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Higher-Codimensional Boundary Value
Problems and F-Mild Microfunctions
—Local and Microlocal Uniqueness—

By
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Abstract

For the study of local and microlocal boundary value problems with a boundary of codimension
greater than one, sheaves of F-mild hyperfunctions and F-mild microfunctions are introduced. They
are refinements of the notions of hyperfunctions and microfunctions with real analytic parameters
and have natural boundary values. F-mild solutions of a general £-Module ./ (that is, a system of
linear partial differential equations with analytic coefficients) are considered. In particular, local
and microlocal uniqueness in the boundary value problem (the Holmgren type theorem) is proved if
the boundary is non-characteristic for J{. or else if 4 is Fuchsian along the boundary.

Introduction

The purpose of this paper is to study the higher-codimensional boundary
value problem for a general system of linear partial differential equations with
analytic coefficients. In general, we must impose some regularity condition on
the solutions in order to define their boundary values. We introduce the notion
of F-mild hyperfunctions as this regularity condition, which is a refinement of
that of hyperfunctions with real analytic parameters. We also define the notion
of F-mild microfunctions as a microlocalization of that of F-mildness. Our main
result is the local and microlocal uniqueness of F-mild hyperfunction (or
microfunction) solutions of a system of linear partial differential equations
which is Fuchsian along Y in the sense of Y. Laurent and T. Monteiro
Fernandes [L-MF] or in the sense of N. S. Madi [M] and S. Yamazaki [Y].
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Let M be a real analytic manifold and N a closed real analytic submanifold
of M of codimension d= 2. Then the sheaf B%u of F-mild hyperfunctions is

defined on the normal bundle TvM of N (strictly speaking, the sheaf B%m
depends on a partial complexification L of M). Let us take a local coordinate
system (t, x) = (h,..., ts, Z1,..., Zn) 0f M such that N is defined by t=0. Assume
that f is a section of By (that is, an F-mild hyperfunction) defined on a
neighborhood of 0+d/0t € TyM. Then fis actually regarded as a hyperfunction
defined on a wedge domain

{(t, x) ER*XR" |1 <e, | <e, |t <et (2<5<d)}

with edge N for some €>0. In addition, for any non-negative integers a,...Qu,
0fr -+ 024 f(t, x) has a natural boundary value as ¢ tends to zero as a
hyperfunction of x.

The restriction of Bim to the zero-section of TyM coincides with the sheaf
of hyperfunctions defined on a neighborhood of N which have ¢ as real analytic
parameters. Moreover, a section of BRx which is defined on TwM with the zero-
section removed has also t as real analytic parameters on a neighborhood of N.

Hence we may regard B as a tangential decomposition of the sheaf of
hyperfunctions which have t as real analytic parameters.

We take complexifications X and Y of M and N respectively such that Y is
a closed submanifold of X. We denote by @x the sheaf on X of rings of linear
partial differential operators (of finite order) with holomorphic coefficients.

Let Ml be a coherent left Px-Module; that is, a system of linear partial
differential equations with holomorphic coefficients (in this paper, we shall
write Module with a capital letter, instead of sheaf of modules).

First, let us assume that Y is non-characteristic for (. Then we prove that
any hyperfunction solution to J which is defined on a wedge domain with edge
N is F-mild, thus having boundary values with no further assumption. This
case was studied by P. Schapira ([Sc 1], [Sc2]) by using the theory of micro-
localization of sheaves. The local uniqueness in this boundary value problem
was proved in T. Oaku [0O4]. K. Takeuchi [Tk] formulated microlocal bound-
ary value problem by using the theory of second microlocalization and proved
the microlocal uniqueness in the non-characteristic case. Here we give another
proof to the microlocal uniqueness by a natural extension of the method used in
Oaku [04].

Next, suppose that 4 is Fuchsian along Y in the sense of Laurent and
Monteiro Fernandes [L-MF]. In this case, not all the hyperfunction solutions to
M are necessarily F-mild, but we can obtain the local and microlocal
uniqueness for F-mild solutions. More precisely, we obtain a monomorphism
(an injective sheaf homomorphism)
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Hooma, (M, Biin) =15 H omg, (My, By),

where 7y: TwM— N is the canonical projection, By is the sheaf of hyper-
functions on N, and ALy is the induced system (that is, the @-Module theoretic
restriction) of / to Y, which is a coherent Py-Module. We can also obtain the
microlocalization of this morphism, which is also injective.

Finally assume that / is a Fuchs-Goursat system in the sense of Yamazaki
[Y], which is a generalization of a Fuchs-Goursat operator due to Madi [M]. In
this case, since y is not coherent over Py in general, we consider a kind of
Goursat problem: Set M; = {(t, x) ER?¢XR* t,=0} by using a local coordinate
system as mentioned above. For an F-mild hyperfunction, we can define its
restriction to M, for 1<i<d, which can be regarded as Goursat data. Thus we
prove the local and microlocal uniqueness of the F-mild solution to 4 whose
Goursat data are zero. Note that Yamazaki [Y] proved the (micro-)local
solvability of this Goursat problem for microfunctions with real analytic
parameters under a kind of (micro-)hyperbolicity condition.

We should remark the following: The higher-codimensional boundary value
problem for hyperfunctions was initiated by M. Kashiwara and T. Kawai [K-K]
for elliptic systems of differential equations from the microlocal point of view.
After that, M. Kashiwara and T. Oshima ([K-Os]. [Os]) defined the boundary
values of an arbitrary hyperfunction solution of 4 which is defined in { (% x) €
R X R” t,>0(1<i<d)} under a condition stronger than that of Fuchsian
system in the sense of Laurent-Monteiro Fernandes [L-MF].

In Section 1, we assume the existence of a partial complexification L of M
and introduce several sheaves attached to the boundary, which are higher-
codimension] analogues of those defined in Oaku [O 3].

Section 2 is devoted to concrete expressions of these sheaves.

In Section 3, also assuming the existence of L, we introduce the sheaf of
F-mild hyperfunctions. One of the main results in this section is the edge of the
wedge theorem, which gives a criterion for an F-mild hyperfunction to become
zero in terms of its expression as a sum of boundary values of holomorphic
functions. Note that the results of Section 3 were essentially stated in Oaku
[O4]. The main difference is that we use the notion of normal deformation (cf.
Kashiwara-Schapira [K-S2]) here instead of the real monoidal transform
adopted in Oaku [0 4].

In Section 4, we microlocalize the notion of F-mildness. In particular, we
prove that the sheaf of microfunctions with real analytic parameters can be
embedded to the sheaf of F-mild microfunctions. We also give a concrete
characterization of the singularity spectrum of an F-mild hyperfunction by
using holomorphic functions which define it.

Section 5 is concerned with the non-characteristic boundary value problem.
We prove that all the hyperfunction solutions defined on a wedge domain with
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edge N are F-mild.

In Section 6, we consider the higher-codimensional boundary value problem
for a system which is Fuchsian along Y in the sense of Laurent-Monteiro
Fernandes [L-MF], and the Goursat problem for a Fuchs-Goursat system in
the sense of Madi [M] and Yamazaki [Y]. Main results are the local and
microlocal uniqueness of F-mild solutions of both problems.

§1. Several Sheaves Attached to the Boundary

In this section, we introduce several sheaves attached to the higher-
codimensional boundary as a natural extension of the one-codimensional case in
Oaku [0 3].

We denote the sets of integers, real numbers and complex numbers by Z, R
and C respectively as usual. Further, we set N:= {n €7Z; n=> 1} and Np=
NU {0}.

Let M be a (d + w)-dimensional real analytic manifold and N a #-
dimensional closed real analytic submanifold of M. In this paper, we always
assume that d2 2. There exist complexifications X and Y of M and N
respectively such that Y is a closed submanifold of X. We assume that there
exists a (d+2u) -dimensional real analytic submanifold L of X containing both
M and Y such that the triplet (N, M, L) is locally isomorphic to the triplet
({0} xR*, R4+ R4 X C"™) by a local coordinate system (r, z) of X around each
point of N. We say such a local coordinate system admissible We use the
notation 7=t+,/=1s(t sERY), z=x+y/—1y(z, y€R”) . lzl=max{z]; 1<k
<} and so on for an admissible local coordinate system (7, z). Hence by an
admissible local coordinate system the following inclusion relations are
obtained:

Ol x RI e Y=RE xR

[ TS

of xcr o [ =RInCr & x —¢? « 2,

We shall mainly follow the notation of Kashiwara-Schapira [K-S 2]; we denote
the normal deformations of Nand Y in M and L by My and Ly respectively. For
example, by an admissible coordinate system, we see that ]\7IN= {((r, t, x); rER,
(rt D EM, Qu=MyN{(r, t, 2): >0}, T\M=MyN {(r, t, ); =0} and p: My
3 t. )= (r t x) €M Then, we can regard ]\7IN as a submanifold of Ly.
Therefore we have the following commutative diagram:
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Moreover, we have the following:

ToM —2 M, <> g, 2y

i O 7 [m]

1
0

L%l g 2oy,
where we mean by [] the square is Cartesian. We denote by €y and By the

sheaf of microfunctions on TyX and that of hyperfunctions on M respectively as
usual. Further we denote by 0. and B0, the sheal of microfunctions with

holomorphic parameters on TFX and the sheaf of hwperfunctions with holomorphic
parameters on L respectively. In particular

BOL=#H4(Ox) Qorx=RI(0Ox) Qorxld],

where Ox is the sheaf of holomorphic fumctions on X and orx is the relative
orientation sheaf with respect to iz: L= X

1.1 Lemma. For any non-zero integer k, the following equalities hold:
R*(ju)x P' BOL=0,
R* () s D> Bue=0.

Proof. We may assume that X=C¢ X C%, L=R¢ X C? and Y=1{0} XxC% By
an argument similar to the proof of Theorem 4.2.3 of Kashiwara-Schapira [K-S

2], for any €Ly we have
(R* (ji)x PL'BOL) »=limH* (B (WN 2p); BOL),
w
where W ranges through a fundamental neighborhood system of z* in L y. We

may assume that 5y (WN 2;1) is the product of an open set of IR* and a Stein
open set of €. Thus we can see that
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H (B (WN 2y): BOL) =0
by the well-known property of %0,. Hence the first equality is proved. The
proof of the second equality is similar. O

1.2 Definition. We set:

BOyii= (o)« p1* BOL=R(j)« Pr" BO.,
BOy=si"' BOy.=vy(BOL),
where vy denotes the specialization functor along Y. Thus B0y, and BOy are

sheaves on Ly and TyL respectively.

Note that by the definition, B0y,. and B0y are conic sheaves.

1.3 Proposition. Suppose that X=C**" L=R*X C", M=R**" qnd Y=1{0}

X C". Identify Ly with R, X R¢ X C% Then:
(1) Suppose that open sets V of U of R and R? satisfy the following:
The mapping Vso X UD (v, ) »nt€ER? has connected fibers, whereVso:={r€V; >
0}.
Then for any Stein open set 82 of C* and k=0, it follows that

HH(VXUXQ: BOy) =0.

(2) Set 7- Ly—Ly/Rso, where Roo:={cER; ¢>0}. Then the flabby dimension of

Y« BOv,1 is equal to n.
(3) For any proper convex closed cone G of R” and k¥ n,

%§d+lx (R"+4—=TG) (%0Y,L) m"-hﬁ»l:O'

1.4 Corollary. The complex pir, (BOvyr) is concentrated in degree n, where
Uii, denotes the microlocalization functor along MN.
Proof of Proposition 1.3. (1) Set VsoU:={nt€ERY +&E Vs, t€ U}. Then by the
definition, we have
H (VX UXQ:; BOy,) =H (VoUX 2; BO,) .

Thus the proof of (1) is reduced to the corresponding property of B0;.
(2) follows from the following fact: (i) the flabby dimension of B0; is equal

to n, (ii) if F is a flabby sheaf on L, then (jr)x Pz'F is a conically flabby sheaf

on Ly.
(3) By (2) we have for k>n

%]’&d-rl x (R"+4=TG) (%@Y,L)

In order to prove (3) for the case where £<u, we use the following abstract

Rr+d+1 = O
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edge of the wedge theorem due to Kashiwara-Laurent [K-L]:

1.5 Lemma (Théoreme 1.4.1 of [K-L]). Let T be a topological space.
Suppose that there exists a contravarient functor which associates with each complex
manifold W a sheaf Fw on TX W such that.

(HO) Fwis a p~ O Module, wheve p. TX W— W denotes the first projection.
(H1) If V is an open subset of T and U C U are open subsets of W such that U
is conmected and U is not empty, then it follows that

er (AL (VX U: gw) =0,

(H2) Let f W—C be a holomorphic function with df 0 on W and set Z:=
FHO). Let @ Z— W be the canonical imbedding. Then there exists an exact
sequence:

o

fe
0 gw gw 1,*?2—_’0

(H3) Let W and Z be complex manifolds with Z compact. Let f be the canonical
projection of TX WX Z to TX W. Then for any integer k the following holds:

ka* 9sz’:9—w%Hk (z Oz).

In addition to these conditions, suppose lhat G is a closed convex set of C"
containing z, and that theve does not exist C-linear subvariety I' of C* of dimension
n—q+1 containing z, such that I'N G is a neighborhood of z in I'. Then for any t€
T and k<gq the following holds:

%,%xG (g@) 0,0 =0.

End of proof of Proposition 1.3. Let us identify the normal deformation of W
in R? X W with R?*! X W for any complex manifold W. Let jw be a natural
inclusion Rso X RY X W—R4*1 X W and Py a mapping Rso X R X WS (7, t, w) —
(rt, w) ER?X W. Let us set

«?W: = (]W)* ‘E—V-Vl %0IR" PR

Then it is easy to see that W%y defines a contravariant functor. Hence it

suffices to verify (HO)-(H 3) of Lemma 1.5 for this Fw with T=R*!. (HO0) is
trivial. (H 1) follows from the unique continuation property of sections of B0
with respect to holomorphic parameters. Let Z be as in (H2). Then we have the
following commutative diagram:

R4+ xZ@Z:[R)O dexZ.ﬂZ_.)]Rde';z,(cdxz
i m] i a i m] i

Ré! x W Ryo x RY x W2 R x W, ¢4 x w,
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Hence by applying the functor R (jw)x p#*iw (%) [d] to the distinguished triangle

fe i* +1
Ocix w—0c:x w——RixOc:x ;—,

we have

fe * +1
Fw——Fw——R (jw)x F#tiw Rix Ocex z[d]—.

Then, it follows that
R (jw)x p# iw Rix Ocexz[d]
=R (w)x p#'iw Rix iz Ocex 2[d] =R (jw)s P Bis BOmexz[—1]
=R (jw)x Bix bz BOR z[—1] =Ri %R (jz)% 7' BOrx 2
:R:;k F 2.
Hence we have

fe o
0 F]W gw i'*”fz—-—>0.

Therefore (H2) is verified. Lastly let us verify (H3). Let W and Z be as in
(H 3). Then, it is well-known that

R« Oce~wx 2= Ocex vQRI(Z: O).
C

Thus by the same argument as in (H 2) we have

Rfsx Fwxz=FwQRI(Z, 0,).
c

Thus (H3) is verified. Since R”+.,/—1 G does not contain non-zero C-linear
subspace, (2) follows from Lemma 1.5. The proof is complete. O

By Corollary 1.4, we can define several sheaves as follows:

1.6 Definition. We set:
Cnar=H" (in, (BOy..) orus) = ttin,(BOy.L) Qorus[n],
By = gN,MIMuz ’I%IN (BOy.L) Qorun =Ry, (BOv.) Qorurinl,
Ay =#"(vig, (BOy.L)).

Thus €x.u, By and & vy are sheaves on 7°5ny, My and TiLy respectively.
Note that by Proposition 1.3 (2), By.x is conically flabby.

1.7 Proposition. Suppose that X=C*" =R X C" M=R*" gnd Y=
{0} X C*. Identity TyL with R X C". Then:
(1) For any proper convex open cone U of R®, Stein open set 2 of C" and k#0,
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Hk (UX .Q; %@yu,) =0.

(2) Set 71 TyL— TyL/Rso=7Y |ISyL. Then the flabby dimension of 7+BO0y L is
equal to n.
(3) For any proper convex closed cone G of R* and k¥ n,

Hhx wr+v=T0) (%@YJL) r=0.

This proposition can be proved by the same method as in Proposition 1.3.
Note that in the proof of (1), we use Siu’s theorem (cf.[03]).

1.8 Corollary. The complex tiryu (BOyL) is concentrated in degree n.

Therefore, by the same manner as in Definition 1.6, we define several
sheaves as follows:

1.9 Definition. We set:

gNIM: = (ﬂ TNM (93@}’11.) ®07’N/Y) =Urym (930Y[L) ®01’N/Y [ﬂ] )
By = (gNIMI run =K% (BOy 1) Qorny =R 1, (BOy 1) Bory,y (n],
~327N|M: =4° (VTNM (BOyL)).

Thus gN,M, @NW and ﬂNW are sheaves on T#,wmTyL. TvM and TrymTyL respec-
tively.
Note that by Proposition 1.7 (2), 9§N|M is conically flabby.

Now, let us consider the following canonical mappings (cf.[K-S 2]):

TE Ly —— TwMX T Ly — TémTyL.
Ser iy st
1.10 Definition. We set:

Cape=(s'L): sTBnm =R ('s'L): szt G m,

By = @MM\ oM =S B

Thus Gwu and By are sheaves on ’I}kNMTyL and TyM respectively.

1.11 Proposition. There exist sheaf isomorphisms:

) Pt Bu=Bw.m,
vy (Bu) = Bwim.

Proof. By Lemma 1.1 and Corollary 1.4 we have

(s Pot* Bu=R (o) s P Bu=R (jg) s« P ine OxQ 0m/x [n+d)
=R (ju)x Pin iz OxQoru/x[ntd—1]
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=R (ju)x i Pl iz OxQomnx[d] ®07’§}1®01’M/x [n—1]
=()'R ()% Z!:ﬁfli!r. Ox®o0r1/x [d] ® oras [n)
=()'R ()% PL'BOLQorm/1[n] = (") BOy..Q0rus (1]

=By um.

Thus we have the first isomorphism. Applying the functor si' to this
isomorphism we obtain the second one. Thus the proposition is proved. ]

§2. Concrete Expressions

In this section, we give the concrete expressions of the sheaves defined in
Section 1.
We denote the canonical projections by:

e Tt Ly =My, T Trou Tyl — TwM,
TN,M- T]{s;,, ZY —’}ZN, TN M- TT*NMTyL — T M.

Moreover, 7iyu denotes the restriction of 7y to T;;NZY:: Tﬂi;NZy\ T}},,MN-

Similarly 7wu denotes the restriction of 7wy to ’f"FNMTyLI= ’I"T"NMTyL\

T’#NMTNM. Hence in the notation above, by the same arguments as in the theory
of usual microfunctions (see for example Sato-Kawai-Kashiwara [S-K-K]) we
can show that there exist monomorphisms (boundary value morphisms):

b Dvw T w B,
by A = Tivie B,
and epimorphism (spectral morphisms)

SPwa: v Bt = Cnom,

S Tie B = Cnur-
Note that boundary value morphisms are induced by the canonical morphisms id
— Tiu R(tym) and id — iy R(tyy): respectively. Similarly the canonical

morphisms  7xYy B(myu)x — id and 7xpy B(mrvm)s« — id  induce spectral
morphisms. Moreover, let us consider the following commutative diagram:

%5 ~ TNIM
WM *x T*L, ——T* T,L TwM © ; T,
N %, &, Y tSi TymtY N i yL
Sar ] Sy
Jéq\
T*L M, < S
My ¥ T NM N i ¥

Then we easily see that (“s’L)r sTa7n'n = Zijn Saf- Hence Spw.y induces a spectral
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morphism

s Tl B —>Ewiur.

2.1 Proposition. (1) In My there exists an exact sequence
0 ""%@Y,LIMN =By — (7w % Enar—0.
(2) In TwM there exist exact sequences
0 —BO yiilrym — B — (twip) x Envime —0,
0—3B0 Y]L[TNM_’ '%MM - (ﬁNlM)* Evm —0.
Proof By Sato’s fundamental distinguished triangle, we have (1). Further

applying the functor sy, we have an exact sequence
0— %@Y|L|TNM — By st (7tw.m) % w0,

and a canonical morphism

sit (Ten,a0) % Bnoe — (Fewar) « G

It is easy to see that this morphism is an isomorphism. Hence we have the first
exact sequence of (2). The second one is also obtained by Sato's fundamental
distinguished triangle. O

In general, let 2 E—Z be a vector bundle and 7: E* — Z its dual vector
bundle. If A is a subset of E, the polar set A° is defined by

Ax={E€E* (&) €c(4), (n.E) =0 for any n€7(x(€)) NA}.

Further, we set A ={£€E* —£€4°}.

2.2 Proposition. Let U be an open convex subset of TiLy with connected
fiber, V the convex hull of U.

(1) If ¢ is a section of Axm on U, then supp (spwva (byva (@) € U™
Conversely, if a section f of By on Twy (U) satisfies supp (spyy (f)) C U, then
there exists a umique section @ of 4 nar on U such that by (@) =f

(2) The natural restriction I'(V: dyy) =T (U: dyny) is an isomorphism.

Proof. Set
Pr={(/=Inv/—18) € Tin,Ly X T§,Ly; </—1n, V=18 =—<n. & >0}
My
and denote by pi the k-th projection on P*(k=1. 2). Then, by Corollary A.2 of
M. Uchida [U] (cf. [S-K-K]), we have an exact sequence:
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~ by.y
0—Ayu——T5uBrnit— &7)x 03) ' Gym.

We remark that U= V"%, Since p;’lq,;)-l(m is a continuous open mapping with
connected fiber, it follows that

T(UApH)s (p3) 7 Guan) =T{(pE) 7 (0); (08) 7 Bwvan) =T (53 ((pF) 7 (U)): Gwvn)
'—'—'F(Tff,,fy\ U Gum) =1 ﬁNZY\ V% G
=I(V:(t1)« (p3) 7 G -

For the same reason, we have the following commutative diagram:

0 — I'(v; &EN,M) ﬂ F(’[N,M(V);%N,M) - F(T,;,”:,Zy\V"“; Enm)
i l} ll

~ b -~
0 — F(UJ E{N,M) ﬂ" F(TN,M(U); 93N,M> - f(Tﬁi,Ly\U““; (gN,M)y

here all the rows are exact. Hence we can easily prove the proposition. ]

2.3 Propesition. Let U be an open convex subset of TryuTyL with comnected
fiber, V the convex hull of U.

(1) If ¢ is a section of Ay on U, then supp (siyw (b (@))) C U=
Conversely, if a section f of 3 ~m on Ty (U) satisfies supp (spvu () © U%, then
there exists a unique section ¢ of JMM on U such that by (@) =f.

(2) The natural vestriction I'( V-l yu)) =T (U: dyug) is an isomorphism.

The proof is same to that of Proposition 2.2,

Now suppose that X=C¢xX C?, L=R¢X C?% Y={0} X C% M=R¢XR% and N
= {0} X R% Let us identify My and Ly with R, X R¢ X R% and R, X R¢ X C*
respectively. Then we identify the normal deformation of My in Ly with R9*2 X

R*x ,/—1R" Let U be an open subset of My. Therefore by the same arguments
as in the theory of hyperfunctions we can represent any section f(¢ x) of Byu
on U as

J
AL 2 =Z F,(t 24+/=1T; 0)
=1

for some natural number J. Here I', are open cones of R” and F,(t, z) are
sections of @y on U+ —1I,. Moreover, the following holds:

2.4 Lemma. Let f be a germ of Bym at € My. Then (x*/—16%) €
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TE Ly is not contained in supp (spyw (f)) if and only if there exist sections F, (t, 2)
of Ay on Uty —1T, such that U is a neighborhood of x* and T'; is an open cone
of R* with E* &S and that

J
(L, 7) =Z F,(t, z+y=1T, 0).
7=1

Let U be an open set of My such that all the fibers of the mapping pu:
UN Qy— M are connected and that By (UU Q) is bounded. Then we see that
for any open convex cone ' CIR”

I(U+V=1T; dy) =himI(W; B0.),
o

where W ranges through the family of open subsets of Zy such that Cp, (Ly\W)
N (U+/=1T) = @ . Here for any subset S of Ly, Ci, (S) denotes the normal

cone of S along My. Thus we can assume that such a W satisfies the following:
all the fibers of the mapping pr: WN £2:—L are connected and 5 (WN £2;) is
bounded. Then it follows that for any open cone I' of R”

T(U+Y=1IT; dyu) =timI" (5 (WN 21); BOL) .
I

Therefore any section of ﬂN,M on U=+ —1T can be represented by a section of
BO. on 5 (WN Q) for some W. Hence we can obtain the following proposition
in the same way as Proposition 1.10 of Oaku [O 3]:

2.5 Proposition. Under the preceding notation, the following holds:
(1) Assume that f(t, x) is a section of By on U and that supp (spyu () is
J
contained in the interior of U+ /=1 (UT). Then there exist sections Fj(t, z) of

j=1
Ay on U+ —1T, such that

J
£t 2) =Y, F (1 z+/=1T;0).

1=1

(2) Assume that sections F,(t, z) of Ay on U+ —1T(1<4<)) satisfy

J
Z Fy(t, x+/—1T; 0) =0
j=1

as a section of By on U. Then for any subcone I' ;ET,, there exist sections Fj of
Ayy on U+y—1 [ }+T}) such that
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J
F=) Fua FutFy=0 (1< k<.
k=1

Similarly we can identify the normal deformation of TwM in TyL with R4*!
XR” X ,/—1IR" Let U be an open subset of TyM. Then, we can represent any

section f(t, x) of Bwwm on U as

J
1(t, %) =Z F,(t, x+4—1T,0)

for some natural number J. Here I'; are open cones of R” and Fj (¢, z) are
sections of .SZMM on U+ —1T,. Moreover, the following holds:

2.6 Lemma. Let f be a germ of By at 25 € TwM. Then (2*/—1 &%) €
TFuTyL is not contained in supp (Spwvu (f)) if and only if there exists sections
Fi(t, 2) of A on U+y—1T, such that U is a neighborhood of x* and T is an
open cone of R™ with E*&ET,° and that

7t )= ), F (1 z+J/=1T,0),

1=1

2.7 Proposition. Let U be an open convex set of TvM such that tv (U) is
bounded. Then the following holds:

(1) Assume that a section f(t, z) of B on U satisfies that supp (spau () is

J
contained in the interior of U+ —1 (UT}°). Then there exists sections F,(t, z) on
Awm on U+ —1T; such that =

J
£t x) =Z Fi(t, x+/—1T;0).
j=1

(2) Assume that sections F;(t, 2) of Ay on U+ —1T,(1<5<)) satisfy

ZF,(L‘, z+/=1T, 0) =0

j=1

as a section of B mu on U. Then for any subcone ' j € I';, there exists sections

Fix(t, 2) of dyw on U+y/—1 (C}+T4) such that
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J
F,-=ZF,,,, Fj+Fi;=0 1<y, k<]
k=1

By the following theorem, we regard €y as a subsheaf of gNW:

2.8 Theorem. There exist natural monomorphisms:
Ay {gN|M>“’(gN|M,
v By —Bim.
such that the following diagram is commutative.

1 SPNIM
TIN|M 93N|M _— €N|M

l Fnm l Xy
SPyv v

TN M -@NIM > gNlM-
Proof. We have
Enu=R ('sy) ssis (iz, (BOv.1) Qorus [n])

L L
UM % B0 y,L> ® 0N/ Y®wﬂl/L®w%;I}ﬂN [Vi]
= prun (BOvir) Qornsy 1]

=Cniu,

397

where wy,y denotes the relative dualiting complex. Hence we have the first
morphism. Applying the functor (7ypa)s we have the second morphism. The
proof of the commutativity is straightforward. The proof of the injectivity is

similar to that of Theorems 1.1 and 1.2 of Oaku [O 3].

§3. F-Mild Hyperfunctions

O

We shall define the sheaf of F-mild hyperfunctions for the higher-
codimensional boundary case. Note that the results of this section are
essentially contained in Oaku [O 4]. However in [O4] we worked not on the
normal bundle but on the sphere bundle. Thus for the convenience of the reader,

we give the detailed proofs in this section.
We inherit the notation of the preceding section.
Let us set

D(V,e.I):={(t, 2) ER!XC"(t, Re 2) €V, |Im 2/ <e, Im zET}

for a subset V of M, a constant €20 and a cone I' of IR”.

In general, we mean by Cl and Int the closure and the interior of a set
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respectively.

3.1 Definition. Let £* be a point of TyM and (7, z) an admissible local
coordinate system of X around #:= zy{(x™) such that z(Z) =0. Then a germ
u(t, x) of Bwm at x* is said to be F-mild (with respect to a partial
complexification L) at x* if there exist a natural number J and holomorphic
functions Fj (7, ) (1<j<J) defined on a neighborhood of D (py (U'N Cl&y). e,
I';) in X such that

ult, x) =Z Fi(t x+4/—1T,0)

=1

as a hyperfunction on By (UN Q). Here U is an open neighborhood of z* in My
such that the all the fibers of the mapping Py: UN 2y — M are connected, € is a

positive constant and I',...I'; are open convex cones in R™. We denote by Bix
the sheaf of sections of Bwn which are F-mild at each point of their defining

domains. Sections of Biy are called F-mild hyperfunctions.

3.2 Example. Let u(s, x) be an F-mild hyperfunction at the origin of Rs

X R% from the positive side {(s, x) ERY" s>0} (see [0 1] for an example of
F-mild hyperfunction which is not mild in the sense of ([Kt1]). Then,

d
u(# —2t2 x) is an F-mild hyperfunction on a neighborhood of
j=2

{0+ {t, %> € Tv M, tﬁ—i t,2>0}
j=2

in TwvM with M=R¢XR% and N={0} X RZ

We denote the natural inclusion BYu>—Bmu by Bfim.

Let us denote by B the sheaf of hyperfunctions which have t as real analytic
parameters on M. Moreover, set

B =Bl n.
3.3 Lemma. (1) The following equality holds:
%f\/lM]N=%1AﬂM.
(2) There exists a natural monomorphism
aNiM: ! %ﬁwp‘—’%%w.

In particular, any germ of Binm is F-mild on a whole fiber of Tn.
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Proof. The proof of (1) is obvious by Definition 3.1. Similarly we have a

natural morphism @y 75* Biw— B The injectivity of an follows from the
Holmgren uniqueness theorem for hyperfunctions. O

3.4 Proposition. Let x* be a point of TyM. Then F-mildness (with respect
to L) at x* of a section of Buu does not depend on an admissible local coovdinate
system (T, z) of X taken in Definition 3.1.

Proof. Let (z, 2) and (¢, ) be two admissible local coordinate systems of
X around x* such that £*=0+08/07,=0+40/07]. Since Im z=Im Z=0 on L, as
a mapping of (7', Z).  depends only on 7’. This proves the proposition. O

On the other hand, since TyM is a one-codimensional boundary of Cl&y,
there exists the sheaf BFymciay of F-mild hyperfunctions for a ome-codimensional
boundary defined by Oaku [O 1]. For simplicity we denote B%ymcie, by B5. Then
by the definition B is a subsheaf of Bryuicioy.

Let X?/be the complex normal deformation of Y in X (cf. the proof of
Proposition 10.3.19 of [K-S2]). If (z, 2) is an admissible local coordinate

system, then we see that X§=1{(po. 7, 2): pEC, (o, z) €X}. Note that X§ is a
complexification of MN and fy is regarded as a submanifold of 5(:?/

3.5 Lemma. There exists a natural monomorphism.

Pir: By —Brymicioy.

Proof. Since pu is a smooth mapping, we have a substitution morphism
P Pl By —Bo,
such that
supp (Fiuw) =5 (supp (w)) ={(r, t, x) €EQu; (1, x) Esupp (w)}.

Thus, we see that 5 is injective. Therefore applying the functor sy’ (ju)s we
have

Pz By — st o) s Bay = si* (ar) + §i1* Bite= Brymicioy-
We prove this morphism is injective. For any x*€ TyM, we have

Pu
(By) > =lmI(WN Qu; FstBr) —— UmI(WN Qur; Biz,)
W W

= (%TNMICIQM) z*,

where W ranges through a neighborhood system of z* in My. Hence the
injectivity is obvious. ]
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Let us set

DV, 0, 1) ={( 1,2 ERXC!XC%(#,Re 7,Re 2) €V, [Im 4<5. (Im 7, Im 2) €T}
for a subset V of My, a positive constant 6 and cone I' of R%**, where we
identify My with R, X IR¢ X IR% by an admissible coordinate system.

3.6 Lemma. The monomorphism Bii: By — Brumciy nduces a mono-
morphism

53{7: M)"%{.

Proof. We have only to prove that i BN is contained in Bf. Let x* be a
point of TwM and (7, z) an admissible local coordinate system around 7y (x™)
such that 7v (x*) =0 in this coordinate system. Since the proof is similar. we

consider only the case where x* is a point of TyM. We may assume that x*=

+0/04. Let F(t, x+4/—1T 0) be a germ of By at 2™ with an open cone I' of
IR”. Then we may assume that F(z, z) is a holomorphic function defined on a

neighborhood of D{py (UNC12y). &, ') with a neighborhood U of x* in My and
a positive constant £. Let us set

G(p, 7, 2):=F(pot, 2).

Then the boundary value of G represents p F (¢, x++/—1T0). Set 7= (z3,....
7s) and so on. Then G(p, 7, 2) is holomorphic on a neighborhood of

{(r, 1, 2) ERXRIX C 0<r<3, |¢|<d |8, |4<8, Im z€I
with a constant 0> 0. Hence by applying the local version of Bochner's tube
theorem to G(# 7, z), we can see that G(p. 7, 2) is holomorphic on a neigh-
borhood of D(VNCl2y, 6;, I') with an open neighborhood V of (0, z*) in My, a
constant §;> 0 and an open cone I' of R**” containing {0} X I' with 0 € R?.
Therefore it follows that the boundary value of G reprcsents a germ of B at

z*. O

By this lemma, we regard ®B%u as a subsheaf of %f.
Let us denote by C€* the multiplicative group €\{0}. Then we recall that

C* acts on )~(§ By using an admissible coordinate system, we can describe this
action by

C*XX$3 (¢ (p, 7, 2) H(‘Q cT, z)E)??z.

¢’

Let us denote by 9 the infinitesimal generator of this action. Thus by an
admissible coordinate system, we have
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. O 0
9=Lz, 6z'> %50 -

3.7 Lemma. Let W be a connected open set of Ly such that WN ClQ,# 0
and all the fibers of the mapping pr. W— L are comnected. Let G(p, T, z) be a

holomorphic function defined on a neighborhood of WNClQy in X§.
(1) Suppose G satisfies

9G(p, 7, 2) =0.

Then G is extended to a holomorphic function on a neighborhood of W:=p1 (p (W
N2y).

(2) Assume moreover that G can be extended analvtically to a meighborhood of
TyY N CIW. Then there exists a holomorphic a function F(T, z) defined on a
neighborhood of pr (WNCLRL) in € such that G(o. T, 2) =F(poT, 2).

Proof. Since G(# t, z) is constant along each fiber of py; WN 2, — L, it is
easy to see that there exists a holomorphic function F(7, z) on a neighborhood

of p(WN Q) =p. (WN Q) such that Glp, 7. 2) = F(p7, 2) holds. Hence (1) is
proved. To prove (2), we have only to show that F(z, z) can be continued
analytically to a neighborhood of each point of p (W) N Y. Let z¥ be an
arbitrary point of WN TyL. We may assume z* = z + 0/0# with z € C". Set
7= (1y,..., T»). Then G can be developed into a power series of the form

Glo. 7, 2) =i Z ae (71, 2) 0 (7))

=0 o ENg
on the set
{(o, 7, 2 €ECXC*XC™ lpl<d, |1n—1|<0, |T|<0, lz2— 2/ <3}
with some §>0. Since 9G=0, ao (71, 2) satisfies
tar (71, 2) =787 4 (1, 2).

Hence we have

Glo, 7, 2) =Z Z e (1, 2) 0P TN () &

y=0 ¢ ENy!
2\
=z Z ava (1, 2) (071" (7) .
y=0 a €Ng!

which is holomorphic on
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{(0, 7, 2 ECXTEX T o] <0, 17| < dl7al, | 2— 20 <87

By the assumption, G is holomorphic on a neighborhood of (g, 7, 2) = (0, 0, z).
Hence we have aye (1, 2) =0 for v<|a'|. Hence we conclude that

F(z, z)1=G<r1, 1, % z)= Z Zmar(l,z)rl“"“" ()«
1 o ENg-! v=la|

is holomorphic on a neighborhood of (z, z2) = (0, z). This completes the proof. []

3.8 Theorem (the Edge of the Wedge Theorem for F-Mild Hyper-
functions). Let £ be a point of TwM and (7, 2) an admissible local coordinate
system around tv (x*) such that tn(x™®) =0 in this system. Let € be a positive

constant, U an open neighborhood x* in My, and T, (1 <j<)) open convex comes of
R”™ Let Fy (z, 2) be holomorphic functions defined on a neighborhood of D(py (UN
Cl2u), e, Tj) such that

J
Y £ 2+ /=110 =0
=1

holds as a hyperfunction on By (UN Qy). Then for any open convex comnes I'; such

that T}ET;, there exist a positive constant 8, an open neighborhood V of z* in My,
and holomorphic functions Fj (T, 2) defined on ¢ neighborhood of D(py (VN Cl82y).
0, T +T%) such that

J
E&@:ZFMtd Fy (7, 2) + Fyi (1, 2) =0 (1<, k<))
k=1

Proof. By virtue of Lemma 3.3 (1), we have only to prove this theorem in
the case where x*=0+9/04. We prove by induction on J. First assume that J=
2. Set

G (o, 7, 2:=F, (ot 2).

Then by the proof of Lemma 3.6 each Gj(o, 7, 2z) is holomorphic on a
neighborhood of D(VNCl@2y, €1, I',) with an open neighborhood V of (0, z*) in
My, a constant &;>0, and an open cone I, of R*** containing {0} XT';. In view of

the edge of the wedge theorem for Bf (Theorem 1 of Oaku [0 1]). for any open
cones IJET; (j=1, 2) there exists a holomorphic function G(p, 7, 2) defined on

a neighborhood of D(WN Clf2y, €2, I) with an open neighborhood W of (0, z*)
in My, a constant £>>0 and an open convex cone I of R®*”"! containing {0} X
('Y + T} such that G= G, on D (W N ClQu, &, ') and G= — G, on
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D(WN ClQu, &2, T2). It is easy to see that G satisfies the assumptions of Lemma
3.7(2). Thus we can find a holomorphic function F(z, z) on a neighborhood of
D(pu (WNCl8Ry), e, T1+T%) such that

Flor, 2=Glo, 7, 2).

Since F=F; on D(py (WNCl2y), &, I'1) and F= —F; on D{py (W N Ciy), e,
T',), we obtain the theorem in the case where J=2.

To prove Theorem 3.8 in the case where /23, we need several results.

Let us set

D, (8, T):={(0, z2) €C¥™ |2<4d, Im 2ET)

for a positive constant & and an open cone I' of R,

3.9 Lemma. Under the same assumption as in Theorem 3.8, for any open
convex cones I'j such that T'; €L, there exist a positive constant 0 and holomorphic
Sunctions Fy, (1, 2) defined on a neighborhood of Dy (8, I';+Tk) such that

J
Bt =) Fult.a, Fultd+F(2=0 (1< <)
k=1

Proof. We may assume that x*=0+3/04. Let us set
Gilp, 7, 2)'=F (o7, 2).

Then by the proof of Lemma 3.6 each Gj(po. 7 2 is holomorphic on a
neighborhood of D (1N Cl2y, &1, I',) for an open neighborhood V of (0, x*) in
My, a positive constant &; and open convex cones I'; of R*** containing {0} X T,.
Therefore by the edge of the wedge theorem for %%, for any open cones I'JET,
there exist holomorphic functions Gy (o, 7, 2) defined on a neighborhood of D(W
N Cl&2u, ez T jx) for an open neighborhood W of (0. x*) in My, a positive

constant & and open convex cones I, of R¥*” containing {0} X (I';+T7%) such
that

J
G]:Z G]k, ij+ij=0 (lgj, kgj)

k=1
Set 7= (7,,.., T»). Then as in the proof of Lemma 3.7, each Gjr can be

developed into a power series of the form

oo

Gy (40, T, Z) = Z Z Ak va’ (TI, Z) p” (T’) @

v=0 o’ eNy!
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Let us set

Gulp. 7w 2= ). Z ks (1, 2) 0" 7279 (2)
@ €Ny v2la|

Further let us define G;° for any G, similarly. Note that since each G, satisfies
the assumptions of Lemma 3.7, we have G;°=G,. Let us set

Fulzr. 2)= ij°<T1. 1. L z).
1

Then each Fj; is holomorphic on a neighborhood of Do(8. I';+I%) for a positive
constant 0. Since

Guilo, 7. 2). Gulpo, T, 2) +Giy (0. 7, 2) =0 1<y, k<)),

1

Glo. 7 2=

J
k=

it follows that
J
G]':GJD:E G, G’ + Gy, =0 (1< k<)),
In particular, we see that

J
mf,z):EFj,,(f.z), Fulr, ) +F,(r. =0 (1<) k<)).
k=1

This completes the proof. O
For (z, £) € C"x (C"™\{0}), let us set
(n—1)!

(=2my/=1)"

=T )T 5 (e - 4B

(<2 0+ (G 2T T~ 755 ))’ |

Wiz ()=

n
where we set <z, =2z {, and choose a branch as +/1=1.
P

3.10 Proposition. Let x* be a point of TyM and (t, z2) an admissible local
coordinate system avound Ty(x™*) such that tn(x*) =0 in this system. Let € be a
positive constant, U an open neighborhood of x* in My, and I'; (1<5<J) open convex
cones of IR™. Suppose that py (UN Cl2y) D{(0, ) €N |x|<e}. Let Fj(z, 2) be a
holomorphic function defined on a neighborhood of D (py (UNCLR2y), €, ;). Set
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s
F(z, z C)¢=Z fcw)F, (7. w) W(z—w Q) dw.
+¥i
=1
where
Cle, y))= {wECC”; [Re wIS% Im w= y,]

for a y;€T,. Then the following two conditions are equivalent for any E¥ ER"\{0}:
(1) There exists a positive constant 0 such that F(t, z §) is holomorphic on a
neighborhood of (0, £%) € CH* xR if y, €T, and |y,| <4.
(2) There exist a natural number K and holomorphic functions Gy (t, z) (1 <k
<K) on a neighborhood of D(py (VN CLRy), 0, Ey) for a neighborhood V of x* in

My, a positive constanl 0 and open convex cones Ej of R* with E¥€E,° such that

X
ZF(t rt+v— FO=Z e (t, 2+ =18, 0)

1=1
holds on By (VN 2y) .

Note that the defining domain of F(r, z; {) is conic with respect to { since
W(z ) is homogeneous of degree —n with respect to {.

Proof. Assume (1). Let Ay be a proper convex open cone of R” such that
&*<IntA¢° and that F(z, z {) is holomorphic on a neighborhood of {0} X (A¢°\
{0}). Thus we can choose a natural number K and proper convex open cones

K
A (1<Ek<K) such that R*= UA,° and w (A, N A" N S" ') =0 if j# k. Here w

k=0
denotes the standard volume element on the sphere §”. Choosing y, €T, such
that ly,| <8, set

Ge(r, 2)5=fAk,ﬂS“_,F(T, z8w(é).

Then, for any open subcone A;€ A, Gy are holomorphic on a neighborhood of
D(py(V N Cl2y), &, A;) for a neighborhood V of x* in My and an &> 0.

Moreover Gop is holomorphic on a neighborhood of 0 € C¢*”*. By virtue of the
inverse formula of Radon transforms (see A. Kaneko [Kn], K. Kataoka [Kt 2])

i (t, x+/—1T,0) = Z Ge(t, z+v—1A%0)

k=0

holds on By (UN 24). Since E¥&EA,° for 1<k K we obtain (2).
Conversely assume (2). Set Fyyup'=—G; and I';4 =5, for 1<j< K Lemma
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3.9 entails that for any open convex cones I'; €T, there exist holomorphic
functions Fx(7, z) on a neighborhood of Dy(e, I'j+T) with a positive constant
€ such that

J+K
FFZ Fro  FwtFa=0 (1<) k</+K).

We may assume that py (VN CL2y) D{(0, z) EN: |2/ <5} for a positive constant
0<min{e, &;}. Choose y, €T, for 1<;<J+K and set

I
F(r, z Q) =zf F,(z' w) W(z—w, {) dw,

G(r, z C):ZZ fcw.w k)G,c(r. w) W(z—w() dw.

Then we have

J+K J+K

Fle.z 0 —Glr z C>=Z L(”F,k(r,w)W(z—w,C)dw

where
Coi= {we@”‘; [Re w|=g, Im w= (1—¢) y,+ ty, for some 0t 1}

with an appropriate orientation. Then we can easily see that the integrals of the

last line are holomorphic on a neighborhood of (0, &) €C4* x (R"\{0}) for any
non-zero & if each |y,| is small enough. Since G(z, z () is holomorphic on a

neighborhood of (0, £*) €C4*"XR" so is F(z, z {). This completes the proof.
O

End of Proof of Theorem 3.8. Assume that the theorem is proved for J—1
(J>3). We may assume that py (UNCL2y) 2{(0, x) EN: |x|<e}. Choose y, EL
and set

F(r, z C)-’=fc(5 Fi(r, 2) W\z—w 0) dw.
Then since

—Fy(t. z+/=1T,0) Z F(t. 2+ /=1T;0).

by virtue of Proposition 3.10, F(r, z C) is holomorphic on a neighborhood of
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7-1
{0} x (R*\ (I'," N (UT,?)) if |y| is sufficiently small. Let '} be convex open
j=1

cones such that Y€€}, and A; (1<j<J—1) proper convex open cones of [R”

such that
J-1 J-1
Ay, Jasare ncUry,
=1 7=1

and w (A, NALNS™ ) =0 if j# k. Set
Gz, 2):= J/; s F B2 Hw@)
for 1<5<J—1 and moreover set

Golr.2)i= [ o Flr.z D w(@).

U AS
1=1
Then
J=1

F(z z>=z Gz, 2)

1=0

holds and Go{t, 2) is holomorphic on a neighborhood of 0E€C**”, Set

Filt, 20 +Go(t, 2) +Gi(r, 2) (j=1),

L{](T, Z):={‘F](T7 z)+G,(T, z) (2<]<_]—1)

Then we have

I-1
Z H(t x+,/—1I70)=0

1=1

on Py (U N 2y) for a neighborhood U’ of x* in My. By the induction hypothesis,
we can find holomorphic functions Hj; defined on a neighborhood of D(py (VN

Cl82y), 8, I'j+T%) with a neighborhood V of x* in My and a positive constant

such that
J-1
B=) He HetH,=0 (1<) e</-1).
k=1
Thus set
Hy (7, 2) (1<, k<J—1),
Fult, 2 =1 —Go(r. 2) —Gi(7, 2 (j=1, k=]),

=G, (1, 2) @< <J—1,k=)).
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Then F}, satisfy the properties we need. O

3.11 Propoesition. There exists a morphism
Thie: Bl — 7' Bw

defined by
J
7 (w) (x)izz Fi(0, x+4/—1T,0)
=1

if a section u(t, x) of Binm is expressed as in Definition 3.1. In particular, 1hm
induces an isomorphism

d
%glM/ZtJ Bl = t'Bw
=1

Proof.  7hwm (u) (z) does not depend on the choice of defining functions of
u(t, x) by virtue of Theorem 3.8. Moreover, it is easy to see that 7f is

d
surjective and its kernel is 2 t; BFim. O
=1

This proposition means that the boundary value 7fau(u)(x) does not
depend on the direction along which the boundary value is taken. More
precisely, let u#(¢, x) be a section of B%u on an open set U of TyM with
connected fibers. Then there exists a section v(x) of By on 7y (U) such that
vhm (ulv) =77 () |v for any open subset V of U.

As a special case of F-mild hyperfunctions in relation to Lemma 3.3, let us
consider F-mild hyperfunctions on a whole fiber of 7a:

3.12 Proposition. Let u(t, x) be a hyperfunction on M\ N which is F-mild
at any point of TwM. Then there exists a unique hyperfunction v(t, x) on M such
that v(t x) =ult, ) on M\ N and SSy(v) N TsM= 9 .

Proof The uniqueness of v(¢ x) follows immediately from the Holmgren
uniqueness theorem for hyperfunctions. Hence it suffices to prove the existence
of v(t, x) on a neighborhood of each point of N. Let Z be a point of N, and (7, 2)
an admissible coordinate system such that z (%) =0. Since u(¢, x) is F-mild at

K
each point of 7y (%), there exist open cones U (1<E<K) of R? such that U U¥

k=1
=TR?\{0}, a positive constant &, and holomorphic functions F¥ (7, 2) {1 <j<Ji)
defined on a neighborhood of
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{(t, 2) EREX T 1], |2 <e, t€ UFU {0}, Im zE€T' 5}

with open convex cones I'/ of R” such that

J
u(t, x) =2 Fé(t, x+/—1TF0)
1=1

holds on {(¢, z) € M: l¢], |x|<e, t€ U*}. Choosing sufficiently small y¥ €T} w

set
(r,z 0): ch(”j) Fr, w Wz—w () dw

Then F*(r, z {) is holomorphic on a neighborhood of
{1, 2. & ERexCrx ®ALO); |4 <e, o <£. € U 10),

Ky, &
<y» §> ><y, y>«/ <E ES m}']

if & is small enough. Proposition 3.10 implies that there exists a positive
constant 0 <e&/4 such that F*(r, zz {) — F' (. z () is holomorphic on a
neighborhood of Bs X (R™\{0}):={(¢, z. §) €R* X C* x (R"\{0}); ||, |2l <} if
UFN U+ @ . 1t is easy to see that F¥ (7, z {) — F' (r, z {) is holomorphic on a
neighborhood of B; X (R"\{0}) for any % and I by taking chain of U"'s which
connects U* and U'. Hence there exist holomorphic functions G*(r, z ) on a
neighborhood of B; X (R*\{0}) such that G*— G'=F*— F'. Then F*— G* defines
a holomorphic function H(r, z {) on a neighborhood of

(¢t 2 & ERIXCx (RNO}): |4, 14 <8, <y, £ >y, y>y<EE — 4/%%_}

Let A; (1<j<]J) be proper convex open cones of R” such that UA =R" and
WA NAC NS =0 if j#E. Set =

be = HEzH0@.

Then

J
wlt, 2= H (1, +/=TA,0)

j=1

defines a hyperfunction on {(t x) € R**” |¢|, |z|<8} with real analytic
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parameters t. In view of the inverse formula for Radon transforms, we have
wlt D=t D= [ ¢z Hw®

on {(¢ x) €R" |4, |21<0/2, t€ U*}. Since the integral on the right-hand side
is analytic on {(¢, z) €R*" |4, |2|<06/2}, u(t, x) —w(t, x) is continued to an
analytic function on {(¢, z) €ER**"; |4, |2 <8/2}. This completes the proof. [J

§4. F-Mild Microfunctions

In this section, we microlocalize the F-mildness property. To this end, we
introduce new sheaves.

Recall the mapping defined in the beginning of Section 1. Further let us set
ty'=1ir iy: Y —X Then we have the following commutative diagram:

N o MM T LT L
/
TN O \,:V{ SLN{I

TVY — Y LM xTyY  T.M x TL,
N My YN

t"y ts}-
* i % T*Z
it [iy" O PY” AN
TyX ——=— M XT,;X —— T,L M, * T,L
tLx M tiL M Prr N oy M

4.1 Definition. We set:

~ﬂr|M5 =H" (un (7' OxRornsv) ),
B =Gl w= 1% (¢7'0x) Qorw,v.
J?IIM::%O(UN (c7'0x)) .
Thus @i, B and F4 are sheaves on THY, N, and Ty Y respectively.
By the same arguments as in the theory of microfunctions, we can prove

the following:

(1) There exist a natural monomorphism
b A >— T B

and a natural epimorphism
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SPAm : ﬂﬁlﬁﬁw - (gfhm,
where 7: Ty Y—N is the canonical projection.
(2) Let us identify X with C%*" by an admissible coordinate system (7, 2).
Then we can represent any germ f(¢, x) of B at the origin as

J
F(t, x) =Z F,(t. x+4/—1T;0)

=1

for some natural number J. Here I'; are open cones of R” and each F,(7, 2) is
holomorphic on a neighborhood of Dy (g, I';) in X for a positive constant .
Moreover, we can prove the following:

4.2 Lemma. Let xo be a point of N and (7, 2) an admissible local coordinate
svstem of (z, z) such that xo=0 in this svstem. Then the following hold:

(1) Let f(t, x) be a germ of Bl at xo. Then (xo:y/—1KE*, dr)) € TEY is not

contained in supp (sphn () if and only if theve exist holomorphic functions F;(t, 2)
defined on a neighborhood of Do(e, I',) in X with a positive constant € such that
each T'; is an open cone of R™ with E¥*&T,° and that

J
£t =Y Kt z+/=1T,0)
1=1

(2) Let € be a positive constant and T, an open convex cones of R”. Let Fi(t, z) be
holomorphic functions defined on a neighborhood of Do(e. T’ ) in X such that

J
Zp,(a 2H+/=1T, 0) =0
j=1

holds as a gevm of Bl at xo. Then for any open convex comes ') of R* such that
I';E€T,, there exist a positive constant & and holomorphic functions Fyx (T, 2) defined
on a neighborhood of Do (8, T ;+T' ) in X such that

J
F,(T,z)=ZF,-k(r,z), Fulr. 2) +Fy(. =0  (1<j, k<))

k=1

The proof is similar to that of Lemma 2.1 of Oaku [0 3].

4.3 Lemma. There exists a natural monomorphism

ok Briw— v Biu.



412 F-MILD MICROFUNCTIONS

Proof. In view of Theorem 3.8, we can naturally define &yu. Let us verify
the injectivity. Let x® be a point of TwM and (7, z) an admissible local
coordinate system of X around xo:= 7y (x*) such that z(x) =0. Suppose that

bi
flt, ) =2 F(t, x+/—1T,0) is a germ of Biix at ¥ such that oy () =0€
s=1

Bbimz, Here each F(r, z) is holomorphic on a neighborhood of D (py (UN

Cl2y), &, ;) in X for an open neighborhood of U of x* in My, a positive
constant € and an open convex cone I'; in IR”. Then by Lemma 4.2 (2), for any
open convex cones I'; of IR” such that I'J€T;, there exist a positive constant §
and holomorphic functions Fj; (7, z) defined on a neighborhood of Dy (8, I'; +1I%)
in X such that

J
F}-(T,z)=ZF}k(T,z). Fu(t, 2) +Fy, (7, 2) =0 (1<, k<))
k=1

Now we shall use the same notation as in the proof of Proposition 3.10. Choose
€T for 1<j<Jand set

J
Flz, z C)i=z L(”)Fj(r, w) W(z—w {) dw

=) [, Bt w W= O aw.

1<)<k<]

Then by the second expression we can easily see that the right-hand side is
holomorphic on a neighborhood of (0, & € C"x (R*\{0}) for any non-zero &
if each Iy,l is small enough. Let us set

Flz, 2= [ Fle z Ow(®).

Then F(z, 2) is holomorphic for |7], |2/ <&’. Moreover, by virtue of the inverse
formula of Radon transformations we have

J
£t 2) =) Fy(t, 2+y=1T, 0) = F(1, 2);

that is, f(t, x) analytic at (¢ x) = (0, 0).
Hence by the injectivity of b d&mw— 7 B, the condition afu (H =0
implies f(t, x) =0 as an analytic function. This completes the proof. O

By this lemma, we can regard B5u as a subsheaf of 75" B

4.4 Definition. The sheaf of F-mild microfunctions on T wuTyL is defined
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by
@5 =Image (sphm e Tty Bl — C'v): Tt Ghm) .

Sections of €% are called F-mild microfunctions. The morphism sphw afim
induces an epimorphism

Spivisr Tt B — Eim.
For a section u of B, SSkim(u) denotes supp (spiim (1)),

We remark that by the definition €%ulryu=B .

We also denote the natural inclusion G&up— (‘'y)) 72 @ﬁw by afim.

4.5 Lemma. Let u(t, x) be a germ of B at a point x* of TyM. Then a
point p= (2™ J/—1&*) of T,uTvL is not contained in SSky (u) if and only if
u(t, x) has an expression as in Definition 3.1 such that E* does not contained in
') for any j.

Proof. If £¥=0, the proof is trivial. Thus we may assume that £* # 0.
Suppose that (¢, x) has an expression as in Definition 3.1 and £* does not
contained in I';’ for any j. Then by Lemma 4.2 (1), we have p & SSku (u).
Conversely, suppose that u is a germ of By at a point x* and p & SSFu ().

Then we may assume that by an admissible local coordinate system x* =0+
0/0t and that

M(t, 1‘)=Fo(t. x+4/~1F00),

where Fy(t. 2) is holomorphic on a neighborhood of D{(py (U N Cl2y). &, T)
with a neighborhood U of x*, a positive constant € and an open convex cone Iy
of R” satisfying £* € I'y°. By virtue of Lemma 4.2 (1), there exist holomorphic
functions F, (t,2) defined on a neighborhood of Dy(d, I';) in X with a positive
constant 0 such that each I', is an open cone of R” with £*&T',° and that

J
Folt, 2/ =TT40) + ). F (1, z+/=1T; 0) =0.
1=1
Choose open convex subcones I';ET, with £*€Int (I'y) ° and £*& (I'))° (1<
<J). Then, by Lemma 4.2 (2), there exist a positive constant 8" and
holomorphic functions Fy defined on a neighborhood of Do(&, I'; +T'%) such
that

J
F‘J:Z E]k, ij+Fk1=O (1<], kgj)
k=0
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Now we shall use the notation of the proof of Proposition 3.10. Choose y; €I';
for 0<X7<J and set

Flz. z C)i=f

C(8,yo

)Fo(T, w) W(z—w () dw,

J
Glz, z C)1=Z fw’y)F, (7, w) W(z—w; ) dw.

Then we have

Fez0+6ez0= ), [ Fult,w) We=u Qaw.

0<;<ks)
Each integral of the right-hand side is holomorphic on a neighborhood of (0, &)
e C*" x (R*\ {0}) for any non-zero £ if each |y,|is small enough. Since

G(t, z {)is holomorphic on a neighborhood of (0, £*) €C?™* X R*, so is F(r,z ().
Thus there exist a positive constant 0" and a proper convex open cone A of R”
such that £¥*€Int A° and that F(r, z &) is holomorphic on a neighborhood of

{(z, 2. &) €C**x (R\{0}: |7], |4 < 8", E€A°}.
Thus we can choose a natural number K and proper convex open cones A, (1<%

K
<K) such that R"= U A;° and w (A, NASNS* ) =0 if j#E

k=0

Gi (7, z)i=j;knsr_lF(r, z &w(é).
Then Gy are holomorphic on a neighborhood of D(pw (VN Cl2u), &1, Ay) for a
neighborhood V of x* in My and a constant &> 0. Moreover Go is holomorphic

on a neighborhood of 0 € €% By virtue of the inverse formula of Radon
transforms

K
Fo(t, .I""’«/'—]_FQO) :Z Gk(t, x‘h/—lAk 0)
k=0

holds on iy (UN Q). Since £¥&EA,° for 1<E< K we prove the lemma. O
Let us set
Y= (cy)r evt Gu.

Then we see that G4m|y = Biim. Let us denote by spiur: 7x' B — €4m the
spectral morphism. Therefore we have

=R ("e%) evh n (Ox) orux [d+n]

L L
—un (7' 0x) @ 01/ xRt Qwy/x [d+n]
=~y (7' 0x) ® orwsv 1]
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Thus we obtain a natural morphism

amm: Gl — Cim

4.6 Lemma. The morphism atiyy induces a natural monomorphism
anm: (tv) T7x Gl —CRm
such that the restriction of this morphism to the zevo~section coincides with Oy
T}\_rl.%ﬁ/w}"’ﬁxw of Lemma 3.3 (2)

Proof. It is easy to see that we can define anu. The compatibility of this
morphism and that of Lemma 3.3 (2) is clear by the definition. Let p =
(x*;v—1<&* dx>) be a point of TF,uTyL. In the case where pE TyM, since
(") Tra Ghimr = Biimenw and G = Biim,». the injectivity is a consequence of

Lemma 3.3(2). In the case where pE TH,uTrL, we may assume that 7y (2*) =0,
Then we can prove the injectivity at p in the same way as Lemma 4.5. This
completes the proof. O

Now, we have

R('ty): w7 pn (7' OxQorn/v)
L L
SUTwM (7 7' 0xQ@ ¥ it Qw11 otw v)

=prem ((iLivty) " OxQomur) = tirym (G prse) "1 0xQorms)
=z ((prsy) "' BOLLo0rm1)

=7 (ST R (1) 5101 BOLQ 07m/1)

ZUrym (BO Y|L®07M/L) .

Hence taking the n-th cohomology, we obtain a natural morphism
ENWI (‘) Tz (gﬁ/!M - gNIM-
Restricting this morphism to the zero-section, we have
ENIM: (9 égfw —Briar.
Similarly we can obtain natural morphisms

,51’3|M2 ("t%): tvr Gom —Gwiu,

B T B —Buiu-

On the other hand, by Lemma 4.5, B Biim— Bmm induces a natural
morphism

F . @F
B lim — B
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4.7 Lemma. The following diagram is commutative:

-1 1 QA
)._._._—_) %

Tt By aa T mTn Bt ar

5

W @
o L0
oL 71%,‘, NI/LI T ENim o) %
Nim TN NIM: P T e B oaa TNV MBNI M
F A —
SP/CIM SPN1 a7 SPNIM SPN1 A SPwt a1
2
Id
a
NI t 1
NIM > { TYHTYY gNIM
¢ 1 Saim
(f1y) TYK%NIM NIM

The proof is straightforward.
Let 7w Ghmw— €y and 718 BYm— By be the restriction morphisms.
Then, these morphisms induce isomorphisms

d d
Ehwe ) 2t Eaom=%En. i/ 22t Bl =Bw.
=1 j=1

We shall define restriction and boundary value morphisms.

First, induced by a natural morphism ¢7'0x— Oy there exists a natural
morphism

ﬁ/[MI g}"\l]]M —En.

We also denote the restriction of this morphism to the zero-section by
Tvin: B — B

Then, these morphisms induce isomorphisms

~ d ~ =~ d =4

Gl /) 2t Grom=Ey, B/ 2t Bm=Bn.

j=1 71=1
Next, by Lemma 4.5, we see that 7#»: Bix — 75 By induces a morphism
Thm: gﬁw — (*t}): t7: G,

which in turn induces an isomorphism
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F e F £ 1
%N!M/ 2t = ("ty) vz B
1=1

4.8 Lemma. The following diagram is commutative.

A
—1 —tgpnA SPniM t! A
Taim TN Bruim —2 (15), 7460 m
@ 8
<O z
a ¢ A <
YNim & YNim &
I @F s
- O NIM F
”NIMQNIM __————»gNIM
F
YN
& F & F
.{e‘ Inim FL\‘-‘ Enim

SPN (tT'\ 3!
v tryzOnN

22 N
7 J:L'V
7 7
Z %
—A
SPynim

-1 -1gpA / 1o A
T TN B — » (1), Ty B nim

The proof is straightforward.

4.9 Proposition. The morphism Oy defined in Theorem 2.8 induces a
monomorphism

i Evim / B gle>__)gNlM / ENIM (*t)r Tya @fzw-

Proof. At the zero-section of TyM, the proof is similar to that of
Proposition 2.3 of Oaku [03]. Let p= (z* /—1 <€* dx>) be a point of
TEmTrL. Let f(t, x) be a germ of @y at p and suppose that @wu () €
B ('T%): 7k €4m. There exist a positive constant &, an open neighborhood U of
£*in Ly and an open cone I'y of R* with £*E€T'y° such that the following hold:
There exist a section Fo(t, 2) of BOys on {(r,t,2) € U: Im z€Ts} and a holo-
morphic function Go(z, 2) defined on a neighborhood of Dy (e. I's) such that

f(t, ) =spym (Fo (t, z+4/ =11 0)),
A (D (1, 2) = B ot (Go (£, z+/=1T0))

hold at p. By Lemma 4.7, we have

v (P (¢, x) =S @ (Fo(t, x+v/ =116 0))
=SpniuM ENIM(GO(t. x+y/=1T,0))
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at p. Let us set
Ho(t, 2):=Fo(t, 2) —Go(t, 2)

as a section of B0y By Lemma 2.6, there exist a natural number J and
sections Hj (¢ z) of BOyy on {(t, 2) € V: Im 2€T;} (1<5<)) such that

J
Holt, /=TT, 0) +Z H,(t, z+y=TT; 0) =0,
=1

Here V is an open neighborhood of * in TyL and each I, is an open cone of R*
such that £¥ &T,°. Choose subcones I'; €T such that £¥* € Int (IG) ° and £* &
(I';) ° for 1 <j<J. Then, by Proposition 2.7 there exist sections Hy (¢, 2) of
BOyy on {(t, 2) € V; Im z€T;+T}} such that

J
B=) He HebH=0 (05 k<)),
k=0

where V' is an open neighborhood of z* in TyL. Now we shall use the notation
of the proof of Proposition 3.10. Choose y; €I%; (0 <;<J) and sufficiently small
positive constant d and set

F(t z C)-'=f;m,y )Fo(t, w) W(z—w, §) dw,

Gt z )= Go(t, w) W(z—w; ) duw,

C8,99)

H(t z C)::fcw )Ho(t, w) W(z—u {) dw,
J
H(r, z C)1=Z f;m H, (&, w) W(z—w, {) dw.

Then

H(t z Q+H(t z (= X f; H, (t w) Wiz—w §) dw.

0<;<k<]

The right-hand side of the integral above defines a section of BOyxcriLxcs on a
neighborhood of W X (R"\ {0}). Moreover we see that H (t, z () defines a
section of BOyxcicxcr on a neighborhood of W X A°. Here W is a open
neighborhood of «* in TyL and A is a proper convex open cone of IR” such that
E* € IntA°. Thus H(t z {) = F{t, z {) — G(t, z {) defines a section of
BO yxciixer on a neighborhood of WX A°. Choose an open subcone E€A such
that £¥*€Int £° and H(t z {) defines a section of B0 yxcrL~c» on a neighborhood
of WXE " Let us set
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F.o=[ Fltz0w),
Cha={_ _ _6tz0w®,
Fe2=[  Htz0w@.

°

Choose a proper convex open subcone 5’ € E of R” such that £* € Int (Z)°.
Then, F(t z) defines a section of B0y, on {(7, t, 2) EU: Im 2€ 8}, G (z, 2)
defines a holomorphic function on a neighborhood of Do(¢’. E'), and H(t, 2)
defines a section of B0y, on a neighborhood of {(0, ¢, 2) ELy:(t 2) €W, Im zE
E’}. Here U is an open neighborhood of £* in Ly, W' is an open neighborhood
of * in TyL and ¢ is a positive constant. Since H=F—G as a section of BO L,

G(z, 2) is holomorphic on a neighborhood of D(py (V' NClQy), €, E') by virtue
of the unique continuation property of €0. Here V' is a neighborhood of z* in

My and € is a positive constant. Hence G defines an F-mild hyperfunction. Since
0=damm SpN|M(H) (t, x+/—1E5"0) =@M SDN|M (F‘— 6) (t, z+/—1E0)
and @y is injective by Theorem 2.8, it follows that
F=spww (F) =spam (G) =spyim BEm (G)
=Bl sphm (G).
The proof is complete. U

§5. Non-Characteristic Higher-Codimensional
Boundary Value Problem

Let Dx be the sheaf on X of rings of linear partial diffevential opevators (of
finite order) with holomorphic coefficients. Let M be a coherent (left) Px-Module
on X; that is, a system of linear partial differential equation with holomorphic
coefficients. Recall that Y is non-characteristic for M if

T¥XNchar (M) C TEX,

where char (/) denotes the characteristic variety of /. We denote the inverse
image of M by ty in D-Modules by ¢y'/; that is,

L L
Qi:/%::@y_.x® (Pt M =0y (03¢ vt .
7Dy 50

Let us set My =#°(¢z' ). Note that if Y is non-characteristic for ., then
ty* M is concentrated in degree zero; that is, we can identify ¢y'4l with My, and
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that Ay is a coherent £y-Module.

5.1 Propesition. Suppose that Y is non-characteristic for M. Then there
exists an isomorphismi;

T B oma, (M, i) SR (Tv) 772 RH oma, (c7' M, Ew).

To prove Proposition 5.1, we shall prove the following lemma:

5.2 Lemma. If Y is non-characteristic for M, then therve exist natural
1s0morphisms.

7 e R oma, (M, Ox) St7ey  RH oms, (M, BOL)
’—‘;R%OWI@X (./M, %@YIL) .

Proof. Since BOy.=vy(B0.). we have a canonical morphism
vt iv' BO =17 R (ty)sx BOvii—B0yi1.
Thus we have a natural morphism
vty ' R# omg, (M, BOL)— RH oma, (BOy,1)

Define an object A by a distinguished triangle:

+1
ﬂ_’f;l i;l %@L_’%@YlL_——)-

Let z* be a point of TyL. Since the proof is trivial in the case where ZX€ Y, we
assume that z*€ TyL. Further the question being local, we may assume that z*
=(0+0d/0t by an admissible local coordinate system. Then by the definition for
any integer k we have

HE(H) o= lim H, oo, (Ui BOL)

e—+0

d
where we set Us={(t 2) €L: |4, |d<e} and Z:={(t. z2) EL: et < X|4l}.
1=2

Let L® be the real manifold underlying L. Set X:=XX Y={(4, z, @w)}. Then
we can regard X as a complexification of IR by LED (¢, z) — (¢, 2z, 2 € X. We

denote by X the external tensor products of £~Modules. Then we have
2

Rftoma, (M, BOL) = Rftoms, (M, R¥omo,(DxX 07, B15))
2
= Rt omo; (M X OF, Bum).
?

Here we remark that char (# X0O7) = char (M) X char (67) = char (M) X TEY,
D
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Hence for any integer k we have

HE(RHK oms, (M, K)) += lim H* (R zn 0. (Us; R# oma, (M. BOL)))

e—+0

= lim H* (Us; R oma (MXO7, RI 7, (B1z) ) )

e—+0 9

:m%k (R%OH’L@‘ (./% @)‘; RFZE (.@ﬂ) ) ) 0-

e—+0 7

We shall show that if € is sufficiently small, then any conormal 8= (0; 6,, 0) of
Z. at the origin of T*L®is hyperbolic for #{[XI05; that is,
P

0 & Crmz (char (MXAOF)).
P

Here we remark that there exists a canonical embedding T*LE < TragT*X (cf.
Chapter VI of [K-S2]). Suppose that 8 € Cpyz (char (M X O5)). Then by the
9

definition, there exists a sequence { (¢, (z,, 2 <n,, do> +<{, dz>); wi},en in Rso
X char (M) X Y such that lim (7, z, @, <y, dr> +<{, dz») =0€ THX and

]

lim ¢, (Im 7;, z,— i, Re u,, {;) = (0, 0, 8, 0). For a positive constant 0, let us set

J—o

Vea={(1, z {n. dr) +<{{ d=)) E T*X: ||, |2 <6, |{ <d|nl}.

Since 6;#0 and ¢,>0, for any 6>0, there exists a JEN such that for any j=>],
we have (7, z; <n,. d©> +<{,, dz>) € VsNchar (M).

On the other hand, by the non-characteristic condition and the fact that
char (M) is C*-conic, we have VsNchar (M) = @, if § is sufficiently small. This
is a contradiction.

Hence by applying Corollary 2.2.2 of Kashiwara-Schapia [K-S1] we
obtain

R# omg, (MXOs, BRI, (B=) ) 0=0.
?

This yields an isomorphism
7t iy ' R# ome, (M, BOL) S RH ome, M., BOy L) .
Next let us consider an exact sequence:

0—if'0x —B0,— (1tv)x €0, —0,

where 7y: ’f“;‘izY—>K Since
supp (RH omg, (M, 60,)) C TE XN char (M),

we have

7' R#H oma, (M, (7tv)s €0OL) =0.
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Therefore we obtain
LR oma, (M, Ox) SR ome, (M, BOY).
This completes the proof. O

Proof of Proposition 5.1. By the Cauchy-Kovalevskaja-Kashiwara theorem
(see for example Theorem 11.3.5 of [K-S 2]) and Lemma 5.2, we have

RH oms, (il«/ﬂ, ﬂTNM(T;IGY)) = lram (z7 (RH oma, (ﬁﬂ-/% Oy)))
=prem (T ey (B oma, (M, Ox) ))
SRHK oma, (M, pr,u(BOyL)).

Then, by the non-characteristic condition, we have
SS(R# oma, (¢x* M, Oy)) =char (¢x* M) ="y (¢z: (char (M))),

where SS(%) denotes the micro-support in the sense of Kashiwara-Schapira
(see [K-S2]). Then by Corollary 6.7.3 of Kashiwara-Schapira [K-S2] we
obtain
R#oma, (¢v' M, BR('ty) tvs un(Oy))
=R ('ty): tvx v (R ome, (¢5* M, Oy) )

L L
Sprom (t7 B oma, (¢7* M., Oy) ®CU%,—1;}/N®CUTYL/Y>

=prou (c7' BH oma, (7' M, Oy))
Z»R?fomax (J%, UT M (%@Yﬁ) ) .

Hence applying the functor @o7v/y, we obtain an isomorphism Py ]
By Proposition 5.1 and Theorem 2.8, we have the following:

5.3 Theorem. Suppose that Y is mnown-characteristic for M. Then, the

morphisms @i Gnim > Gy and Ta of Proposition 5.1 induce a natural
morphism:

T = T Gwar: B omg, (M, Gnia) =R (17h): 7k R Koma, (1_171-/” B).
In particular, theve exists a natural monomorphism.
T Homa, (M, Gru) > (177) T72 Homa, (v M, Ey) .
Now, let us give the explicit and concrete expression of the morphism of

Theorem 5.3 using the boundary value morphism of F-mild microfunctions.

5.4 Lemma. Suppose that Y is non-characteristic for M. Then the morphism

Far: G — By induces a natural isomorphism:

T Kome o, (7" M, Clar) SH oma, (7'M, By) .
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Proof. By the Cauchy-Kovalevalevskaja-Kashiwara theorem, we have
(7' R# omg, (M, Ox) SRH omg, (¢v* M, Oy) .
By applying the functor gy (%) &@omy,y we have

RA om.ia, (e7* M, pn (¢70x) @orwry) ZRH oma, (¢’ M, iy (Oy) Sory,v).

Hence taking the #n-th cohomology, we have an isomorphism. It is easy to see

that this morphism coincides with 7# in view of the construction and the fact

~ ~ d ~ .

that 74w induces the isomorphism (7' G = %AWM/th @4 = €n. This
i=1

completes the proof. O

5.5 Proposition. Suppose that Y is non-characteristic for M.
(1) The morphism Buur: (‘7)1 T7k Gt — € induces a natural isomorphism:
EN(M: (*7%) Tvr Hompa, (7'M, (gﬁw) SHoma, (M, @Nw).

Moreover E N is compatible with T and T, that is, the following diagram is
commutative:

(ty)hrrr Hompa, (7'M, ?fw)—;—’ (*7%)r Tz Homg, (7" M, En)
NiM

~ /’
&8, ?g\‘“

T Homa, (M. Byin).
(2) The morphism Bfiu: Caim —Cnwu induces an isomorphism:

B # oma, (M, €5) SH oma, (M., Enn) -

Proof. (1) The method of the proof is similar to that of Proposition 5.1.
By applying functior. grym (%) & o7x/u to the isomorphism of Lemma 5.2. we
have

e (T7 ' R oma, (M, Ox) ) SBH oma, (M, trryu (BOyL)) .

Then, since Y is non-characteristic for # we have

SS(¢c7* R# oma, (M, Ox) ) C'ey (cvx (SS (RH oma, (M, Ox))))
=1y (¢yt (char (U))),

Hence by using the non-characteristic condition again, we can apply Corollary
6.7.3 of Kashiwara-Schapira [K-S 2] to obtain

R#oma, (M, R('Ty), T%% pn (5 0%))
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=R ("t )itrs pw (v RH oma, (M, Ox))

L L
Spr e (t7t ey R# ome, (M, Ox) ®0)%,~1\}/1v®wryuy)
= pr o (t7' e RH omg, (M, Ox) )
SRH oma, (M, term(BOvL)).

Hence applying the functor ® ozv/y and taking the n-th cohomology. we obtain
an isomorphism. We easily see that this isomorphism is induced by Bnum. The
proof of the commutativity is straightforward.

(2) follows from (1) and Proposition 4.9. J

By Propositions 1.11 and 5.5(2), we obtain the following:
5.6 Corollary ([0 4]). Suppose that Y is non-characteristic for M. Then the
morphism Bfiu: BRiw — By induces an isomorphism:
B # oma, (M, BEu) = H oma, (M, B) .

In particular, all the hyperfunction solutions to M defined an a wedge domain with
edge N are always F-mild.

Since the restriction morphism 7#u: €%n —%x induces an isomorphism
A S A
(7 Gl =Gl / 2t a8
=1
we easily see that this morphism induces a natural morphism

i Hom e, (7" M, Ginu) = Homa, (7' M, En).

For the same reason, the boundary value morphism 7fu: Ghm— (‘tb) Tvs Gn
induces a natural morphism

?‘15[M: Homg, o, %ﬁlM)—“ (‘o) Tv2 Homa, (4_;1,,0{ €n).
On the other hand, induced by
o (T o7k Ghuo—C%m, ol Ghao— (i) 77k Chi,
there exist natural monomorphisms

an: (') trs Homepa, (v M, Glnn) >—H oma, (M, ERim)
Al Koma, (M, €)= (1%): 5k Home-a, (7' M. Conm) .

5.7 Proposition. The preceding morphisms ave compatible, that is, the
Sfollowing diagram is commutative:



TosHINORI OAKU AND SUSUMU YAMAZAKI 425

toy 2ol - \
), Tys Hom S O MLBR )

S YICM\
)

F \ /
Homa \MEN) ) Home, (M Er iy
>4
S 1{4\,};
" Syt -
“wm )ty ome, (Cy M, By @
-
2 X
o) ‘
g L
It} o) 1o e M B ~ 7
TY).TYR.%OWL{Y 25\ y MBN 1 aa) . Homa, (MErni '

The proof is straightforward.

5.8 Example (cf. S. Tajima [Tj]). Let X be a complex manifold and N a
real analytic submanifold of X. Assume that N is generic; that is, TN++/—1TN
N

= NX TX. Let Y be a complexification of N in XX X and De-g'= Dx X O the
X D

Cauchy-Riemann system. Let f be a holomorphic function defined on a wedge
domain with edge N: that is, a section of vy (Ox) =#oma, (Dc-r, Byw) . Then, fis
well-defined as an F-mild hyperfunction along N since 1 is non-characteristic
for Dc_g. In particular, the boundary value morphism of fto N as a hyper-
function is well-defined and injective by Proposition 5.7.

§6. Fuchsian Systems of Partial Differential Equations

In this section, we shall prove the uniqueness theorem in the boundary
value problems for £-Modules of Fuchsian type and of the Fuchs-Goursat type
in the framework of F-mild microfunctions.

First, assume that . is a Fuchsian system along Y in the sense of
Laurent-Monteiro Fernandes [L-MF]. Recall that a coherent PDx-Module M is a
Fuchsian system along Y if and only if for any (local) section u € M, there
exists a differential operator P such that Pu=0 and that P can be written in a
coordinate system (7, z) with Y={(z, 2); 7=0} as follows:

Ple, 20, 0)= ) PusldT®0i+Qln 2 0. 02),
0<|al=|Bl<od P
where ord denotes the (usual) order of a differential operator, and the
conditions below hold:
(a) For any n€CI\{0}, one has 2= Pas(2) n%n?#0;

|al=|Bl=0rd P
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(b) For any jE€Z, one has QFy'CFy’*'. Here $y denotes the defining ideal of
Yin X with a convention $y'=0y for j<O.
Note that all the cohomologies of ¢y’ are coherent Dy-Modules by Théoréme
3.3 of Laurent-Schapira [L-S] and that we may choose the coordinate system
above as admissible.

6.1 Theorem. Let M be a Fuchsian system along Y. Then, the boundary
value morphism 1 Ghm — (%) tv2 € induces a monomorphism on T, TyL
e Homa, (M, €)= ('7v): Tvr Loma, (My, En).

In particular, the boundary value morphism viu: B — t5' By on TwM induces a
wonomorphism

r&e #oma, (M, Bi) > =T H oma, (My, By) .

Note that not all the hyperfunction solutions to J{ are necessarily F-mild,
contrary to the non-characteristic case studied in the previous section.

Proof. By Theoréme 3.2.2 of [L-MF], we have the Cauchy-Kovalevskaja
type theorem:

(v R# omg, (M, Ox) SRH omg, (tz* M, Ov).

Applying the functor uy (*) ® orw,r and taking the n-th cohomology, we
have

H oma, (M, Chpg) =H oma, (My, Ex) .
In view of Definition 4.4, this isomorphism induces a morphism 74u. O

By virtue of Lemma 4.6 we have the following corollary:

6.2 Corollary. Let M be a Fuchsian system along Y. Then, the restriction

morphism i G —En induces a monomorphism

T Homa, (M, Gou) >— K oma, (My, Ey) .

6.3 Example. Let P be a differential operator of order m of the following
form:

d
Pz, 2 8., 8. =b(37,0,) + @z, z 8., 8.,
=1

where b(s) is a polynomial of degree m and Q satisfies Q$y’ C$y’*! for any j €
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Z. Put M= Dx/Dx P. Let y, v €Z be the minimum and the maximum integral
roots of the equation b(s) =0 respectively (set g =1v = —1 if b(s) has no
integral root). Let u(t. x) be an F-mild hyperfunction (or microfunction) solu-
tion to P #=0 and assume that for any a€Ny? with y<|a| <y

7hm (08u) =0.

Then, it follows that #=0 on a neighborhood of N. In fact, 4y is generated by

0fu for a€N? satisfying u<|a|<v over Dy, where 7 denotes the residue class
of 1in My {cf. Laurent-Schapira [L-S]).

Next, we shall give similar theorems for a matrix of Fuchs-Goursat type
introduced by Madi [M] and Yamazaki [Y]. To state the results, we define
boundary value morphisms, which we shall regard as Goursat data, as follows:

By an admissible coordinate system, we may assume that X=C¢XC?, Y=C% L
=R¢XC?, M=R?¢XR% and N=IR? For 1<i<d, let us set L;={(t, 2) €EL; t,=
0} and M,;=MN L,. Then the inclusion L; L induces mappings

T)'L, ;l—) Ty L
O

TNMz - ‘P—‘)'N TNM

Moreover, we have the following commutative diagram:

TWM MM TF T, L

%
T mT, L

TVY 0 M X TYY o TimT, L,
N z

Then we have the following:

6.4 Lemma. There exist natural morphisms

7 Mhe: N|M — @i,
,)";A

Nim: N;M - QBMM,,

and
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e (00 0t € — €,
7’15:'11143 o Bl — Bhn,
such that the followiing diagram is commutative:

F
SPN i m

=1 -1 F -
T ten' 1 F

NIM,("zN%NIM (Yo, ),w,nif,\,.,w
. @

A1 1, Z,
YNIm ‘2 PE <

A
SPN1m NDF

-1 -1 A ton'
”NIM,”:NBBNIM ———» (0 T B

~A: ~ A
YNIm YNim

F L
SPNIm, g}’-‘

NiMm,
Q‘/L/'
! &
! R sBy 7z
- -1 A NIM, ‘ -1 A
T, Ton Bt g, ————— Q) T3 G

The proof is straightforward.

6.5 Lemma. Let | = (h...l) be a d-tuple of non-negative integers and
flt, x) a germ of Ghwm at p= (xe v/ —1 {E* dx>) € TEY. Then the following
conditions are equivalent:

(1) There exists a germ g(t, ) of G at p such that f(t, x) =Fg(t, x).
(2) Forany 0SkH<}—1 (1<i<d)

i (8 £(1, 1)) =0.
Moreover in this case, g(t, x) is unigue.

Proof. By an admissible coordinate system, we may assume that z, = 0.
Since the proof is similar, we may assume that &*# 0. First, let us prove the

uniqueness. Suppose that g(t, x) € @4, satisfies Fg(t, ) =0. Then, there
exists a holomorphic function G(z, z) defined on a neighborhood of Dy (g, I'o)
such that

g(t, x) =spum (G(t, x++/—1T60))

at p, where ¢ is a positive constant and I'; is an open cone of R” such that §*&
Int T'y°. Since t'g(t, x) =0, by Lemma 4.2 (1) we can find a natural number J
and holomorphic functions G;(z, z) defined on a neighborhood of Dy (d, I';) such
that
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J
06 2+ =TT, 00 =) G,(t, +/=1T}0),

j=1

where 8 is a positive constant and each I is an open cone of IR” such that £*&
T, Set Gy (7, 2):= — #G (¢, 2). Choose proper convex open subcones I'JET,
(0<j<)) such that £¥€Int(¢)° and £¥&Int (') ° (1<<)J). Then, by Lemma
4.2 (2) there exist a positive constant 0 and holomorphic functions Gy (7, 2)
defined on a neighborhood of Dy (6, ' ;+T ;) such that

J
c,=ZG,,,. CutGu=0  (0<). k<))
k=0

By the Taylor expansion, let us write Gy (7, 2) = 2 ajra(2) 7% and set
a€N !

G;k (Ty z)i= Z Bk, (Z) et

azl

Hu(t, 2):=Gu (1, 2) —7'G (1, 2).
Since

J J
TGz ) == Golr. ) =—7'), Gulr. )= ), Hu(r, 2
k

k=1 =1

holds, we have

7
G(zt, 2) =”‘Z Gor (7, 2).

k=1

This implies
J
Gt x4+ =TT, 0) = —~Z Gox (£ 2+ =T (T4+T)0).
k=1

Since &* is not contained in (I'¢+I'x)°, we have g(t x) =P (G(t x+/—11; 0))
=0. This proves the uniqueness.
It is clear that (1) implies (2). Suppose (2). By virtue of the uniqueness,

d

we can argue by induction on |l|3= 2.1, Thus, we may assume that = (1, 0....,
1=1

0). Let f(¢ x) be represented by a germ F(t, x+ v—1T) of Bfu, where

F(z, 2) is holomorphic on a neighborhood of Dy(g, I') for €e>0 and open convex

cone I' of R” with £*€Int I'°. Then there exist holomorphic functions G(z, 2)

and H(7, z) defined on a neighborhood of Dy (g, I') such that
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F(t,2) =7, G(t, 2) + H(T, 2),
where 7":= (73,...74) . Let us set

g(t, I):=SbN|M(G(t, I+/——1F O))
(¥, ) =spyu(h(f, z+/—1T0)).

Then since
0=744(f(t, 2)) =n(t. x) EChu,».
we easily see that
h(t, £) =0€Chiu,s.
The proof is complete.

For a vector 1= (I,..I.) €ER% we set [ +:= ([1]+....[1]+), where [[],+=
max{};, 0}. We fix JEN, m™ = (m{ ..., m¥’) and B = (&,.. k) €Ny with
m? 2 kY (1<v<)) and set m= (m®..., m) and k= (EV..., ) € (N¥) /. Set
1= (1,..1) EN

6.6 Definition. Let P(7, z 0, 0,) = (P** (¢, z 8., 0.) ) %=1 be a matrix of
size J X J whose components is in Px defined in a neighborhood of the origin.
Then. P is said to be of Fuchs-Goursat type with weight (k, m) (with respect to
T-variables) if it can be written in a form

P (2. 2 0r. 02) = Z P (7, 2 02) 0,

o<asm®

where each P¥” is a differential operator satisfying the following :
(1) The order ord P¥» of P¢ is at most |m®|—|al;
(2) There exist P5*¥ (7, z) and P2*¥ (7, z 8,) (0<a<m™) such that

_ W) — W) 1
P&”’”’ (z, z az) =l m‘”’+k”]+P‘11.(u,u) (z', z) + plo—m® >k “'lnhPaZ’.(a,v) (T' z 52).
Let T = (T¥,.., T¥) (1<v<)) be indeterminates and set

Ti= (T(l) ..... T(”).

If Pis of Fuchs-Goursat type with weight (& m), we define the indicial
polynomial of P by

$ela Dimer ) A0, 2 5.(1%))

m® =¥ <a<m®

4
where S (T%):= IS4, (T}) with
=1
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’

V) M —1) ... (V) — >
P e A
\a,=4u).

1 a,
Consider the following condition:

(A). There exist a positive constant C>0 and a neighborhood W of the origin
in C* such that for any zE€ W and BEN?

', V!
|96 (z; B+m®—kV,.., B+mP —kP)|=CI] (B+1)""
v=1
Under the notation above, we can prove the following theorems:

6.7 Theorem. Let P be a matrix of Fuchs-Goursat type of size J X J with
weight (B, m). Let p= (x*/—1<{&*, dx)) be a point of T§uTrL with Ty (£*) =0.
Assume that P satisfies (A). Let u(t, x) = (w (t x) ... w(t x)) be a germ of
(Gam) ® at p. Suppose that u(t, x) satisfies

{ P(t, x; 8r, 02) ult, x) =0,
7 o (0, 1, (1, ) =0 (1<w<J 1<, 0, SmP? — Y —1).
Then it follows that u(t, x) =0 at p.

6.8 Corollary. Let P be a mairix of Fuchs-Goursat type of size | X J with
weight (k, m). Let x* be a point of TyM with T (x*) =0. Assume that P satisfies

(A). Let u(t, 2) =" (us(t, 2) ..., w(t, 2)) be a germ of (BRm)®' at x*. Suppose that
u(t, x) satisfies.

{ P(t, x; 05, 0z) u(t, x) =0,
iy B (D7 (1, 2)) =0 (1<v<J, 1<i<d, 0<j,<mP— kP —1).

Then it follows that u(t, x) =0 at x™*.

6.9 Theorem. Let U be an open set of Tt ,uTyL such that each fiber of
Ty (Ty) M) = TEY

is connected and intersects with Trm, TyL, for any 1 <i<d. Let P be a matrix of
Fuchs-Goursat type of size JX J with weight (k, m). Assume that P satisfies (A) and

that a section u(t, x) ET(U: €hm)® satisfies

P(t, x; 04, 0) u(t, x) =0,

1<v<] 1<i<d,
TN (0 wy(t. x)) =0ET(UN TFum, TrLi; €im,) .

0<j;i<m¥—kY—1
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Then it follows that u(t, ) =0.

6.10 Corollary. Let U be an open set of TwM such that each fiber of Tv: U—
N is commected and intersects with TwM; for any 1 <1< d. Let P be a matrix of
Fuchs-Goursat type of size J X J with weight (k, m). Assume that P satisfies (A)

and that a section u(t, x) EI'(U Biu) ¥ satisfies

P(t, x; 0s, 32) u(t, x) =0,
1<y 1<i<y, >

F, t — . @BF,
7N]M(at,l w,(t, x)) =0€I'(UN TyM; «%N,M,) <O<j,~<m§”’—kf”)—1

Then it follows that u(t, x) =0.

By Lemma 4.6 we have also the following corollary:

6.11 Corollary. Let P be a matrix of Fuchs-Goursat type of size | X J with
weight (k, m) . Assume that P satisfies (A) and a germ u(t, x) of (Ghm) ®’ at
(0:/—1<E*, dxy) € THX satisfies

{P(t, x, 0y, 02) ult, x) =0,
B wlie0=0 (1<u<J 1<i<d 0<j,<m¥ — k¥ —1).

Then it follows that u(t, x) =0 at (0; v/ —1<E*, dx>).

6.12 Remark. (1) Since the induced system Jy is not necessarily a
coherent @y-Module in cases of Theorems 6.7 and 6.9, we must impose
boundary (or rather initial) conditions on each hypersurface M, rather than
the boundary conditions on N. This might be regarded as a hyperfunction (or
microfunction) version of the Goursat problem, rather than the higher-
codimensional boundary value problem.

(2) In [Y], we discussed the solvability of the Goursat problem for a Fuchs-
Goursat type operator in the framework of microfunctions. By Corollary 6.11,
in the differential case we can conclude a uniqueness of each solution in
Theorem 4.2 and Corollary 4.5 of [Y].

Proof of Theorems 6.7 and 6.9. Assume that the conditions of Theorems 6.7

or 6.9 are satisfied. Then we can find a v(t, x) =' (n (t, ) ,..v; (t, 2)) € B4 ¥
such that for any 1<y<J

w_ o

afm (u,(t, x)) = w(t x).

Indeed, in case of Theorem 6.7, we may apply Lemmas 6.4 and 6.5. Next let us



TosHINORT OAKL AND SUSUMU YAMAZAKI 433

consider the case of Theorem 6.9. By Lemma 6.4 and the injectivity of &k, on
the set UN TF,u, T¥rL, we have

Faseodin 0w (t ) =0  (I<y<J 1<i<q, 0<; <m? — g’ —1).

On the other hand, since o (u, (¢, x)) E(zy ((y) (1)) ; Ghm) by virtue of
Lemma 4.6 and the assumption on U, the equalities above hold at each point of
U. Hence applying Lemma 6.5 at each point of U, we can obtain the desired
result. Define P, by

tm‘”-—km O
Pi=P- )
O tm”’—k”’

Then we see that P, is of Fuchs-Goursat type with weight (m, m) and satisfies
(A). Moreover since P = Py v, the proof of Theorems 6.7 and 6.9 are reduced
to the following proposition:

6.13 Proposition. Let P be a matrix of Fuchs-Goursal type of size JX J with
weight (m, m). Let p= (0;4/—1 {&* dx)) be a point of THY. Suppose that P
satisfies (A) and that a J-tuple u(t, x) € (Bhu) ¥ at p satisfies

P(t, x; 8, 0z) ult, x) =0.
Then it follows that u(t. x) =0 at p.
To prove Proposition 6.13, we need the following lemma:
6.14 Lemma. Under the same assumption as in Proposition 6.13, the
morphism
¢: Dy’ 2 (@1,...Q) — (Q1,...Q)) - PE DY’
1s injective on Y.

Proof. 1t suffices to prove that ¢ is injective at the origin of X. In general,
for a germ @ of P at the origin, write @ in the form

Q(t, z 0., 0;) = Z Qas (2, 02) 7907

a,fEN?

Then we define ordy (@) and Gy (Q) by
ordy (@) :=max{|B—al; Qus*0}

and
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ar(Q) (T, z 0, 0,) = aY,ordy(Q) (Q) (t, z 0, 0.):= Z Qus (2, 0;) T3,

|8~a|=0rdy(@)

Moreover, let us denote by ord (6y (Q)) the usual order (with respect to @ and
0.) of 6y (Q) and by 0, (6y(Q)) the (principal) symbol of &y (Q) of order I if

ord (¢ (Q)) <1 Note that ordy (P**) <0 and

Gro(P9) (5,500 = ) By (0, 2) 9D

o<asm®
with 70, = (110z,...,740z,) . We denote by 7 and { the dual variables of 7 and z
respectively. Hence we have ord (0,0 (P“*)) <im™| and
Olm )y (6Y,D (P(u,l/)> ) (T, z, 77) :P:,"Eg)'m (0. Z) Tm(w'f]m(w.

Now assume that a J-tuple (Q...,Q;) #0 satisfies

¢ (Qr....Qp) =<i QﬂP{u,D""’i Q,,P(”’])>=O.
=1

u=1
Let us set

jo:=max{ord (6y(Q,)); 1Su<j,
ly=max{ord (6y,, (Q,)); I1<u<J.

Then we have

J
Z 6Y,JO(Q11.) Gyo(P¥Y) =0 (1<y<]).

u=1

Thus it follows that
J
Z 01, (Br.40 (Qu)) (. 2 1, O o (0, 2) =0 (1<u<)).
p=1

Let us set

.fo (Z; B) i=det (P}n%u) (O, Z) ‘Bm(u))
with 8 € C”. Then $o(z B) is written in the form $, (2 B) =p"c(z) with a

d
holomorphic function ¢(z) and #: =2 m'”. On the other hand, we have

1=]1

limB"p(z B) =c(2),

B—oo

where §— ® means that each component 3; of 8 tends to infinity. Thus the
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condition (A) implies, in particular, that ¢(0) # 0. It follows; that J, (z; B) never
vanishes if |z is small enough and ;€ C\{0}. Hence we have oy, (y,;, (Q.)) =0
as a function of 7, z 7 and { for 1 <u<]J, which is a contradiction. Hence we
have Q,=0 for 1<u<J This completes the proof. O

Proof of Proposition 6.13. Let us set J:= Dx’/ Image ¢ =Dx’/Dx’ P. Then
by Lemma 6.14, we have an exact sequence:

P
0 Dy’ Dy’ M 0.
Hence ¢7*R# oma, (M, Ox) can be represented by the complex:

P
0— (3'0x¥ — 7' 60x¥ — 0.

This complex is exact by virtue of the Cauchy-Kovalevskaja type theorem
(Theorem 1.3 of [Y] which is an extension of Théoreme (1.1) of Madi [M]).
Thus we have

(v RF# oma (M, Ox) =0.
Applying the functor uy{*) &0,y and taking the #n-th cohomology, we have

Homa, (M, Chim) © v=T7¢% 42 =0.

This completes the proof. O

6.15 Example. Let us choose J=d and set m*:= (0,....0,20....0) and £*:=

4
(0,..0,10...0) N (1 <y <4d). Consider the following matrix of differential
operators:

P(T. 2. ar, az) = (P“’J) (Ty Z; a‘t, az) )ld,]=1
= (T,ar,25,,+ (A.xj (T, Z) +Tl"BU (z-y Z; az) ) 61’,
+C” (7-. Z) +TldDu (T, z; az/\)(ii,]=ly

where (4, (7. 2))%,-1 is an upper triangular matrix, B, (7, z 0;) and D;, (7, z 9,)
are differential operators with ord B,; <1 and ord D,, <2 respectively. Then, P

is of Fuchs-Goursat type with weight ((V,.. 2?) (m®, .. .m"?)) and
Ip(z BH+mP =P ., B+ m' P —E?) =det ((B,+1)B;0,,+ 4,0, 2) (B;+1)).

Hence if each eigenvalue of (A, (0, 0))¢,-1 is not in {I€7Z; 1<0}, we see that P
satisfies the condition (A).

Let u(t, ) =*(uy ¢, x),.., ua(t, x)) be a d-tuple of F-mild hyperfunctions
(or F-mild microfunctions). Suppose that u (t, ) satisfies P u (¢, x) =0 and
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7hih (u, (¢, x)) =0 (1<i<d)

Then it follows that u (¢, x) =0.

[Kn]

[K-K]

[K-L]
[K-0s]

[K-S1]
[K-S2]

[Kt1]
[Kt 2]
[L-MF]
[L-S]
(M]

[01]

[02]
[03]

[04]

[Os]

[S-K-K]
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