T; (an-z,l) :77-'1((7“*‘1)%—1) tfl S %

In particular,

Corollary 4.3.
i (Mpszs) = ZFY  dfn 2 4.

Example. From (4.2), My+2.4-1is homotopy equivalent to

ARSI VATEAVARY

—————
P(1)=n+1 times
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