Topology of the Configuration Space of Polygons as a Codimension One Submanifold of a Torus

By

Takanori HINOKUMA* and Hiroo SHIGA**

Abstract

We study the topology of polygons with fixed side length in Euclidean plane by Morse theory.

§1. Introduction

We study the space of oriented congruence classes of polygons with fixed side length in Euclidean plane E^2 . Set

$$X_{n+2} = \left\{ (z_1, \cdots, z_{n+2}) \in \mathbb{C}^{n+2} : \sum_{i=1}^{n+2} z_i = 0 \right\}$$

and

$$N_{n+2} = X_{n+2} - \{(0, \dots, 0)\} / \mathbb{C}^* = \Big\{ [z_1, \dots, z_{n+2}] \in \mathbb{C}P^{n+1} : \sum_{i=1}^{n+2} z_i = 0 \Big\},$$

where $\mathbb{C}^* (=\mathbb{C} - \{0\})$ acts on X diagonally. Then N_{n+2} may be regarded as the space of oriented similarly classes of (n+2)-gons in E^2 .

For a positive number r, we set

$$M_{n+2,r} = \left\{ [z_1, \cdots, z_{n+2}] \in N_{n+2} : |z_1| = |z_2| = \cdots = |z_n| = |z_{n+2}| \neq 0, |z_{n+1}| = r|z_{n+2}| \right\}.$$

Then by setting $\frac{z_i}{z_{n+2}} = w_i$, we have

Communicated by K. Saito, March 12, 1997. Revised January 6, 1998.

¹⁹⁹¹ Math. Subject Classification (s): 57N65, 58E05

^{*} Department of Mathematics, College of Science, University of the Ryukyus, Nishihara, Okinawa 903-0129, Japan.

^{**} Department of Mathematics, College of Science, University of the Ryukyus, Nishihara, Okinawa 903-0129, Japan.

$$M_{n+2,r} \simeq \left\{ (w_1, w_2, \cdots, w_{n+1}, 1) \in (\mathbb{C}^*)^{n+1} : \begin{array}{l} |w_1| = \cdots = |w_n| = 1, \\ w_{n+1} = -(w_1 + \cdots + w_n + 1), \\ |w_{n+1}| = r \end{array} \right\}$$
$$\simeq \{ (w_1, w_2, \cdots, w_n) \in T^n : |w_1 + \cdots + w_n + 1| = r \}$$

where \simeq means diffeomorphic. Hence the space of similarlity classes of (n+2)-gons whose (n+1)-sides have equal length may be regarded as a torus T^n , if we regard (n+1)-gons as a degenerate (n+2)-gons. Set

$$W_{n+2,r} = \{ (w_1, \cdots, w_n) \in T^n : |w_1 + \cdots + w_n + 1| \ge r \},\$$

where r is a nonnegative real number. $W_{n+2,r}$ is the configuration space of (n+2)-gons whose (n+1)-side length are 1 and the other one is greater than or equal to r. We define a smooth function f on T^n as follows:

$$f(e^{tx_1}, \cdots, e^{tx_n}) = -(\cos x_1 + \cdots + \cos x_n + 1)^2 - (\sin x_1 + \cdots + \sin x_n)^2.$$

Then f^{-1} $(-1) = M_{n+2,1}$ may be regarded as the space of oriented congruence classes of (n+2)-gons whose length of (n+2)-sides are 1. The critical points of $f: T^n \to \mathbb{R}$ are non degenerate except maximum. The value -1 is regular value if n is odd and is critical value if n is even. By using standard Morse theory for f, we have a handlebody decomposition of $W_{n+2,r}$. If $-r^2$ is a regular value of f, $M_{n+2,r} = \partial W_{n+2,r}$ is obtained from a sphere by succesive surgery. We give a cell structure of T^{n+1} by the product complex of $S^1 = e^0 \cup e^1$.

By observing attaching maps of handlebodies, we get the following results.

Theorem 1. For $0 < r \le n+1$, the space $W_{n+2,r}$ is homotopy equivalent to $(T^{n+1})^k$, the k-skelton of T^{n+1} , where $k = \left[\frac{n+1-r}{2}\right]$. If $r \le 0$, $W_{n+2,r}$ is the whole space T^n and $W_{n+2,r} = \emptyset$ if r > n+1.

By using Theorem 1 and Lefschetz duality, we are able to know that the relative homotopy groups. π_i $(W_{n+2,r}, M_{n+2,r}) = 0$ for $i \leq n-k-1$, where k is the integer such that $n-2k-1 < r \leq n-2k+1$. Then we have the following results on the fundamental group of $M_{n,r}$ for $n \geq 4$.

Corollary 2. Let $n \ge 4$. Then

$$\pi_1(M_{n+2,r}) \simeq \begin{cases} \mathbb{Z}^{n+1} & \text{if } 0 \le r \le n-3 \\ F_{n+1} & \text{if } n-3 < r \le n-1 \\ \{e\} & \text{if } n-1 < r \le n+1. \end{cases}$$

In case n = 3, the inclusion $i: M_{5,1} \rightarrow W_{5,1} \simeq (T^4)^1$ induces surjection (but not

isomorphism) on the fundamental groups.

We can also calculate the homology group of $M_{n+2,r}$ easily by Theorem 1. Since manifold $M_{n+2,r}$ $(-r^2$ is regular value of f) is closed orientable codimension 1 submanifold of T^n which bounds $W_{n,r}$ it is a π -manifold and oriented cobordant to zero. The manifold $M_{n+2,r}$ is obtained from a sphere by successive surgeries, in particular we have the following from table I (in Section 2):

Proposition 3. For $n \geq 3$, we have

$$M_{n+2,r} \simeq S^{n-1} \quad if \ n-1 < r < n+1$$

$$M_{n+2,r} \ \# \ (S^1 \times S^{n-2}) \ if \ n-3 < r < n-1,$$

Where $\#_{n+1}$ denotes the connected sun (n+1)-times and \simeq denotes homeomorphic.

In case n=4, more general information was obtained by M. Kapovich and J. Milson ([K-M] Theorem 3). In particular, we have $M_{5,1}$ is diffeomorphic to \sum_{4} , the closed orientable surface of genus 4. ([T-W], [Hav]). The homology group of $M_{n+2,1}$ is also calculated in [K-T-T].

§ 2. Critical Points of f

We study the critical points of the function

$$f(e^{ix_1}, \dots, e^{ix_n}) = -(\cos x_1 + \dots + \cos x_n + 1)^2 - (\sin x_1 + \dots + \sin x_n)^2$$
on T^n . Then

$$\frac{\partial f}{\partial x_i} = 2\left(\cos x_1 + \dots + \cos x_n + 1\right)\sin x_i - 2\left(\sin x_1 + \dots + \sin x_n\right)\cos x_i$$

and

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = \sum_{i=1}^{n} \sin x_i \; .$$

Hence the set of critical points of f are the union of

$$A = \{ (e^{ix_1}, \dots, e^{ix_n}) \in T^n : \sin x_1 = \dots = \sin x_n = 0 \}$$

and

$$B = \Big\{ (e^{ix_1}, \dots, e^{ix_n}) \in T^n : \sum_{i=1}^n \cos x_i = -1 \text{ and } \sum_{i=1}^n \sin x_i = 0 \Big\}.$$

On the set *B*, *f* attains the maximum value 0 and *B* is homeomorphic to $M_{n+1,1} \times S^1$. Set

$$S_k = \{ (\varepsilon_1, \dots, \varepsilon_n) \in T^n : \varepsilon_i = 1 \text{ or } -1 \text{ and the cardinality of } -1 \text{ is } k. \}.$$

Then

$$A \cap B^c \subset \bigcup_{k=0}^n S_k \text{ and } A \cup B \supset \bigcup_{k=0}^n S_k.$$

Lemma 2.1. At the critical point $x_0 = (\underbrace{-1, \dots, -1}_{k}, \underbrace{1, \dots, 1}_{n-k})$ $(k=0, 1, \dots, k)$

n), the characteristic polynomial of the Hessian (of f) is :

$$(\lambda - 2b)^{n-k-1}(\lambda + 2b)^{k-1}(\lambda^2 + 2n\lambda - 4b),$$

where b=n-2k+1. Therefore the index of the critical point x_0 is k if b > 0 and n - k if b < 0. (Note that in the case that b=0 f attains the maximum value 0)

Proof. Since

$$\frac{\partial^2 f}{\partial x \partial x_i} = \begin{cases} -2\cos\left(x_i - x_j\right) & (i \neq j) \end{cases}$$

$$\partial x_i \partial x_j \quad \left[-2 + 2(C+1) \cos x_i - 2S \sin x_i \right] \qquad (i=j)$$

where $C = \cos x_1 + \dots + \cos x_n$ and $S = \sin x_1 + \dots + \sin x_n$ at the point $x_0 = (\underbrace{-1, \dots, -1}_{k}, \underbrace{1, \dots, 1}_{n-k})$.

.

where c = n - 2k. We calculate the characteristic polynomial of D_1 instead of D for similcity.

$$|\lambda I - D_1| = \begin{vmatrix} \lambda + 1 + b \\ 1 & \ddots & 1 & -1 \\ & \lambda + 1 + b \\ & & \lambda + 1 - b \\ & & -1 & 1 & \ddots & 1 \\ & & & & \lambda + 1 - b \end{vmatrix}$$

where b=c+1=n-2k+1. We substruct the first column from the *i*-th $(i=1, \dots, k)$ and add it to the *j*-th $(j=k+1, \dots, n)$. Our determinant is equal to

$$\begin{vmatrix} \lambda + 1 + b & -\lambda - b & \dots & -\lambda - b & \lambda + b & \dots & \lambda + b \\ 1 & \lambda + b & & & \\ \vdots & 0 & \ddots & 0 & 0 & & \\ 1 & & \lambda + b & & & \\ -1 & & & \lambda - b & & \\ \vdots & 0 & 0 & \ddots & 0 & \\ -1 & & & & \lambda - b & \end{vmatrix}$$

We then add the rows of from the second to the *k*-th to the first row and add $\frac{\lambda+b}{\lambda-b}$ times the rows of from the *k*+1-th to *n*-th to the first row also. This yields

$$\begin{aligned} |\lambda I - D_1| &= \begin{vmatrix} \lambda + k + b + \frac{\lambda + b}{\lambda - b} (n - k) & 0 & \dots & 0 \\ 1 & \lambda + b & & \\ \vdots & 0 & \ddots & 0 & 0 \\ 1 & & \lambda + b & & \\ -1 & & \lambda - b & & \\ \vdots & 0 & 0 & \ddots & 0 \\ -1 & & & \lambda - b & \\ \vdots & 0 & 0 & \ddots & 0 \\ -1 & & & \lambda - b & \\ \vdots & & 0 & 0 & \ddots & 0 \\ -1 & & & \lambda - b & \\ &= (\lambda + k + b + \frac{\lambda + b}{\lambda - b} (n - k) (\lambda + b)^{k - 1} (\lambda - b)^{n - k} \\ &= (\lambda + b)^{k - 1} (\lambda - b)^{n - k - 1} (\lambda^2 + n \lambda - b^2 + (n - 2k) b) \\ &= (\lambda + b)^{k - 1} (\lambda - b)^{n - k - 1} (\lambda^2 + n \lambda - b^2 + (n - 2k) b) \end{aligned}$$

where the last equality is obtained by using b = n - k + 1. Therefore the characteristic polynomial of $D(=2D_1)$ is:

$$(\lambda-2b)^{n-k-1}(\lambda+2b)^{k-1}(\lambda^2+2n\lambda-4b).$$

By Lemma 2.1, we have the following table :

Critical value	index	the number of critical points
$-(n+1)^2$	0	1
$-(n-1)^{2}$	1	$_{n+1}C_{1}$
$-(n-3)^2$	2	n+1C2
0 6 8	•	
$-(n-2k+1)^2$	k	$n+1C_k$

table I

The number of critical points of index k is the cardinality of the union of S_k and S_{n-k+1} .

We denote the binomial coefficients $_{n+1}C_k = \binom{n+1}{k}$ by P(k).

§ 3. The Homotopy Type of $W_{n+2,r}$

In this section, we study the homotopy type of

$$W_{n+2,r} = \{ (e^{ix_1}, \cdots, e^{ix_n}) \in T^n : f \le -r^2 \}.$$

By Morse theory and Table I, $W_{n+2,r}$ is obtained from $W_{n+2,r+2}$ by attaching P(k) handle bodies of k-dimension.

Let n-3 < r < n-1 then W_r is homotopy equivalent to $D^n (\simeq W_{n+2,r+2})$ with P(1) (=n+1) 1-cells attached. Hence $W_{n+2,r}$ is homotopy equivalent to n+1 1 times wedge of S^1 , which is homotopy equivalent to 1-skelton of T^{n+1} . $W_{n+2,n-1}$ is also homotopy equivalent to $(T^{n+1})^1$. (See Milnor [M : 1] Remark 3.4., p.20)

In order to study the case $n-5 < r \le n-3$, we must observe the attaching maps of 2-cells. We examine at the critical point P = (-1, -1, 1, ..., 1) of index 2. We can treat similarly at other critical points. Set

$$T^{2} = \{ (e^{ix_{1}}, e^{ix_{2}}, 1, \cdots, 1) \in T^{n} : x_{1}, x_{2} \in \mathbb{R} \}$$

and let f_2 be the restriction of f on T^2 . Then f_2 attains maximum value $-(n-3)^2$ at P. For a small positive number ε , we set

$$D_{\varepsilon}^{2} = \{ f_{2} \geq -(n-3+\varepsilon)^{2} \} \subset T^{2}$$

Then D^2_{ε} is diffeomorphic to a closed 2-dimensional disk containing P as an interior point. We show that the attaching sphere of the 2-cell at P may be regarded as $\partial D^2_{\varepsilon}$.

Around the critical point P, there is a local coordinate (y_1, \dots, y_n) of T^n with $P = (0, \dots, 0)$ such that f is expressed as

$$-y_1^2 - y_2^2 + y_3^2 + \dots + y_n^2 - (n-3)^2$$

The attaching sphere S_L^1 of a 2-cell in $W_{n+2,r}$ (n-3 < r < n-1) can be regarden as

{
$$(y_1, \dots, y_n): y_1^2 + y_2^2 = \delta^2, y_3 = \dots = y_n = 0$$
}

(See [Mi2]). Set

$$C = \{ (y_1, \dots, y_n) \in \mathbb{R}^n : -y_1^2 - y_2^2 + y_3^2 + \dots + y_n^2 \ge 0 \}.$$

Then we see

$$\partial D^2_{\varepsilon} \subset \mathbb{R}^n - C.$$

The sphere S_L^1 and $\partial D_{\varepsilon}^2$ both generate the group $\pi_1(\mathbb{R}^n - C) \simeq \pi_1(\mathbb{R}^2 - \{(0, 0)\}) \simeq \mathbb{Z}$. Hence the two inclusions

$$i_1: S_L^1 \to \mathbb{R}^n - C$$
 and
 $i_2: \partial D_{\varepsilon}^2 \to \mathbb{R}^n - C$

are homotopic. Hence we have the following.

Lemma 3.1. The attaching map of 2-cell at P is (free) homotopic to the composition of inclusion

$$\partial D_{\varepsilon}^2 \xrightarrow{i_1} T^2 - \overset{\circ}{D}_{\varepsilon}^2 \xrightarrow{i_2} W_{n+2,n-3+\varepsilon}$$

for some small positive number ε .

Set

$$S_j = \{ (1, 1, \dots, e^{ix_j}, 1, \dots, 1) \in T^n : x_i \in \mathbb{R} \} \subset W_{n+2,n-1} \ (j = 1, \dots, n)$$

and

$$S_{n+1} = \{ (e^{ix}, \cdots, e^{ix}) \in T^n : x \in \mathbb{R} \} \subset W_{n+2,n-1}$$

Since $W_{n+2,n-1}$ is homotopy equivalent to D^n with n+1 1-cells attached and each 1-cell can be regarded as the arc of S_j containing the critical point of index 1, $W_{n+2,n-1}$ is homotopy equivalent to the wedge of S^1

$$S_1 \vee \cdots \vee S_{n+1}$$

Hence $\pi_1(W_{n+2,n-1})$ is isomorphic to the free group $F(\alpha_1, \dots, \alpha_{n+1})$ of rank n+1, where α_j $(j=1, \dots, n+1)$ is represented by S_j . Let β_j $(j=1, \dots, n)$ be the element of π_1 (T^n) represented by S_j , Then the inclusion $i: W_{n+2,n-1} \to T^n$ induces a homomorphism

$$i_{\#}: \pi_1(W_{n+2,n-1}) \longrightarrow \pi_1(T^n)$$

such that $i_{\#}(\alpha_j) = \beta_j$ and $i_{\#}(\alpha_{n+1}) = \sum_{j=1}^n \beta_j$. By Lemma 3.1, the attaching map of 2-cell at the critial point $P = (-1, -1, 1, \dots, 1)$ is the composition

$$\partial D_{\varepsilon}^2 \subset T^2 - \overset{\circ}{D_{\varepsilon}} \overset{j}{\subset} W_{n+2,n-3+\varepsilon} (\sim W_{n+2,n-1}).$$

The inclusion *j* induces homomorphism

such that $j_{\#}(\gamma_1) = \alpha_1$ and $j_{\#}(\gamma_2) = \alpha_2$, where $\gamma_1(j=1,2)$ is represented by $S_j \subset T^2$. Since the inclusion $\partial D_{\varepsilon}^2 \to T^2 - D_{\varepsilon}^2$ represents the commutater $\gamma_1 \gamma_2 \gamma_1^{-1} \gamma_2^{-1}$ in the fundamental group, its image in $(T^{n+1})^2$ is trivial. The manifold $W_{n+2,n-3+\varepsilon}$ is homotopy equivalent to $(T^{n+1})^1$ and it has the same homotopy type as $\bigcup_{P(2)} (T^2 - D_{\varepsilon}^2) (\subset T^{n+1})$. Since $(T^{n+1})^2 = \bigcup_{P(2)} T^2 (\subset T^{n+1})$ the homotopy equivalence $h_1: W_{n+2,n-3+\varepsilon} \to (T^{n+1})^1$ can be extended to a map

$$h_2: W_{n+2,n-3-\varepsilon} \longrightarrow (T^{n+1})^2$$

such that the induced map

$$h_{2*}: \pi_*(W_{n+2,n-3-\varepsilon}, W_{n+2,n-3+\varepsilon}) \longrightarrow \pi_*((T^{n+1})^2, (T^{n+1})^1)$$

is isomorphic (both groups are isomorphic to $\mathbb{Z}^{P(2)}$). Then from the long exact sequence of homotopy groups and five Lemma, we obtain that h_2 is homotopy equivalence. We continue the above arguments for $n-2k-1 < r \leq n-2k+1$ $(k \geq 3)$.

Proposition 3.2. Let r < n-5 and assume that there is a homotopy equivalence

$$h_{r+2}: W_{n+2,r+2} \to (T^{n+1})^{k-1},$$

where k is the integer such that $n - 2k - 1 < r \leq n - 2k + 1$. (Note that $k \geq 3$.) Then h_{r+2} can be extended to a homotopy equivalence

$$h_r: W_{n+2,r} \rightarrow (T^{n+1})^k.$$

Proof. By Morse theory $W_{n+2,r}$ is homotopy equivalent to $W_{n+2,r+2}$ with P(k) cells of dimension k attached. We consider at the critical point $P_k = (\underbrace{-1, \cdots, -1}_{k}, \underbrace{1, \cdots, 1}_{n-k})$ of index k. Set

$$T^{k} = \{ (e^{ix_{1}}, \cdots, e^{ix_{k}}, 1, \cdots, 1) : x_{1}, \cdots, x_{k} \in \mathbb{R} \}$$

and let f_k be the restriction of f on T^k . For a small positive number ε , we set

$$D_{\varepsilon}^{k} = \{ f_{k} \geq -(n-2k+1+\varepsilon)^{2} \}.$$

As in the previous case, the inclusion

$$\partial D_{\varepsilon}^{k} \subseteq T^{k} - \overset{\circ}{D}_{\varepsilon}^{k} \subseteq W_{n+2,n-2k+1+\varepsilon} (\simeq (T^{n+1})^{k-1})$$

is homotopic to the attaching map at P_k . Since $\pi_{k-1}((T^{n+1})^k) \simeq \pi_{k-1}(T^{n+1}) = 0$, for $k \ge 3$. Hence we have an extension of h_{r+2}

$$h_r: W_{n+2,n-2k+1+\varepsilon} \cup (\bigcup_{i=1}^{P(k)} e_i^k) \longrightarrow (T^{n+1})^k$$

such that h_r induces isomorphisms on the relative homotopy groups

$$h_{r*}: \pi_*(W_{n+2,n-2k+1+\varepsilon} \cup (\bigcup_{i=1}^{P(k)} e_i^k) \to (T^{n+1})^k.$$

such that h_r induces isomorphisms on the relative homotopy groups

$$h_{r*}: \pi_*(W_{n+2,n-2k+1}, W_{n+2,n-2k+1+\varepsilon}) \longrightarrow \pi_*((T^{n+1})^k, (T^{n+1})^{k-1}).$$

Hence h_r is homotopy equivalece by Whitehead Theorem. 🕅

Then by Proposition 3.2, proof of Theorem 1 is completed.

§ 4. Topology of $M_{n+2,r}$

By Theorem 1, we can compute the homology group of $M_{n+2,r}$. For $0 \le r \le n+1$, we choose an integer k such that $n-2k-1 \le r \le n-2k+1$. By Theorem 1, $H'(W_{n+2,r}, \mathbb{Z}) = 0$ for $j \ge k+1$. We assume $n-2k-1 \le r \le n-2k$ +1. Then $W_{n+2,r}$ and $M_{n+2,r}$ are smooth compact connected manifolds such that $\partial W_{n+2,r} = M_{n+2,r}$. By Lefschetz duality and Theorem 1,

(4.1)
$$H_i(W_{n+2,r}, M_{n+2,r}) \simeq H^{n-i}(W_{n+2,r}) = 0$$

for $i \leq n-k-1$. When r=n-2k+1, $M_{n+2,r}$ has singular points and it is homotopy equivalent to

(4.2)
$$M_{n+2,n-2k+1+\varepsilon} \times I \cup \left(\bigcup_{j=1}^{P(k)} e_j^k\right)$$

where I is the closed interval [0, 1], $e_j^k (j=1, \dots, P(k))$ are k-cell and ε is a small positive number. Hence by excision, we have

$$H_{t}(W_{n+2,n-2k+1}, M_{n+2,n-2k+1})$$

$$\simeq H_{t}\left(W_{n+2,n-2k+1+\varepsilon} \cup M_{n+2,n-2k+1+\varepsilon} \times I \cup \left(\bigcup_{j} e_{j}^{k}\right), M_{n+2,n-2k+1+\varepsilon} \times I \cup \left(\bigcup_{j} e_{j}^{k}\right)\right)$$

$$\simeq H_{t}(W_{n+2,n-2k+1+\varepsilon}, M_{n+2,n-2k+1+\varepsilon})$$

$$= 0 \text{ if } i \leq n-k+1.$$

Proposition 4.1. Let n be odd. Then $M_{n+2,1}$ is an n-1 dimensional connected closed manifold whose homology is as follows:

(1)
$$H_{i}(M_{n+2,1}, \mathbb{Z}) \simeq \mathbb{Z}^{P(i)}$$
 for $0 \le i < \frac{n-1}{2}$
(2) $H_{i}(M_{n+2,1}, \mathbb{Z}) \simeq \mathbb{Z}^{2P(i)}$ for $i = \frac{n-1}{2}$
(3) $H_{i}(M_{n+2,1}, \mathbb{Z}) = 0$ for $i > n-1$.

Proof. By Theorem I, we have $W_{n+2,1} \simeq (T^{n+1})^{\frac{n-1}{2}}$. From the long homology exact sequence of the pair $(W_{n+2,1}, M_{n+2,1})$ and Poincaré duality we have (1). From the exact sequence

we have (2). By the dimensional reason, we have (3).

Proposition 4.2. Let n be even. Then

(1)	$H_i(M_{n+2,1},\mathbb{Z})\simeq\mathbb{Z}^{P(i)}$	for $0 \le i \le \frac{n}{2}$
(2)	$H_i(M_{n+2,1},\mathbb{Z})\cong\mathbb{Z}^{P(n-i-1)}$	for $\frac{n}{2} < i \leq n-1$
(3)	$H_i(M_{n+2,1},\mathbb{Z})=0$	for $i > n-1$.

Proof. By (4.3), $H_i(W_{n+2,1}, M_{n+2,1}) = 0$ for $i \leq \frac{n}{2}$. Then from the long homology exact sequence, we have (1). From (4.2) and Lefschetz duality,

 $H_{t+1}(W_{n+2,1}, M_{n+2,1}) \simeq H_{t+1}(W_{n+2,1+\varepsilon}, M_{n+2,1+\varepsilon}) \simeq H^{n-t-1}(W_{n+2,1+\varepsilon}) \simeq H^{n-t-1}((T^{n+1})^{\frac{n}{2}-1}).$ For $i \ge \frac{n}{2}$, from the exact sequence,

$$\rightarrow H_{i+1}(W_{n+2,1}) \rightarrow H_{i+1}(W_{n+2,1}, M_{n+2,1}) \rightarrow H_i(M_{n+2,1}) \rightarrow 0$$

$$\| \qquad | i \\ 0 \qquad H_{n-i-1}((T^{n+1})^{\frac{n}{2}-1}) \\ | i \\ \mathbb{Z}^{P(n-i-1)}$$

we have (2). (3) is dimensional reason.

By (4.1) and (4.2), we have $\pi_i (W_{n+2,1}, M_{n+2,1}) = 0$ for $i \le \frac{n-1}{2}$ if *n* is odd and $\pi_i (W_{n+2,1}, M_{n+2,1}) = 0$ for $i \le \frac{n}{2}$ if *n* is even.

Corollary 2. Let n be odd and $n \ge 3$. Then

$$\pi_i(M_{n+2,1}) \simeq \pi_i((T^{n+1})^{\frac{n-1}{2}}) \quad \text{if } i \leq \frac{n-3}{2}.$$

Let n even and $n \geq 4$. Then

$$\pi_i(M_{n+2,1}) \simeq \pi_i((T^{n+1})^{\frac{n}{2}-1}) \quad \text{if } i \leq \frac{n}{2}.$$

In particular,

Corollary 4.3.

$$\pi_i(M_{n+2,1}) \simeq \mathbb{Z}^{P(1)} \quad if \ n \ge 4.$$

Example. From (4.2), $M_{n+2,n-1}$ is homotopy equivalent to

$$S^{n-1} \bigvee \underbrace{S^1 \bigvee \cdots \bigvee S^1}_{P(1)=n+1 \text{ times}} \quad .$$

References

- [Hau] Hausmann, J. C., Sur la topologie des bras articulés, Lecture Note in Math., 1474 (1990), 146-159.
- [Hav] Havel, T., The use of distances as a coordinates in computer-aided proofs of Theorems in Euclidean geometry, J. Symbolic Comput., 11 (1991), 579-593.
- [K-M] Kapovich, M. and Milson, J., On the Moduli space of Polygons in the Euclidean Plane, J. Duff. Geo., 42 (1995), 133-164.
- [K-T-T] Kamıyama, Y., Tezuka, M. and Toma, T., The homology of equilatral polygon linkage, preprint.
 - [Mil] Milnor, J., Morse Theory, Ann. of Math. Stud., 51 (1963).
 - [Mi2] ----- Lecture on the h-cobordism theorem, Princeton Univ. Press, 1965.
 - [S] Schoenberg I., Linkages and distance geometry I linkage, Indag. Math., 31 (1969), 42-52.
 - [T-W] Thurston, W., and Weeks. J., The mathematics of the three dimensional manifolds, Sci. Amer., 251 (1984). 94-106