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Integral and Theta Formulae for Solutions of

Knizhnik-Zamolodchikov Equation at Level Zero

By

Atsushi NAKAYASHIKI

Abstract

The solutions of the sin Knizhnik-Zamolodchikov(KZ) equations at level 0 are studied. We

present the integral formula which is obtained as a quasi-classical limit of the integral formula of
the form factors of the SU(N) invariant Thirring model due to F. Smirnov. A proof is given that

those integrals satisfy s/jv KZ equation of level 0. The relation of the integral formulae with the

chiral Szego kernel is clarified. As a consequence the integral formula with the special choice of

cycles is rewritten in terms of the Riemann theta functions associated with the ZN curve. This

formula gives a generalization of Smirnov's formula in the case of 5/2.

§ 00 Introduction

In [14] F. Smirnov derived a curious theta formula for the solution of the sk
Knizhnik-Zamolodchikov (KZ) equation at level 0. The aim of this paper is to
generalize Smirnov's results to the case of s/jv. Before giving a more detail of
our results let us summarize the reason why we are interested in the level 0
case of the KZ equation.

The KZ equation was introduced in [5] as one of the fundamental
equations characterizing the correlation functions of the Wess-Zumino-Witten
(WZW) model in conformal field theory. For the affine Lie algebra 9 and its
highest weight representations Vi,"m,Vm the KZ equation has the form

where F is a Vi®-*®Vm valued function in X\, • • • ^ O T > Q?; is the invariant
tensor, with respect to the symmetric invariant bilinear form of 9, acting on
i-the and y-th tensor components, g is the dual Coxeter number of 9 and k is a
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parameter. The number k is called level. In the WZW models levels are positive
integers which coinside with those of the integrable highest weight representa-
tion of g.

The KZ equation acquires a new life from the study of the two dimensional
integrable massive quantum field theories (IMQFT) and solvable lattice models
(SLM). F. Smirnov formulated an axiom of locality for form factors and, for
several models, obtained integral formulas of form factors [13]. In [12] the
rational q deformed KZ (qKZ) equation was found as a consequence of the
axiom. Hence the moment the qKZ equation is invented the integral formula for
the solution is constructed. It is important to note that the qKZ equation
appeared in this context is of level 0.

Around the same time I. Frenkel and N. Reshetikhin developped a general
theory of vertex operators for quantum affine algebras [3]. They derived a qKZ
equation of general level as the equation satisfied by the highest-highest matrix
element of the vertex operators. This theory was successfully applied to the
study of SLMs [4]. Although, in this application to SLM, the building blocks are
the vertex operators of positive integer levels, the form factors and the
corelation functions are shown to satisfy the level 0 and level — 2 x (dual
Coxeter number) qKZ equation respectively [4] [8]. Thus the level 0 qKZ
equation and their degenerations are of special importance in the context of
IMQFT and SLM.

In order to understand the nature of form factors F. Smirnov studied the
quasi-classical limit [12] [14]. He noticed that the period integral of the
hyperelliptic curve s2=f(z) = YlJ=i (z~ AJ) appears as the limit of the integral
formula for the form factors of SU (2) invariant Thirring model. Then in [14]
he rewrites them in terms of Riemann theta functions as

(1) A,.,£,.Ui, -,/U

= 0 (det A) ~3A-3 /40[eA] (0)4det(3,9, Iog0 [eA] (0)) ,<,,<„

where A= (ei, • • • , £2^) is the sequence of ±, the number of + being equal to the
number of — , Q a certain fourth root of unity, CA a nonsingular even half
period corresponding to the partition {1, 2, • • • , 2n} = (j\£j= +) U {j\£j= ~),
A=II|<;Q, — /I;), df = d/dzl, g=n — l the genus of the curve, {At, B}} a canonical
homology basis and A= ( f A t z J ~ l d z / s ) i £ l i J < , n . The function F=^f£l,...,£2nVsl&)°°°

®vB2n gives a solution to the KZ equation taking the value in V®2n with V =
Cv+®Cv- being the vector representation of sl2.

Since the theta function of an algebraic curve is the tau function, modulo
some factor, of a soliton equation, this result suggests an intimate relation of the
level 0 KZ equation with the soliton equations. In spite of Smirnov's effort on
this problem [14] [15] [16] this relation is not yet clearly understood.

Integral formulae are known for the solutions of the KZ equation with an
arbitrary level associated with any Kac Moody Lie algebra [10] [11]. In [9] it
is shown that those general integral formulae have the exact forms as their
integrands in the case of sl2, level 0 and singlet solutions in the tensor product
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of vector representations. Taking this fact into consideration is crucial to give a
complete correspondence between general formulae at level 0 and the Smirnov
type formulae in [9]. A completely analogous structure exists in the case of slz
rational qKZ equation [9]. Thus Smirnov type formula is related with a subtle
structure of level 0. In the six case to find a similar structure to the s/2 case in
the formulae in [6] [10] is not yet succeeded.

One strategy to understand Smirnov type solutions more clearly will be to
generalize it. This is the reason why we are interested in the generalization of
the Smirnov's results to the other types of Lie algebras than s/2.

Now let us describe our results. In [13] the integral formula for form
factors of the SU(N) invariant Thirring model is obtained. It is a solution to the
sh rational qKZ equation of level zero. We take the quasi-classical limit of this
integral formula. It is expressed as the determinant of the period integrals of a
ZN curve. A ZN curve is a natural generalization of a hyperelliptic curve, which
corresponds to AT = 2. Roughly speaking the integral formula obtained in this
manner should give a solution to the six KZ equation of level zero. From the
mathematical point of view it is not very easy to prove rigorously that the
asymptotics satisfies the KZ equation. On the other hand the formula for the
quasi-classical limit is rather simple. Hence it is desirable and interesting to
prove directly that it satisfies the KZ equation. We give a proof which is new
even for the s/2 case. Compared with the proof in the generic level case [6] [11]
our proof looks more complicated. It will be related with the degenerate
structure of Smirnov type solutions found in [9]. Since we have established a
correct Smirnov type integral formula in the s/jv case it is an interesting
problem to get them from the formulae in [6] [10] in the spirit of [9].

We rewrite the integral formula in terms of theta functions on a ZN curve.
A priori this is not a trivial task at all. In fact the following major problems are
not obvious from the formula and arguments in the 5/2 case. The first one is
what kind of rational periods parametrize the tensor components of the solution.
The second one is whether we can expect the second order derivatives of the
logarithm of theta functions or not in the six case. The first problem is resolved
with the help of the Thomae formula for ZN curves which was discovered by
Bershadsky and Radul [1] [7]. Namely the tensor component is parametrized by
certain non-singular I/TV or 1/2N periods introduced in [1]. The second
problem is solved by finding a relation of the integrand of the integral formula
with the Szego kernel. In fact the product of Szego kernels is related with the
second order derivatives of the logarithm of theta functions by the formula due
to Fay [2].

Now the present paper is organized in the following manner. In section 1
the integral formula is given. The theta formula is given in section 2. It is
proved in section 3. In section 4 a proof is given that the integral formula
satisfies the KZ equation and belongs to the trivial representation of six. A
derivation of fundamental relations among differential forms used in section 4 is
given in appendix.
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§ 1. Integral Formulas

Let sin be the simple Lie algebra of type AN-\* ( , ) the symmetric bilinear
form on sl^ given by (Xt Y) =tr(XY), {ij} a basis of s/# and {/;} the dual basis
with respect to ( , ). The invariant element 0 is given by

Let V be the N dimensional irreducible representation of slN and m a positive
integer. The Knizhnik-Zamolodchikov (KZ) equation with values in the Nm fold

tensor product V®Nm of V is the differential equation for the v®Nm valued
function F

where Q,,- means the action of Q on the i-th andy-th components of V Nm, k is
a complex number called level. The explicit form of KZ equation in terms of the
vector components is given in section 4.

Let v> = f (0, • • • , 1, • • • , 0) in C^, where 1 is on the/-th place. Then we have

V=®jLiCv,. We denote by A= (A\, • • • , AN) the ordered partition of {1, 2, • • • ,
Nm} such that the number \At \ of the elements of At is m for any i. To an

ordered partition A we associate the weight zero vector VA of V®Nm by

where

i^Aj if and only if kt=j.

The set of {VA} forms a base of the weight zero subspace of y®Nm
m

The operators ZJ4=* U* ~~ Ay)~lQtj in the right hand side of (2) commute
with the action of slN. Thus it has a sense to consider the KZ equation for a

function taking values in a fixed weight subspace of V®Nm. In this paper we
exclusively consider the solution F whose value is in the weight zero subspace

of the tensor product \s®Nm. Then we can define the component /A of F by

(3) F==LfAVA'
A

where the sum is over all ordered partition A.
We denote by C the compact Rie.mann surface defined from the equation

sN=f(z) = nf=1 (z~^). It is called a ZN curve [l] [7]. The genus g of C is
given by 2g= (N—l) (Nm~2). For Ar and p^Ar set

^w=nu-^ ) , 9Ar(z} = n(z-A^ g%(z)= n u-w
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and define the meromorphic differential form ftp (z) on C by

.M-gM-'(W£U),
fip(z)~ ( z - X p ) s dz'

We set L= (N— l)m — 1. Then we have

Theorem 1. L#£ {/?i, • • • , pi} is an arbitrary subset of {1, 2, • • • , Nm}. Define
N-l

j) =rire^,56^Ur — >U , A (pi, ' • - , pL) = det Ufc"f) i<t ,<£ and A =

0 . Tfog n#/i£ /i<md side of (4) do^s noif depend on the choice of {pi, • • * , ^}.
1 . The function F given by (3) and (4) is a solution to the six KZ equation of

level zero for arbitrary set of L cycles (71, • • • , 71) on C.
2. ForanyX^slN. XF=Q.

The first statement of Theorem 1 follows from another expression for
Let us set

where [ ]0 denotes the polynomial part of a Laurent polynomial. It is obvious
that d/dz can be out side of the symbol [ ]<>.

Theorem 20 T/ie function /A given by (4) is also written as

We shall give some comments on the integral formula given here. In [13] F.
Smirnov derived the integral formula of form factors of SU(N] invariant
Thirring model which satisfy the deformed Knizhnik-Zamolodchikov (dKZ)
equation on level zero. Scaling the rapidity variables ft as $j — X}/h and taking
the quasi-classical limit h—^0, we obtain the integral formula in Theorem 2 with
some special choice of cycles {7*,}.

§ 2e Theta Formula

We shall give another expression for the solution F given in Theorem 1. To give
a precise statement we prepare necessary notations associated with the ZN
curve C [7]. The N-cyclic automorphism <p of C is defined by 0: (z, s) '-* (z, CDS) ,
where a) is the JV~th primitive root of unity. There are Nm branch points Qi, • • • ,
QNM, whose projection to z coordinate are ^i,"',/Uw. The basis of holomorphic
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1 -forms on C is given by

We fix a canonical homology basis (ott, &} whose intesection numbers are
at ° (Xj = {3t ° &j = Q, al • J3j = d,j. Let A be a Riemann divisor for this choice of
canonical basis. Let us define the divisor class D by D = NQt which is
independent of the choice of i. To each ordered partition A we associate the
divisor class eA [7] by

where for a subset S of {1, 2, • • • , Nm} we set

'•£*•
The divisor class eA is a 1/JV period for N even and is a 1/2N period for N odd.
We consider the index of A} by modulo Ar. In particular AQ=AN.

Let {vj (x)} be the basis of the normalized abelian differentials of the first
kind whose normalization is

fvk(x} =
"J A}

We set Tjk= fB,Vk(x). Then the period matrix r= (TJk) is symmetric and its
real part is negative definite. The Jacobian variety /(C) of C is described as
/(C) = Cg/27TiZg + Vr. For any element e e Cff, there exist unique elements

such that

We call 5, £ the characteristics of e. The Riemann theta function with character-
istics <5, £ is defined by

It satisfies the equation

(6) 6 [ *+* ] (z) -exp (2;rm<5<) 6 [ J ] (z) ,

for m, n^$tg. For an ordered partition yl let us take a representative e~A^da of

^ and let e"A = \ \ . Then the logarithmic derivatives
i 8 JT
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are independent of the choice of the representative BA by (6), where a— (ai, • • • ,
a,), |a| = aiH \-aff, da=dil"°dga and dj=d/dz}. Hence we use the notation
da\ogQ\€A\ (z) for those logarithmic derivatives for the sake of simplicity.

Let us define the connection matrix between {wp**} and (vj(x)} by

With the aid of this matrix we define the vector field on/(C) by

Now we can state the theta formula.

Theorem 3, For any sw&sef {ii<-" <jj o/ {1. 2, • • • , g} we take the cycles
{7*;} as Jj — Al}. Then the corresponding solution of the KZ equation in Theorem 1 is
given by

N-l

A N2

/Ui, •• ' , ANm)A=

c is the overall constant independent of At's and A.

Using the Thomae formula for ZN curves one can rewrite the IL<, (AtAj) in
terms of theta constants. The result is

Theorem 4. For the same choice of cycles as in Theorem 3, we have
12N"

N (N-\-l) l/3~th root of unity, C (A) , which is independent of the
partition A, is given by

CU) =c(det

Here c is a constant independent of /(t's and A = det(fA^a>) . For an element a of the
symmetric group SN-i of degree N~l we define

Remark. If N=2. then L=m — l=g and ((J,(i&)) =A~l, where g is the genus
of the hyperelliptic curve C. In particular (ii, • • • , ii) = (l, 8", fif). From the
matrix relation

(0)) - (9z9;-

we have
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which is nothing but the Smirnov's formula (l) for 5/2.

§ 30 Proof of Tfieta Formulae

Let C be the universal covering space of C. We identify a holomorphic one

forms on C with those on C which are invariant under the action of the
fundamental group of C. We set v — (vi, • • • , v g ) , the vector of the normalized
differentials of the first kind. Recall that the chiral Szego kernel defined by BA is

where

- fy
f—x— I v,

<J x

the integral being taken in C and E (x, y) is the prime form [7]. We remark
that, as to the CA dependence, R(X, y|^i) depends only on the divisor class of et.

Let a)(x, y) be the canonical symmetric differential, that is, a)(x, y) is the
section of the canonical bundle of C x C, symmetric in x and y, has a double
pole at x = y, has the vanishing A period in each of the variables and has some
normalization (for more precise definition see [7]). Theorem 3 is a corollary of
the following proposition.

1, For l<p<Nm we have

=Nf Up) ̂ w (x, 0,) +^ -^ajogG \e J (0) v, (x) .

As in [7] the value of a (half) differential form at the branch point Q^ is
defined as the coefficient of dt (or <Jdt in the half differential case) in the
expansion of the form in the local coordinate t = (z — XP)1/N. Assuming this
proposition let us first prove Theorem 3.

Proof of Theorem 3. Since the integral of a)(x, Qp) along the cycle A, is
zero for any i, we have

where we use the normalization condition of (v}}. Thus we have

A\ (0)) i
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L(L-l)
-(-1) 2

Substituting this equation into (4) we obtain the formula of Theorem 3. D

In order to prove Proposition 1 we first prove

Proposition 2. For l<p<Nm we have

(7) [j.
A

p=Nf(Ap}
K^R(x, Qt\eA}R(x, Qt\~eA] .

For the proof of this proposition let us recall the following notation [7] [1] :

_ N-l N-l, ... JV-1~ 2~+

AT~1

where /^J? + Z, i^Z and (al^a— [a] is the fractional part of a
In [7] we have proved

Proposition 3. For aw ordered partition A we have

/±, Or, ̂ *) = Iff
1=1

~= (Ao, -/Ijv-i, '"'. Ai) , ̂ i+:=:^l flwd fe{— j is determined by i

By Proposition 4 in [7], for l=— (N— 1)/2+; with/^Z, we have

(9) div/,(x, /I*) =

where {oo(fc)} are jy infinity points. The index k of A* is considered by modulo
N. The A^j is missing in the right hand side of (9). Let p^Ar, 0<r<N — l. We
sety = QP in (8) . By (9) only the term — / = — (N — 1) /2 + r in the sum of the
right hand side of (8) is alive. Hence we have

where r~—N— 1— r. Similarly

< , f , , lf-J&^r-i(x,A-)F
, QP\-eA) =ff(r . Qt\eA.) =jf - » - At-z(x
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Therefore

(10) R(x, Qp\eA)R(x, QP

i,, A)

Let us calculate the right hand side of (10) .

Lemma 1. The following equations hold:

(ID L^JQ>, A-)LN_r(Qp, A) =

(12) f - S - ( s

Proof. Let t— (z — Xp)l/N be the local coordinate around Qp. Then

Nm
:(i+o(«).

Nm

where we use the relation — qi(i) = q-i(N — i) [7]. Therefore we need to
calculate the number

_ _ _

By a direct calculation we have

I+TT ifi

r i f i ^ rmod^V.

Hence

Similarly, using
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~ ifi

we have

Thus the lemma is proved. d!

Multiplying (ll) and (12) and substituting it into (10) we obtain the
equation (7) . O

Recall the Fay's formula ([2], Corollary 2.12, see also [7] section 4):

(13) R(x,y\eA}R(x,y\-eA)=a>(x,y}+
t

By calculation we have

(14) *''<«*) --

Substituting (14) into (13) and using Proposition 2 we have the equation in
Proposition 1. D

In order to prove Theorem 4 let us recall the Thomae formula for Zjv
curves [1] [7] :

6[eA\ (0) W=CA (det A)N { j (A/1,) ™«>->w,
l^J

wrhere CA is a constant independent of Xt's and

The number q (i, /) depends only on \ i — j \ [7]. In particular q (0, 0) =4 (i, i),
q (^ /) — ̂  0'. *') f°r ^nY ^ a°d /. We define the action of the symmetric group SN

of degree N on the set of ordered partitions by

The subgroup Sjv-i acts on the index 1, 2, • • • , N—l as we already defined.
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Proposition 4, For an ordered partition A we have
12N

(0) ~

where ^A is some N(N+ l) l/3~th root of unity and C is a constant independent of
At's and A.

Let us prove Proposition 4. By taking the product of theta function with the
characteristics eA° for all a^SN we have

^)(det^)^
'ff<=SN

= ±(U[cAMdetA)Nl*

Set r=0(0, 0) and

2=0

Since, for i¥=y,

we have

N-l

2=0 l<)

Using q ( i , j ) —^(i + 1, y-fl) and Lemma 10 in [7] we have

Thus

F = i

From this we obtain
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Recall that the ordered partitions which are obtained from A by the cyclic
permutation of indices correspond to linear equivalent divisor e& [7] . Therefore

TTT T-Tn 0M (o)2*2= ± ( n
Since C^ does not depend on A we have the equation in Proposition 4.

§ 4. Proof of Integral Formurae

In this section we shall give a proof of Theorem 1 and Theorem 2.

§ 4.1. Proof of Theorem 2

Theorem 2 follows from the following proposition.

Proposition 5. For any p

^C?U)#~'=AtfU)

The proof of this proposition is totally similar to the case of 5/2 [14]. For
the sake of making the paper selfcontained we give a proof.

Proof. Let p €E ylr. It is sufficient to prove the following equation, the
coefficient of dz/s:

.

Since both hand sides are rational functions in z, it is sufficient to prove (16)
for z\ sufficiently large.

Let t be a complex parameter. More generally we calculate the right hand
side of (16) replaced Xp by t. We have

;=0
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Thus

3=lk=l

= Ay(*) . fr .-
In this calculation we use

If we set t = 2p, p^Ar in (17), then we get the right hand side of (16). D

§ 4020 Notations

For an ordered partition A let us denote by A(t}} the ordered partition which is
obtained from A by exchanging i and /. For example if At = {(i — 1) m + 1,

im}, l<i<N, then yl(12)-/I (assuming w > 2 ) , A\lm+l)= (m + 1, 2, •-, m}. ̂ lm+1)

= {lf m+2, -, 2m}, ylillll+1)=^ for fe>3.
In terms of the components /A, if p^At, the KZ equation of level zero is

i r i \, i
U Ap-X, N

If we define the function /A by

the KZ equation above is equivalent to

For a nomiegative integer r and a subset {pi, °°\ pr} c:{l, • • - , Nm}, set

Then Theorem 1 is equivalent to the following proposition.

Proposition S0 Le£
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Then, modulo exact forms, /A satisfies the equation (18) and XfA
 = Qfor any

Our aim is to prove this proposition. Let us set

Ar=(il — , ir
m} for

For the sake of simple exposition we shall prove the equation (18) for p = im*
Other cases are similarly proved.

In the following sections we use the usual equality symbol = for the equality
modulo exact forms. We remark that all the modulo exact relations, which we
use, follow from the relation in Proposition 5.

§ 4.3. Fundamental Eelations

Now let us give all the relations which we need for our purpose. For the sake of
simplicity, in the formulae below, we denote At by i. For instance i — j — Xt — /(}.

We set X={if\r<N, (r, /) =£ Qv-1, m)} and

O m (:N _ -r\
___ 5 = 1 UOT Is)

^r rtm-l(:N :N\ '
Lls=l (Im — Is)

For p^im and \<j<Nm we also set

for the sake of simplicity. Now the relations are given as follows.

A_ 1\ 1 A 1 1 TT p-j P

2. For 1*1', (r, /), (

'A
(21)

i'i

+ ?"?.
/ \ / \^(tr1-*;) r_ ^ l+f1*'1 ]1.-1-/) L \trv ^rvJ

3. For

V^^/ 1 »r , I / . \ r_ i . \ r_ t \ / .w .w_i \ I .W_1 I '
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/
( i r ~ ~ l — i m j (i?m~~i?'~1} TT i?~l~~j F / ^

+ ^.^ __.*_!) (^_^-i) Al Tp—r["l t-/y-i

4. For

(23)

where we set

5. For (r, /) * (N, m)

(24)

The proofs of these relations are given in appendix.

§ 4o40 Equation for/A

Let us take (pi, "°, ^L) — (il, • • • , im-i) in the expression of /A- By differentiating
the defining equation (19) in ̂  we have

— 1 A Cvl ... V^"1
1 — . LI yij, , lm—\

Substituting (20) into (25) we have

IL<«OMJ 9^1 _/ i IP i \ /^. . . ^
M -i oe, -jv-i^-i 9^1 w \ ,-jv ,-jv-i A/ A ,-jv v / l ^ ' 1 "\-^-i

tl, , tm-J l« Z-w In? t==^ ^m~r \^1 ^w-1

1 V 1 TT if-/ /^ */r A

Using (23) in the second term of (26) we obtain
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w-1 N-2 m
-m + 3 j V 2

N-2 m

- V V .

V A»- V 1 iw,*.g(*f-y)
L (iS-tJ) (#-£-') iN

m-it-1 U,**,,*^®-1-))

"I*̂\ if

where in the second term ™ is on the /-th position counted from . In
V**"1 /

the derivation of (27) we have used

(»s-i/)2 tx-tS-
jy^

i\r ^r T~ I

^ ^ r= l /

which follows from

>r -N-l
l>l lm

/;JV _ -JV-n ,-JV _ -r ,-JV _ -JV-1
Urn ^w y t»i ^/ im ^w

and

The equation (28) follows from the residue theorem for the function

This is the typical argument to prove an identity in the proof below.

§ 4.5. KZ Equation

We shall rewrite the KZ equation in a similar manner to (27). We take (pi, • • • ,

PL) — (ti, •", im-D in the expression (19) for ̂  for any j&Atr. Then the KZ
equation substituted by (19) is



456 ATSUSHI NAKAYASHIKI

lit<u(AtAu) d/A= i y i (A A

N-l m

+lVT__L.__.JI«<.(4«4g)_ Jif... i/r

Note the relations

Thus we have

A

By the equation (24), if r^A7 and ff^im"1. we have

Using the relation (23) we have, for r<N—2,

(33) (^ if i! if
, -
lm-1

At/ /i t/ A
•N-l

m~l

k = i }eX j*tf-*

and, for

•/ "JV — i 'ir
ll ... m l

•r jN—l -r
ll Ik lm

(A
\il

jm-j 4-tf"1 nr^/Cif-1-^-1)/^
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:N-l -N-l -N-l- -
If we substitute (32) , (33) and (34) into (31) we have

dfA _V 1 //I A

A/A

_^N-1\2 JL A jN-\_jN-l \ £l ,-JV-l ,-JV-l

"-1 / .K-l

if ur tf,
/I

, i

E 7^—^r^irr E •*-•*-* n '*^*'U'-i-.^(r*?-fe)
\^ wz ^// \M ^wz / ^ m Ik *-x-i€=.i/ i^i^'"1 \^A: //Tf=«{/ f, _ i j • • " • • / ' # v ^

•r /A^-l ,-rt/ lm I/

i[ if-1

/I
•JV-l

where as in the previous case 1 .r ) etc. are all on the /-th place counted from
\ \r

1 etc. For the economy of space we set
tf/

Q ( r , / f A f e ) = ( ^
\ H

Q ( r . / . J V - l i f e ) = ( ^\ i/

A A

ii i»
.r -N-l

A

A
where the positions of I r I and I ^_1 I are as above. If r=N— 1 then ij, should
be replaced by ij,-i. \ik ' \ik

The forms

' A
:N-1]>m-]

are linearly independent in the cohomology group H1 (C, C). Since we do not use

-N-l /' .N- .-
lm-l / \li j \tm-l
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this fact in this paper, we do not give a proof of it. But the fact helps to
understand the strategy of the proof below. The right hand side of (27) is
written using these forms only. We shall rewrite the right hand side of (35) in
terms of these forms.

§ 4.6o Reduction of Expressions of Determinants

For
w — 1 (r = JV— 1) , we set

/
A A

-r Mi-M -N-l
^ I tej \ *f

•N-l
ir _ I " ... (I II I " HM! / *m I ... "* l _ _ f " . . . " . . ."&»A \ A A Aft-*

where is on the ( r—l)w + l-th position counted from .
\&/ \* i /

0 The coefficient of O// in Q (r, /, A, k).
We assume r<N—1. Lei us denote this coefficient by det//. We set

and

•N -r Tim (:N-l -r\ z?r
A rl— lm ll iis*/^tt 1>S) £JU_

tu -N -N-l FT (-N-1 -\ rr '
~ -~

Then (21) can be written as

Using this equation we have

deth=

0 Al(

0
0
0

L lw-1

lm

A
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G( 0 | Ffi - Ff»-i

Gf-i 0 | •
0 • • Gf 0 | 0 ••• 0

0 | •

Gl 0 | •

The meaning of the determinant symbol of the matrix above is the
following. The matrix consists of two matrices, say, the left matrix and the right
matrix. We take /~th columns from the left matrix and /~th columns from the
right matrix. Then form the determinant of the resulting matrix of degree |/| +
|/|. We shall use similar notations from now on.

Notice that, by definition, det//— 0 unless

0 The coefficient of O// in 0 (r, /, N—l, fc).

We assume r<JV — 1. Let us denote this coefficient by det//. Then, again by (36),

det/2;=

A rl
Au

Gf-i

where

TV/ — A rlr-r
Atk—Atk(st-

0 The coefficient of Of/"1 in Q(^-lf /, A /).

This coefficient is denoted by det//. Let us set, for

(;N-l__:N-l\ (.-N _ :N-1\ (•N__-N-l\
/ __ U/ tw ; Urn Is ) ~i _ Urn ll )
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Then, (22) is written as

(37) I *' ) — Cssl )+Ci/( }+Ds

Using (37) we have

detf,=

•11 C{, 0 | D'n

3 • 1 0 | 0
• Cl-

n r*1 n1 I nu cw-u um_iw_i I u

0 The coefficient of Qf/"1 in Q(N-1, I, N—l, k).
This coefficient is denoted by det//. Then

detj,=

Cii C{/ 0 | D'n

0 • - 0 • • 0 I 0 - 1
rl

0 CL-i/ C^_lw-! I 0 - 0 - Dl
m.

In the right matrix 1 is in the (/, /?) component.

§ 4=7o Comparison of Two Equations

Now let us calculate the reduced expression of the right hand side of (35) and

compare it with (27). We shall calculate the coefficient of Q// by dividing the
case into nine as

(l) .r=tf-l , /=0./={l, 2, -, m-l}f

(n) . r=JV r - l , /={l i 2, — fw-l} t /=0 f or r<W-l, /={!, 2, — , w},/=0f

.r=JST-l,/={l f 2, -,w-

.r=-/V-l f /={!, 2, — >w-
<AT-l,/={l, 2, — , w-

(VI) . r=JV-l i /n /=0 l |/|>1, \J\>2,
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(W).r=N~l,

( I ) . The coefficient of Qft-1 with 7=0, /={!. 2, •-, w-1}.
Let us calculate the contribution from the term which contains QQV— 1, /, Ar— 1,
fe) (!</<w-l). We have, for

For fe = /, det//=II?*~/1Dis. If we set k = l in the right hand side of

kl _

we have — 1. Thus the formula for det// given above is valid for all l<k, l<
m — l. The contribution to (35) is

,^, —nV J N~
n m-l(:N-l__;N-l\ ^\ (:N __ :N-l\ m-3

s=1 V™ Is )

\-\ r\m-l(-N-l_-N\
x \ iis=i \ik ^sJ B(N—1, /, k).

k=

By the residue theorem we have

m-l

(:N _ :N-1\ FT m-1 ( - N - 1 __ -N-l\ '
^w im J lls=l \^"m Is )

Thus, substituting the definition of B(N—1, /, k) to (38),

m-lnm-lf-N-l -A
s=l \*m *_s

m lm 1=1

AM FT ig-'-t?
/•JV _ ;N-1\ 2-L-L-N-l _ --A^-l'
Urn lm ) s=l l»i Is
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Here we again use the residue theorem to evaluate the summation in /. Hence the
coefficient of 0 in the right hand side of (35) is zero. This is the case for (27).

( I ) . The coefficient of Qj}=( ••• 1 with r=tf-l f/={!, 2, -,ro-l}
\ii im-i I

and /= 0 or r<N-1,7= {1, 2, • • - , m> and/=0.
(II - I). The contribution to (35) from the term which contains Q (r, /, A k)

We have

, i f° k^ldetHi *=,
Hence the contribution to the rhs of (35) from the term containing these deter-
minants is

N-2 m
¥1 Tl A Y] N N . («r—•)

(40) ).).,.., "... ^"'^•'V '.s;

= y2 f Ar nr-vfa11-^
r=l1=1

(II - II). The contribution to (35) from the term which contains Q (N—l, I, A, l)

We have

m-ldetf^nc^C'"1"*;1

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(4] )

n m-l(-N _-N-l\ (9_-
__ 5=1 Urn frs / \Z l

From (40) and (41) the coefficient of Q in the rhs of (35) is
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m-l N-2 m N-2 m- O T + 3 . y 2 . r y ^ - v y .
•—i"+ L •* _ -JV-l + 2j L ~^~r +

m m 5=1 m s r=i/=i w r=l / = l % " ' " " ----^. > •

This coincides with the coefficient of Q in the rhs of (27)

( m ) . The coefficient of Qf/"1 for which/={!, 2, —f m-l}\W and/=W.

( f f l - I). The contribution to (35) from the term which contains Q(/V —1,

A O .

It is obvious that det//=0 for ^ = /. We have, for t=£l,

C'ss

_;N-l\m-2 Y\ m-l (-N-1 _:N-T\

The contribution to the rhs of (35) from the terms containing these determi-
nants is

( 1 >
'•N-l_-N-l\Tlm-l(-N _-N-l\ M l

( -N _ -JV-lN FT m-l (;N-l — :N~l\ '
Urn */ /Us*/ W ^s '

( f f l - H). The contribution from the term which contains Q ( J V — 1, /, AT — 1,

If / ^ = f then detf/ = 0. We have, for

m-l
,

pf — / — l ^ m + f + l f ±1 lm_
^ss V I/ \ .N .jv_1

The contribution to the rhs of (35) from the terms containing these determi-
nants is

:N-l _ -N-l\m-3 Tl m-l (-N-1 _ -N} •*-*•,- -N _ -N-l—
:N-1__-N\2(:N _ -N-l\m-2 ff m-l (: N-l _ -N-l\ :N-1 „ -N-l
lt 1>mJ \lm *m ) L\.s*t Uf ^s ) s*t lt ls

N-1__-N \ -N -N-l I .JNT-1 -N-l'
x '
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Note that the second term of (43) is the l = t case of the summand of (42).

(HI - IE) . The contribution from the term which contains Q(N— 1, /, N—l,
k) with l<k, l<m-l and

then det// = 0. We have, for k = t,

m-l

j~ f 4 — / _ i\ m+ts^l 1 i /^/det//— ^ i; w/il^ss

( -N-1 _ ;N-l\m-2 Tlm-lf-N _ ,-JV-l\
*/ ** 1 li**f Um is j
:N_-N-l / Tlm-l('N-l_'N-l
^w ^m x lls*/ U/ Is

The contribution to the rhs of (35) is

( — I) m+t+l A FT m-l (-N —jN-l\ TT m-l l-N-l __ ^
V -1-/ _ ^^-llijf^f Urn ^-g ) 11^=1 U? ^57

(a-N__:N-(lm It
_'N-l\m-2TJm-l(-N-l_-N-l\

lm ) lls*f Uf ts ;

(i^—i^-1) H^^if~1—iN~[) '
i =pr

In deriving (44) we use

=0

which is a consequence of £ = £ / . Note that the first term in (43) is the l = t case
of the summand of (44) .

We add (42), (43), (44) and obtain

/ _ T\m+t + lA TJm-l(:N-l _ -N\
(45)V^°;

TJm-l(:N-l _ -N\ TT-TT *' _ »-i*W Ur - tJ_TT dm t

(;N_;N-l'} TJm-l(-N-l_-N-l\
dm l[ ) lls*/ dl ts /

/ : ^ . ' - - ^ - -
\lm It ) (lm 1>m ) ll

In deriving (45) we use the identity

In1

/AC\ \
LA<-4 ,-N_-N-l\Tlm-l('N-l_-N-l'] Tlm-lf-N __-N~l\ '

im — il J HS:H U/ ^s ; lls=l dm Is )

The equation (45) is nothing but the corresponding coefficient in the rhs of
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(27).

(IV). The coefficient of Of/"1 with /= {1, 2, — , m - 1} \ {it} and /= to,
u^t.

(IV- I ). The contribution to (35) from the term which contains Q(Ar~l, /, A, l) .

If l = u then det// = 0. We assume l=£u. Then det//=0 for * = £ / . since u-th
and l-th rows are proportional. Thus we assume l = t. We have

— ( _ *(\u+m+lr\— (,— L;

;N-l__'N-l\m-2 Jl m-l (-N _-N-l\
iis*M (Im Is )v -^ V j£—$-1

The contribution to the rhs of (35) from the terms containing these determi-
nants is

•N-l_-
u ]_

/tN-l_--
^AN^^tt It J

(47) iziiv^i/iy-1-^-1)-' nssHfl-ry-'j TT «
v ' ' •# -JV-l \ -N _-N-l / T\m-lf:N-l -N-l

(IV- I I ) . The contribution to (35) from the term which contains Q(jV — 1, I,
N-l, 1) with !</<m-l.

then det//=0. We have, for l = t,

m-l

j ~f 4 — ( 1 ̂  M+m/^fdet//— v~l; Lut
s*u,t s*u,t

/ -N-l_ -N-l\ m-2 Tfm-lf-N ;N-1\
—. ( -l \ u+m + llli *w__J ils^M \lm +m )

^ L' \ -N -N-l / TJm-lf-N-l iN~1}

The contribution to the rhs of (35) from the terms containing these determi-
nants is

/ i \u+m+l A (iN~^ ;N-l\m-3 T T w - l / - J V {N~1} Tl N (iN~^ j}

(;N —;N-l\ 2 (-N __-N-l\ m-2 TT m-l (:N-l_ :N-l\ ff (-N-l_-\
dm It ) dm lm ) lls*t dt Is ) ll;*^,;^-1.^-1 dt })

lu
f-JV-1 jN-\\ -s--a- ;N-l •'

s+tdt Is ) jGAH-i,]*^ lt J

Note that the second term of this equation is the minus of (47).

( IV-HI) . The contribution to (35) from the term which contains Q(JV —1, I,
N—l, k) with l<fc, l<m-l and
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I f k ^ t then det// = 0. We have, for k = t,

r = —i// — v i/ i
CUM

/ , - t f - l__vtf - l \W-2 Tlm-lf-N _-N-l) -rr-v- ;N-l_:

r(N ^ j J,!t*r-ly-i y-i^ 11 *-i •

Here we understand Cui/C
l
uu= —1 for u = l. This follows from the equation

; __:- -_-
tsuu 1m lu jGAs-^j^il ll J

The contribution to the rhs of (35) is

(•N-l_-N-l\m-3
W _ lm )

^m ^/ / Us*/ \^/ ^s )i =f=r

Note that the / = f term of this equation is precisely the first term of (48).
Thus, using (46), we have

(47) + (48) + (49)

which coincides with the coefficient of O//"1 in the rhs of (27).

( V ) . The coefficient of O// for which /= {1, 2, o o ° , m}\(u} and /
-l.

(V - I). The contribution from the term which contains 0 (r, I, A /).

If l = u then detl/^0. We assume l^u. Then
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The contribution to the rhs of (35) is

(V~ II) . The contribution from the term which contains Q (r, I, A, k) with

If /^H then det//=0. In fact if further k^u then fe-th, Mh, and w-th rows
are proportional and if k — u then l-th row is a null vector. Thus we assume
/=«. Then

.•N _-r Tim (:N-l__:r\
i,l _ / _ i\u+m-l lm *>u l\.s*u\*'t _ Wdet//-( i; -N-N-I n f,-"-i-rt

tm ^w ll^^.t^-1 tf-1^/ j/1

•N _ :r Ti
— ( _ 1 \ u+m-l _ lm lu __ Ll

- -

The contribution to the rhs of (35) is

E
M f-r _ :N-1\ TJm-1 (-r _ -N\

\lk lm ) 11 5=1 \lk Is)
(•N _ -r\ (-N-1 _ -r\ Tim (:r _ -r\ '
(lm H) (it Ik) lls**U* Is)

Note that the k = u term of this equation is equal to the minus of the l = u term
in (50).

( V - f f i ) . The contribution from the term which contains 0 (r, /, JV— 1, k) .

If k^t, det// = 0. We assume k = t. Then det//=0 for l^u, since /-th and
u~th rows are proportional. Thus we assume l~u. Then

The contribution to the rhs of (35) is
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(52) ' '
„/ ,

-- '-

+-

where we have used

1 1 , 1

Note that the first term of (52) is nothing but the coefficient of Q// in (27).
Let us calculate (50) + (51). We have

(50) + (51)

y r , , tf-tr'i njiT'(ff-t^)
H L ts-ij;-1 J (iS-tj) (if-1-.-;) n?*« (tr-tj

By the residue theorem

n w-1 /v-V _v^
s=l Urn Is) __ I

;N-l__:N\ rim (-N _ -r\ ( -N _ -N-l\ Tim ('N-l_-r\ '
* w ^ l l s = i U i » %/ Uw if ; l l s=iw Is)

(•r -N-l\ Tl m-l(-r -N\
\lk~~lm ) ils=l \lk~~ls)

(•N _ -r\ (-N-1 _ ;r
k=1 Urn Ik) U/ t*

^ - - .
(if-1-**) n?.i (ffi-»j) (^-if-1) n

Hence

(50) + (51)

= (-i)"+Myn,w(if-i-tj)n.«A..^(tf-y)
(tX-iS-1) (^-if-1) n^,- ^..^(tf-1-;)
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r ^ —-r Tlm-l(-N_-N\ :r_:N-l FT m-l (-N-1 _ -JV)m u ^^s=l Wm Is) __ I tfr 1<t i is=l W _ L?Z_

t-z-iZ-1 n?.i(t£-tD «-#-' ny-iW-'-ij)

• r _ - - - _ - - - _ ' - : - _ _ -
\1u lm ) \lm lm ) Urn It ) LLjeX.j^tf-^lt })

This is the minus of the second term of (52) . Hence

(50) + (51) + (52) =the first term of (52)

which is equal to the coefficient of Q// in (27) .

(VI) . The coefficient of Of/'1 for which /H/= 0, |/|>1 and |/|>2.

Let us set I={pi< "*</?«} and/= {^i<"'<^J, u, t<m — l, u+t=m — l.

(VI- I ). The contribution from the term which contains Q (Ar— 1, /, A, /).

If /$/ then det//=0. We assume l&I. We have

se/\{/} sej

' ~^-l\ t

( :N _ :N-l\
V^w *w /

N _ :N-l\ m-2

\t -j-j- :N __,'N-1 ^^ -JV-l -tf-l
/ I I _J_m_ls_____ | i 1m _ ^s

II :N-l__:N-l 1 1 :N-1_ :N-l '

where sgn — sgn (pi, • • • , pu, qi, ••• , qt) is the sign of the permutation. The
contribution to the rhs of (35) is

rr / - jv iN~1) TT (i^"1 i^"1) V1 (i^"1 iN~1}u~l (iN jN-\\t-2
\D6) Sgn , N_l^m_2 J, rtm-l(:N-l -JV-lN

\im im ) Us*/ U/ ^s /
/e/

(VI- II). The contribution from the term which contains Q (N~l, I, N — l, I)
with l<l<m — l.

If /$/, detf/=0. We assume /e/. We have

Sgn B

sej\{l]

; -
W
;N-l_ -N-l\u(-N_ :N-l}t-l *j-^ -N _-N-l

_ 1>m ) \lm 1 1 J

The contribution to the rhs of (35) is

A TT (;N_-N-l\ri (:N-l_:N-l\
fcA\ -f l-JV-ll lsg/Um ^s / i isg/Um t5 J
(54) -sgn /,^_,N-n«-2
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, g

Note that the sum of the second term of this equation and (53) is zero by the
residue theorem and the conditions u>l, t>2.

(VI- El) . The contribution from the term which contains QGV~1, /, N— 1, k)
with 1<&, l<m-l,k=£l,

If k$J then detf/=0. We assume

( V l - f f l - I ) .

We have

se/\{/} seA^ft)

f . jV-1 -N-l\u(-N 'N-l\tri (-N :N-1} T~l f^'N-1 ;N-
q/ ~1m ) \1m~1'l ) iisel\\l}\lm~^s ) llsej\{k}\l>m ~ 1>s

f-N vJV-1) m-2TJm-l (*N-1 V^"1)

^Viy-i-y-
The contribution to the rhs of (35) is

g

We have

?i,
s<=J\ilc,l}

-^ -
Urn 1
(:N _'N-l\m-2Tlm-l(-N-l_'N-l\
\lm—lm ) I Is*/ W ^5 /
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The contribution to the rhs of (35) is

Um % r /e/

\ _ =: _—^

If we set k = l in this equation, then it is equal to the first term of (54).
Thus we have

(53) + (54) + (55) + (56)

f - J V «.-JV-n w-2
U-W lm J

Tlm-l (:N-1 -J\A
x * i l s=l Ufe Is)

fce/

by applying the residue theorem to the summation in /.

(W) . The coefficient of Of/'1 for which 1/0/1 = 1, |/|>2.

We setl={p1<"'<pu}j={qi<"'<qt}(u + t=m-l) and ir\J= { k } .

(W- I ) . The contribution from the term which contains Q (Ar— 1, /, yl, /}.

then det// = 0. In fact if fe^J, either the J-th row is a null vector or

there exists a row proportional to the J-th row. We assume l = k. Let us define v,
u>, y by pv=Qw = l, /U/= (1, 2, • • • , m — !}\{y}. Then we have

= (ir1-^-1)^-^s g n " 1 - - - 1 - 1 1

where sgn = sgn (pi, • • • , /?M, ^i, "", y, "". ^) , y being on the place of qw. The
contribution to the rhs of (35) is
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(1'N_-N-l\m-2TJm-l(1-N-l_-N-l\
\lm lm ) lls*k \H ls )

m H J

(YD- II) . The contribution from the term which contains Q Ov— 1, /, N— 1, /)
with l<l<m — 1.

If k^=l then det// = 0 by the same reson as (YD- I). We assume l = k. Let us
define v, w> y as in (YD- I). We have

det//=—sgn • Cyi II I Cl
ss fl 1 Dl

ss

which is same as det// in (YD- I ). The contribution to the rhs of (35) is

A (;N-l—;N-l'\u-2(.'N__.'N-l\t-3
(rQ\ ^^A-N-idk lm ) \1m Ik )
(58; -sgn (N_N_1]m_2

\lm lm )

n m-l(:N-l_-N)
s=l \tjb _ IsJl

_ - - _ - _ -
. Ufe t»2 ; Urn Ik ) l l se /Um ^s Hise/Um

' - - - . - . -

n ;N-l_ -

^r^.

The second term of this equation is equal to the minus of (57) .

(YJ- in ) . The contribution from the term which contains Q(N— 1, I, N— 1, fe)
with l<k,

If k^k then det4// — 0- In fact if k=£k then fc-th column in the right matrix

and that in the left matrix are proportional. We assume k = k. Let us define f, w,
y by pv=qw^=k, IV J= {1, 2, -, m~l}\{y}.

( W - f f l - 1 ) . /e/case.

We have

det7
4

7= -sgn • c
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l\ u (:N _ -JV-1VTT (;N — fl-l\ FT (:N-l_:N-l\
) \lm ll ) l lsg/\mUm Is ) 1 1 sej\{k} \1>m Is )

-N-l\m-2Tlm-l(-N-l—

•N-l _ •'
ll J

The contribution to the rhs of (35) is

-1 :N-l\u-l (-N :N-l\ t-2

We have

detJ/=-sgn -jDiJ]c«

r(iN—iN-1} IIls<=I\lm LS ) iis^
(^N __-N-l\m-2T\m-l(-N-l_-N-l\
\lm lm ) Us*/ U/ Is J

The contribution to the rhs of (35) is

ASgn ^AT-I

•JV-1 •N~l\u-l(-N -N-l\t-2
~ ~

Note that the first term of (58) is equal to the l = k term of (60).

( V B - i n - f f l ) j = y case.

We have

det// —sgn

U/
-l_ -N-l\u(-N _-N-l\t-l\u(-N _-N-l\t-lT\ ( :N _;N-1\ T~t (-N-

) \lm ll ) l lse/Um Is ) iise/\{fc> Urn
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The contribution to the rhs of (35) is

,fil^ .(61) sgn • AN-i (^_^-r)w-2j

r -JV-lV-2

This equation coincides with that obtained from (59) or (60) by setting /— y.
Now we have

(57) + (58) + (59) + (60) + (61)

A i~Sgn * ^

x V

= 0.

The last equality follows from the residue theorem.

(YB). The coefficient of Of/-1 for which |/n/|>2.

(VH- I ). The contribution from the term which contains QQV--1, /, A, I) is
zero.

In fact det// = 0 since at least one pair of common column is linearly
dependent.

(HI- II) . The contribution from the term which contains Q(JV~--1, I, N—l,
/) with l<l<m~ 1 is zero by the same reason as (W- I).

(W-II I ) . The contribution from the term which contains QQV — 1, /, Ar— 1,

k) with l<fe , l<m — 1, fc^/ is zero by the following reason. Since Ci/= ~~ D(i for
k =£ I, the common column except fe-th column is linearly dependent. Hence

det4//=0.

As a whole the coefficient of Q/;-1 in the rhs of (35) is zero.

(K) . The coefficient of Of/ for which |/|>2.

Let us set 1= {/>i<— </>„}, /= {^i<— <^}f /= {1, 2, -, m}\/= ^i<— <pt}
with

(K- I ). The contribution from the term which contains 0 (r, /, /I, /).

If /«/, det}/=0 We assume je/. Then



Hpti -det//-
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Ef 1
^N _jN-l

1

where sgn= (_jj^'" t~2™u*"r i ;~f"2 iu~ t"1 ^ Gr(l) = YlsejGs and

The contribution to the rhs of (35) is

(i^-^-1) 'e'er ) £ n?,, (if-ij) n^/^-'-ti) '
- II). The contribution from the term which contains Q (r, I, A, k) with

If / e / or fe ̂  / then det/1/ = 0. In fact if I e / then ^-th column in the left
matrix is a null vector and if k&I then J~th row is a null vector. We assume

and fee/. Let us set 7= {£i <•••<#} =7\{/> U {fe} and j?f=^ (f,^/). />f=
! = l) . Let us define v , w by pv = k, pw-i<Kpw- Then

det(Fjr.gj), .1 _ / .zpi+±u(u+u+i-k+v-»( i^-il \* EjGlRsenMGZ •
det//-l i; \ - jv_.^-i / n r^-i-v^

Mm ^w x llse/U* I//

im~tf V det(F/>rJ

r.gj
w r^-s=lCrS

= -s^7^7^l^fciV(/)
where we use

det(Fftj) = (-1)*-'*

The contribution to the rhs of (35) is

f £ Q N Sgll B ArEjDu
^ rr(7\(;N ;N-i\G U J V>m~^m )

/e/

- -
15=1 Ufc
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If we set k = l in this equation then it equals to the minus of (62).

(DC- M) . The contribution from the term which contains 0 (r, /, JV—1, k) .

If /e/ or fe£/f det|/~0. In fact if /e/ then /-th column in the left matrix is

zero and if k&J then l~th row is zero. We assume 1^1 and k&J. We define v< w
here by qv

 = k and pw
We note that

Using these relations we have

(64) det,2
/=(-l)^<"K+11+'~S

~ " det

The contribution to the rhs of (35) is

("D'-'sgn -A ,£/£//

sgn-JS/P// (4 -if)1"1
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rr/J\(;f— ;JV-i'i n (;N__:N-v\ rr _(,-N-I—,-A '
Or \i ) \lm lm ) llssjdm Is j l l s e / U m W

In deriving the last equation we use

• y -JV-1"\ Tl _ (-r -r
H lm ) l lse/\{/}W ?s

/e/

V1 risgj\{/}(is"~if *) II se=f \m (is ~" ̂  m)

*-J (i*!!n—ik~l)Ilsef\{k}(ik~l~iJs~1) Ilse/Um—if"1)
fce/

Let us name the first and the second term of (65) Z and W respectively.
Now we have

(62) + (63) + (65)

sgn •;

/€/

E
Ae/U i / }

Let us name the first and the second term of this equation X and Y respectively.
We shall rewrite X and Y. Using

V
m I-N •r\t-2r\m-l(:r -N\ \^\ (:N _;N-\\ t-2Tlm-l (;N-l -N\Um ii) 115=1 U/ is) _ \ Um t/ ; lls=i U/ tj
7^ Tlf*i \ii~is) Hsej(iIs~1~~ii) ^ Ils^i(tf~1~tj) Ilse/\{/} (if"1 —if"1)
/—1 '£/

we have

X~~ —_ } ~ ~ —.

Using
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+r (ir1-^-1) ni

we have

Y= =.

sgn • A,£/£>,/
Gr(D W-ti-1)

x
k

Using further (66) and

i (ir-fis-1) (if^-tf) nw-v,}(t,r-tj)

\ik 1m ) llse/Uw Is) \^k ^m ) ilseidk ^s)

we have Y= - W~Z~X. Thus

(67) (62) + (63) +(65) =0.

This completes the proof of (l) of Theorem 1.

§ 408o Proof of (2) of Theorem 1

Let us prove the remaining part of Theorem 1. Let {£„} be the standard basis
of 9IN where EtJ is the matrix unit with 1 in ij component. Set ht=Etl — Ei+\i+i
(l^i<N—l). By the definition of/—S/Afji it has weight zero, htf~0 for any
i. Hence it is sufficient to prove Evf=Q for any i^j. First we assume Af>3.
Then it is sufficient to prove

(68) ErK

In fact by the following reason the proof for an arbitrary EtJ case is reduced to
the above case. In our description of our basis of differential forms the index N
and N— 1 play a special role. For Etj we replace the role of Ar by j and that of
N—l by k with k^i,]'. This is possible because AT>3. Then the following proof
is totally the same in this modified situation. Thus let us prove (68).

Let A= Oli, • • - , AN) with A,= (ii, — f 4) (1</<JV). We consider A'=
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Gli, •", A'N) with

A,=Ai(j*r, N),A> (C -, £, iN
m), AN= (tf, -, #-!

Define VA' in an obvious way. Then the coefficient of VA' of Eryf is

/=!

Hence it is sufficient to prove

(69) A-

We shall devide the case into two for the proof of (69).

(0. The coefficient of Q = l ml ••• .^_1 ) of the left hand side of (69).

In (E) of the proof of 1 of Theorem 1 we have calculated the coefficient of Q in

From the calculation there we can easily read off the coefficient of Q in

mA (Vi ... jv-n-i ri _A \tii , im-v \ r

It is

m

Thus the coefficient of Q in the Ihs of (69) is 0, since

—^r—' lm -/A = Q.

(u). The coefficient of Q// with |/|>1 in the Ihs of (69).

In (K) we have proved that the coefficient of Q// in

Wl

A(tj. -.igri)-
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is zero. There the condition |/|^2 is used only when the residue theorem is

applied. Taking care of it we can again easily read off the coefficient of Q// of

from the calculation in (K). We used the notation (62), (63), (65), X, Y to
denote the equation apeared there. We shall use the prime of them for the
corresponding equation like (62) ', Xf etc. Then

w= = sgn

Also we have

,_ sgn • ArEjDu
/ 1 \ / — N

\im-im~ ) Gr(I) /e/.

and

.x_ sgn " £/£//rLe/te-

crrn o /I P H Fl f,'^ _ V^"1 H"1 IT m-l('N-l _ :Sgn ° ArLjlJij \ (lm lk ) lls=l\^k I

(•N _ -N-r\t^r(T\ j Tim f-N-l _ -A TT f^"1 _ -i'^"1^ "
Urn IOT / Cr U J . , l l5=lUA: W lljeA{*> \ls ^k )/cGy

= -Wr/-Z'-A'/.

Hence

(62) '+ (63) '+ (65) '=Z'+ 1^+^+ r = 0.

Thus the equation (69) is proved.
In the N=2 case we can similarly read off easily the coefficient of

AW, -,i»-\)-
Ut<u(AtAu)

1 = 1

from ( I ) , ( H ) , (I) , ( IV) , (VI) , ( V E ) , (W) in the proof of 1 of Theorem 1.
They are all zero as we expect.
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§ 5. Discussion

In this paper we give integral and theta formulae for the solutions of slN

Knizhnik-Zamolodchikov (KZ) equations of level 0 with the value in the trivial
representation in the tensor product of the vector representations of six. The
formula generalizes the Smirnov's formula in the case of sfa- We have found that
the differential form /*p, which is a building block of the integral formula, is
obtained by evaluating one of the variables to the branch point Qp in the
product of chiral Szego kernels. This is a key for the proof of the theta formula.

Let us discuss remaining problems and related subjects.
In N = 2 case it is conjectured that Smirnov type solutions span the singlet

solution space [16]. On the other hand the dimension of the vector space
spanned by our integral formulae is less than the multiplicity of the trivial

representation in v®Nm for N>3 and m>2. In fact the multiplicity is given by

mult(0.

On the other hand the demension D(N, m) of the vector space spanned by
integral formulae satisfies

Nm-2

where the right hand side is the binomial coefficient. The number Nm~2 is the
dimension of an eigenspace of the AT~cyclic automorphism 0 on the first
homology group of a ZN curve. Then

(^\ mult(0. V®Nm) _N~m IT IT (N-l) (m-l-j) + k
n) N-l fj^fif m-j+k

Since

(N-l) (m-l-j) +k- (m-j+k) = GV-2) (m-2-j + fEf),

(71) is greater than 1 if N>3 and m>2. Note that mult (0, V0N) =l(N, l) =1.
For N=2 we have

muit(0.
m —

where the second term in the right hand side comes from the Riemann's bilinear
identity [16].

This structure of solution space should be same in the qKZ case. To
construct remaining solutions for both KZ and qKZ equations is an interesting
and important problem. In the qKZ 'case to study a relation of these missing
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solutions with form factors is also interesting.
We still do not understand the relation between the integral formula given

here and those given in [6,10,11] in the case of s/jv, N^. 3. In N = 2 case the
relation is given in [9]. If we understand this structure then it will help to find
the missing solution discussed above.

The relation of the solution to the KZ equation of level 0 with a classical
integrable system is still to be clarified. The relation with the Szego kernel will
give some hint to understand this problem since the Szego kernel is related with
the tau function of the KP hierarchy. Anyway it is true that we can introduce a
Jacobian variable in the theta formula for the solutions to the KZ equation.
Hence it is natural to ask what kind of equation governs the dependence on the
Jacobian variables and what the zero value means for that equation.

Once we introduce the Jacobian variable we can ask what is the difference
analogue, q analogue of the theta function? As to the abelian integral, Smirnov
[16,17] discussed its difference analogue.

Since the Smirnov type formula is related with the algebraic curves in the
case of sin, it is interesting to study Smirnov type solutions for other type of Lie
algebras and whether they are related with algebraic curves.

The determinantal structure of Smirnov type solution is still lacking an
understanding from the representation theoretical view point.

We would like to thank Koji Cho. Fedor Smimov, Yasuhiko Yamada for the
stimulating discussions and useful comments. We also benefited from the discussion
with Masaki Kashiwara.

§ Appendix

In this section we give a derivation of the formula (20) - (24). We recall the

definition of
w

/
A

P

where as in the main text z—p means z—Ap and 9 (p) means Q(Ar} (Ap) etc.

( I ) . a derivation of the formula (20):

By differentiating the defining formula of I we have
\P I

A\ _
-"
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1\ 1 yl 1 1 TT p-j P

Here to obtain (73) from (72) we use

i = i r _ _ 1 , 1
- - i N - t z - p -

and to get (74) from (73) we use

( I ) , a derivation of the formula (21):

Since

we have

r i''' ;r
. \ -r;_'< T / . j

I :T-iSiU

"m *i t? \fi; y Ar v^/ j— ——^7 az,

where we set

U-y).

Hence

^ U J j / ' i / \ -N -r
(75) Ĵ£ld, = .̂.

If we set r=N— 1 and /' = m in this equation we get

(7fi} ff^f'w , _^-ff-1 i{76) "-^-
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Now let F(z) be an arbitrary polynomial of degree at most m — 2 then

Thus we have

#f') f-N-i
T (Ik

Substituting (75) and (76) into (78) we get (21). The relation (22) is a special
case r=N-l of (21).

(Hi ) . Here we prove the formula

(79)

For the sake of simplicity we set ij=i(r-vm+j . By Proposition 5 we have

where A is the L by L matrix whose kl component AM is given by Ak^^fr1. Let
d^/ be the kl cofactor of A. Then we have

Again by Proposition 5

(80) \ >A7 \— / ,^k >v ~~ j~± A / , / ,A,» ukj

Using the expansion of the Vandermond determinant in a column we have

Substituting (81) into (80) we have (79).
The relation (24) is proved in an exactly similar manner.

( I V ) . a derivation of the formula (23):

The derivation is similar to ( I I ) . We have



(82)̂'
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dz
>(ifi)"^

Since the polynomial in [ ] is devided by z~~im we can define the polynomial
Grl(z) by

Then

n m-\(-N-\ -N\ r ?^i -jv _- jv T-r jjv-i ,-n
. _ ̂  . . . . . . . . . . . 5=1 Vt-fc ^5/ -i II lm I s I I 1* £sj
voo^ u vtfc ;- ^-i_^ L1 I_I ^-i_.^II i Ar_ . r J-

Using (83),(77) and (76)we have, from (82),

, t «

w-i

Substituting (79) into (84) we have (23).
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