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Dequantization Techniques for Weyl

Quantization

By

Mark A. HENNINGS*, Daniel A. DUBIN** and Thomas B. SMITH***

Abstract

By quantization we mean the linear bijection from J'(II) to JsPG^GR), i^'(M)) due to Weyl, and

by dequantization we mean its inverse. We propose two new, but related, dequantization schemes.

The first is adapted to knowledge of the matrix elements (with respect to the Hermite—Gaussian

functions) of the operator to be dequantized, while the second is adapted to its integral kernel. Our

dequantization schemes are completely general. We apply these methods to the case where the

operators in question are Toeplitz operators related to functions of angle on phase space. This

enables us to compare the symbols of these Toeplitz operators with the functions of angle

themselves.

§ 1. Introduction

When correctly constructed in the context of the rigged Hilbert triple
j^QK) ^ jL2QK) £.fe5' (ffl), Weyl quantization provides a linear bijection between
the space *&'(![) of tempered distributions on phase space II =M2 and the space
£(& (M), *3' (IB)) of continuous linear maps from J (ffi) to £ (W. However,
effective formulae for dequantization are thin on the ground. Some symbolic
formulae exist, but these are only rigorous when dequantizing observables
which are particularly well-behaved. For example, a simple formula exists for
the phase-space function whose Weyl quantization is a Hilbert-Schmidt operator
on L2(M). In cases where such formulae cannot be justified, it is not clear to
what extent they can still be used to obtain information concerning the
dequantization of observables.

In this paper we exhibit how explicit formulae for the dequantizations of
general observables can be obtained. Two main approaches are discussed. Both
of these approaches are essentially the same, but they have differing areas of
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utility, in that one is of use when considering observables for which an integral
kernel is known, while the other is of use when considering observables for
which the matrix coefficients with respect to the Hermite Gaussian functions are
known. It is frequently the case that an observable is known in one or other of
these forms — while either form gives, in principle, complete information about
the observable, in practice it is often extremely difficult to analyze the
properties of these observables. For example, it can be hard to derive the
matrix coefficients of an observable from its integral kernel representation, or
vice versa.

In particular we apply these results to considering the dequantizations of
observables which are functions of the quantum phase angle alone. More
explicitly, we consider that class of Toeplitz operators which are frequently
cited as being quantum mechanical observables providing information about the
quantum phase angle. We consider their dequantizations (with respect to Weyl
quantization) and compare the result with the corresponding function of the
fundamental phase space angle. We are therefore obtaining knowledge of the
relationship between the Weyl quantizations of these functions of phase space
angle and the matching Toeplitz operators. We show how the Toeplitz operators
are, in some sense, deformations of the Weyl quantized observables, and provide
some asymptotic information concerning the nature of these deformations.

Let us write d:*8'(II)-*£(*3(]R), *5'flR)) for Weyl quantization, so that, if
r^^'(II), then A[T\ is a continuous linear map from j^QK) to &5'(ffi). In many
cases A\_T\ is more regular than that, for example A[T\ may be a bounded
operator on L2 (IS), but the rigged triple framework provides the necessary
freedom to include essentially all the operators of interest in quantum
mechanics.

Now, in practice, determining a closed form expression for A[T\ in
particular cases is not easy, but determining T explicitly from A{T\ is even
more difficult. Moreover, if a closed form for T is not known, the currently
known approximation schemes are rather crude. For example, there is the
formal expression

T(p,q)=Tr(A(p, 0)4 [7]), (1.1)
where

(1.2)

Aside from the fact that A\T\ will not usually be trace class, and A(p^q) never
is, equation (1.1) is not easily evaluated. Using it as an approximation scheme,
there is no assurance that an expression like

(1.3)
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will be close to T for any integer N or any choice of orthonormal basis (ek:k>
1} forL2(M).

In recent work [6, 7] , we pointed out that in the modified Dicke model of a
laser [2] , the thermodynamic limit which is used in that model has the effect of
dequantization, in a sense which we shall clarify below.

Setting aside the physics of the model, this provides us with a new
technique for dequantization. As the function classes involved can be chosen
explicitly, and the limits to be calculated are referred to appropriate topologies,
the technique also supplies us with a rigorous approximation scheme.

Before introducing the new procedure, we briefly recall the basic theory of
quantization and dequantization adapted to the rigged triple

J(K)&t2(IR)c^'(iK)f (1.4)

where d OK) is the Schwartz space of C°°-functions of rapid decrease at infinity,
and £ (H) is the space of tempered distributions. Quantization begins with the
continuous homomorphism § of .^(IR2) into s&(If) given by the formula

[9F\(p, ? > = 9 ~ 9 - ^ d x Fe^(n). (1.5)

Here and later, II is the space IR2 interpreted as phase space, and the Cartesian
coordinates (p, q) have the meaning of classical momentum and position (but
not of anything in particular, in this paper) . Given T^d'Of), its Weyl
quantization A[T\ ̂ 3?G3(IR), j^TQBD) is defined by the formula (the square
brackets indicate the canonical duality pairings)

(1.6)

In order to determine the inverse of A, we observe that if
&3'(IR)), then it defines a separately continuous bilinear map
(C given by

S ( f , g ) = l S g , f l /,0eJGK). (1.7)

By the Banach-Steinhaus Theorem, S^is in fact jointly continuous, and hence
defines a continuous linear functional S on j^(M2) =jj(ffi) ®^(ffi), such that

[ S, f*g\ = S (f, g) = [Sg, f\ /, g^d(W. (1.8)

Thus we can define the map D:£(d(W, d'(W)-+s2' (H) by

(1.9)

Regarding the properties of the map D, we have the following.
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1.1. We have that AW (SO] = S for any S €= £ (d OR), £ OR)),

Proof. We see that

[AW(S)]g,fl

for any Se<j?(*JQR), J'(iK)) and/ ^ej(ffi), while

for any T^s£'(W and Fejfll), so the result follows. El

Thus we have shown that Weyl quantization is bijective, and have obtained

a formula (1.9) for the inverse D=A~l. However, equation (1.9) is of little or
no practical use in finding the distribution D(S) explicitly. In this paper we
shall present two different solutions to this problem. In both cases we have a
fully rigorous procedure for calculating the dequantization D(S) for a given
element of S^£(s^(Wt J'GE)). The importance of the two methods lies in
their ranges of utility. One method would be of use in dequantizing an element
of J^CfcKffi), j^'(ffi)) whose integral kernel is known explicitly, while the second
is useful when dequantizing elements of 3? 0*5(18), ^3'GR)) when what is known
explicitly are the matrix coefficients with respect to the Schauder basis {hnm>
0} for jJ(ffi) consisting of the Hermite-Gaussian functions. In the latter case, we
also investigate the problem of dequantizing elements of i?(j*5(ffi),
.feJ'GR)) which are Toeplitz operators on L2(W) — many such operators are
considered in the literature as being the correct quantizations of functions of
the phase angle. From the point of view that we have set out in previous work
[4, 5, 6, 11, 12, 14] , it is important to compare these operators with Weyl
quantizations of functions of the phase angle alone.

§ 2o The Convolution Method of Beqeaittizatloini

The method of quantization that we shall now give was obtained from a
consideration of a model of laser light (see above). For the sake of comparison,
the parameter N in SN refers to the number of gas atoms in the laser cavity and
(c, d) in rc,d are parameters which fix the laser intensity.

Suppose that we have chosen a fixed element F^^(II) such that

f f F ( p , q)dpdq=l.
J Jn

For any a, ft^Effi and N>0 we consider the function Fjv,a,&e^5(II) defined by

<§-lT-a.-ijKNF9 (2.1)
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where &M^c,d^X(s^ (II)) are scalings and translations, respectively denned by
the formulae

MF\ (p, q) =MF(pjM, (2'2)

If Se#(*J(IK), JXM)) we can define the functions DF-.N(S) by

(2.3)

The family {Dp-.NiN^N} gives an approximation scheme for D for each
function F, as the following result shows.

Proposition 2.1. Each function DF-,N(S) belongs to s£'(H), and

where the limit is taken with respect to the weak topology on A3'(n).

Proof . Direct calculation shows us that

[ZWS)] (a,b) = W(S), 9(F**jl = W(S>tT.a.-lSIfF\.

For any G^jJ(II), therefore, we have

Wr-jt(S), G]= ff[D(S),T-*-tSNF\G(a,b)dadb=W(S),8llF*G],J Jn

and so DF.N(S) Gj^'(II). It is a standard result that

limSNF*G = G

for any G^j^dl), the convergence being with respect to the Frechet topology
on s£(K). Hence the result follows. H

We emphasize again that we therefore obtain a convergence scheme for
each Fe^(II).

If the operator S has a known integral kernel, 2 say, then its
dequantization symbol is given by

D(S)=27T§(Z) (2.4)

when 2 is in the domain of *&, namely when 2^^(11). Our method certainly
gives this result. For in this case, using equations (1.8) and (2.3),

, <j)FN*,b(p, q)dpdq

(p, q) [T-a.-bSNF\ (p,q)dpdq
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(2.5)

where F-(p, q) = F(—p9 — q), and hence we deduce In this case that
and

But, unlike equation (2,4), our method is not restricted to the cases where
). For example, if

Sf=f(0)d

then S has the integral kernel 2 — 5® 5. Direct calculation then shows us that

where

Fl(y) = f F ( x , -y)dx.Jm

Standard analysis then shows us that

a result which can be readily checked.
So far, the choice of function F has played no role. This has been because our
examples have been so simple. We are now going to consider a more difficult
example, for which the choice

F(p,d=^e-»-' (2.6)

will be useful. This example considers the quantization A[(p] of the angle
function in phase space

, , x(2.7)

In previous work we have shown that

-j f*
=-^n I sgn(q)f(q)g(q)dq

& *s 1&

— -gt lim JJ^sgn^e }

(2.8a)

where

0, otherwise.
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Then it is clear that

=xsgn (Q) --iS, (2 . 9)

where Se^UJQB), *J'(IR)) is such that

[S, G]-llm Sgn(^)^-^W)(x)G^+^, y-xdxdy (2.10)

for any G^^(II). Clearly, then,

(2.11)

We shall see how the above dequantization technique provides an alternative
confirmation of the above identity. Choosing F ^ *3 (II) to be the Gaussian,
equation (2.6), evidently

-q)2-ia(p-q) . (2.12)

Then

[DFlN(S)](p, q)

= limJ—JJ sgn(y)e~lxvlgI(L)(x)exp[—N(y~q}2—^x2—ipx] dxdy.

This can be rewritten as

[DF;N(S)](p, q)

7T J o X I J -q+x/2N J q+x/2N

As DF-,N(S) is a smooth function, it is legitimate to differentiate it with respect
to p under the integral sign. Doing so, we obtain

and we recognize the first term as a partial derivative of 2i(p(p,q), so it follows
that

Since [Z)f;w(S)](0, i?)=0 and ^)(0, ^)=--sgn(^) we deduce that

q)+i~sgn(q)-2i<p(p, q)
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and hence
llm[DF.N(S)](p9 q)=2i(p(p9 q)~i:

whenever q=£Q. We note in passing that the above identity also holds (trivially)
when ^^O and ̂ >0, but not when $ = 0 and ^<0, but the required identity
then holds distributionally in '̂(11), as required.

§ So

Suppose, on the other hand, that the operator S e £(j£(M)9 j^'(ffi)) is
known explicitly in terms of its matrix coefficients [Shm, AJ, where m, n^Q,
with respect to the Schauder basis for S(ffi) consisting of the Hermite-Gaussian
functions. Then the above procedure for dequantization is not helpful in
calculational terms, since we would have to express each function Fn,a,b in terms
of the Schauder basis (hm®hn: m,n>Q} for ^(H), and it is unlikely that we
could do so simply enough for it to be used in calculations.

To deal with this case, we shall adopt an alternative approach to
dequantization, using a different Schauder basis for j^(II) than that obtained
from the Hermite-Gaussian functions. The Weyl quantization procedure can then
be seen as simply changing the basis used for s2'(Jl), and hence the
dequantization procedure is immediate, involving the opposite change of basis.

The basis for j/Sdl) that we shall now consider involves the special
Hermite functions. These functions are considered in [16] . The functions we
shall use are not exactly the same as those used in that text, since we adopt
slightly different scaling and normalization conventions.

For any m, n>0, define the function 0m>n^^(H) by the formula

®A«), (3.1)

noting that 0m, n = @n,m for all m,n>0.

3.1 The set {0m>n:m9n> 0} is a Schauder basis for s£ (II),

with \~n — 0n,m- m9n>Qi being the matching dual Schauder basis for j£'(H).

Proof. Since § is a continuous automorphism of sAOf), and since {hm^hn:
m,n>Q} is a Schauder basis for JGD. it is clear that (0m,n: mfn>Q} is also a
Schauder basis for .^3 (II). The result concerning the matching dual Schauder
basis for J'(II) follows from the orthogonality of the functions involved, since
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It is also clear from the above that the infinite series

LJ ^m'n m'n

belongs to j^(II) if and only if the double series (^m,n) belongs to s(2}, so that

for all integers r ,
We introduce the generating function 9s,t for the functions 0m,n by defining

9*.t(P, 4)=

Proposition 3.2.

9s,t(p,q)=2exp[-p2-q2+is(p-iq)-it(p+iq)-^s^ (3.3)

li^nc^ w^ deduce that

m»(p, q) ___

, n ) ! - ^ ^ ' ^ ^ 2

(3.4)

/or aH w, ^>0, w^r^ we write p+iq=relB.

Proof. The first result follows by observing that 9Stt = 27rf (Gs ® G/), and

the second result follows by equating coefficients of sV for all m,

Special Hermite functions are associated with pairs of raising and lowering
operators. Because our conventions differ from those of [16] , we must modify
his definitions slightly. To this end, consider the four vector fields

(3.5)
"""IVd^ ~1W~^~""'

and

(3.6)
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Together with the identity they generate an algebra on phase space which is
isomorphic to the 3-dimensional Heisenberg algebra [7] . Their actions as
raising and lowering operators are as follows:

Proposition 3*3* For any m, n^Qwe have that

m,n ̂  I m w-1*, ^ ^ ^

and

^{j) = — i l^n dX*» i
(3.8)

Combining these differential operators, we can define the two elliptic differential
operators

] _ — — j _ _ _
2 ? 2 ?

which can be written as

(3.10)

where the differential operator N is given by the formula

It is worth noting that, in polar coordinates, we have the identity

N=-J0, (3-

which is of some interest, since then iN is the third component of angular
momentum if II is embedded in ffi3 = II X ffi. The special Hermite functions are
eigenvectors of these operators:

itioe 304o For any m, n>0we have that

m,n m,n? /^ ^~\

R0m,a=(2n+l)0m,n.



WEYL DEQUANTIZATION 335

We shall now show the utility of this new Schauder basis for

Proposition 3.5. Far any M 9N> 0, the element A [®M,N\ ^£(d (IB) , & (Iff) )
is in fact the, bounded operator

A[0M,N]=\hNy<hM\ (3.13)

acting on L2(W.

Proof. This result follows from the identity

for all M, N, m, n>0. B

Another way of putting this result would be to say that ®M,N is the symbol,
or dequantization, of the operator |/ZJV)(/ZM|.

We note, as also observed in [16], that this result implies that very easy
formulae exist for the Moyal products of the special Hermite functions $M,N,
since

®j,K*®M,N=dJN®M,K, J, K, M, N>0. (3.14)

In view of these results, we now have a precise expression for the dequantization
D(S) ^ $ (II) of any element S^LW(ffi) , ^'(M)) in terms of this new basis
for jJ'Ql). The following is now immediate:

Theorem 3.1. // 5 e £ (& (IE) ,&' (E)), then its ̂ quantization D(S) e £ (n)
can be written as the infinite series

D(S)= [ShM,hN]0M,N, (3.15)

which converges in ^'(H). H

Thus, for a given Se^(J(M), JXM)), the problem of determining D(S) is
now simply a matter of investigating the properties of the above infinite series.

Before moving on to investigate specific cases of this dequantization
technique, we note the following useful identity concerning the special Hermite
functions, which will be of use in the theory of quantization in polar
coordinates.
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3,6o For any M, N^Q we have that

r®M,N(rcos$,T$m$)TdT=iM-Nei(N-M}*gM,N, (3.16a)
J 0

where

rmax(MtjV) i

quantity s(M 9N) being given by the formula

min(M,N)odd.

Proof. While this result can be proved directly from the definition for the
functions @M,N, we choose another route. Note that

, rsm£!)rdr=2ii:f'"[9(Gs®Gt)](rcosp, rsin&fdr
Jo

2max(m>n)min(m,n)l

for all s,/ejg. Equating coefficients, the result is immediate.

§ 4o Dequantization of Toeplitz Operators

Of particular interest in the theory of Weyl quantization of functions of the
phase angle are the so-called Toeplitz operators. Such operators are widely used
in the literature to model phase angle phenomena. To be specific, for any
function/^L°°(IT) we can define a bounded operator T(f) ^3?(L2(M)) such that

<hm, f(f)hn> = im~nfm-n m,n>Q, (4.1)

This map is obtained in the following manner. Composing the embedding map
from Hardy space J?2(TT) to i2(TD with the map from Z,2CIF) to itself consisting
of multiplication by / and finally the Szego projection from Z,2(T) to fPCIT)
yields a bounded linear operator on f/2(TT). The map T(f) is the image of this

map under the unitary transformation from H2(T) to JL2(IS) obtained by

mapping the basis element em& of //2OD with the Hermite-Gaussian function in*
hn for all n>Q.

By the "standard" Toeplitz operator we mean X— T(&), where @(elB)=j3 for
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<7r, which has been proposed as a candidate for a quantum phase operator

[9, 8, 10, 13] . Also of interest is the associated operator £7= T(eie), which is a
right-shift operator on £2(ffi), since Uhn = ihn+i for all n>0. Another Toeplitz

operator is its adjoint map [/*= T(e~l&), which is — / times the left-shift operator
onL2(E)[15].

It has been the burden of much of our previous work on quantum phase that
such operators are not the primary ones to consider in connection with the
physical phenomena. We believe, in this regard, that attention should be paid to the
operators which are the Weyl quantizations of phase space functions of the phase
angle alone. To re-establish our notation for such operators, for any /€= L°° (TD we
can consider the f unction fmg^^' (ID given by the formula

/ang(rcos£, rsin£) =/(**). (4.2)

Our proposal, then, is that the Weyl quantization ^[/ang] of fmg is the
operator which should be considered rather than T(f). However, it is clear that,
in some sense, the operator 4[/ang] is a deformation of the operator T(f), and it
would be interesting to understand this deformation in detail. To do so we must
consider the difference between the distributions fmg and ®(/) in s2'(I£), where
®(/) = ®(T( / ) ) is the dequantization of the Toeplitz operator f(f). We can
deduce the following result immediately.

Proposition 4.1. For any f^L°°(T) we have that

/ang= in-mgm,nn-m®m,n (4.3)

m,n>Q

= v •»-
m,n>Q

We note in passing that the above formula for fang yields the following
general distributional identities:

(4.5)
m>Q

and their complex conjugates. We also remark that these results show clearly
the importance of the coefficients gm,n for angular quantization.
The identities /ang and ®(/) may be simplified further, if for any k> 0 we
introduce the distribution Fk defined by the formula

(2r^- (4'6)

Af>0

Then
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Proposition 4c2o For any /^JL°°(T) we have the distributional identities

, (4 . 7)

\Sb 0)] (rcosjS, rsin/S) = fke'k8Fw(r) . (4.8)
fee

ULS-J

Thus we see that the radial dependence of the distributions ® (/) is completely
contained in the distributions F*. We proceed by investigating the properties of
these distributions F*. We need to make the following auxiliary definitions.
For any k>0 and r>0 we define the function Zk,r e I1 (ffi) fl L2 (M) by setting

exp[-r2tanh(-|-F)] e* n ., F>0?L \^ /J i _ & + i / J . T 7 \ ( 49 )

0, F<0,

and for any a>0 we define fc^Z/GR) by the formula

(4.10)
0, V<0.

We now have the following result.

Proposition 4.3. We have that F0(r) — 1. Moreover, for any k^N,Fk(r) is a
smooth polynomially bounded function given by the formula

r>0. (4.11)

Moreover we have the inequality

Proof. The result concerning F0 is a standard distributional result for the
Laguerre polynomials. For general k we start with equation (4.6) , and
substitute the expression

m -=*-¥(M+k)\
;=i

The order of the sum and integral may be interchanged, and the resulting sum
over M inside the integral sign may be recognized as a generating function for the
Laguerre polynomials (the absolute and uniform convergence of this series
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justifies interchanging the order of the sum and the integral) . Changing to polar
coordinates in ffi*, the angular integrals can be performed immediately, as the
integrand only depends on the radius R. It is then convenient to change variables to
V=R2, and so we can write

/o \±* roT* , \ I l\2K
 k(F*(r) = (-l rkl

V7r/ Jo

for any A:^N, where

exp -f2tanh(^-Fj
I \Z 1 IjfcP/W'- kV

= f exp[— |

:rM— -

=2-

for any F>0. Thus we deduce that

for any F>0 and A:>1, so that

Ft(r) = (~Yrk f Zk,r(V) [& * £3 * ... * &*- J (V)dV
\7l / «/]g

for all &>1, as required. The fact that Fk(r) is a smooth function of r is now
immediate. Now

f ea(V)e
<^M

-*v=dV=

(where we take the square root with positive real part) for any a>0, and hence
?i * & * - * ?2*-i belongs to LHffi) nL2(M) for all A:>2, with Fourier transform

?i * &*...*&*-i)l OF) =•

Thus

and hence

so that
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* * ... *

= 4(2A-3)!! Jo

. 22*~V

/o l!!n \ gkvdv

for all k>2. Moreover, we see that

rJo

dV

< _ 4 r

so we deduce that

as required.

This result has the following immediate and important corollary.

Lie For any f ^ L°° (IT), the distribution ® (f) is a smooth
polynomially bounded functim on II.

Proof. Since l / f r l ^ l l / I U for all k^Z, the above inequalities for Fk(r) show
that the series

[®(/)](rcos/3, rsin/S)= 7
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converges absolutely on II, and moreover converges uniformly on {(#,6)^ II :c
62<J?2} for any J?>0. Thus ®(./) is certainly a function. It is a straightforward,
but lengthy, exercise to show that similar results can be deduced about the
corresponding series of partial derivatives, and hence we deduce that the function
®(/) is smooth. Although the inequalities we have obtained above are not sufficient
to show this, the fact that ® (f) ^ $ (II) guarantees that ® (f) is polynomially
bounded. H

It is intriguing to notice the connections of the above formulae with the Exp
transform considered by Bayen et al. [3]. Recall that the Exp transform is the
Moyal product equivalent of standard exponentiation for phase space functions,
so that

K—i -a

(4.13)

for suitable distributions K, where (K)% denotes the n-fold Moyal product of K
with itself, so that

4[Exp*(£)]=expGl[tf]) (4.14)

whenever these formulae make sense. We recall that [3]

/ -i \ T

(4.15)
cosh(|v)

for any F>0, which is equal to Z0,r(V) for T2=p2 + q2.

§ 5* Further Properties of the Functions Fk

The functions Fk are a measure of the difference between fm& and ©(/), and
so we investigate these further, shedding more light on the relation between
Toeplitz and Weyl symbols.

We have shown above that the functions Fk are polynomially bounded. In fact
they satisfy further, more useful, conditions. We shall determine some of these.

Proposition 5.1. The functions Fk obey the lower

Fk(r)> _ r i f e , /c^N, (5,1)

and upper bounds
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lp fc = l,

Fk(r)<

for any r>0 and 0<£<1. Thus we deduce that each function Fk is bounded on [0,

limF*O) = l. (5.3)
r—»o°

Pr00/. Since
\k -f*-1

for all A:>2, we deduce that,

^.i^I/T^"1 l ro f r in/ l^i/T*"1 1rrr /•9t_m/ fl- |/ ""2^

for all fc^BJ and F>0. We can show from this that

T - - - T /e2 V2 e 2 dV

from which equation (5.1) follows, while for A:=l we have

To prove (5.2) we use the bound
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for any fc>2, where we have changed variable to lf=tanh(-p-j. Now

:~-rf/ 0<I7<£,

and so for 0< U<e we have

while for £< U<1 we have

}^
Putting these two results together, we obtain the desired inequality. The facts
that the function Fk is bounded and that \\mr-+«>Fk (r) = 1 are now evident

We now know that Fk is bounded on [0,°°), we have an upper and a lower
bound for it, and we know its limit as r~* °°. To proceed further in our study
of Fk, we need to know the convolution of $'* with itself.

Lemma 5,1. For any

(ft * ft) (V) = r i n h ' - ' v , V>0. (5.4)

Proof. We note that

for any a>0, and so for /c=l f

(»i * Si) (V) - (f i * f i) (V) = JTT*~^, F>0,

as required. We now proceed by induction. If fc^N and we suppose that the
above identity for §'fr * ??'fc holds, then

_ i r r - - . _ .
dU

k+i ~2 rv /^u_i\k-i° V- /. •'(V)
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7T*+1 -|«+i>v . . t / l T2 sinhM -ij
2k+2kl

for all F>0, as required. H

We are going to use this lemma in an analysis of the functions Fi. This
requires us to make use of the sequence of functions

r
I - ,

Jo cosht+1|-F)

r>0, k^, p^Q, (5:5)

since X^^F,, and

Ft'(r) = F t ( r ) -2Xw(r) = M W -2Xw(r). (5.6)

We are first going to show that Fi Gi2[0y°°), and to that end we must consider

the square-integrability of r~aXk,$M for certain values of a and j8. Note that JGk.0
is certainly a continuous function on [0,°°).

Lemma 5C20 //" A;^M, a^Jg and jS>0 ar^ such that

^^ function

r

belongs to L2[0,°o), wn'^

r.

Jo

Proo/. Consider the function Ft,aJ3:[0,°0)3--1>[0,°o) given by the formula
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Then Yk,a,& is measurable, and

+2 ~

. , - / T / , H A usmh ^ )cosh

— k(V + W}

. - / i / x n nsmh 2-(V+W) icosh

sinh* * a+2(^(V+W)}cosha+&+2

Thus we deduce that

°Yk,aj*(r,V-W,W)drdW

. .
smh

a
cosh

_

for all y> 0. Using Tonelli's Theorem, we deduce that
that

r r rYw(r,V9Jo Jo Jo

.«H/i v tf/i v „
Jo tanh 2ll^)sech \2 V)dV
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(2a+2j8- !)(&-!)! '

The result now follows, since it is clear that

r-2aXk,B(r)2= f"
J 0 JO

for all r>0.

We are now able to establish the square-integrability of the functions Fk.

5020 For any k^N the function Fk belongs to £2[0, °°), and
there exists a constant A>0 such that

(5.8)

Proof. Using (5.6), we have that

Thus we can use Stirling's formula to deduce the existence of constants 7?

such that

f°°r-2XM2dr<T
2k~^Jo Joo o

for all A:^M. Thus we deduce that F'k <El2 [O,00), with

[f~FlM2dr]*^k[f~r-2Xfadtf

so that result follows by putting A= 7+2(5. H

We can sharpen this bound, including a factor of r~l in the integral.

Proposition 5030 For any k>2 the function r~2F'k(r) belongs to L2[0?oo),
and there exists a constant B>0 such that

k>2. (5.9)

Proof. The proof is similar to the above one, since
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f V3XM (rYdr<-j^r, f ̂  r~1Xk,1(r)2dr<2k,
Jo K~~ 1 Jo

for all &>2, and so that result follows with B=2+2j2. S

Thus we have seen that the functions F'k are fairly well-behaved.
Unfortunately, it is not the case that the functions Fk themselves belong to JL2[0,
°°), because of their behaviour at °°. However, it will suffice to consider the
difference between the functions Fk and the constant function 1. These final
results concerning the Fk will provide us with information concerning the
rapidity with which they converge to 1 at infinity.

Lemma 5.3. For any k>0 we define functions

. (5.10)
M>0

and we define M-k — M\,.
For any k^Z the function Mk belongs to L2 (II). Moreover, for any k> 0 the

l
function rKl— Fk(r)) belongs to Z,2(0,°°), and there exists D>0 such that

(5.11)

Proof. The coefficients

were used in [11] to estimate the coefficients gm,n. For our purposes here, we
observe that there exists a constant C>0 such that

\Qm,n ^m,n\

for all m,n>0, while

I i/in — /M\ 1 / I vm — i/i\ ~T~ 1 \ "o"
ffi ft] ^ J- / '*•' tlr\ \ ±. \ 8

Thus we can find OO such that

\9m,n-l\-
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for ail m9n>0. Thus we deduce that Mk^L2(W for all k^TL, with

M>0

for all k&Z. Since M0
=G, finding the constant D is now simple. .13

We can now put these results to obtain the following further properties of
the functions Fk,

Proposition 5A For any k>2, the function l—Fkis bounded, with

™, k>2, (5.12)

, k>2. (5.13)

Proof. We observe that (\—Fk)F'k belongs to L^O,00) for all k>2, with

l-FM \\Fi (r)\dr< [ f"r[l - Fk (r) ] *dr] J [/0 V'# W 2dr] * < BDk\

Since

we deduce that

(1 - Fk (r)Y = 2 f~(l - Fk (r))F'k (r)dr^2 f"|l - Fk (r)\\Fk (r)\dr<2BDk%,
J r Jo

as required. Moreover we see that

(1-F,W)2=2 f(l-Ft(r))Fi(r)dr
<J r

<2\ r"/(l-F*a))^|*[ rrlFiW
U r J I J t
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r~2

ri

for all r>0, as required.

Our above analysis has only been valid for the functions Fk with
However we can use the fact that FQ—1 and the inequality

to yield the following result, which summarizes the behaviour of \~Fk at large
r for all k.

Corollary 5.1, We can find constants E ,F>Q such that

\l-Fk(r)\£Ek*. (5.14)

and

ii
Z7JL.16

|l~F*(r)|<^V, (5.15)
fT

for all k>0and r>0. H

We note that we have shown that 1— Fk(r) = 0(r~J) as r-> °o. To do this

we have used the fact that Fk belongs to L2[0,°°). In fact, for each integer k,
the asymptotic behaviour of Fk as r—* °° is much better than this, as can be
obtained by using Laplace's method for integrals on the original definition for
Fk. However, using Laplace's method does not gives us results concerning the
asymptotic behaviour of these functions expressed uniformly in the integer fc,
and so are not sufficiently precise for us to be able to use then in what follows.

§ 6. Dequantization of Toeplitz Operators (Continued)

Now that we have established several properties concerning the functions Fk,
we are in a position to prove certain results concerning the distribution $ (/) ^
^3(11), which is the dequantization of the Toeplitz operator T(f) for some /e
L°°(TD. Recall that we have already shown that $(/) is a polynomially bounded
function on II. Our first result is not as strong as we would wish, but is certainly
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useful in some cases.

60 1. // /eL~CID is such that (\k\^fk)^z belongs to £l(7Q,
then the distribution ® (/) is a bounded function on II. If, moreover, the sequence

II ̂
(\k\16 fk)kez belongs to ̂ 1(Z), then the bounded function &(/) is such that

[®(/)](ra>s£, rsmfi)-+f(etff) as r -> oo? (6.1)

uniformly in j8.

Proof. Under the first condition we observe that the distributional identity

[® (»] (rcosjS, rsiitf) = J fke
tk°FM(r)

fce&

is an absolutely convergent series, and the boundedness of ®(/) is then evident.
In the second case, we note that the identity

/(**) ~ [® (/)] (rcosjS, rsiitf) -

is also an absolutely convergent series, with

|/(^) -[«(/)] (rcosjS, rsin$|<

for all r>0, proving the second result.

We note that the distributional identity for the Fourier series,

is absolutely convergent whenever ( f k)kez belongs to -dl(7L) (which is true in
all of the above cases) , in which case / is a continuous function on IT. The
condition ( //Jfcez^/HZD is rather strong, and we should like conditions which
are somewhat weaker, but which still give us control on 4[^g] — T(f). The
next result provides such a condition.

JL ^

Proposition 6,2, // /eL-flD is such that (\k\* fk)k<=z belongs to /2 (23,
then the function fang~S)(f) belongs to L2(II), and hence the operator ^[/ang] ~~ T
(f) is a Hilbert— Schmidt operator on L2(7L).

Proof. This result is an immediate consequence of the identity
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and the fact that the functions {Mk:k^Z} form an orthogonal sequence in Z,2(II),
with the already-established upper bounds on their norms. The fact that the Weyl
quantization of an element of L2 (II) is a Hilbert-Schmidt operator on L2 (IB) is
standard. H

The condition in this last Proposition is considerably weaker than the one
used previously, but is still sufficiently strong to ensure that the function / is
continuous on IT, and that the Fourier series for / converges absolutely.
Although this result implies that ® (f) tends towards fmg in some sense as r -»
00 , we cannot automatically deduce point/wise convergence.

If we wish to investigate further the properties of ® (f) as r -> °o, it is
sensible to introduce the following definition. For any /^L°°(T) and any r>0,
define the function ®<r)(/) egCff) by setting

, rsiitf) e«eT (6.2)

thereby extracting the angular dependence. We would like to find out results

concerning the convergence of the functions ®(r)(/) as r — *• °°.

li ̂
Proposition 6.3. ///^L°°(TD is such that the sequence (\k\16 /ft)fcez belongs

to £2 (Tft, then

0 (6.3)
r-+oo

Proof. This follows since

F2 V^, ,ii, -,
fk\2(Flkl(r) -l)2^y 2j|A|81 /*!2

£eJ2 fceS

for all r>0. H

Thus, if we are satisfied with convergence with respect to the L2(T) norm,
this result gives us what we would like. It would, however, be interesting to
obtain details concerning the pointwise convergence of these functions, but as
yet we have not been able to establish suitable results.
However, it is possible to obtain results of a more distributional nature which
do not require any special conditions, and hence hold for all functions/^!,00(IT).

Thus we shall see that there is always a sense in which ®(r) (/) converges to /
as r-+ °°.
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Proposition 6.4. For any f^L°°(T) we have that

.=/mg (6.4)
r-»e»

where convergence is with respect to the weak topology in $ (II) .

Proof. For any G^^ffl) we have

G—
M,N>0

and hence

where the sequence (7*) is such that

for all s>0. Since we have that

we deduce that

for any r>0, which implies the required result.

The results of Propositions 6.1, 6.2, 6.3 and 6.4 all, in their slightly
different ways, indicate how each function S) (f) is a deformation of the phase
space function fang obtained from a given function /^jL°°(TD. While Proposition
6.4 is sufficiently general to handle all possible types of function / the result is
the least concrete of the four. Unfortunately, only this last result is sufficiently
weak to deal with the function /= 0, about which we would most like to have
information, since this in turn would inform us concerning the relationship
between the Weyl quantization A[<p] and the Toeplitz operator X.

However, there are a couple of points which are worth noting in particular.
In the first case, if the function / is a trigonometric polynomial, so that the
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Fourier series expansion

**'" (7.1)

is in fact a finite series, then it is clear that the function /satisfies the conditions of
all four of Propositions 6.1, 6.2, 6.3 and 6.4, and so ®(/) is a bounded function
on II which converges to / as r tends to infinity uniformly in /?. Moreover the
difference function ®(/) — fm% belongs to L2(II), and so on. It should be noted in
particular that this result holds for angular functions such as

eM (£€=Z) and PN(COS® (N>0).

In another direction, suppose that the real-valued function/is such that the
conditions of Proposition 6.2 are satisfied. Then we see that A [fangl ~~ T (f) is a
Hilbert-Schmidt operator on L2 (ffi), and so 4[/ang] is a deformation of the
Toeplitz operator T (f) by a Hilbert-Schmidt, and therefore compact, operator.
Moreover, the Toeplitz operator T (f) is self-adjoint (since / is real-valued) ,
and its spectral theory is well-understood. We can therefore apply standard
theorems to obtain some information about the spectral properties of such
operators Alfang]. The conditions of Proposition 6.2 are such that the sequence
of Fourier coefficients ( f k ) k e z belongs to £l(Za), and so it follows that / is a
continuous function on T. Thus we deduce that the spectrum of T(f) is equal
to the range of the function / — if / is not constant almost everywhere, then
T(f) has no point spectrum, and so the spectrum, of T(f) is equal to its
continuous spectrum. Using a theorem of Weyl [1] , we deduce that the
continuous spectrum of A[fmg] is the same as the continuous spectrum of T(/),
and hence is contained in the range of / Unfortunately, as also mentioned in
[l], simply identifying J[/ang] as a compact deformation of T(f) does not give
us any information concerning the point spectrum of /4[/ang].

In this paper we have concentrated on a few particular applications of our
dequantization technique. It would seem clear that this technique is a powerful
one, which could be used in a number of other contexts. We hope, in later work,
to report on other applications.
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