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Higher-Codimensional Boundary Value

Problems and F-Mild Microfunctions

—Local and Microlocal Uniqueness—

By

Toshinori OAKU* and Susumu YAMAZAKI* *

Abstract

For the study of local and microlocal boundary value problems with a boundary of codimension

greater than one, sheaves of F-mild hyperfunctions and F-mild microfunctions are introduced. They

are refinements of the notions of hyperfunctions and microfunctions with real analytic parameters

and have natural boundary values. F-mild solutions of a general ^-Module M (that is, a system of

linear partial differential equations with analytic coefficients) are considered. In particular, local

and microlocal uniqueness in the boundary value problem (the Holmgren type theorem) is proved if
the boundary is non-characteristic for M. or else if M is Fuchsian along the boundary.

Introduction

The purpose of this paper is to study the higher-codimensional boundary
value problem for a general system of linear partial differential equations with
analytic coefficients. In general, we must impose some regularity condition on
the solutions in order to define their boundary values. We introduce the notion
of F-mild hyperfunctions as this regularity condition, which is a refinement of
that of hyperfunctions with real analytic parameters. We also define the notion
of F-mild microfunctions as a microlocalization of that of F-mildness. Our main
result is the local and microlocal uniqueness of F-mild hyperfunction (or
microfunction) solutions of a system of linear partial differential equations
which is Fuchsian along Y in the sense of Y. Laurent and T. Monteiro
Femandes [L-MF] or in the sense of N. S. Madi [M] and S. Yamazaki [Y].
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Let M be a real analytic manifold and N a closed real analytic submanifold

of M of codimension d> 2, Then the sheaf $N\M of F-mild hyperfunctions is

defined on the normal bundle T#M of N (strictly speaking, the sheaf S&NIM
depends on a partial complexification L of M). Let us take a local coordinate
system (t, x) = (&,..., fe, xi,..., x«) of M such that N is defined by £—0. Assume

that / is a section of S^NIM (that is, an F-mild hyperfunction) defined on a
neighborhood of 0 + 9/9/i^TVM Then /is actually regarded as a hyperfunction
defined on a wedge domain

with edge Ar for some £>0. In addition, for any non-negative integers «!,...,#*,
goi ... Qfdd f(^ x) kas a natural boundary value as £ tends to zero as a
hyperfunction of x.

The restriction of S$N\M to the zero-section of T#M coincides with the sheaf
of hyperfunctions defined on a neighborhood of N which have t as real analytic

parameters. Moreover, a section of %N\M which is defined on T#M with the zero-
section removed has also t as real analytic parameters on a neighborhood of N.

Hence we may regard $N\M as a tangential decomposition of the sheaf of
hyperfunctions which have t as real analytic parameters.

We take complexifications X and Y of M and N respectively such that Y is
a closed submanifold of X. We denote by $* the sheaf on X of rings of linear
partial differential operators (of finite order) with holomorphic coefficients.

Let M be a coherent left ©^-Module; that is, a system of linear partial
differential equations with holomorphic coefficients (in this paper, we shall
write Module with a capital letter, instead of sheaf of modules) .

First, let us assume that Y is non-characteristic for M. Then we prove that
any hyperfunction solution to M which is defined on a wedge domain with edge
N is F-mild, thus having boundary values with no further assumption. This
case was studied by P. Schapira ( [Sc 1] , [Sc 2] ) by using the theory of micro-
localization of sheaves. The local uniqueness in this boundary value problem
was proved in T. Oaku [04]. K. Takeuchi [Tk] formulated microlocal bound-
ary value problem by using the theory of second microlocalization and proved
the microlocal uniqueness in the non-characteristic case. Here we give another
proof to the microlocal uniqueness by a natural extension of the method used in
Oaku [04].

Next, suppose that M is Fuchsian along Y in the sense of Laurent and
Monteiro Fernandes [L-MF] . In this case, not all the hyperfunction solutions to
M are necessarily F-mild, but we can obtain the local and microlocal
uniqueness for F-mild solutions. More precisely, we obtain a monomorphism
(an injective sheaf homomorphism)
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where TN: TNM—+N is the canonical projection, $x is the sheaf of hyper-
functions on N, and My is the induced system (that is, the ©-Module theoretic
restriction) of M to Y, which is a coherent ©y-Module. We can also obtain the
microlocalization of this morphism, which is also injective.

Finally assume that M is a Fuchs-Goursat system in the sense of Yamazaki
[Y] , which is a generalization of a Fuchs-Goursat operator due to Madi [M] . In
this case, since My is not coherent over ©r in general, we consider a kind of
Goursat problem: Set Mi={(t, x) ^^d xRn: /, = ()} by using a local coordinate
system as mentioned above. For an F-mild hyperfunction, we can define its
restriction to Mt for Ki<d, which can be regarded as Goursat data. Thus we
prove the local and microlocal uniqueness of the F-mild solution to M whose
Goursat data are zero. Note that Yamazaki [Y] proved the (micro-) local
solvability of this Goursat problem for microfunctions with real analytic
parameters under a kind of (micro-) hyperbolicity condition.

We should remark the following: The higher-codimensional boundary value
problem for hyperfunctions was initiated by M. Kashiwara and T. Kawai [K~K]
for elliptic systems of differential equations from the microlocal point of view.
After that, M. Kashiwara and T. Oshima ( [K-Os] , [Os]) defined the boundary
values of an arbitrary hyperfunction solution of M which is defined in { ( t , x) ^
Erf x ffi»; tt>0 (Ki<d)} under a condition stronger than that of Fuchsian
system in the sense of Laurent-Monteiro Fernandes [L-MF] .

In Section 1, we assume the existence of a partial complexification L of M
and introduce several sheaves attached to the boundary, which are higher-
codimensionl analogues of those defined in Oaku [O 3] .

Section 2 is devoted to concrete expressions of these sheaves.
In Section 3, also assuming the existence of L, we introduce the sheaf of

F-mild hyperfunctions. One of the main results in this section is the edge of the
wedge theorem, which gives a criterion for an F-mild hyperfunction to become
zero in terms of its expression as a sum of boundary values of holomorphic
functions. Note that the results of Section 3 were essentially stated in Oaku
[0 4] . The main difference is that we use the notion of normal deformation (cf.
Kashiwara-Schapira [K~S 2] ) here instead of the real monoidal transform
adopted in Oaku [0 4] .

In Section 4, we microlocalize the notion of F-mildness. In particular, we
prove that the sheaf of microfunctions with real analytic parameters can be
embedded to the sheaf of F-mild microfunctions. We also give a concrete
characterization of the singularity spectrum of an F-mild hyperfunction by
using holomorphic functions which define it.

Section 5 is concerned with the non-characteristic boundary value problem.
We prove that all the hyperfunction solutions defined on a wedge domain with
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edge N are F-mild.
In Section 6, we consider the higher-codimensional boundary value problem

for a system which is Fuchsian along Y in the sense of Laurent-Monteiro
Fernandes [L-MF] , and the Goursat problem for a Fuchs-Goursat system in
the sense of Madi [M] and Yamazaki [Y]. Main results are the local and
microlocal uniqueness of F-mild solutions of both problems.

§1. Several Sheaves Attached to the Boundary

In this section, we introduce several sheaves attached to the higher-
codimensional boundary as a natural extension of the one-codimensional case in
Oaku [03].

We denote the sets of integers, real numbers and complex numbers by Z, M
and (C respectively as usual. Further, we set M:= (n^7L\ n> 1} and No: =

NU{0}.
Let M be a (d -r n) -dimensional real analytic manifold and N a n-

dimensional closed real analytic submanifold of M. In this paper, we always
assume that d^ 2. There exist complexifications X and Y of M and N
respectively such that Y is a closed submanifold of X. We assume that there
exists a (d + 2n) -dimensional real analytic submanifold L of X containing both
M and Y such that the triplet (N, M, L) is locally isomorphic to the triplet

({0} xEM, Md+w, W x(Cw) by a local coordinate system (r, *) of X around each
point of N. We say such a local coordinate system admissible. We use the
notation T=t+^ls(^ s^m r f) , z^x+J^ly (x, y^Ew) , \z =max{Uft ; Kfe
<7i} and so on for an admissible local coordinate system (r, z). Hence by an
admissible local coordinate system the following inclusion relations are
obtained:

r = l o l

We shall mainly follow the notation of Kashiwara-Schapira [K-S 2]; we denote

the normal deformations of N and Y in M and L by MN and LK respectively. For

example, by an admissible coordinate system, we see that MN— {(r, t, x): r^H,

(r, f, x) eM), ^M^M^n {(r, t x); r>0}, TNM~MNn {(r, t .r); r^O} and pM: MJV

^ (r, fc x) l-> (r, f, xj ^ M. Then, we can regard MN as a submanifold of Ly.
Therefore we have the following commutative diagram:
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TyL

Moreover, we have the following;

M

n

^ Li

n D

y

where we mean by CH the square is Cartesian. We denote by *@M and S!M the
sheaf of micro/unctions on TjfA' and that of hyper/unctions on M respectively as
usual. Further we denote by ^61 and $61 the sheaf of micro/unctions with

holomorphic parameters on TfX and the sheaf of hyperf unctions with holomorphic
parameters on L respectively. In particular

3&GL:=tfi (6x) ®orux-RrL (6X) ®<m./x[d\ ,

where 0x is the sheaf of holomorphic functions on X and on/x is t/ie relative
orientation sheaf with respect to ii\ L-+X.

1.1 Lemma. For any nwi~zero integer k, the following equalities hold:

Proof. We may assume that X= (D? X C?, L = ffi? X (C? and 7= {0} X (Cj. By
an argument similar to the proof of Theorem 4.2.3 of Kashiwara~Schapira[K~S

2] , for any z*^Ly we have

(If Oi)*

where W ranges through a fundamental neighborhood system of 2* in Ly. We
may assume that J>i(wr\ QL) is the product of an open set of Mrf and a Stein
open set of £w. Thus we can see that
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L L

by the well-known property of SSGi- Hence the first equality is proved. The
proof of the second equality is similar. EH

1.2 Definition. We set:

where VF denotes the specialization functor along Y. Thus SJ&Y.L and $@Y\L are

sheaves on LY and 7>L respectively.

Note that by the definition, 3S0Y.L and S&Y\L are conic sheaves.

1.3 Proposition. Suppose that X=Cd+n, L=Erf x Cw, M=Erf+" and Y= {0}

x (Cw. Identify LY with E, x Ef x (C J. Tto:
(1) Suppose that open sets V of U of H. and Md satisfy the following-.

The mapping V>o X £/B (r, /) |->r^^ffid /xa5 connected fibers, whereV>v= (r^ V\ r>
0}.

for any Stein open set Q of(Cn and k^O, it follows that

Hk(VX

(2) Set f. LF-»Lr/M>o, where E>0-= ic^M: c>0}. Then the flabby dimension of
(M&Y,L is equal to n.
(3) For any proper convex closed cone G ofW1 and

) Im"^1 — 0.

1.4 CoroIIarjo The complex [IMN ($67,1) is concentrated in degree n, where

MN denotes the microlocalization functor along M^.

Proof of Proposition 1.3. (1) Set V>0U-= {rt^ Md; r^ F>0, t^ U] . Then by the
definition, we have

JJLMN

Thus the proof of (1) is reduced to the corresponding property of 5&&L.
(2) follows from the following fact: (i) the flabby dimension of 3$@L is equal

to n, (ii) if F is a flabby sheaf on L, then (ji)*t>LlF is a conically flabby sheaf

on LY-
(3) By (2) we have for H>n

ispk (6D/ft \ I —ncTLig^ix (IE"+V—TG) \*w*J Y,L) |ffi'i+d'fl — *^-

In order to prove (3) for the case where &<n, we use the following abstract
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edge of the wedge theorem due to Kashiwara-Latirent [K-L] :

1.5 Lemma (Theoreme 1.4.1 of [K-L]). Let T be a topological space.
Suppose that there exists a contravarient functor which associates with each complex
manifold W a sheaf 2? w on TX W such that

(HO) 3PW is a p~lGw- Module, where p: TX W—*W denotes the first projection.
( H i ) If V is an open subset of T and if ^ U are open subsets of W such that U

is connected and U is not empty, then it follows that

(H 2) Let f. W— * (C be a holomorphic function with d f ^ O on W and set Z* =

f ~ l ( 0 ) . Let i: Z-* W be the canonical imbedding. Then there exists an exact
sequence:

/- i*
0 - > $ w - > 9W - > t* 3FZ - > 0 .

(H 3) Let W and Z be complex manifolds with Z compact. Let f be the canonical
projection of TX WX Z to TX W. Then for any integer k the following holds:

R% %wxz~%w®Hk (Z: 6Z) .
(C

In addition to these conditions, suppose that G is a closed convex set of (Dn

containing z, and that there does not exist (C~ linear subvariety F of (Cw of dimension
n — g+1 containing z, such that FCi G is a neighborhood of z in F. Then for any t*=
T and k<q the following holds:

End of proof of Proposition 1.3. Let us identify the normal deformation of W

in Mrf X W with Md+1 X W for any complex manifold W. Let jw be a natural

inclusion M>o x Mrf x W^ffid+1 x W and fw a mapping E>o x Erf x ^3 (r, t w) *-+
(rt, w)<ERdX W. Let us set

Then it is easy to see that W^S^w defines a contravariant functor. Hence it

suffices to verify (H 0) - (H 3) of Lemma 1.5 for this &w with T=ffirf+1. (H 0) is
trivial. (H 1) follows from the unique continuation property of sections of $G
with respect to holomorphic parameters. Let Z be as in (H 2) . Then we have the
following commutative diagram:

n n n



390 F-MlLD MlCROFUNCTIONS

Hence by applying the functor R(jw)*J>w"$w(:k) M to the distinguished triangle

/•
"XW *@<&XW~

we have

/•

Then, it follows that

Jw)*pw i'w iti* i

~R(jw)* Rl*Plz »0]*xz[-l] ~Ri'*R(jz)*
~ JR?/*' GZ— !£«, * & Z*

Hence we have

Therefore (H 2) is verified. Lastly let us verify (H 3). Let W and Z be as in
(H 3). Then, it is well-known that

£

Thus by the same argument as in (H 2) we have

€

Thus (H3) is verified. Since H^ + <J—1 G does not contain non-zero C-linear
subspace, (2) follows from Lemma 1.5. The proof is complete. D

By Corollary 1.4, we can define several sheaves as follows:

1.6 BeinltioiiL We set:

YJ.) ®OTM/L~RrMN (XCYJ.) ®OTM/L M ,

Thus ^N.M, $N,M and s& N,M are sheaves on Tj^Lr, MN and Tjj^Ly respectively.
Note that by Proposition 1.3(2), StN,M is conically flabby.

1.7 Proposition. Suppose that X= Cd+n, L = Wd X Cw, M=lrf+w anrf Y=
{0} X Cw. /ctenfity TYL with W X Cw. Then:

(l) For awy proper convex open cone UofM.d, Stein open set Qof&n and
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(2) Set T- TyL-^ 7YL/M>o = Y U SYL Then the flabby dimension of J*$@Y\L is
equal to n.

(3) For any proper convex closed cone G o/Mw and k=£n,

L) m"+d=Q-

This proposition can be proved by the same method as in Proposition 1.3.
Note that in the proof of (1) , we use Siu's theorem (cf. [03]).

1.8 Corollary. The complex IJ,TNM($@Y\L) is concentrated in degree n.

Therefore, by the same manner as in Definition 1.6, we define several
sheaves as follows:

1.9 Definition, We set:

Thus $N,M, $}N\M and S$N\M are sheaves on Tf^/Trl, T^M and Tr^TyL respec-
tively.

Note that by Proposition 1 .7(2) , HN\M is conically flabby.
Now, let us consider the following canonical mappings (cf. [K~S 2] ) :

MN

1.10 Definition. We set

#N|JT= (VL): SlZVw^RCsL)* 5li ^,M,

/® . _ <v? I ^ — IdDJ$N\M- — &N\M\ TNM — SM MN,M-

Thus %)N\M and ®ATJM are sheaves on Tr^TyL and T^M respectively.

1.11 Proposition. There exist sheaf isomorphisms:

(]M) * p M MM — 9&N.M,

Proof. By Lemma 1.1 and Corollary 1.4 we have

(in)* PM $H-R(JH)* TM ®M~R()M)* fjiti 0X®orM/x[n+ d]
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-R Oil)* ? Pi VL 6x®on/x [d] ®orf~x®orM,x [n- 1]

i)* ilPZlVL Ox®on/x [d] ®orM/L [n]

Thus we have the first isomorphism. Applying the functor SM1 to this
isomorphism we obtain the second one. Thus the proposition is proved. L]

§2* Concrete Expressions

In this section, we give the concrete expressions of the sheaves defined in
Section 1.

We denote the canonical projections by:

MNLY^MN, TN\M\ TT

Moreover, riNiM denotes the restriction of TCN>M to t^lfLY
:= T^ejLY\ T%NMN.

Similarly rcN\M denotes the restriction of TCN\M to Tr^TyL'-— TrNMTYL \

TTNMTNM. Hence in the notation above, by the same arguments as in the theory
of usual microfunctions (see for example Sato~Kawai-Kashiwara [S-K-K]) we
can show that there exist monomorphisms (boundary value morphisms):

&NM ) *TNM $N,M,

N\M ) ^TJVIM SNMJ

and epimorphism (spectral morphisms) :

?N\M-

Note that boundary value morphisms are induced by the canonical morphisms id
~~* ?ti,M ^(TN,M)I and id —* TN\M^(^N\M)\ respectively. Similarly the canonical
morphisms TT^T ̂ (^,M)* ~* id and TTN\M R(TtN\M}* ~* id induce spectral
morphisms. Moreover, let us consider the following commutative diagram:

n N\ M^c *Ti 7 > T n " c v rr'
>Mir^

SM

1V1 .. ' I y

P '

n SL

^

T*Ly > MN C = , Ly.
MN * N,M i'

Then we easily see that (Vi)s SLKK~N',M~KN\M SM- Hence spjv,M induces a spectral
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morphism

2.1 Proposition. (1) In MN there exists an exact sequence

0 —*St6YJ\Ms ~*$N,M ~

(2) In TNM there exist exact sequences

Proof. By Sato's fundamental distinguished triangle, we have (1). Further

applying the functor SM1, we have an exact sequence

0 -> %OY\

and a canonical morphism

It is easy to see that this morphism is an isomorphism. Hence we have the first
exact sequence of (2) . The second one is also obtained by Sato's fundamental
distinguished triangle. d

In general, let r: E—*Z be a vector bundle and re: E* — >Z its dual vector
bundle. If A is a subset of £, the polar set A° is defined by

for any

Further, we set A°a'-=

2.2 Proposition. Let U be an open convex subset of TM»LY with connected
fiber, V the convex hull of U.

(1) If tp is a section of £$N,M on U, then supp (spN,M (^N.M (q>))) ^ lfa.

Conversely, if a section f of $N,M on TN!M ( U) satisfies supp (spjv,M (/) ) c U°a, then

there exists a unique section <p of s$N,M on U such that bjv,Af (#>) =/

(2) The natural restriction F(V\ sdNM)~~*r(U\ S$N,M) is an isomorphism.

Proof. Set

p*:= { (v^Tiy.-/1^! ) e TMNLY x T|WLF; <S=ir], S^i& = - <??, 0 >ol
w»

and denote by /?/5" the k~ih projection on F* (k=l, 2). Then, by Corollary A. 2 of
M. Uchida [U] (cf. [S~K"K]), we have an exact sequence:
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-^

0 - >dN,M

We remark that l f a — V". Since p2\iptrlur> is a continuous open mapping with
connected fiber, it follows that

H U; (tf )*

''; <?*.*) ^HT&TA V;

For the same reason, we have the following commutative diagram:

0 - >

o — > r(u-^N,M) —
here all the rows are exact. Hence we can easily prove the proposition. D

203 PropositiOBip Let U be an open convex subset of TTNMTYL with connected
fiber, V the convex hull of U.

(1) If (p is a section of S$N\M on [/, then supp (SP^IM (^N\M (<p))} c U°a.

Conversely, if a sectimi f of !$N\M on TN\M (if) satisfies supp (SP^IM (/")) C l f a , then

there exists a unique section (p of J$N\M on U such that b^\M((p) —f-

(2) The natural restriction r(V\s&N\M)~~*r(U\ £$N\M) is an isomorphism.

The proof is same to that of Proposition 2.2.

Now suppose that *=(C? x C, L=ffif x (C?, Y= {0} x <££, M=Mf xffi» and JV

= (0} X MS. Let us identify MN and LY with ffiy X ]Rf X E2 and Er X Ef X (C»

respectively. Then we identify the normal deformation of MN in LY with i£^+2 X

Mn x -v/ — 1MW. Let Lr be an open subset of MN. Therefore by the same arguments
as in the theory of hyperfunctions we can represent any section f ( t , x) of $!N,M
on [/as

/

/U x} = J F; (f, r+v^TFy 0)
;=i

for some natural number /. Here F; are open cones of H.w and F3(t, z) are

sections of ^N,M on [7+^—1^. Moreover, the following holds:

2 A Lemma0 Let f be a germ of ®NM at x* e MN. Then (x*; V^1
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T%NLy is not contained in supp ($PN,M (/)) if and only if there exist sections Fj (t, z)

of si^M on C7+ v /—IF; such that U is a neighborhood of x* and F/ is an open cone

] and that

J=l

Let U be an open set of MN such that all the fibers of the mapping J>M'.
Ur\QM~^ M are connected and that fmdJU QM) is bounded. Then we see that
for any open convex cone

where Granges through the family of open subsets of LY such that CMN(LN\W}

H (U+<J— 1 D = 0 . Here for any subset S of L#, CMN (S) denotes the normal

cone of S1 along M#. Thus we can assume that such a V^ satisfies the following:
all the fibers of the mapping ?/.: WH Qr^L are connected and ftr (WO QL) is
bounded. Then it follows that for any open cone F of ISW

Therefore any section of S$N,M on U+J—ir can be represented by a section of
®^L on ^(WfliOi) for some W. Hence we can obtain the following proposition
in the same way as Proposition 1 . 10 of Oaku [0 3] :

2o5 Proposition. Under the preceding notation,, the following holds:
(1) Assume that f ( t , x) is a section of $N,M on U and that supp (spN>M(f)) is

contained in the interior of [/+ \/~~l ( U F/). Then there exist sections Fj(t, z) of
/=i

s$NtM on, [7-f /— TF; such that

f ( t , x)=Y^F, (t, x+^lPj 0) .
;=i

(2) Assume that sections F;(t z)of S&NM on [/H-/— TF;(K/</) satisfy

as a section of ^^,M on U. Then for any subcone T ' j ^ . F;, there exist sections Fjk of

MNtM on C/+v/r-IT(r;+ri) such that
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/, k < f ) .
k=l

Similarly we can identify the normal deformation of T^M in TyL with IB/*"1"1

—I US*. Let Lr be an open subset of 7VM Then, we can represent any

section f ( t , x) of $!N\M on L7 as

for some natural number /. Here F/ are open cones of JRn and F/ (f, z) are

sections of ^N\M on U+</—lFj. Moreover, the following holds:

2.6 Lemma. Let f be a germ ofiN]M at x* e 7VM

TrNmTyL is not contained in supp (SP^IM (/)) i/ and on/_v if there exists sections

Fj(t, z) of !&N\M on U+^ — lTj such that U is a neighborhood of x* and F/ is an
open cone ofW with $**F/ and that

207 PFOpo§ltion0 Let U be an open convex set of TNM such that TN (U) is
bounded. Then the following holds:

(l) Assume that a section f ( t , x) of$N\M on U satisfies that supp (sp^ (/)) is

contained in the interior of U+^ — l (U F/°). Then there exists sections F3(t, z) on

S$N\M on [/+v/"~lFy such that

/U x) = ̂  FJ (t, x+</=Tr, o) .
;=i

(2) Assume that sections Fj(t, z) of S$N\M on U^-^/~~lTj (Ky</) satisfy

as a section of $ N\M on U. Then for any subcone Fj ^ F;, there exists sections

Fjk(t, z) of^N\M on U+^—l (Fj+Fi) such that
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By the following theorem, we regard ^N\M as a subsheaf of

2.8 Theorem, There exist natural monomorphisms:

> \ _ .(^NM/ ^VNM,

such that the following diagram is commutative:

We have

t~M/MN [n]

where COM/JV denotes ^^ relative dualiting complex. Hence we have the first
morphism. Applying the functor (?CN\M)* we have the second morphism. The
proof of the commutativity is straightforward. The proof of the injectivity is
similar to that of Theorems 1 . 1 and 1.2 of Oaku [03]. d

§3, F-Mild Hyperfunctions

We shall define the sheaf of F-mild hyperfunctions for the higher-
codimensional boundary case. Note that the results of this section are
essentially contained in Oaku [0 4] . However in [0 4] we worked not on the
normal bundle but on the sphere bundle. Thus for the convenience of the reader,
we give the detailed proofs in this section.

We inherit the notation of the preceding section.
Let us set

D(V, e. D := { (t, z) eEd x (CM; (t, Re z) e V, |lm z\ <£, Im z^T}

for a subset V of M, a constant £>0 and a cone F of Mw.
In general, we mean by Cl and Int the closure and the interior of a set
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respectively.

3.1 Definition,, Let x* be a point of TNM and (r, z) an admissible local
coordinate system of X around X'=TN(X*) such that z(x) = 0. Then a germ
u(t, x) of SN\M at x* is said to be F-mild (with respect to a partial
complexiflcation L) at z* if there exist a natural number / and holomorphic
functions Fj (T, x) (!</</) defined on a neighborhood of D(pM (UC\ CWM) , e,
F/) in Z such that

M (ft x) = £ F, (ft ,r+ v^Tr, 0)
;=i

as a hyperfunction on pM(Un@M). Here £7 is an open neighborhood of x* in M#
such that the all the fibers of the mapping j>M: UH QM~^ M are connected, £ is a

positive constant and Fi,...,r/ are open convex cones in W1. We denote by $N\M
the sheaf of sections of $N\M which are F-mild at each point of their defining

domains. Sections of $N\M are called F-mild hyperf unctions.

3o2 Example., Let u(s, x) be an F-mild hyperfunction at the origin of Es

x]R5 from the positive side {(5, x) effi1+n; s>0} (see [0 1] for an example of
F-mild hyperfunction which is not mild in the sense of ( [Kt 1] ) . Then,

d

x) is an F-mild hyperfunction on a neighborhood of
j=2

{0+ <t, -jj> e TNM; h2- 2 >O

in TNM with M=Mf x Jg« and JV= {0} x ]R».

We denote the natural inclusion K\M>~^^N\M by

Let us denote by ®M the sheaf of hyper/unctions which have t as real analytic
parameters on M. Moreover, set

®4 • — (%>A
%>N\M- ~ J&M N-

303 Lemma. (1) The following equality holds:
(%\F I — (ShA.
<&N\M\N — $>N\M-

(2) There exists a natural monomorphism

In particular, any germ of$$i\M is F~mild on a whole fiber of
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Proof. The proof of (1) is obvious by Definition 3.1. Similarly we have a

natural raorphism aN\M: T^1 $!N\M~~*$N\M- The injectivity of aN\M follows from the
Holmgren uniqueness theorem for hyperfunctions. D

3.4 Proposition. Let x* be a point of T^M. Then F~ mildness (with respect
to L) at x* of a section of $N\M does not depend on an admissible local coordinate
system (r, z) of X taken in Definition 3.1.

Proof. Let (r, z) and (r', z} be two admissible local coordinate systems of
X around x* such that x* = Q + d/dTi = 0 + d/dr{. Since Im *=Im z' = Q on L, as
a mapping of (r', 2'), T depends only on r'. This proves the proposition. D

On the other hand, since TNM is a one-codimensional boundary of C\QM,

there exists the sheaf $TNM\CWM of F~ mild hyperfunctions for a one-codimensional

boundary defined by Oaku [0 1] . For simplicity we denote $!TNM\CIQM by 3&i . Then

by the definition 3S? is a subsheaf of $TNM\C,\QM-

Let X$ be the complex normal deformation of Y in X (cf. the proof of
Proposition 10.3.19 of [K-S2]). If (r, z) is an admissible local coordinate

system, then we see that X$= { (p, r, z) : p e £, (pr, z) <^X}. Note that A$ is a

complexification of MJV and Ly is regarded as a submanifold of J$$.

3.5 Lemma. There exists a natural monomorphism:

Proof. Since PM is a smooth mapping, we have a substitution morphism

PM'. pMl9&M~~+SlQM,

such that

supp (^jirtt) ^^M1 (supp (M) ) = { (r, ft x) e J3M; (rt, x) e supp (M) } .

Thus, wTe see that PM is injective. Therefore applying the functor SM1 (JM)* we
have

PM'. $N\M~^SMI(JM)*$QM—SM (]M)*

We prove this morphism is injective. For any x*^ TjvM, we have

w

„)-*.
where W ranges through a neighborhood system of x* in MN. Hence the
injectivity is obvious. EH
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Let us set

D(V, <5, D:={(r, r, z) ^IRx(C*x(Cw;(r, Re r, Re *) e 7, |lm <r|<<5, (Im r, Im <r) e=F}

for a subset F of MN, a positive constant 5 and cone f of ffid+w, where we

identify MN with Mr x ffif X H? by an admissible coordinate system.

3o6 LemmEo T/i<? monomorphism Jjf : ÎM^""* ^TNMIC\QM induces a mono-
morphism

Proo/ We have only to prove that PM K\M is contained in Sf . Let x* be a
point of 7VM and (r, z) an admissible local coordinate system around TN(X*}
such that TN (x*) — 0 in this coordinate system. Since the proof is similar, we

consider only the case where x* is a point of TWM We may assume that x* = 0

+ d/dti. Let F(t, x+<J—\T 0) be a germ of ^IM at x* with an open cone P of
W1. Then we may assume that F(r, z) is a holomorphic function defined on a

neighborhood of D(pM(Ur}Cl@M) , £, F) with a neighborhood DTof x* in M^ and
a positive constant £. Let us set

G(p, r, z)' = F(pT, z).

Then the boundary value of G represents pMF(t, x + y'— TPO). Set ?'•— (r2,...,
rrf) and so on. Then G(p, T, z) is holomorphic on a neighborhood of

{(r, ^)eExirx(CB;0<r<<5, k|<5ki|, z\<5, Im z^I~}

with a constant 5> 0. Hence by applying the local version of Bochner's tube
theorem to G(i?, T, z) , we can see that G(p, r, z) is holomorphic on a neigh-

borhood of D(Vr\C\QM, Si, f) with an open neighborhood V of (0, x*) in M#, a

constant <5i>0 and an open cone f of W+n containing {0} X f with 0 e ffirf.

Therefore it follows that the boundary value of G represents a germ of Sf at
nX .*

By this lemma, we regard S^M as a subsheaf of Sf.
Let us denote by Cx the multiplicative group C\{0}. Then we recall that

(Cx acts on X$. By using an admissible coordinate system, we can describe this
action by

Cx X ^a (c, (p, T, z)) ^(^-, CT, z)

Let us denote by 5 the infinitesimal generator of this action. Thus by an
admissible coordinate system, we have
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Q— / _JL\ _ 5

' 9r ^ dp '

3o7 Lemma. Let W be a cmnected open set of Ly such that wr\ Cl-Qi^ 0
and all the fibers of the mapping pi. W—> L are connected. Let G (p, r, z) be a

holomorphic function defined on a neighborhood of Wf\ ClQi in A7?.
(1) Suppose G satisfies

, r , 2= .

Then G is extended to a holomorphic function on a neighborhood of W'- = pi1 (pL (W

\2) Assume moreover that G can be extended analytically to a neighborhood of

7YYTI CIW. Then there exists a holomorphic a function F(r, z) defined on a

neighborhood of pL ( WC\ C\QL) in ^d such that G(p, r, z) = F(pr, z) .

Proof. Since G(r, t, z) is constant along each fiber of PL'. WH QL—*L, it is
easy to see that there exists a holomorphic function F(r, z) on a neighborhood

of pL(wnQL) =pL(WC\QL) such that G(p, r, z] = F(pr, z) holds. Hence (1) is
proved. To prove (2), we have only to show that F(r, z) can be continued
analytically to a neighborhood of each point of pi(W) 0 Y. Let z* be an
arbitrary point of WH TYL. We may assume z* = zo + d/dh with ZQ e €n. Set
r''= (T2,..., Tn) . Then G can be developed into a power series of the form

on the set

Up, r, ^

with some <5>0. Since -SG=0, Ova'&i, z) satisfies

Our'di, Z)=rr I f l r / I0«r'f

Hence we have

which is holomorphic on
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i(p, T , z ) e{Cx<E dx<E«; \pri\<d. r1 . .

By the assumption, G is holomorphic on a neighborhood of (p, r, z) = (0, 0,
Hence we have Ova' (1, 2) =0 for v< a'\. Hence we conclude that

F(r. z) := G(ZI, 1. -£. z) = J] V <w (1, 2) r^1*'1 (r')«'
o'eNo*-1 "Sfa'1

is holomorphic on a neighborhood of (r, z) = (0, 20). This completes the proof. D

3.8 Theorem (the of the Theorem for Hyper-
functions). Let x* be a point of TnM and (r, z) an admissible local coordinate
system around TN (x*) such that TN(X*) = 0 in this system. Let e be a positive

constant, U an open neighborhood x* in MNj and T} (1 </^/) open convex cones of
W1. Let Fj (r, z) be holomorphic functions defined on a neighborhood of D (pM (UD

), e, Fy) sttcfc tfkrf

as a hyperfunction on fM ( U 0 12̂ ) . T^^K /or any open convex cones T] such

that T'j^-Tj, there exist a positive constant d, an open neighborhood V of x* in A/jy,
and holomorphic functions Fjk(r, z) defined on a neighborhood of
d, F j+r'k) such that

F3 (r, z) - F)k (r, z) , FJk (r, z) +Fkj (r, ^) =0

Proof. By virtue of Lemma 3.3(1), we have only to prove this theorem in
the case where x*=Q + d/dti. We prove by induction on /. First assume that/=
2. Set

Gj(p, T,z)'. = F,(pT, z).

Then by the proof of Lemma 3.6 each Gj(p,T,z) is holomorphic on a

neighborhood of DlFflClJ^M, £1, f;) with an open neighborhood V of (0, x*) in

MAT, a constant £i>0, and an open cone f; of W*n containing {0} XT/. In view of

the edge of the wedge theorem for Of (Theorem 1 of Oaku [0 1]), for any open
cones TyCiF/O'^l, 2) there exists a holomorphic function G(p, r, z) defined on

a neighborhood of D(Wf\C\QM, ez, f) with an open neighborhood Wof (0, x*}

in M#, a constant £2>0 and an open convex cone f of ffi^"1 containing {0} X

(F[ 4- H) such that G = d on 5 (W 0 Clfijf, £2, f i) and G = - G2 on
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M, £2, ̂ 2). It is easy to see that G satisfies the assumptions of Lemma
3.7(2). Thus we can find a holomorphic function F(T, z) on a neighborhood of
D(pM(wr\C\QM) , e, n+F2) such that

Since F= FI on Z)0?M (W H CLQM), £, Fi) and F= -F2 on D(pM(W PI CL0M), e,
F2) , we obtain the theorem in the case where /— 2.

To prove Theorem 3.8 in the case where J^3, we need several results.
Let us set

5, r):={(0 f *) eC*1*1; U|<<5, Im

for a positive constant d and an open cone T of D&w.

3.9 Lemma. Under the same assumption as in Theorem 3.8, for any open
convex cones FJ swc/i that FJ £ F, t^gre £*isf a positive constant d and holomorphic
functions F;* (r, 2) defined on a neighborhood of DQ(d, F;+F^) such that

j

Fj (r' z} =

Proo/ We may assume that x* = Q + d/dti. Let us set

Gj(p, T, z)'- = Fj(pT, z).

Then by the proof of Lemma 3.6 each G/(/0, r, *) is holomorphic on a

neighborhood of 5(m CLQjif, £1, f;) for an open neighborhood F of (0, x*) in

MAT, a positive constant £1 and open convex cones F^ of ]$Ld+n containing {0} X F;.

Therefore by the edge of the wedge theorem for SBf, for any open cones F;€F;

there exist holomorphic functions G}k(p, r, z) defined on a neighborhood of D(W

fl Clfijjf, £3, F^j for an open neighborhood W of (0, x*) in MAT, a positive

constant £2 and open convex cones F^ of ]R.d+n containing {0} X (F; + F!fc) such
that

Set r'*= (r2,..., r»). Then as in the proof of Lemma 3.7, each Gjk can be
developed into a power series of the form

oo

Gjfc (p, T, z) = ^ ^ «;*,,,«' (TI, 2:) (f (r) a\
y=0 aeMo14-1
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Let us set

\ f l +. \ nV
/, flavor'U, # 0

Further let us define G/° for any G} similarly. Note that since each G, satisfies
the assumptions of Lemma 3.7, we have G/0=G,. Let us set

Then each FJk is holomorphic on a neighborhood of DQ (d. F;' + Ffc) for a positive
constant 5. Since

G;(p, r, z)= GJk(p, r. *). GJk(p, T,z)+GkJ(p, r, z)=0
*

it follows that

A = l

In particular, we see that

This completes the proof. D

For U 0 e^X (e\{0)), let us set

(^ f> Y~2/ <z, C)
l ~ ~ v ~ " ~ l / /V ^\ ) l l ~ ™ v ~ l / / i ~\ ~~\\z,z/

where we set (z, Q*-~lLzj ^ and choose a branch as vT==l.

3010 Proposition,, Let x* 6^ a ^oin^ of TNM and (r, z) an admissible local
coordinate system around TN (x*) such that TN (x*) = 0 in this system. Let £ be a

positive constant, U an open neighborhood of x* in MN, and F;- (!</</) open convex
ernes of W1. Suppose that pM(Un C\QM) ^ ( (0, x) e N; \x\<e}. Let Fj (T, z) be a
holomorphic function defined on a neighborhood of D(pM(Ur\ C\QM) , £, Fy) . Set
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F(T, z\ 0 : = / f F, (r. w) W(z- w 0 dw,
LJ J c(e,Vf)
J=l

where

C(e, yj)-=w^€ni |Re i * | < . Im t^y,

for a yj^Tj. Then the following two conditions are equivalent for any £ *^
(1) There exists a positive constant d such that F(T, z\ 0 is holomorphic on a

neighborhood of (0, £*) €E(Dd+nxRn if y,^T, and \y, <d.
(2) There exist a natural number K and holomorphic functions Gfc (r, z) (1 <fc

^.K) 077 a neighborhood of D (pM (V f\ C\Q M) , S, 3k) for a neighborhood V of x* in

MN, a positive constant d and open convex cones Ek o/IEK with f *^H f t° such that

^lT, 0) = Gk (t, x+^lEk 0)

Note that the defining domain of F(r, z, Q is conic with respect to C since
r, 0 is homogeneous of degree — n with respect to C-

Proof. Assume (1). Let A0 be a proper convex open cone of 1EW such that
£*eIntA0° and that F(r, z\ 0 is holomorphic on a neighborhood of {0} X (A0°\
{0}). Thus we can choose a natural number K and proper convex open cones

such that ffiB= U A/ and cc; (A/ 0 A*° 0 S^1) =0 if j*k. Here cw

denotes the standard volume element on the sphere S"'1. Choosing y^Tj such
that ly,|<5, set

*(r,z):= f F( r f ^J^ns"-1

Then, for any open subcone Ai^A*, GA: are holomorphic on a neighborhood of

£>0?M(Fn Clfljif), £1, Ai) for a neighborhood F of x* in Mjv and an £i> 0.

Moreover Go is holomorphic on a neighborhood of 0 ^ (gd+n^ gy virtue of the
inverse formula of Radon transforms (see A. Kaneko [Kn] , K. Kataoka [Kt 2] )

=Tr, 0) = G* (t. x+/rrTA* 0)

holds onSf(C/nf lM) . Since $**Af t° for Kk<K we obtain (2).
Conversely assume (2). Set F/+fe

:— ~~ G& and r/+/fc = S/t for K/<K Lemma
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3.9 entails that for any open convex cones Fy € Fy, there exist holomorphic
functions F;/fc(r, z) on a neighborhood of D0(s, Fy + Fi) with a positive constant
£ such that

Fj=

We may assume that pM(V^ClQM} ^{(0, x) &N\ \x\<d} for a positive constant
<5<min{£, £2). Choose &eF, for K j^J+K and set

F(r, z\ 0 : = F f Fy (r, to) W(*-t« 0 dw,LA Jc(d,v,)
;=i
K

G(r, ^ 0 — F f G*(r> w) wU-
4^ J C(5,Vj+k)

dw.
• ~ f^ J C(5,yJ+k)

k=l

Then we have

J±K
FJk (r, w) W(z—w, Q dw

C(5,y,)

f Fik(r,J c]k

where

^Cn\ |Re M ^ = - , Im M;= (l-dy ; + ^* for some

with an appropriate orientation. Then we can easily see that the integrals of the
last line are holomorphic on a neighborhood of (0, ?) eC^x (IRW\{0}) for any
non-zero § if each \y}\ is small enough. Since G(r, z\ 0 is holomorphic on a

neighborhood of (0, f*) e(C r f + wxMw , so is F(r, 3 Q. This completes the proof.
a

End of Proof of Theorem 3.8. Assume that the theorem is proved for /— 1
(J>3). We may assume that pM(U^C\QM) =>{ (0, x) e JV; |x|<£>. Choose
and set

Ff r, z\ 0 '• = f F/ (r, *) W(^~ ^ Q rfm
Jc(£,Vj)

Then since

7-1

-F7 U, x-h/i:rrr7 0) = F; (f, x+ V^::::TF/ 0) ,

by virtue of Proposition 3.10, F(r, z, Q is holomorphic on a neighborhood of
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7-1
{0} x (ffiw\(iy D ( U P / ) ) if j//| is sufficiently small. Let F> be convex open

;=i
cones such that P/CT^r/, and A/(K/</— 1) proper convex open cones of ffin

such that

7-1 7-1

A/c(r;+r;)-, U A/sr/ndJr/),

and o)(A/nA*°nSn"1)=0 if j*k. Set

G,(r,*): = f
«/ A,° n S""1

for l^/^/— 1 and moreover set

,*): = f v/.i
«J S'^V U A;°

Then

holds and GO(T, z) is holomorphic on a neighborhood of O^Cd4"w. Set

f Fi(r, i
ff,(r,*):=| ,

{Fj (T, <

Then we have

7-1

7 = 1

on _pjif (Lr fl QM) for a neighborhood C/ of x* in M^. By the induction hypothesis,
we can find holomorphic functions Hjk defined on a neighborhood of D(pM(Vf}

C\QM) , 5, Fy + Flfe) with a neighborhood F of x* in M# and a positive constant d
such that

7-1

Thus set

F J k ( r , z)' = - Go (r, 2) - Gi (r, ̂ ) (/= 1, fe=jf),
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Then Fjk satisfy the properties we need. D

Soil Proposition. There exists a morphism

defined by

t \ • _ \' 17. (A -,_(_ / — i f (\\\X) • — / r j \u, x i v 11 j \Jj

i/ a section u(t, x) of S$N\M is expressed as in Definition 3.1. In particular, JN\M
induces an isomorphism:

Proof. JN\M (u) (x) does not depend on the choice of denning functions of

14 (t, x) by virtue of Theorem 3.8. Moreover, it is easy to see that Y$\M is
d

surjective and its kernel is 2/ySB£|Af. D
;=1

This proposition means that the boundary value JN\M (u) (x) does not
depend on the direction along which the boundary value is taken. More

precisely, let u(t, x) be a section of $N\M on an open set U of TNM with
connected fibers. Then there exists a section v(x) of $# on TN(U) such that

TN\M(UV) = TNI(V) y for any open subset V of U.
As a special case of F-mild hyperfunctions in relation to Lemma 3.3, let us

consider F-mild hyperfunctions on a whole fiber of r^:

3ol2 Proposition.., Let u(t, x) be a hyper/unction on M\ N which is F-mild

at any point of TNM. Then there exists a unique hyperf unction v (t, x) on M such

that v(t, x) =ttU, x) on M\ N and $SM(v) H T$M= 0 .

Proof. The uniqueness of v(t, x) follows immediately from the Holmgren
uniqueness theorem for hyperfunctions. Hence it suffices to prove the existence
of v(t, x) on a neighborhood of each point of N. Let x be a point of A/", and (T, z)
an admissible coordinate system such that z(x) —0. Since u(t, x) is F-mild at

K
each point of TN(X) , there exist open cones if (l^k^K) of Md such that U if

k = l

= ]$Ld\{Q}, a positive constant e, and holomorphic functions Fj (r, z) (!
defined on a neighborhood of
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with open convex cones Tf of W1 such that

holds on { ( t , x) ^ M: \t\, W<£, t^ i f } . Choosing sufficiently small y*^Tf we
set

,2 ;0 := ; f J*(r, u>) WU-u* Q dw.
LJ J C(£,y?)

Then jF*(r, 2:; Q is holomorphic on a neighborhood of

OR»\{0}); M<

if £ is small enough. Proposition 3.10 implies that there exists a positive
constant 5 <£/4 such that F*(r, -z; 0 ~ ^ (^ ^ 0 is holomorphic on a
neighborhood of B5 x (Ew\{0» := { (t, z, f) eII dx(Cwx (EK\{0}); |t|f U|<5) if
If 0 [/=£ 0 . It is easy to see that F^ (r, r, Q ~ ^ (^ z 0 is holomorphic on a
neighborhood of B5 X (Mw\{0}) for any k and J by taking chain of L^'s which
connects If and If. Hence there exist holomorphic functions Gk (T, z; Q on a
neighborhood of B5 x (EK\{0}) such that Gk-Gl = Fk-Fl. Then P*-G* defines
a holomorphic function //(r, ̂ ; Q on a neighborhood of

Let Ay( l ^y^y ) be proper convex open cones of Mw such that UA/ = JRW and
o) ( A/ 0 A*° n S"-1) = 0 if j* k. Set /=1

H(T,
»s a/OS"-1

Then

defines a hyperfunction on { ( t , x) e Md+w; | f | , |x|<5} with real analytic
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parameters t. In view of the inverse formula for Radon transforms, we have

tt(t x) ~w(t, x) = f G*(f, x\ &<*)(&&/ §"

on { ( t , x) effid+w; \t\, \x\<d/2, t^ If}. Since the integral on the right-hand side

is analytic on { ( t , x) effirf+'1; \t\, \x\<6/2}, u(tt x) —w(t, x} is continued to an

analytic function on {(t, x) &Rd+n; \t\, |x|<5/2}. This completes the proof. D

§4o F-MIId Microfunctions

In this section, we microlocalize the F-mildness property. To this end, we
introduce new sheaves.

Recall the mapping defined in the beginning of Section 1. Further let us set
CY'- = IL iy\ Y-+X. Then we have the following commutative diagram;

"ZtiX-^ffxtfL

D IY* tp'L

4.1 Definitioiio We set:

Thus $N\M, $N\M and MN\M are sheaves on T$7, N, and T^Y respectively.
By the same arguments as in the theory of microfunctions, we can prove

the following:
(1) There exist a natural monomorphism

and a natural epimorphism
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where r\ TNY—*N is the canonical projection.

(2) Let us identify X with Cd+n by an admissible coordinate system (r, z).

Then we can represent any germ f ( t t x) of ^\M at the origin as

/
f(ttx)=^F,(t.x+</=!?,$)

for some natural number /. Here Fj are open cones of M*1 and each F} (r, z) is
holomorphic on a neighborhood of A>(e, F}) in X for a positive constant e.

Moreover, we can prove the following:

4B2 Lemma. Let XQ be a point of N and (r, z) an admissible local coordinate
system 0/(r, z) such that XQ = 0 in £/ws system. Then the following hold:

(1) L^/U x) be a germ of $&\M at XQ. Then (j:o;/-T<f*f rfx» e 7f 7 « no^

contained in supp (SP^IM (/) ) t/ and cwi/y i/ f/i^r^ exist holomorphic functions Fj(t, z}
defined on a neighborhood of DO U, Tj) m A^ with a positive constant & such that
each TJ is an open cone ofW1 with £*4iy and that

f ( t t x) == F,(fc x+^TF, 0)
;=i

(2) Let e be a positive constant and Tj an open convex cones ofW1. Let Fj (r, z) be
holomorphic functions defined on a neighborhood of Do (e. Tj) in X such that

=
holds as a germ of $N\M at XQ. Then for any open convex cones T'} o/Mw such that
F;Cr;, there exist a positive constant d and holomorphic functions FJk(T, z) defined
on a neihborhood o DQ (d, F +F i) in X such that

;,
a neighborhood of DQ (d, F ;+F i) in X such that

j
Fj (r, *) = £ Fjk (r, z) , FJk (r, z) ^-Fkj (r, z) =Q (1 <j, k<J) .

fc=i

The proof is similar to that of Lemma 2. 1 of Oaku [O 3] .

4.3 Lemma. There exists a natural monomorphism
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Proof. In view of Theorem 3.8, we can naturally define &N\M> Let us verify
the injectivity. Let x* be a point of TNM and (r, z) an admissible local
coordinate system of X around XQ-=TN(X*) such that Z(XQ) = 0. Suppose that

f ( t , x) = E Fj (t, X+/-TF/0) is a germ of $N\M at x* such that o&\M(f) =0^

®#iM,.ro- Here each F/(r, 2) is holomorphic on a neighborhood of D (pM (U Cl

C\QM) , £, Fy) in Z for an open neighborhood of U of x* in MN, a positive
constant £ and an open convex cone Fy in D&w. Then by Lemma 4.2 (2), for any
open convex cones F,' of W1 such that Fy^Fy, there exist a positive constant 5
and holomorphic functions F J k ( r , z) defined on a neighborhood of D0(d, F_J + Fi)
in A" such that

/

Fy (r, z) = Yi Fjk (r, z), FJh (r, z) +F,; (r, z) -0 (1 </, ̂ </).

Now we shall use the same notation as in the proof of Proposition 3.10. Choose
*j for K;</and set

F(r, z-,Q'.= ) f FJ(T, w) W(z-w, 0 dw
LJ J C(8,Vj)

— V f I- i \ ixTi r\ j— / I r J k { T , w) W(z— w, C,) dw.
U J C]k

Then by the second expression we can easily see that the right-hand side is

holomorphic on a neighborhood of (0, f) e(C r f + wx (Mn\{0}) for any non-zero f
if each yy\ is small enough. Let us set

Then F(r, z) is holomorphic for |r , |z|<<5'. Moreover, by virtue of the inverse
formula of Radon transformations we have

j=i

that is, f ( t , x) analytic at (t, x) = (0, 0).

Hence by the injectivity of bjf\M'- ^\M>~~*'T~1S&N\M, the condition &N\M (f) —0
implies f ( t , x) =0 as an analytic function. This completes the proof. D

By this lemma, we can regard $N\M as a subsheaf of TNI $NIM-

4»4 Definition,, The sheaf of F-mild micro/unctions on TrNMTyL is defined
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by

%N\M- = Image ($PN\M O&\M'. KN\M ^N\M~ * (Vy)i r?i f &IM) .

Sections of ^N\M are called F-mild micro functions. The morphism sp^i
induces an epimorphism

For a section u of $>N\M, SS£|ArU) denotes supp (SPN\M(U) ) .

We remark that by the definition ^IM|TWM— %N\M>

We also denote the natural inclusion ^|M>^(^V)[ ^YTC^N\M by

4.5 Lemma. L££ wU x) be a germ of !$N\M at a point x* of TNM. Then a

point p— (x*; y— 1 £*) ^ TrNMTyL is not contained in SS^jM (M) t/ an^f on/v i/"
u(t, x) has an expression as in Definition 3.1 such that £* does not contained in
r,° for any j.

Proof. If f * = 0, the proof is trivial. Thus we may assume that £*=£() .
Suppose that w(t, x) has an expression as in Definition 3.1 and £* does not

contained in F/ for any ;. Then by Lemma 4.2 (1), we have £ £ SS£|jif (M).

Conversely, suppose that M is a germ of fS&jM at a point x* and ^^SS^IM(^).
Then we may assume that by an admissible local coordinate system x* — 0 +
d/dti and that

u(tt x)=F0U x+T^TroO),

where F0(t, z) is holomorphic on a neighborhood of D(pM(ur\ C\QM} , £, F0)
with a neighborhood £7 of x*, a positive constant £ and an open convex cone F0

of Mw satisfying £* ^ F0°. By virtue of Lemma 4.2 (1), there exist holomorphic
functions F; (t,z) denned on a neighborhood of D0(5, F;) in X with a positive
constant d such that each F; is an open cone of W1 with ?*$F/ and that

— ir00) + ) Fj(t, x+/~~TF; 0) =0.

Choose open convex subcones F^F, with £*^ In t (Fo)° and £*$ (F;)°( l<y
^/). Then, by Lemma 4.2 (2), there exist a positive constant 6' and
holomorphic functions FJk defined on a neighborhood of D 0 ( d f , F;+Fi) such
that

*=0
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Now we shall use the notation of the proof of Proposition 3.10. Choose
for 0</</ and set

F(r, ^ 0: = f ^o (r, w) W(z~ w: Q dw,
J C(5f,yQ)

G (r, z: Q • = V f F; (r, w) W(z~ w, S) dw.
LA J C(5'y,}1 C(5',y})
;*1

Then we have

F(r, z: 0 + G(T, z 0 = Y [ F3k (r, w) W(z- w\ Q dw.
LJ J c}k

0 ^ j < k ^ J

Each integral of the right-hand side is holomorphic on a neighborhood of (0, £)

e(Cd + B x (IEW\{0}) for any non-zero ? if each \ y } \ is small enough. Since

G(r, z\ 0 is holomorphic on a neighborhood of (0, ?*) eC^» XH«, So is F(r, r, Q •
Thus there exist a positive constant d" and a proper convex open cone A of W1

such that £*€=Int A° and that F(r, z, 0 is holomorphic on a neighborhood of

{(r, z.

Thus we can choose a natural number K and proper convex open cones

<A) such that IEW= U A*° and ct>(A/ fl A^HS^1) =0 if
/c=0

:= f
^A

Then G^ are holomorphic on a neighborhood of jD(pM ( V ^ f l Cl^), £1, A*) for a

neighborhood F of x* in MJV and a constant £i>0. Moreover Go is holomorphic
on a neighborhood of 0 ^ (£d+n. By virtue of the inverse formula of Radon
transforms

K

Fo U, x+/=Tr0 0) = ^ G, (f, z+/=TA* 0)
/c=0

holds on pM ( [70 13M) . Since <?* $ A f r° for Kk^Kwe prove the lemma. D

Let us set

Then we see that ^|MU~®AriM- Let us denote by sp&i*: TT^^^M-^^IM the
spectral morphism. Therefore we have

[d+n]
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Thus we obtain a natural morphism

(%N\M' WN\M * © N\M

4.6 Lemma. The morphism a^\M induces a natural monomorphism

such that the restriction of this morphism to the zero- section coincides with OLN\M'.

TNI$N\M>-»$N\M of Lemma 3.3 (2) .

Proof. It is easy to see that we can define (XN\M. The compatibility of this
morphism and that of Lemma 3.3 (2) is clear by the definition. Let p =

(x*; /-!<£*, dx» be a point of Tr^TyL In the case where p^ TNM, since

(*TY)\ ?YK (SN\M,P = ^N\M,TN(P) and (@N\M,P = $IN\M,P, the injectivity is a consequence of

Lemma 3.3 (2). In the case where p£= Tr^TyL, we may assume that r#(x*) =0.
Then we can prove the injectivity at p in the same way as Lemma 4.5. This
completes the proof. [U

Now, we have

( (IL PLSL) ~l6x®OTM/L)

Hence taking the n-th cohomology, we obtain a natural morphism

n , it-' \ _-L <2>A _ ^ (0"PN\M- \ ?Y)I TY-K ®N\M ̂  &N\M-

Restricting this morphism to the zero-section, we have

Similarly we can obtain natural morphisms

On the other hand, by Lemma 4.5, $N\M\ 3>N\M~-* $N\M induces a natural
morphism
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407 Lemma0 The following diagram is commutative:

7T D^
N I M *>N I M ' n N\ ML M •*> N I M

v^X

TT ~ ' -r"1 Ofl^ \
' N\ M LH MN\ M

-^TT -1
/V I M

1A^ I M»®N\ M

S P / V I /

/v I w
N\ M

*PN\M

> ("y!,̂ ,

l / / l M*®N\ M

A

The proof is straightforward.

Let TN\M'- ^N\M~^^N and TN\M- $>N\M~~*$}N be the restriction morphisms.
Then, these morphisms induce isomorphisms

We shall define restriction and boundary value morphisms.

First, induced by a natural morphism CYI@X~ *@Y there exists a natural
morphism

zyA. . WA _ *,(/?TN\M. VNIM^VN-

We also denote the restriction of this morphism to the zero-section by

TN\ M- S$N\M ~~* S$N.

Then, these morphisms induce isomorphisms

f <4 / V f <&A — W (fa A / V i- 6DA — ®
N\M / 2L,ljVN\M—VN, »®N\M / 2^ tj ^N\M~ <%>N-

I ;=1 / ;=!

Next, by Lemma 4.5, we see that YN\M: ^N\M~¥TNI^N induces a morphism

r$\M:Vfr\M-*('*'Y)lTYWN,

which in turn induces an isomorphism
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4.8 Lemma. The following diagram is commutative:

The proof is straightforward.

4.9 Proposition. T/i^ morphism aN\M defined in Theorem 2.8 induces a
monomorphism

/

~ / ~~ ~
$N\M (&^\M>~*(@ N\M $N\M^"C'Y}\ TYK ^NIM-

Proof. At the zero-section of TNM, the proof is similar to that of
Proposition 2.3 of Oaku [03] . Let p = (x*: T13! <§*, dx» be a point of

TrNMTYL. Let /(f, x) be a germ of ^ATJM at p and suppose that aN\m(f} e

^N\M\TY)I TYK %>N\M. There exist a positive constant £, an open neighborhood [/of

x* in LY and an open cone F0 of W1 with f *^r0° such that the following hold:
There exist a section F0(t, 2) of S^r,i on { (r, t, z) ^ U\ Im z^TQ} and a holo-
morphic function Go (r, z) defined on a neighborhood of DQ (e, F0) such that

^IM (f) (t,x)= J3N]M sp V ( Go U x+ /=Tro 0) )

hold at p. By Lemma 4.7, we have

&N\M (/)(t, X)= SPN\M &N\M (F0 (t, X+J—ITv 0) )

NIM ( Gb ( t x+ >/— 1F0 0) )
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at p. Let us set

H0(t, *): = F0(ff z)-Go(t, z)

as a section of $}0Y\L. By Lemma 2.6, there exist a natural number / and
sections Hj(t, z) of 3&ffY\L on { ( t , 2) e F; Im *e=r,} (!</</) such that

^TFo 0) +2Hj(t, x + /=TF;- 0) =0.
/=!

Here F is an open neighborhood of x* in TYL and each F, is an open cone of IEW

such that f*£iy. Choose subcones FjeF,- such that £*eInt(Fo)° and £*£
(F,0 ° for 1 </</. Then, by Proposition 2.7 there exist sections H]k (t, z) of
$GY\L on { (t, z) e F; Im *er;+rj} such that

where V is an open neighborhood of x* in 7YL. Now we shall use the notation
of the proof of Proposition 3.10. Choose y/^Fy (0</</) and sufficiently small
positive constant d and set

, z;
'-/c,

G ( t , z - Q:=fc(8^G0(t,w)

H(t, z\ 0: = f 5 ffoU w) W(z-w, Qdw,

H (T, z; 0 := V f ft (fc w) W(^-t^, C) ^.
4=J J C(d,y,}

Then

H(t ^; 0 +ff (^ z;Q= y f HJk (t, w) W(z~~w: Q dw.
LJ Jr.*cj!c

The right-hand side of the integral above defines a section of ^FX^ILXC" on a
neighborhood of W x (Mw\{0}). Moreover we see that If (t, z] 0 defines a
section of SS^VxC'iixC" on a neighborhood of W x A°. Here W" is a open
neighborhood of x* in 7YL and A is a proper convex open cone of Mw such that
£* e Int A°. Thus H(t. z] Q = F(t, z; Q - Git, z\ Q defines a section of
S^rx(c»|ix(C" on a neighborhood of WX A°. Choose an open subcone HdA such
that £*elnt S ° and H(t, z\ Q defines a section of ffi0rx<cliv<c» on a neighborhood
of W"x H °. Let us set
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S(t,z):=f H(t.z;
*J £r ° fl S"

Choose a proper convex open subcone E' £ E of Mw such that £*^Int(3 ')° .

Then, F(t, z) defines a section of %6Y,L on {(r, t z) e [/; Im z^E'}, G (r, *)

defines a holomorphic function on a neighborhood of DQ(e\ S'), and #U 2)

defines a section of fS(^r,.L on a neighborhood of {(0, t, z) ^Ly; (t, 0) e W, Im z^

S'}. Here U is an open neighborhood of x* in Lr, W is an open neighborhood

of x* in T^L and £ is a positive constant. Since H— F— G as a section of 3H@Y\L,

G(r, z) is holomorphic on a neighborhood of D (pM (V fl CI^M) , e', S') by virtue
of the unique continuation property of ^6. Here V is a neighborhood of x* in

MAT and e' is a positive constant. Hence G defines an F-mild hyperfunction. Since

and &N\M is inject! ve by Theorem 2.8, it follows that

/= SP^IM (F) = SPATIM (G) = spAT|M &N\M ( G)

The proof is complete. LH

§5. Non- Characteristic Higher- Codimensioeal
Boundary Value Problem

Let ®.x be the sheaf on X of rings of linear partial differential operators (of
finite order) with holomorphic coefficients. Let M be a coherent (left) ®A"Module
on X\ that is, a system of linear partial differential equation with holomorphic
coefficients. Recall that Fis non- characteristic for M if

where char (M) denotes the characteristic variety of M. We denote the inverse

image of M by CY in ©-Modules by ty\M; that is,

L L

Let us set MY
: = X°(c^\M) . Note that if Y is non-characteristic for M, then

is concentrated in degree zero; that is, we can identify CylM with My, and
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that My is a coherent ®r~Module.

Sol Propositioiio Suppose that Y is non- characteristic for M. Then there
exists an isomorphism:

TN\M: Rtfama>x U, «W)^?(Vr)! T

To prove Proposition 5.1, we shall prove the following lemma:

5o2 Lemmaa If Y is non- characteristic for M, then there exist natural
isomorphisms'.

Proof. Since S$@Y\L~VY (81 GL) , we have a canonical morphism

Thus we have a natural morphism

TyliY lR^o^x (M, %GL)

Define an object # by a distinguished triangle;

Let z* be a point of TYL Since the proof is trivial in the case where z* ̂  Y, we

assume that z* ̂  TYL Further the question being local, we may assume that z*
= 0 + 9/5^1 by an admissible local coordinate system. Then by the definition for
any integer k we have

where we set C/e:={(t z)^L\ \t\, \z\<e} and Ze'-={(t, z)^L\ £h<E\tj\}.

Let Lm be the real manifold underlying L Set X- = XX ?={(t z, w)}. Then

we can regard X as a complexification of L1 by LffiB (t 2) ̂  (f, z, z) ^ X. We
denote by K the external tensor products of ^-Modules. Then we have

Here we remark that char (Jl S^r) = char (M) X char (0f) = char (M} X 7|7.
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Hence for any integer k we have

(M, #) ) ** - _liin if (RFz^ is ( C/6; RXom®> (M, $0L) ) )
£-^+0

- liin If ( U6\

- lim #* (Rtfom®, (M |£| 0f ,
£-»+n £

We shall show that if e is sufficiently small, then any conormal 0= (0; 0t, 0) of

Ze at the origin of T*L^ is hyperbolic for M^0r, that is,

Here we remark that there exists a canonical embedding T*Lm c— > Tr^x
Chapter 1 of [K-S2]). Suppose that 0 e CTW (char (M [X^) ). Then by the

0
definition, there exists a sequence {(O;(T;, ^>; ̂ /, cfr) + (G> ^)); t^/};eN in M>o

X char (Jf) x F such that lim fr;, <r;, «;;; <^;, dr> + <£,, ^» = 0 e jf.x and
^— »00

lim c; (Im TJ, Zj—Wj, Re 17,, Q) = (0, 0, 0t, 0). For a positive constant 5, let us set

Since (9^0 and c;>0, for any 5>0, there exists a /^N such that for any ;^/,
we have (r;, ,̂-; <77;, cfr> + <C, d^» e F 5Hchar(Jf) .

On the other hand, by the non-characteristic condition and the fact that
char (JO is Cx -conic, we have Vs f) char ( M ) — 0 , if 5 is sufficiently small. This
is a contradiction.

Hence by applying Corollary 2 .2 .2 of Kashiwara-Schapia [K~S 1] we
obtain

38 L*) ) o = 0.
2)

This yields an isomorphism

Next let us consider an exact sequence:

where rcY\ TyX-^ Y. Since

supp (RWomx (M, WL) ) c l*xr\ char (M) ,

we have
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Therefore we obtain

, (M, ^6L} .

This completes the proof. EH

Proof of Proposition 5.1. By the Cauchy-Kovalevskaja-Kashiwara theorem
(see for example Theorem 11.3.5 of [K~S 2]) and Lemma 5.2, we have

(TYI (RXomr (CJL.M,

(TYICYI (RXoma, U,
(M, ftTvM (%CY\L) ) -

Then, by the non-characteristic condition, we have

SS (R<%oni®y (c^_M, CY) ) -char (c^_M) = 'c'y (ty* (char (M) ) ) ,

where SS(*) denotes the micro-support in the sense of Kashiwara-Schapira
(see [K-S2]). Then by Corollary 6.7.3 of Kashiwara-Schapira [K-S 2] we
obtain

Hence applying the functor ®OYN/Y, we obtain an isomorphism JN\M- EH

By Proposition 5.1 and Theorem 2.8, we have the following:

5=3 Theorem,, Suppose that Y is non~ characteristic for M. Then, the

morphisms &N\M'. %>N\M > — *" %>N\M and YN\M of Proposition 5 . 1 induce a natural
morphism:

x (M, ^(M)~ >R ( Vy); Z"rf R

In particular, there exists a natural monomorphism:

Now, let us give the explicit and concrete expression of the morphism of
Theorem 5.3 using the boundary value morphism of F-mild microfunctions.

504 Lemmao Suppose that Y is non- characteristic for M. Then the morphism

TN\M- ^NIM^^N induces a natural isomorphism:



TOSHINORI OAKU AND SUSUMU YAMAZAKI 423

Proof. By the Cauchy-Kovalevalevskaja-Kashiwara theorem, we have

tYlRtfomzx(M, 0x)^RXowtor(c?M, 0Y).

By applying the functor {JLN(*}®OYN/Y we have

Hence taking the n-th cohomology, we have an isomorphism. It is easy to see

that this morphism coincides with ?N\M in view of the construction and the fact

that TN\M induces the isomorphism c^_ $>N\M - ^N\M / Z tj ^N\M ^ ^- Tnis

/ j=i
completes the proof. D

5.5 Proposition. Suppose that Y is non- characteristic for M.

(1) The morphism &N\M'> (I^Y)I ?Yn %>NIM ~~^^N\M induces a natural isomorphism:

Moreover J3N\M is compatible with fjvjM and JN\M\ that is, the following diagram is

commutative:

(2) The morphism PN\M- ^N\M~^^N\M induces an isomorphism:

Proof. (I) The method of the proof is similar to that of Proposition 5.1.

By applying functior. ^ T N M ( ^ ) ®OTN/M to the isomorphism of Lemma 5.2, we
have

Then, since Fis non-characteristic for M we have

SS (cY
lRl%omx (M, Ox} ) c= VK (C

Hence by using the non-characteristic condition again, we can apply Corollary
6.7.3 of Kashiwara-Schapira [K~S 2] to obtain

(M, R ( f T Y ) i r-Y
ln JJLN (iYl6x) )



424 F-MlLD MlCROFUNCTIONS

x (M,

x U, JJLTNM

Hence applying the functor ® OTN/Y and taking the w-th cohomology, we obtain
an isomorphism. We easily see that this isomorphism is induced by $N\M. The
proof of the commutativity is straightforward.

(2) follows from (1) and Proposition 4.9. D

By Propositions 1.11 and 5 .5(2) , we obtain the following:

5,6 Corollary ([04]). Suppose that Y is non- characteristic for M. Then the

morphism &N\M'- $N\M ~^$N\M induces an isomorphism:

In particular, all the hyper/unction solutions to M defined an a wedge domain with
edge N are always F~mild.

Since the restriction morphism YN\M' (^N\M~~^(^N induces an isomorphism

we easily see that this morphism induces a natural morphism

For the same reason, the boundary value morphism YN\M'. ^N\M~^ (* ty) \ ?YX > N' ~^ *
induces a natural morphism

rV Xom^(M, niM)-^(fr'F), TY
lrc%ow®Y(t^_M, <8N).

On the other hand, induced by

there exist natural monomorphisms

5o7 Propositiono T^e preceding morphisms are compatible; that is, the
following diagram is commutative:
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' y]QX
 Y ' A/l M

The proof is straightforward.

5.8 Example (cf. S. Tajima [Tj]). Let X be a complex manifold and N a

real analytic submanifold of X. Assume that N is generic; that is, TN+^ITN
N

= N*TX. Let Y be a complexification of N in XX X and ®c-*:— ̂ x^&x the

Cauchy-Riemann system. Let / be a holomorphic function defined on a wedge
domain with edge N: that is, a section of vN(6x) = tfomx(®c-R, $N\M) . Then, /is
well-defined as an F-mild hyperfunction along N since Y is non-characteristic
for ®C-K. In particular, the boundary value morphism of / to N as a hyper-
function is well-defined and injective by Proposition 5.7.

§6. Fuchsian Systems of Partial Differential Equations

In this section, we shall prove the uniqueness theorem in the boundary
value problems for ^-Modules of Fuchsian type and of the Fuchs-Goursat type
in the framework of F-mild microfunctions.

First, assume that M is a Fuchsian system along Y in the sense of
Laurent-Monteiro Fernandes [L-MF]. Recall that a coherent <3)x-Module M is a
Fuchsian system along Y if and only if for any (local) section u e Mt there
exists a differential operator P such that P w = 0 and that P can be written in a
coordinate system (r, z) with F={(r, z); T=0} as follows:

P(T, z; 9r, 9z) - ^ U) r«9
0<k| = |JS|<oidP

where ord denotes the (usual) order of a differential operator, and the

conditions below hold:

(a) For any r?e(Crf\{0}, one has E Pa&(
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(b) For any j^-TL, one has Q/ryc=^r;+1. Here J>Y denotes the defining ideal of
Y in X with a convention JY

j = 0x for /<0.

Note that all the cohomologies of CylM are coherent ®r~Modules by Theoreme
3.3 of Laurent-Schapira [L~S] and that we may choose the coordinate system
above as admissible.

6.1 Theorem, Let M be a Fuchsian system along Y. Then, the boundary

value morphism JN\M'- ^N\M ~* (^r)i Ty* %>N induces a monomorphism on T

> (M, n\M) >-+ CrM- r?i Xomr (MY, %N) .

In particular, the boundary value morphism TN\M\ $N\M ~~* TNI<$N on TNM induces a
monomorphism

Note that not all the hyperfunction solutions to M are necessarily F~mild,
contrary to the non-characteristic case studied in the previous section.

Proof. By Theoreme 3.2.2 of [L-MF] , we have the Cauchy-Kovalevskaja
type theorem:

tYlRX(M9>i(Mt Cx)^+RXoms>T(c?M, ffY).

Applying the functor {IN (*) ® OTN/Y and taking the n-th cohomology, we
have

In view of Definition 4.4, this isomorphism induces a morphism Y$\M. D

By virtue of Lemma 4.6 we have the following corollary:

682 Cor0IIary0 Let M be a Fuchsian system along Y. Then, the restriction

morphism TN\M'. %>N\M ~^^N induces a monomorphism

603 Example. Let P be a differential operator of order m of the following
form:

P(r, z: dr, dz) =

where bis) is a polynomial of degree m and Q satisfies QJyj<^JY
J+l for any
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7L. Put M — 2)x/$x P. Let ^, u €= 7L be the minimum and the maximum integral
roots of the equation b(s) =0 respectively (set ft — i> = — 1 if b(s) has no
integral root). Let u(t, x) be an F-mild hyperfunction (or microfunction) solu-
tion to P 21=0 and assume that for any a^M0

d with /^<|a| <y

Then, it follows that u—Q on a neighborhood of N. In fact, MY is generated by

9f M for a^Mod satisfying /^|a|^y over ®r, where u denotes the residue class
of 1 in My (cf. Laurent-Schapira [L~S]).

Next, we shall give similar theorems for a matrix of Fuchs-Goursat type
introduced by Madi [M] and Yamazaki [Y] . To state the results, we define
boundary value morphisms, which we shall regard as Goursat data, as follows:

By an admissible coordinate system, we may assume that JY=C!rxC?, 7=(CJ, L

=E? x(Cj, M=IRf xffi» andA^=ffi?. For Ki<d, let us set L,:=
0} and Mr = MC\Lj. Then the inclusion L/ C^L induces mappings

IV L,

O

Moreover, we have the following commutative diagram:

Then we have the following:

6*4 Lemma. There exist natural morphisms

rfo:%hM-+%hnt

f*ikI&|M^I*|M,

and
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~,F>1 • (tfn
f\ xA-l (£>F s, (0TN\M- \ Vi'' Vtx VN\M^ &

-,F,i . /A-1 <®F s. rtDFTN\M- <Pw MN\M * *®N\Mt

such that the following diagram is commutative:

The proof is straightforward.

605 LemmEo Let I— (k,...,ld) be a d- tuple of non-negative integers and

f ( t , x) a germ of <§N\M at p = (x0; /-T <?*, dx>) e 7^7. T/i^n fe following
conditions are equivalent

(1) T/^erg exists a germ g(t, x) of^\M at p such that f ( t , x) =t?g(t, x) .
(2) ForanyO<kt<lt-l (Ki^d)

Moreover in this case, g(t, x) is unique.

Proof. By an admissible coordinate system, we may assume that XQ — 0.
Since the proof is similar, we may assume that £*=£0. First, let us prove the

uniqueness. Suppose that g(t, x) ^ ^N\M,P satisfies t?g(t, x} = 0. Then, there
exists a holomorphic function G(r, z) defined on a neighborhood of DQ(e, F0)
such that

at p, where e is a positive constant and T0 is an open cone of Mn such that ?*^
Int To0. Since tlg(t, x) = 0, by Lemma 4.2 (1) we can find a natural number /
and holomorphic functions G/(r, z) defined on a neighborhood of D0(5, F;-) such
that
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where d is a positive constant and each Fj is an open cone of 3RW such that £*$
F/. Set Go (r, £) : r= —?G(t, z). Choose proper convex open subcones F jCF,
(0<j</) such that £*eInt(Fo)° and |**Int(r;)°(l<;<7). Then, by Lemma
4 . 2 ( 2 ) there exist a positive constant 5' and holomorphic functions G;/c(r, z)
defined on a neighborhood of D0(d', F^+Fi) such that

By the Taylor expansion, let us write G}k (r, z) — 2 djk.a (z) ta and set

ri
G,k(r% z)'-= ) a ;fc,a(^)ra" /

Since

/
T'G(T, z) = - Gb(r. 2) = -r'J] Go/t (r. z) -

*=1

holds, we have

G(r, ^) = -^ Go/c(r, z).
k = l

This implies

Since ?* is not contained in (Fo-rTi)0, we have g(t, x) =s$NiM(G(t, x+j — IF0 0))
= 0. This proves the uniqueness.

It is clear that (1) implies (2) . Suppose (2) . By virtue of the uniqueness,
d

we can argue by induction on \l\'-= ZX Thus, we may assume that /= (1, 0,...,
1=1

0) . Let f ( t , x) be represented by a germ F(t, x + •/—I Fo) of !&N\M, where
F(T, z) is holomorphic on a neighborhood of DoU, F) for £>0 and open convex
cone F of Mw with £*^Int F°. Then there exist holomorphic functions G(r, z)
and H(rf, z) defined on a neighborhood of Oo(e, F) such that
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F(T,z)=TlG(T,z)+H(t',z),

where ?''•= (r2,...,rrf). Let us set

h(t', x)'- = spNIM(h(t', x+^ir 0)).

Then since

0 = f5iir(/(t x))=h(t, x) e«&|JW,

we easily see that

The proof is complete.

For a vector 1= (/i,...,/rf) e^, we set [/]+:= ( [ / J+ ..... [fc] +) . where [/,] + =

-, 01. We fix /eR m(v) = (w^,..., mf) and ̂  = (fcj"',..., ^) elV with

and set m= (7n(1) ..... w(/)) and jfe= (^(1),..., FO e (N0
d)7. Set

6.6 Definitlon0 Let P(r, ̂ , 9r, 9Z) = (P(^} (r, z; 9r, 9^)^-1 be a matrix of
size / X / whose components is in ®* defined in a neighborhood of the origin.
Then, P is said to be of Fuchs- Goursat type with weight (k, m) (with respect to
T- variables) if it can be written in a form

, e, 9r, dz) = I*?-* (r, ^ dz) dr
a,

where each P^'^ is a differential operator satisfying the following :

(1) The order ord P%^ of Pf^ is at most m(v)|-|a ;

(2) There exist ^'(^'y) (r, z) and ^^ (r, z\ dz) (0<a<m(v)) such that

Let ?v}= (7ly),..., rS'O (Kv<f) be indeterminates and set

If P is of Fuchs-Goursat type with weight (k, m) , we define the indicial
polynomial of P by

(z; f) : = det( £ P^u) (0,

where /aC^O — n^CTf) with
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f ,
1 («,=()).

Consider the following condition:

(A) . There exist a positive constant C>0 and a neighborhood W of the origin
in €n such that for any z^ W and j

Under the notation above, we can prove the following theorems:

6.7 Theorem. Let P be a matrix of Fuchs-Goursat type of size /x / with

weight (k, m). Let p= (x*;/=T<?*, dx» be a point of T^NMTYL with TN(x*) =0.

Assume that P satisfies (A), Let u(t, x) =*(MI (t, x) ,..., u / ( t , x)) be a germ of

(^N\M) ®J at p. Suppose that u(t, x) satisfies

P(t, x: dT, dx) u(t, x)=Q,

Then it follows that u(t, x) =0 at p.

008 CoroIIary0 Let P be a matrix of Fuchs- Goursat type of size /x / with
weight (k m). Let x* be a point of TNM with TN(X*) =0. Assume that P satisfies

(A) . Let u (t, x) = f (MI ( *, x) ..... u, (f, x) ) be a germ of (%F
N\M) 0f at x*. Suppose that

u ( t , x) satisfies.

P(t, x\ dt, dx)u(t, z)=0,

Then it follows that u(t, x) —Q at x*.

6.9 Theorem. Let U be an open set of Tr^TyL such that each fiber of

is connected and intersects with TrNMtTyLt for any 1 ̂ i^d. Let P be a matrix of
Fuchs- Goursat type of size /X/ with weight (k, m) . Assume that P satisfies (A) and

that a section w(t x) ^F(U] %N\M)®J satisfies

P(t, x\ d t , d x ) u ( t , x)=Q,
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Then it follows that u(t, x) = Q.

6olO Corollary,, Let U be an open set of TxM such that each fiber of TN: U~-»
N is connected and intersects with TuMt for any 1 ̂ i^d. Let P be a matrix of
Fuchs~ Goursat type of size J^XJ with weight (fe m). Assume that P satisfies (A)

and that a section u(tt x) ^F(U; $N\M)®J satisfies

x; 9,, dx)u(t, x)=0,

- (y) £(y) ]

Then it follows that u(f , x) =0.

By Lemma 4.6 we have also the following corollary:

Soil Corollary,, Let P be a matrix of Fuchs-Goursat type of size JX J with

weight (k, m) . Assume that P satisfies (A) and a germ u(t, x) of (%>N\M) ®J at

(0;/—T<£*, dx>] ^ TfiX satisfies

'P(t, x; 9,, 3*) u(f, x)=0,

Then it follows that u(t, x) =0 at (0; </"-T<?

6.12 ]Rentiark0 (1) Since the induced system Jly is not necessarily a
coherent ®j--Module in cases of Theorems 6.7 and 6.9, we must impose
boundary (or rather initial) conditions on each hypersurface Mz, rather than
the boundary conditions on N. This might be regarded as a hyperfunction (or
microfunction) version of the Goursat problem, rather than the higher-
codimensional boundary value problem.

(2) In [Y] , we discussed the solvability of the Goursat problem for a Fuchs-
Goursat type operator in the framework of microfunctions. By Corollary 6.11,
in the differential case we can conclude a uniqueness of each solution in
Theorem 4.2 and Corollary 4.5 of [Y].

Proof of Theorems 6.7 and 6.9. Assume that the conditions of Theorems 6.7

or 6.9 are satisfied. Then we can find a v(t, x) =t (vi(t, x),...,vj(t, x)) e (f%M)e/

such that for any

Indeed, in case of Theorem 6.7, we may apply Lemmas 6.4 and 6.5. Next let us
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consider the case of Theorem 6.9. By Lemma 6.4 and the injectivity of (XN\M, on

the set Un T^NMtTyLt we have

On the other hand, since aJwUvU x)) er(z> ((VF) "1 (C/)) ; ^%M) by virtue of
Lemma 4.6 and the assumption on U, the equalities above hold at each point of
U. Hence applying Lemma 6. 5 at each point of U, we can obtain the desired
result. Define PI by

O ^yn —k
*

Then we see that PI is of Fuchs-Goursat type with weight (w, m) and satisfies
(A). Moreover since P u~ Pi v, the proof of Theorems 6.7 and 6.9 are reduced
to the following proposition:

6.13 Proposition. Let P be a matrix of Fuchs-Goursat type of size /X/ with

weight (m, m). Let p= (0; V~l <?*, dx>) be a point of T$Y. Suppose that P

satisfies (A) and that a J~ tuple u(t, x) ^ (^NIM)^ at p satisfies

P(t, x; 9,, dx) u(t, x)=0.

Then it follows that u(t, x) =0 at p.

To prove Proposition 6.13, we need the following lemma:

6.14 Lemma. Under the same assumption as in Proposition 6.13, the
morphism

is injective on Y.

Proof. It suffices to prove that (p is injective at the origin of X. In general,
for a germ 0 of $x at the origin, write Q in the form

Then we define ordy(Q) and aY(Q) by

and
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(Q) (r, r, 9T, 9,) - 5r,ordF<Q) (0) (rf ar, dT, dz) : =

Moreover, let us denote by ord (5V (Q)) the usual order (with respect to 9r and
dz) of 5V (Q) and by tf/(5V(Q)) the (principal) symbol of 5V (Q) of order / if

ord (5V (Q)) </. Note that ordr(F^)) <0 and

with r9r= (ri9r1,...,^"d9rlf) . We denote by 27 and ^ the dual variables of r and 2

respectively. Hence we have ord (GY.O (P(u'v}) ) <|Wy)| and

)) ) (r, z; rj) =f*;^> (0, z) TmV\

Now assume that a /-tuple (Oi,...,Q/) ̂ 0 satisfies

Let us set

/o: — max lord (

Then we have

/

J ffyjo (Q,) a7i0 (P(^'y)) -0 (1 < v</)
^=1

Thus it follows that

7

^ ff/o fe (&) ) (r. « rj. 0 /*J&W> (0, 2) T"""i?*'w = 0
^ = 1

Let us set

Mz-,ft'. = tet(Fffl}(Q,z)Pm"*)

with P^Cd. Then /0(^; j8) is written in the form JQ C?; j8) =]8*cU) with a
d

holomorphic function c(^) and m:=]C wu). On the other hand, we have
1=1

where jQ-^oo means that each component ft of /? tends to infinity. Thus the
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condition (A) implies, in particular, that c(0) =£0. It follows; that Jo(z't 0) never
vanishes if \z\ is small enough and j8/^(C\{0}. Hence we have GIO(&YJO(QU)) =0
as a function of T, z, J] and £ f°r l^^^/, which is a contradiction. Hence we
have Q0 = 0 for 1<^<J. This completes the proof. D

Proof of Proposition 6.13. Let us set M- = ®*V Image (f) = ®//©/ P. Then
by Lemma 6.14, we have an exact sequence:

•p
0 > Jk/ » j^/ > j| > o.

Hence CYlR$(oYn®x(M, @x) can be represented by the complex:

p.

This complex is exact by virtue of the Cauchy-Kovalevskaja type theorem
(Theorem 1.3 of [Y] which is an extension of Theoreme (l.l) of Madi [M]).
Thus we have

Applying the functor IIN(*}®OTN/Y and taking the w-th cohomology, we have

3(om®x (M, %>N\M) (o v=T^*,d^) =0.

This completes the proof. D

u

6.15 Example. Let us choose /= d and set m(v):= (0,...,0,2,0...,0) and k{^: =
V

(0 ..... 0,1,0,...,0) eN^ (1 <y <d). Consider the following matrix of differential
operators:

P(r, g, 9r, dz) = (P"J) (T, ̂ ; 3r, 9,) )f,,=1

= (r,9rj
23f,-l- (A,; (r, *) +^5,; (r, z; 5.) ) 9,,

where (At} (r, z))1,}=i is an upper triangular matrix, B/; (r, z°, dz) and D/; (r, z, dz)
are differential operators with ord BtJ^l and ord Dl}^2 respectively. Then, P

is of Fuchs-Goursat type with weight ( ( k l l } ..... k(d}) ,(m(l\...,m(d})) and

Hence if each eigenvalue of (AtJ(Q, 0))f J = i is not in {l^7L\ ^<0}, we see that P
satisfies the condition (A) .

Let u(t, x) =*(ui (t, x) ,,.., u<i(tt x)) be a d -tuple of F-mild hyperfunctions
(or F-mild microfunctions) . Suppose that u (t, x) satisfies P u (t, x) =0 and
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Then it follows that u (t, x) =0.
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