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An Inverse Scattering Problem for Dirac Equations
with Time-Dependent Electromagnetic Potentials

Dedicated to the memory of Professor Nobuhisa Iwasaki

By

Hiroshi T. ITO*

Abstract

We consider an inverse scattering problem, by using a time-dependent method, for the Dirac

equation with a time-dependent electromagnetic field. The Fourier transform of the field is

reconstructed from the scattering operator on a Lorents invariant set

(0.1) D: = {(T,&€=R*R3M<c\ft}

in the dual space of the space-time. As corollaries of this result, we can reconstruct the

electromagnetic field completely if it is a finite sum of fields each of which is a time-independent one

by a suitable Lorentz transform, and we can also determine the field uniquely if the fields satisfies

some exponential decay condition. Our assumptions and results are independent of a choice of

inertial frames.

§ lc Introduction

In this paper we consider an inverse scattering problem for the Dirac
equation with a time-dependent electromagnetic field.

If the field is time-independent and short range, then it can be completely
reconstructed from the scattering operator (see [Is], [It], []]). This means that
the field can be determined by scattering experiments in the inertial frame in
which the field is time-independent. Because of the relativistic invariance of the
Dirac equation, it follows that the field can be also determined by scattering
experiments in any inertial frame, the field is in general time-dependent. Thus, it
is important to study the Dirac equation with time-dependent fields for the
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inverse scattering problem.
We proceed our argument by fixing an inertial frame; however, our

assumptions and results are stated in a way independent of a choice of inertial
frames (see Section 5). The variable t denotes the time and x is the space-
variable.

We begin with some explanation for our notations. We denote by (a&R*
the usual inner product of a and b in Rd and may write a • b or <a?6) for
simplicity. Moreover, the usual norm of Rd is denoted by the same symbol |-
for any d if no confusion occures. We also use the symbol <T,^> in place of
T(u) for a distribution T and a test function u.

The Dirac equation with an electromagnetic potential

A= (A\A\A2,A

is given by

(1.1) i~tW(t)=HA(i)W(t),

where c>0 is the velocity of light, m>0 the rest mass of the particle, D, =
j, and a/s are 4x4 Hermitian matrices with the following properties:

where 5Jk is the Kronecker symbol and In is the n x n identity matrix.
Let L =£ {0} be a subspace of R4. Then we denote by XL the orthogonal

projection of X= (t,x) ̂ R4 onto L and define a class of potentials:

o

where g&(r) := sup A ( X ) \ and $tl(R*,R4)is the space of bounded
\XL\>r

Cl(R*,R*) -functions with bounded derivatives. If A& $l(R4, R4) satisfies the
short range condition with respect to ^-variable:

on

for some J£>0 and some p>l, then A belongs to S(L).
We also say that A belongs to S if and only if A is decomposed as
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for some N and for some subspaces Lj,
If A belongs to S, the Dirac equation (l . 1) has a unique unitary

propagator UA(t,s), s,t^R:

i j j U A ( t , s ) = H A ( t ) U A ( t , s ) , UA(s,s) = I.

Moreover, we have the following.

Proposition 1.1. LetA&S. Then the wave operators

WA
±(s): = s- Mm C7A(s,f)*-|(f-5)*

f-»±00

exist for each s&R, where HQ is the free Dirac operator.

Remark. The free Dirac operator Ho is a self-adjoint operator with domain

DOf0) =H1(JR3
9C^)t the Sobolev space of order 1, and U»(t,s) =*-«'-*>*•.

The scattering operator is defined by

SA(s):=WA
+(s)*WA(s),

for each 5 e R. If some stronger condition is imposed on A, the scattering
operator is unitary in #C. But, it is not necessarily unitary under the assumption

The following useful relation follows immediately from definition:

(1.2) SA(s)=e-1sH'SA(0)e"H;

Thanks to this relation, we know SA(s) for all s^R if SA(SQ) is given for some
SQ. The electromagnetic field FA, determined by A, is defined by

where ^o — t.
It should be recalled that the potential is not uniquely determined by the

field and that it is not the potential but the field that can be an observable
quantity. The following theorem shows that the scattering operator is
determined by the field not by the potential.
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Theorem 1.2. Let AM and Am belong to S and suppose that

N
y, dimlj>2,

and that FA(u=FA(2). Then SA(1}(s) = SA(u(s) for all.

We next consider the inverse problem.
For a subspace L3= {0} of R4 the class S (L) of electromagnetic fields is

defined by

SCI) :={FeS°C

where gr(r) := sup|FC¥)| and S°(JS4
?1?6) is the space of bounded continuous

fci>/-
functions from U4 to IS6.

We denote by B= (r,£) <^RxR3 the dual variables of Jf = (f,.r) and define
an open set D in fi4 by

(1.3) D:={(r?e)

We denote by ^'(^S4;^6) the space of C6-valued tempered distributions and by

K4;^6) the Fourier transform of Fe d'(R*;C6):

F(r??)-(27r)-2 I I e-ttT-tx'tF(t,x)dtdx.
oJ <J

We denote by F|fi the restriction of F to an open set Q,F\a&3)'(Q).

N AT

Jo Suppose that A— 2M; with A} ^ S(L}) and that FA =

with Fk^ S (L'k). Then FA D\Z can be reconstructed from SA(0), where

(1-4) 2:=( LJ L J ) V ( U

j = 1

Remark. The decompositions of A and F^ are not unique and the exceptional
set 2 depends on the decompositions. Let sd be the set of all pairs of
decompositions of A and FA, and denote by 2« the 2 in (1.4) for a^s$. Then
S in Theorem 1.3 may be replaced by the smaller set

2,.
a^sl

Theorem 1.3 tells us nothing about F^ on Dc, the complement of D. If
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on Dc does not contributes to the scattering operator, this result would be
satisfactory. However, the following Proposition shows that this is not the case.

Proposition 1.4 Let c=m=l and let

Then for any (j)&s£(Rt x JS|; J2) such that supp(j) D D\ =£ 0 , the scattering operator
S^(0) for (1,1) with the potential XA = U^, 0,0,0) satisfies S*A(Q)^I for any
small

Remark. The author does not know whether the field FA can be reconstructed
completely from the scattering operator if the support of FA has an intersection
with Dc, while on the other hand an affirmative answer is known in the case of
Schrodinger equations [Wei] . The velocity of a relativistic particle cannot
exceed that of light, whereas a nonrelativistic particle can have any speed. This
is one of the greatest differences between a particle obeying a Dirac equation
and one obeying a Schrodinger equation. The following intuitive argument
shows that the field F with supp F ^D' := {(r,£); r|>c|§|} may be peculiar
one from the point of view of the relativity. We write formaly

2 f
J Dr

.
Dr

where FT,s(t,x) •=e1tT+tx^F(T)^) satisfies the wave equation

This implies that each component FT.t of the field F propagates with velocity

Hi?!"1^, which contradicts the relativity.
We can determine the field completely, if we impose some conditions on the

field, as corollaries of Theorem 1.3.

Theorem 1.5. Suppose (i) and (ii) in Theorem 1.3. Moreover, we assume 2
H D= 0 and

(1.5) (suppf\\{Q})r\Dc=0.

Then FA can be completely reconstructed from SU(0).

Using this theorem we can treat time-independent potentials.
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Corollary 1.6o Suppose (i) and (ii) in Theorem 1.3 with 2 fl D = 0 .
Moreover, suppose that for each k— !,•••, N' there exists F&^ T:= {X= (t>x)
c\t\>\x\} such that

(1.6) Fk(sVt+X)=FkUO, s^M,

Then FA can be reconstructed completely from SA (0) .

Remark 1. In Section 5 we will show that each Fk satisfying (1.6) may be
made time-independent if a suitable inertial frame is chosen.

Remark 2. If A^S is independent of t and satisfies

(1.7) \A(x}\ + \FA(x)\<K(l + \x\)-p on

for some constants K>0 and p>l. Then Corollary 1.6 shows that FA(x) can
be completely reconstructed from the scattering operator SA(0). This has been
known under different conditions in [It] , Q] and [Is] , Roughly speaking, the
decay rate of the potential is supposed to be p>3 in [It], p>3/2 in [J] and p>
2 in [Is] . However, the decay condition on the field is not imposed in Q] , and
the magnetic field is not treated in [Is].

The next theorem shows that the field is uniquely determined by the
scattering operator under some exponential decay condition.

1.7. LetA^S.
(1) Suppose there exists F^S3, S3 being the unit sphere in M4, such that

(1.8) FA(JO\£Ke-*<v-x>«onR\

for some constants K>0 and *5>0.

Then FA\R\L is determined by SA (0), where L is the one- dimensional subspace
spanned by V.
(2) Suppose, in addition to the assumption of (I), that there exist V'^S3 not parallel

to V and a bounded function g satisfying g(f) (1 +£)~1^L1((0?
00)) such that

(1.9) \

Then FA is uniquely determined by SA (0) .

Remark. Roughly speaking, (2) implies that if FA satisfies

on

for some linearly independent Vi,V2^R*r}S3 and for some K>Q, p>0 and d>
0, then FA is completely determined by the scattering operator.
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It is an important problem in physics as well as in mathematics to know
whether the external field can be determined from the scattering operator. In the
case of Schrodinger operators with time-independent potentials, it is known,
since Faddeev [F], that the potential can be reconstructed from the high-energy
behavior of the scattering matrices (see, for example, [is-K], [Ne], [Sa], [Wa],
[Ni]). The proofs are based on a stationary representation of the scattering
matrices and some resolvent estimates at the high-energy range. Using a similar
stationary method, the author [It] has proved that the electromagnetic fileld can
be reconstructed from the high-energy behavior of the scattering matrices of the
Dirac operator with a time-independent potential. In [Is] Isozaki has obtained a
similar result as well as an uniqueness result for the fixed energy problem by a
different method.

On the other hand, Enss and Weder [E-We] have found a new method, a
time-dependent method (a geometric method), to reconstruct the potential from
the high-energy asymptotics of the scattering operator in the case of
Schrodinger operators without magnetic fields. Since their method is simple, it
can be applicable to many cases. Recently, Arians [Al] has applied their
method to reconstruct the electromagnetic field for the Schrodinger operator
with a time-independent electromagnetic potential. See also [A2, We2, We3]. On
the other hand, Weder [Wei] has shown that the potential can be completely
reconstructed from the scattering operator for the Schrodinger equations with a
time-dependent potential. For Dirac operators with a time-independent potential
Jung Q] has reconstructed the electromagnetic field by using the geometric
method. Some of his proofs are applicable to the case of time-dependent
potentials (Proposition 2.2).

At the end of this section we describe the plan of our paper. Section 2
contains the proofs of Proposition 1.1, Theorems 1.2 and 1.3. Proposition 1.1
is proved by Cook's method with the help of estimates of the propagator for the
free Dirac operator in the classically forbidden region. The proof of Theorem
1.2 is carried out by constructing a function u\ satisfying VxUi —A and
decaying in some directions. The proof of Theorem 1.3 is based on Proposition
2.2, which gives high-energy asymptotics of the scattering operator. Proposition
2.2 is proved by using a time-dependent method, due to Enss and Weder, as in
Q]. By means of Proposition 2.2 and Stoke's theorem we can prove that some
line integrals (2.31) for the electromagnetic field are constructed from the
scattering operator. If the magnetic field does not exist, the line integrals are the
same ones as appeared in [St] and [R-S], in which the inverse scattering for
wave equations with time-dependent potentials is studied. Roughly speaking,
Theorem 1.3 is proved by constructing the field from the line integrals with the
help of the Fourier transform. The proofs of Theorems 1.5 and 1.7, based on
Theorem 1.3, are given in Section 3. Proposition 1.4 is proved by investigating
the second term of the Dyson expansion of the scattering operator in Section 4.
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Dirac equations are relativistic invariant. In Section 5 we will show that our
assumptions and results are independent of the choice of the inertial frame.

§ 20 Proofs of Proposition 1.1, Theorems 1.2 1.3

In this section we will give proofs of Proposition 1.1, Theorem 1.2 and
1.3.

N

Proof of Proposition 1.1. Let A=5ZAJt Aj^S(Lj) and define
y=i

N

orKA:= (J
;=i

where

and L1- is the orthogonal complement of i,cfi4. Since KA is a closed null set in
R3,

G :={f^^(R3,C^;f^C^(R3\(KA(J {0});«C4)}

is dense in 3J?, where / is the Fourier transform of / By Cook's method,
Proposition 1.1 follows from it:

(2.1)

for all / e G, where P± is the orthogonal projection in $ onto the
positive/negative energy subspace of H0,

and I r i l denotes the norm of ,
We have for <5>0

(9 9} \\A (t\Lt . £j) ll-«l/ \v

+ \\Ai(t,-)\\M(t,x)L\<d\t\)e-«H°P±f\\,

where %(M(x)) denotes the multiplication operator by the characteristic
function of x satisfying the condition M(x) and (t,x)i is the orthogonal
projection of (t,x)^R4 onto L. Since Aj^S(Lj), the first term on the right is
bounded by #fe(d|f|)||/|| and so is integrable with respect to t&R. Therefore it
suffices to show that there exists a small 5>0 such that
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(2.3)

for any ^>0, where Kn is a constant independent of t. The symbol of HQ.

3

has eigenvalues ±Vn?|2 + w2c4 and the associated eigenprojection is given by

Hence we have

(<T""°P± /) Or) = (27T) -»/* *«*a /± (

where fl-±(/fj;f?) = <x>e>T/v'c2|e|2+»»V and f±(&=P±(& f(&.
We claim that there exists a constant if >0 such that

(2.4)

for all (t,x,^) ej^yX supp/ if 5>0 is sufficiently small, where

Qj: = {(t,x)f=RxR3;W>l, (t,x)Ll\<5\t\}.

Since \v(^)\<c and

(2.5)

it follows that

(2.6)

On the other hand, for (t,x ,$) £l3jXsupp/, we have

Sj^Wi- 3) I <|,

where 5X •=mf^SuPPf\V±(^)L,\>0, since dist (Ax,supp/)>0. Thus, if 0<5<<5i,
taking account of (2.6) , we obtain (2.4) . Therefore, it is easy to see that, on Qj
x supp /, F{0V| Fi^N C00 and

rf Vtt(2.7)

for any 7. Thus, using integration by parts together with
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we conclude that for any n there exists Kn such that

(2.8) \(e-«H*P±f)

for all (t,x)^-Qj. This implies (2.3) and completes the proof of Proposition
i.i.D

Remark If L is a nontrivial subspace of R4 and if J(a) is a monotone
decreasing function on (0,°°) with lim /(<j)~ 0, then

(7-»oo

(2.9) s-lim/(|a,-)i|)e-'*=0.
f-»±oo

This can be proved in the same way as above by replacing Aj (t,x) by /(| (£,#)/,!).
This fact will be used in the proof of Lemma 2.1 below.

Proof of Theorem 1.2. Let A i=A(2) — AM. Since FA = 0,

u(X):= r<X,
Jo

is in Cl(M4) and satisfies

(2.10)

Let FeS3\(Uf=1Ij-), where S3 is the unit sphere in J?4. Then V^O for j=l,
~-M Using (2.10)f we have for 0<rl<r2

(2.11)

(2.11) implies that the limit

u^(V):= limu(rV)
r-»+oo

exists. We next prove that the limit u00(V) is independent of V^

Let F?r eS3\(Uf=1I,;
x). Since dimIj-^2?S

3\(Uf=1It) is connected. Hence, we
may prove u<» (V) = u<» (V ' ) for V,V' such that the segment between V and V'

has no intersection with UjLiLf. Then there exists eQX) such that

inf jff^-VJ + Vi.^eo, j=l,-,N.
ffe[0,l]

Using (2.10) again, we estimate
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r
Jo

Since #i;(r) is monotone decreasing and integrable,

rg(r)<2 f*
J r/2

as f— >oo5 anc[ we obtain w<x>(lO — ̂ (lO — ̂ 00. Accepting the following lemma,
we proceed our proof of Theorem 1 .2.

Lemma 2.1. Let Ui(X) = u(X) — u«>. Then

(2.12) s- lim (e^(t^-i)e-itHQf=Q

Now we define a unitary propagator

(-/ \ f j O / o & U A ( 2 ) V ^ > < ^ / ^

Then, taking account of (2.10), we can easily verify that

fJL/7// c } - — f f ( f } J 7 ( f c^ f/Ye <A •— fljj.U\[fi>/—IJ-Aci)^/ U\ljO/, U\b,j/—1.

This means t/= C/^{1) by the uniqueness of the propagator. Hence, in virtue of
Lemma 2.1,

WAW(S)=S— lim^~mi(s'r){7A(2,(s,0{(^Ml(u) — l) + I}e~l(t~s)H°

Thus we have proved S!A(I)(S) =SA(2>($). D

Proo/ o/ Lemma 2.1. We use the same notation as in the proof of
Proposition 1.1. It suffices to show (2.12) for a fixed /e G. Since supp/ fl ^
— 0 , we can find £oe (0,1/2) such that

(2.13) iF±(a
for £esupp/,/=l,'",j!V. Define

for y =!,••-, JV, where <50 is a fixed constant with 0<50<£o- Then
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if £esupp/ and -X"=(f,.r) e/}. Thus,

Thus, due to the same argument as in the proof of (2.8), it follows that for any
n there exists Kn such that

(2.14) lar^

if \t\>l and (t,x)&F, for some/ Now

(««.«.*> _l)fe-.«r,/) Or)

} - 1) • ft x ((t,x) Sty ' (e-^f) (x)

where X;(^^) are products of characteristic functions. In view of (2.14) we
have

(2.15) 5-

Let X& (JjLiLj. Then

- r<X,
Jo

and so

Thus, noting that (t,x) & Uf=1Lj- if (t,x) « Uf=lr,-, we estimate
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for (f ,x)$ Uf=i/}. Hence, taking account of (2.9) and g% e L1 ((0, °o )), we
obtain

and finish the proof of Lemma 2.1. D

Remark. Let 0 be a real -valued function on jR/ with

^(rtl^^d + M)-1'6 uniformly on Rt

for some if>0 and £>0, and let A= (0,0). Then we see that F^ = F0=0 and

UA(t,s)=e-**®-*(s»e-l(t-M, where

Thus it follows that

and so

This means that SA(0) =S0(0) =/ if and only if f
The above argument shows that Theorem 1.2 does not hold in general if

the condition dimZ,;>:2 is dropped out

We next prove Theorem 1.3. To do so, we have to prepare some
notations.

For a subspace L we define a set C(L) cS2 by

C(L): = {a)^S2; file//1},

where <5J: = ( l ,ca>)^/24 . We sometimes write C(V)= C(L) if L is the one-
dimensional subspace spanned by 1/¥=OeJ?4. If V= (VQ,V) 3
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Hence, C(V) is a circle on S2 if FeD, one point {~vQv/c\v\2} on S2 if V^D\D
and empty if F$D. Moreover, it is easy to see that

(2.16)

On the other hand,

if {Fi,"',F#} is a basis of L. Therefore, the number of elements of C(L) is at
most two if dimL=2. Moreover, it is at most one and zero if dimZ, = 3 and diml,
= 4, respectively, since dimLJ- = l and dimZ,1 = 0, respectively.

N

For A=£AjGS with A^S(Lj) we define

cA-.= (J

Then line integrals

S3
for,

is well-defined if CD^S2\CA. The matrix afa)'=^(XjO}j for a)= (a>i,a>2,a>3) ^S2

has eigenvalues 1 and —1 with multiplicity two, respectively. Thus, P±(OJ) °-=

2~(l±a'0)) is the eigenprojection associated with the eigenvalue ±1 of a-a;.

The proof of Theorem 1.3 is based on the following proposition.

Proposition 2,2, Let A e S and s e Jg. T/^n

(2.18) «;- lim e~^'xP±SA (s)P±etEa)'x= e^^P± (CD)

if ±a)^S2\CA. Here, e
±iEa*°x and e***^5-3* are multiplication operators.

Remark 1. We can also show that

(2.19) w- lim e-iEa)'xP±SA(s)P*etEa)*x=Q
£-* + oo

for each s^R if both a) and — co belong to S2\CA.

Remark 2. If the potential A is time-independent and short-range,
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Proposition 2.2 has been already proved by Jung Q], and his proof is applicable
to our case with a slight modification.

Lemma 2.3. Letf^X.
(i) Suppose o>^52\C>i. Then there exists Eo>Q such that

(2.20) lim \(Wt(Q)-UM)e-'**)P+eiE»-*ft = Q
f-»±oo

uniformly in E>£Q.
(ii) Suppose — a)^S2\CA. Then there exists EQ>0 such that

(2.21) ]
t-*±ao

uniformly in E>Eo.

The proof is very similar to that of Proposition 1.1.

Proof. We use the notation in the proof of Proposition 1 . 1 and prove (i) for
f^G, since G is dense in ffl. It suffices to show the following estimate (see
(2.3)):

(2.22) \(e

on Qj uniformly in E>£Q. We write

lEo"xf) Or) -

Since <5Ti,=£0 for j =!,•••, N and lim V+(t; + Ea>) = aj uniformly in
£- + 00

we can find £o>0 and 5i>0 such that

for any E>EQ and f^supp/. Moreover, we can verify that \d^P+(t;+Ea))\ is
uniformly bounded in £^supp/ and in E> E0 for each 7. Thus we can prove

(2.22) in the same way as in the proof of (2.8) by using d[ in place of <5i. D

Lemma 2.4. L e t f , g^X and let ±a)^S2\CA. Then

lim (e-*Ew'xP±eltH»UA(t,-f)ettH'
f — + °o

= (e-'E<a-xP±SA ($)P±e>Eai-xf,g)

uniformly in
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Proof. Denoting W(t):= UA(Q,t)e-'tH\ we have

<\(W(-t)P±eiE<°-xf,(W(£) - WA
+(0))P±eiE°"xg)\

+ \((W(-t) - WA(

Hence, using Lemma 2.3, we get the desired result,

We define

(-a)), A(t,x-cta))>vP-(a)).

Lemma 2.5. For each t>0 and each 0)&S2, one has

(2.23) s- lim e'^m'x^UA(tf-t)^e^'x=^f-'w''(i^ds.
E-> + °°

This lemma can be proved in the same way as in the proof of Theorem 3.1 in
Dl . So, we only give a sketch of the proof.

Sketch of the proof. The Dyson expansion

(2 . 24) e~lEa)'xeltH^UA (t,

(-0" f
J - t<ti<-<tn<t

converges in the operator norm of 3£ uniformly in large £>0, where

RE (f) ' = e-'^f'X'Qd, • ) e-M'e*0*'*.

Using

(2.25) s— lim [e-^^xe~lSHoe,E^x_^e-isc(E+cU-D)a-^=Q^
E-++°°

we can see that

(2.26) 5- lim ftRE(s)ds=- fV«,(s,-)ds.
E^+00J -t J-t

In the same way we also have

(2.27) 5- lim f dtn-dtiRE(ti-RE(ti)
E->+00J -t<tl<-<tn<t
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-t<ti<—<tn<t

where we have used [Ww(t9 -),FMs, •)] =0 for s, fe/fc Thus (2.23) follows
from (2.24) and (2.27).D

In the momentum space it can be easily seen that

(2.28) s- lim e-*°-xP±e*»'x=^(I±a-a))=P±(a>).
£-* + oo ^

From this together with Lemma 2.5 it follows that

(2 . 29) lim e-lE«-*P*eltH° UA(t,~ t) e'
iH«P±elE«-x

£_»+oo

= g f!t((±^),A(s,x±csw)>R*dsp±(a}')

Proof of Proposition 2.2. Let/, g^ffl and define

S^ (0 := e-lE»-*P±eltH*UA (t,-

and write

The first term tends to zero as £-» + °° uniformly in large £>0 by Lemma 2 A
and the second term tends to zero as E-+ + 00 for each £>0 by (2.29). Since
±a)^S2\CA, the function A(s,x±csw) of s is integrable for each x^R3,
Therefore, the third term goes to zero as £-* + °o_ Hence, we have proved
Proposition 2.2 for 5 = 0. Recalling (1.2) and noting that (see (2.25) and
(2.28))

we have

w- lim e-lEa)-xP±SA(s)P±elEa)'x

= P±

This completes the proof. [J
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Here we give the idea of the proof of Theorem 1..3 for a simple case, A —
(0,0), 0^.fe3. In this case, the right hand side of (2.18) determines

since KA (r])-*0 as |^|-^oo with (T^O)) =0. Thus the Fourier transform and
the inverse Fourier transform yield

, for S
Tls>

(2) dS, for

where 11$ ™{?7€=JS4;(0,77)je4=0}. On the other hand, we can easily verify that1

[J II® = Dt the closure of D.
weS2

Therefore it follows that the only <p \D is reconstructed from the right hand side
of (2.18).

Remark The potential 0 can be completely reconstructed in the case of
Schrodinger equations by a similar method [We] . Indeed, we obtain line

integrals f-^<f*(r]Q,ta)+r]')dt, J] = (170,)?') ̂ RxR3, instead of KA(YJ), from the
scattering operator in the case of Schrodinger equations. Then, using the same
argument as above, we see that these line integrals determine the whole 0.
Hence the potential <p is completely reconstructed.

Now we define

AT

cA-.=cAu(\J CCQ).

Lemma 2060 Let co ̂  52\Q and 6 ^ S3 such that & and d are linearly
independent, and let rj^R*. Then one has

(2.30)

where X/\Y=(X}Yk-XkYJ)Q<J<K^R6 for X=(X0,-,X3) and F= (F0?-?F5).

Remark Since a)^S2\CA, FA(taJ + r]) is integrable with respect to

Proof. By Stokes' theorem we have

° <&/\0,FA(tS)+s8+i])>s'dt,
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from which the lemma follows immediately. CH

Since

we can conclude from Proposition 2.2 and Lemma 2.6 that for each

S2\CA and 6^S3 the integral

(2.31) f+00(a)/\6,
J> —00

can be constructed from the scattering operator 5^(0) (see (1.2)).

Proof of Theorem 1.3. For a while we fix S0= (r0>?o) ̂ D\E. Since CCE0) fl

CU is a finite or empty set due to (2.16), we can take {cy/}/=iCiC(S'o)\C^ with
0$ ^ ail if j=£k. Then {<5>°}f=i are linearly independent in JS4, where oJ; =

(l,cafi). We also take fiTo from J?4 so that {ftJ,9}?=0 is a basis of U4. (Here we

abused the notation So, which need not be expressed as (l,eo>o) for some o>o e

S2, to simplify notations below.) It should be notice that {5Jy A dJ2}o</c<;^s is
also a basis of B6.

We first assume FA^Ll(Rtx JJ|). Noting that <5i,aiy>je*=0 for ;= 1,2,3,
we have, for each 0<k<j<3,

11(1)°
r

J -oo

Since {oT;° A aJ?}o<^<j<3 is a basis of J?6 and since the integral with respect to t

in the right hand side is determined by the scattering operator, FA (j?0) is
determined by the scattering operator for each 30^D\^.

If FA does not belong to Ll(Rt
 x JRJ), we can not use the above formula

directly since FA should be regarded as a distribution. So, more complicated

arguments are needed to represent FA in terms of the line integrals (2.31) as in
[St].

We set c=l for simplicity, and fix y=l,2,3 for a while. Since o);° and £0 are

not parallel, they span a two-dimensional subspace, denoted by /1;, in Jf2|. We

denote by II> the orthogonal complement of Aj in Jfjf, J?|=^©II;, and denote by

?', ?" the yl/, fly-component of ?^/?|, respectively.

We can find a unique x?eA. suc-h that {o>;,X;} is an orthonormal basis of
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Aj with <OC/,fo>/?3>0. Then we can write $0= - ToWj + tftf, where ^:=|?o +

roatf|>0.
Now we define a family of orthonormal bases (a)j (6),Xj (6)} , —7Z/4<6

<7T/4, of A? by rotating the basis {o>/,x?}:

a)j(ff) :=o>,Q

It is easily seen that if (r ,f) is sufficiently near (ro,?o) there exists a
unique 0/(r?£)eJ? near 0 satisfying <f ',cy/(0/(r, ?))>*»= —r. We set ^,(r,f)
:= <f ,X/( f t (7ff ) )>^=i / l f !2-r2 and py(r,f) :=<f",®?>, where ®J is a unit
vector in II;.

Consequently we can see that there are a small neighborhood f/0 of
(r0jfo)e^xlS3, a small neighborhood F/c {(0,,^,frfry) e (-7r/4,7T/4) xj jxlg

x|?} of (0,^?,0,r0) and a diffeomorphism

such that

6y(r0,fo) =0, ^-(r0,fo) = ^?, P;(t0?6o) =0, r/r0,?o) =r0,

We also note that |9(r

Since {oJE A O)®}o^k<j<3 is a basis of R6 and since each function

Cty(0/(r,£)) is smooth on [70 with ^(^(7o,?o)) = fi>/, {2TJA fi>;(5y(r,f))}o^*<^3
is also a basis of U6 for each (r,£) in a small neighborhood of (ro,?o), which
can be assumed to be C/o, where o)j(ff) ."= (l,cy;(^)). We can also assume that

<u,(0/(r,?))<£ Gi for (r,!)e{/0i 1 <;<3. Thus, for any <j)^C^(UQ]CQ} there

exist 0M(r,?)eCo°°([7o;O, 0<&</<3, such that

on C/o- So we have

rr rr
= 11 dtdx<FA(t,x),(27t)~2 11 e~!fT~l<x'^<p(T,&dTd&c6

<J<J <JsJ

= (27t)~2 ^ JJdtdx<FA(t,x),
Q<k<j<3

-(27T)-2 V ffdtdx<FA(t,x),
Lmd <J><J
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^A^p,, TJ)) 651 A Si

where

(2.32) GM/,^0;) := j j * - - ' ^^^^

G!k(t,x,6} = Gft (t,x,6,) Gh (t,x,6i) .

Integrating by parts with respect to (r/,p;-,^) in (2.32), we can see that for any
n>0 there exists Kn such that

uniformly in (t,x,6i). We will show that.

(2.33)

Let X(0j) be the orthogonal projection of X— (t,x) onto Harxft). Then, observing
that

is a basis of Hes,(e,), we have

(2.34) \Gik(t,x

uniformly in (t,x,6j) for some Kn>0. Here note that L'kG-Tl&M for all A; since

o>;( f t ( r ,? ) )$Qi i f (r,?)e£/0 l 1<;<3. Thus, (2.34) implies (2.33). Thus,
Fubini's theorem guarantees that

(2.35)

Now for each d} we introduce new7 coordinates {s;,/J;',p/,Ty} for U,,r}:

where $J}Tj,/(fj,pj&R. Then

is independent of TJ, and so is G}^. Thus, the right hand side of (2.35) is
written as
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Therefore we have

x
—00

where r](A'j,Sj,p'3,dj) = (s^X;($;0+j0;Q5"°). Since (r0j£o)elA2] is arbitrary and
G/fc is independent of FA, we have completed the proof of Theorem 1.3. D

§ 30 Proofs of Theorems L59 107 and Corollary 1.6

Lemma 3.L Suppose that F is a bounded function on Rd,d>2, such that

(3.1) \F(x)\<>g(\<V,x>R'\) on Rd,

for some V^S^1 and g^with g(f)(l+f)-i^L1((0^)). Let **(£): = x(?/e), £>0,
/or x e^(Urf) and let F be the Fourier transform of F. Then

(3.2)
£ i O

for any u^ Co°° (Rd).

Proof. We assume V= (1,0, 0,0) for simplicity and calculate

(3.3) <F,X£^> = <^^>
= const. <F,;fe* w>

— ̂ )) u(y)dydx.

Using the estimate |f U)]<Jf (1 + |x|)-rf, we get \ed% (ex)\<K(l+ x\)
uniformly in £^(0,1). Therefore it follows that

% ( e ( x - y ) ) u ( y ) \

(3.4) <K\F(x)\(l + \x-y\rd\ u(y)\

where we have used (3.1) in the last step. On the other hand, denoting x =
(xi,x'), we see that
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Thus, g(\xl\)(l + \x\)-d(l + \y\Y\u(y)\^Ll(Rd
x^Rd

vY By applying Lebesgue's
convergence theorem to (3.3), (3 . 2) follows. D

Proof of Theorem 1.5. Let (p^ CrCR^iOljC16). Due to (1.5), we can take
R*) such that

suppUl — #)0} HsuppFyi^ 0.

Therefore,

Thus Theorem 1 . 3 guarantees that FA \R*\{Q} can be reconstructed from the

scattering operator. Hence, by Lemma 3.1 we see that FA and so FA can be
reconstructed from scattering operator, since each Fk satisfies (3.1). d

Proof of Corollary 1.6. If Fk satisfies (1.6) , the support of FK is contained
in the three-dimensional subspace

which satisfies V/AlO) ^D if Vk^ T. D

Proof of Theorem 1.7. (1) Let L be the one-dimensional subspace spanned
by Fand fix S0&L. Then it is easy to see that there exist a neighborhood C/0 of
3o,a0c:R and £0>0 such that

U0nL=0, U0+aVc:D\E if ia-(T0|<£0.

We define (f>a (S): = <f>(3 ~aV) for any 0eC0°°(t7o) and aeU. Then <f>ff^C"(UQ

+ crV)eCo00(D\S) if |(T-(7oi<£o. Therefore Theorem 1.3 says that <F\^ff> can
be reconstructed from 5^(0). On the other hand,

is an analytic function on (o^ C;Rea^ R,\lma\<d} by (1.8). Hence, /(or) is
determined by S^(0) for any (je/J, and so is/(0) = <F^,0)f in particular. Since

So is arbitrary, this implies that FA R*\L is determined by S^(0).
(2) Let L be the one-dimensional subspace spanned by V and take <p e
C-O,1) with 0()j) = l for h j > 2 and 0(rj) = 0 for |r7|<l, and define <f)£(r]) =
<f)(r]/e) for £>0. It suffices to show that

='Ff in
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since supp (<psu) d M*\L for all u^Co. To do so we assume V= (1,0,0,0) for
simplicity and write X— (t,x). In the same way as in the proof of Lemma 3.1 it
suffices to show that

, X> |) (1 + k|) ~3dtdx

<const.

is finite. But this follows immediately, d

§ 4, Proof of Proposition 1.4

Proof of Proposition 1.4. Since <j)^s£9 «S^(0) is real-analytic in
p.249]):

»=0

where each Sn is a bounded operator on 3C and

O J O
OQ —I , 01 —

So, it suffices to show that Si=£0.
We recall that the 4 x 4 matrix ho(f;) = a-^ + J3, the symbol of HQ, has the

eigenvalues ±y|f 2~hl with multiplicity two, respectively, and the associated
eigenprojections are denoted by /}±(f), and that P± denotes the orthogonal

1projection in $? onto the positive/negative energy subspace of HQ: P± — -^

Then we have

where $(t)= SF^<f>(t, • )^J;e. Therefore SF^^.Sf^^ is the integral
operator with kernel

~3/2 f
<J —o

Thus the proposition follows from Lemma 4.1 below since <p (r, £)=£() for some
(r,?) e A.
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Lemma 4.1. For each (r,£) ^ Di, ?^=0, there exist p and q in R3 such that

(i) %=P~q, (id r=yj|H-l+yid2+l, (iii)P-(p)P+(q)*Q. D

Proof of Lemma 3.1. We can write 2/1 + r2 = r for some constant r> 0

because of r>v/|$|2-f4. Since |?|/r<2, we can take o>, (9^52 with a) — 6=^/r,
and we define p=ra), q=r8. Then it is clear that they satisfy (i) and (ii). We
next show that they satisfy (iii). Suppose that P~(p)P+(q) = Q. Then P+(p)^>
P+(q). On the other hand, both operators have the same rank, rankP+(/?) =
rankP+(#)=2, and so they coincide: P+(p)=P+(q). Hence noting that P+(u) =

(l/2)(I+ho(u)Aho(u)\) for each u^R3 and that |Ao(£)l = |&o(?)| = yi + r2
f we

obtain a- (p — q) = Q, and it follows that^=^. This contradicts with a>—0=^/r
^=0. We have thus proved the lemma. D

§ 5. Relatlvistic Invariance

A Lorentz transformation A : R4 - ^ I?4 is a linear map preserving the
Lorentz metric,

{X X'} :=

where X=(xQ,~-,x3)J etc. This condition is equivalent to

(5.1) 'AGA=G, where _

A Poincare transformation,

(5.2) R^X^X'-=AX+a,

is the combination of a Lorentz transformation A and a space-time translation
by a^R4 and is associated with changing an inertial frame with coordinate X~
^t.x) into another inertial frame with coordinate X' = t(tr,x') defined by (5.2).
By this change the Dirac equation

in the old inertial frame is converted into the Dirac equation

dt L t-i \ l dx,
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in the new inertial frame. Each component of the potential A*(X') in the new

frame is written as a linear combination of those of A(A~l(X' — a)) (see, e.g.,
[Tha]). Let Vif"

m,Vn be a basis of a subspace L. Then there exists a constant
K>0 such that

Hence we can see that A^^SCA^L) ifA^S(l). Each component F$m(X') of
the electromagnetic field F**(X') in the new frame is also written as a linear

combination of components Fi*(A~l(X'-a)), 0<j<k<3, of FA(A~l(X' -a)).
Thus, carrying out the Fourier transform, we have

0<}<k<3

where Cjk
rs are constants determined by A Hence, Fj$& S ('A'1!,) if FA^ S (L).

On the other hand, by virtue of (5.1) we see that A"^G'ltA~l = G"1. Then it
follows that

where

for 5= (?o>'"»?3), etc. Thus, we can see that

Namely, the set D in the dual space of the space-time is invariant under
Poincare transformations in the space-time. We also see that DI in Proposition
1 .4 is invariant

After all we can conclude Theorems 1.2, 1.3, 1.5, 1.7 and Corollary 1.6
hold on any inertial frame.

In the last of this section we show that each field Fk in Corollary 1,6 is
regarded as a time-independent one on a suitable inertial frame. Let V= Vk is
timelike;

KeT: = {(*,*)€=«<; c\t\>\x\}

with {V ,V) LM— c2. Then it is known that there exists a Lorentz transform A :

Rt xfll - >Rt'*R$> such that ^Vr = '(l,0,0,0). Therefore F^Ot'1 • ) is t'-
independent



DIRAC EQUATIONS 381

Acknowledgments

The author would like to thank Prof. Luigi M. Ricciardi and the Department
of Mathematics at Universita di Napoli "Federico II" for their kind hospitality
during his stay at Naples. He also would like to express his gratitude to Prof.
Volker Enss for stimulating discussions.

References

[Al] Arians, S., Geometric approach to inverse scattering for the Schrodinger equation with
magnetic and electric potentials,/. Math. Phys., 38(1997), 2761-2773.

[A2] , Geometric approach to inverse scattering for Hydrogen-like systems in a homo-
geneous magnetic field, preprint.

[E-We] Enss, V. and Weder. R., The geometrical approach to multidimensional inverse
scattering, /. Math. Phys., 36(1995), 3902-3921.

[F] Faddeev, L. D., Uniqueness of the inverse scattering problem, Vestn. Leningr. Univ., 7
(1956), 126-130.

[H] Hormander, L., The Analysis of Partial Differential Operators I, Springer Verlag, 1989.
[Is] Isozaki, H., Inverse scattering theory for Dirac operators. Ann. Inst. H. Poincare, 66

(1997), 237-270.
[is-K] Isozaki, H. and Kitada, H., Scattering matrices for two-body Schrodinger operators, Sci.

Papers College Arts Sci. Univ. Tokyo, 35 (1985), 81-107.
[It] Ito, H. T., High-energy behavior of the scattering amplitude for a Dirac operators, PubL

RIMS, Kyoto Univ., 31(1995), 1107-1133.
Q] Jung, W., Geometrical approach to inverse scattering for the Dirac equation, /. Math.

Phys., 38 (1997), 39-48.
[Ne] Newton, R. G., Inverse Schrodinger Scattering in Three Dimensional, Springer Verlag,

1989.

[Ni] Nicoleau, F., A stationary approach to inverse scattering for SchrSdinger operators
with first order perturbation, Comm. Part. Diff. Eq., 22 (1997), 527-553.

[R-S] Ramm, A. G. and Sjostrand, J., An inverse problem for the wave equation, Math. Z., 206
(1991), 119-130.

[Sa] Saito, Y., An asymptotic behavior of the S-matrix and the inverse scattering problem, /.
Math. Phys., 25(1984), 3105-3111.

[St] Stefanov, P. D.. Uniqueness of the multi-dimensionals inverse scattering problem for
time dependent potentials, Math. Z., 201 (1989), 541-559.

[Tha] Thaller, B.. The Dirac Equation, Springer Verlag, 1992.
[Wa] Wang, X. P., On the uniqueness of inverse scattering for AT-body systems, Inverse

ProbL 10 (1994), 765-784.
[Wei] Weder, R., Inverse scattering for JV-body systems with time-dependent potentials, in

Inverse Problems of Wave Propagation and Diffraction, Eds. Chavent, G. and Sabatier,
P. C., Lecture Notes in Phys. 486, Springer Verlag, 1997.

[We2] , Multidimensional inverse scattering in an electric field, /. Funct. Anal, 139(1996),
441-465.

[WTe3] , Inverse scattering for the nonlinear Schrodinger equation, preprint 1997.




