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Integral and Theta Formulae for Solutions of siy

Knizhnik-Zamolodchikov Equation at Level Zero

By

Atsushi NAKAYASHIKI

Abstract

The solutions of the sly Knizhnik-Zamolodchikov(KZ) equations at level O are studied. We
present the integral formula which is obtained as a quasi-classical limit of the integral formula of
the form factors of the SU (N) invariant Thirring model due to F. Smirnov. A proof is given that
those integrals satisfy siy KZ equation of level 0. The relation of the integral formulae with the
chiral Szego kernel is clarified. As a consequence the integral formula with the special choice of
cycles is rewritten in terms of the Riemann theta functions associated with the Zy curve. This
formula gives a generalization of Smirnov's formula in the case of sl,.

§ 0. Introduction

In [14] F. Smirnov derived a curious theta formula for the solution of the si;
Knizhnik-Zamolodchikov (KZ) equation at level 0. The aim of this paper is to
generalize Smirnov’s results to the case of sly. Before giving a more detail of
our results let us summarize the reason why we are interested in the level 0
case of the KZ equation.

The KZ equation was introduced in [5] as one of the fundamental
equations characterizing the correlation functions of the Wess-Zumino-Witten
(WZW) model in conformal field theory. For the affine Lie algebra § and its
highest weight representations Vi,**,Vx, the KZ equation has the form

OF _\_Q,
(k+9g) 01,—221_21}?,

where F is a V1@ @ V,, valued function in A;, *** Am, Q, is the invariant
tensor, with respect to the symmetric invariant bilinear form of g, acting on
i-the and j-th tensor components, ¢ is the dual Coxeter number of g and % is a
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parameter. The number % is called level. In the WZW models levels are positive
integers which coinside with those of the integrable highest weight representa-
tion of g.

The KZ equation acquires a new life from the study of the two dimensional
integrable massive quantum field theories (IMQFT) and solvable lattice models
(SLM). F. Smirnov formulated an axiom of locality for form factors and, for
several models, obtained integral formulas of form factors [13]. In [12] the
rational ¢ deformed KZ (qKZ) equation was found as a consequence of the
axiom. Hence the moment the gKZ equation is invented the integral formula for
the solution is constructed. It is important to note that the qKZ equation
appeared in this context is of level 0.

Around the same time I. Frenkel and N. Reshetikhin developped a general
theory of vertex operators for quantum affine algebras [3]. They derived a qKZ
equation of general level as the equation satisfied by the highest-highest matrix
element of the vertex operators. This theory was successfully applied to the
study of SLMs [4]. Although, in this application to SLM, the building blocks are
the vertex operators of positive integer levels, the form factors and the
corelation functions are shown to satisfy the level O and level — 2 X (dual
Coxeter number) gKZ equation respectively [4][8]. Thus the Jevel 0 qKZ
equation and their degenerations are of special importance in the context of
IMQFT and SLM.

In order to understand the nature of form factors F. Smirnov studied the
quasi-classical limit [12] [14]. He noticed that the period integral of the
hyperelliptic curve s?=f(z) = [12, (z—A,) appears as the limit of the integral
formula for the form factors of SU(2) invariant Thirring model. Then in [14]
he rewrites them in terms of Riemann theta functions as

(l) Serreesnm (/11, *"t /1271)

=l (det A) 2A~%40[e4] (0) *det (a:ay log6 [ea] 0)) 1< ,<g
where A= (e, ***, €20) is the sequence of £, the number of + being equal to the
number of —, {4 a certain fourth root of unity, ex a nonsingular even half

period corresponding to the partition {1, 2, -+, 2n} = {jle,= +} U {jle;= -},
A=1l,,(2,—2;), ,=0/0z, g=n—1 the genus of the curve, {4,, B,} a canonical

homology basis and A = ([, 27'd2/s) 1 <, ,<». The function F= 2 fe, .. cpe; @+

&R ve;m gives a solution to the KZ equation taking the value in V& with V=
Cv, Cv_ being the vector representation of sis.

Since the theta function of an algebraic curve is the tau function, modulo
some factor, of a soliton equation, this result suggests an intimate relation of the
level 0 KZ equation with the soliton equations. In spite of Smirnov’s effort on
this problem [14] [15] [16] this relation is not yet clearly understood.

Integral formulae are known for the solutions of the KZ equation with an
arbitrary level associated with any Kac Moody Lie algebra [10] [11]. In [9] it
is shown that those general integral formulae have the exact forms as their
integrands in the case of slj level 0 and singlet solutions in the tensor product
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of vector representations. Taking this fact into consideration is crucial to give a
complete correspondence between general formulae at level 0 and the Smirnov
type formulae in [9]. A completely analogous structure exists in the case of si,
rational qKZ equation [9]. Thus Smirnov type formula is related with a subtle
structure of level 0. In the sly case to find a similar structure to the sl; case in
the formulae in [6] [10] is not yet succeeded.

One strategy to understand Smirnov type solutions more clearly will be to
generalize it. This is the reason why we are interested in the generalization of
the Smirnov’s results to the other types of Lie algebras than si,.

Now let us describe our results. In [13] the integral formula for form
factors of the SU(N) invariant Thirring model is obtained. It is a solution to the
sly rational qKZ equation of level zero. We take the quasi-classical limit of this
integral formula. It is expressed as the determinant of the period integrals of a
Zy curve. A Zy curve is a natural generalization of a hyperelliptic curve, which
corresponds to N = 2. Roughly speaking the integral formula obtained in this
manner should give a solution to the siy KZ equation of level zero. From the
mathematical point of view it is not very easy to prove rigorously that the
asymptotics satisfies the KZ equation. On the other hand the formula for the
quasi-classical limit is rather simple. Hence it is desirable and interesting tc
prove directly that it satisfies the KZ equation. We give a proof which is new
even for the si; case. Compared with the proof in the generic level case [6] [11]
our proof looks more complicated. It will be related with the degenerate
structure of Smirnov type solutions found in [9). Since we have established a
correct Smirnov type integral formula in the sly case it is an interesting
problem to get them from the formulae in [6] [10] in the spirit of [9].

We rewrite the integral formula in terms of theta functions on a Zy curve.
A priori this is not a trivial task at all. In fact the following major problems are
not obvious from the formula and arguments in the sl case. The first one is
what kind of rational periods parametrize the tensor components of the solution.
The second one is whether we can expect the second order derivatives of the
logarithm of theta functions or not in the sly case. The first problem is resolved
with the help of the Thomae formula for Zy curves which was discovered by
Bershadsky and Radul [1] [7]. Namely the tensor component is parametrized by
certain non-singular 1/N or 1/2N periods introduced in [1]. The second
problem is solved by finding a relation of the integrand of the integral formula
with the Szegd kernel. In fact the product of Szegd kernels is related with the
second order derivatives of the logarithm of theta functions by the formula due
to Fay [2].

Now the present paper is organized in the following manner. In section 1
the integral formula is given. The theta formula is given in section 2. It is
proved in section 3. In section 4 a proof is given that the integral formula
satisfies the KZ equation and belongs to the trivial representation of siy. A
derivation of fundamental relations among differential forms used in section 4 is
given in appendix.
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§1. Integral Formulas

Let sly be the simple Lie algebra of type Ay-1, ( , ) the symmetric bilinear
form on sly given by (X, ¥) =tr (XY), {I;} a basis of sly and {F} the dual basis
with respect to ( ). The invariant element Q is given by

Q=) 1@
J

Let V be the N dimensional irreducible representation of sly and m a positive
integer. The Knizhnik-Zamolodchikov (KZ) equation with values in the Nm fold
tensor product VE¥” of V is the differential equation for the VEN™ yalued
function F

2) (k+N)g—i= lff_”/LF,

*i

where Q,; means the action of Q on the i-th and j-th components of V®¥, & is
a complex number called level. The explicit form of KZ equation in terms of the
vector components is given in section 4.

Let v;=*(0, ***, 1, =+, 0) in CV, where 1 is on the j-th place. Then we have

V=&¥,Cv,. We denote by A= (A, ***, Ay) the ordered partition of {1, 2, -,
Nm} such that the number |A,| of the elements of A, is m for any i. To an

ordered partition A we associate the weight zero vector v, of yENm by
VA= &Q Quy,,,,
where

1 €A, if and only if k,=j.

The set of {v4} forms a base of the weight zero subspace of VEN™,

The operators X,+ (4, —4,)7*Q,; in the right hand side of (2) commute
with the action of sly. Thus it has a sense to consider the KZ equation for a

function taking values in a fixed weight subspace of V®¥m In this paper we
exclusively consider the solution F whose value is in the weight zero subspace

of the tensor product VV®¥™ Then we can define the component f4 of F' by

(3) F=Zf/wm
)

where the sum is over all ordered partition A.

We denote by C the compact Riemann surface defined from the equation
sVN=F(z) =T1"% (z—A,). It is called a Zy curve [1][7]. The genus g of C is
given by 29=(N—1) (Nm—2). For A, and pEA, set

g =T1 z=4). 9n@ =T =2), 92 @= T (=—2)

TEA, JE€EAY 1€A,, J*D
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and define the meromorphic differential form 4 (z) on C by

(An /2 )
3 (2) =‘(——5——g i_)i ;(Z) dz.

We set L= (N—1)m—1. Then we have

Theorem 1. Let {py, -+, p1} is an arbitrary subset of {1, 2, **+, Nm}. Define

N-1
___AM det( Sr, p2) 1<.p<t,
(4) f(/h, ' /INM) A= H 1<y <A1AJ> A (Pl. "D', PL)

where (AtAJ) = HreA,,seA, (/2;' - /zs) y A (Pl, ey, PL) = det (2%}—1) 1< <L and A =
H1<J (}t—ﬂj) . Then

0. The right hand side of (4) does not depend on the choice of {py, **, pL}.

1. The function F given by (3) and (4) is a solution to the sly KZ equation of
level zero for arbitrary set of L cycles {1, ***, 71} on C.

2. For any XEsly, XF=0.

The first statement of Theorem 1 follows from another expression for fa.
Let us set

¢ _—_Eisi igm‘ (2) [gz‘ %_] o
k=1

where [ ], denotes the polynomial part of a Laurent polynomial. Tt is obvious
that d/dz can be out side of the symbol [ Jo.

Theorem 2. The function f4 given by (4) is also written as
N-1

(5) £, AN",)A=T17<A%7det( f ,C’A)ls,,,g'

We shall give some comments on the integral formula given here. In [13] F.
Smirnov derived the integral formula of form factors of SU(N) invariant
Thirring model which satisfy the deformed Knizhnik-Zamolodchikov (dKZ)
equation on level zero. Scaling the rapidity variables 3, as 8,=A4,/h and taking
the quasi-classical limit ~—0, we obtain the integral formula in Theorem 2 with
some special choice of cycles {7.}.

§ 2. Theta Formula

We shall give another expression for the solution F given in Theorem 1. To give
a precise statement we prepare necessary notations associated with the Zy
curve C [7]. The N-cyclic automorphism ¢ of C is defined by ¢:(z, s) — (z, ws),
where w is the N-th primitive root of unity. There are Nm branch points Q. ***,
Qwm, whose projection to z coordinate are A1.*"*,Avm. The basis of holomorphic
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1-forms on C is given by

We fix a canonical homology basis {a,, B,} whose intesection numbers are
a, > a;=B,° B,=0, a,* B,=0,. Let A be a Riemann divisor for this choice of
canonical basis. Let us define the divisor class D by D = N, which is
independent of the choice of i. To each ordered partition A we associate the
divisor class e, [7] by

) EA1+2A2++ (Nv_l)/l}v_l_'D"'A.

where for a subset S of {1, 2, -, Nm} we set

5=)0,

The divisor class e4 is a 1/N period for N even and is a 1/2N period for N odd.
We consider the index of A, by modulo N. In particular A;=Ay.
Let {v, ()} be the basis of the normalized abelian differentials of the first

kind whose normalization is
j‘;vk (x) =27‘L’i5jk.

We set 7,s = Jfp,vi(x). Then the period matrix = () is symmetric and its
real part is negative definite. The Jacobian variety J(C) of C is described as

J(C) = C4/2miZ¢ + Zr. For any element ¢ € CY there exist unique elements
0. eER’ such that

e= { fL=2m'e+5T.

We call J. € the characteristics of e. The Riemann theta function with character-
istics 0, € is defined by

0] 2] @ =) exp(} m+d) clm+8)'+ (a+2mic) m+0)).
mez’

It satisfies the equation

(6) o[ 55 i;” | ) =exp (2min6)| ‘s’ |@.

for m, n €EZ°. For an ordered partition A let us take a representative e, € C? of

_ 0 o .
es and let eA={ . } . Then the logarithmic derivatives
T

6"‘log6[f] (2), lal=1,
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are independent of the choice of the representative gz by (6), where a= (ay, -,
a,), lal=a;+ - +a, 0%=0-0 and 0;=0/0z, Hence we use the notation

0%logbles] (z) for those logarithmic derivatives for the sake of simplicity.

Let us define the connection matrix between {wg’} and {v;(x)} by

v, (x) =ZO’,<ag)wfsa).
a.B

With the aid of this matrix we define the vector field on J(C) by

g
D5= ZO';(N—j,s)aj, ISBSL

71=1

Now we can state the theta formula.

Theorem 3. For any subset {i; <--+<iy} of {1. 2, -+, g} we take the cycles
{r,} as 7,=A.,. Then the corresponding solution of the KZ equation in Theovem 1 is
given by
N-1

“NZ
f(/lly oo Anm) 4 =C HK?(AIAI det(a,,DklogG [e4] (O))1s],kgL,

where ¢ is the overall constant independent of A,/s and A.

Using the Thomae formula for Zy curves one can rewrite the Il,<, (4,4,) in
terms of theta constants. The result is

Theorem 4. For the same choice of cycles as in Theorem 3, we have

FO ) Awm) a=C D) Ca TT 0len] (0) ™ et (3,Ddogbd les] (0)) 1c pes.

0E Sy
where Ca is some N (N+1)1/3th root of unity, C (A), which is independent of the
partition A, is given by
N-1

-6 _gN—1
C(A) =c(det A) FHATNHTNE

Here ¢ is a constant independent of A,'s and A= det( fﬁ'wé"’). For an element o of the
symmetric group Sy—1 of degree N—1 we define

A°= (Ao, Aoy, **, Aa(N—l))-
Remark. 1f N=2. then L=m—1=g¢ and (0,qn) =A~}, where ¢ is the genus

of the hyperelliptic curve C. In particular (i3, ==+, i) = (1, >+, ¢). From the
matrix relation

(0,D4logbles] (0)) = (8,0,l0g0[es] (0)) A~!

we have

fA =C’CA (det A) _SA_3/46 [eA] (O) 4det (azajloge [eA] <0) > 1<1,7<¢
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which is nothing but the Smirnov’s formula (1) for sla.

§ 3. Proof of Theta Formulae

Let C be the universal covering space of C. We identify a holomorphic one
forms on C with those on C which are invariant under the action of the

fundamental group of C. We set v= (vy, ***, v,), the vector of the normalized
differentials of the first kind. Recall that the chiral Szego kernel defined by ¢4 is
0lea] (y—x) ~

R(.I‘, y|eA) = 6[9,1] (O)E(.r, y) X, yEC.

Yy
y-x=f v,
z

the integral being taken in C and E (z, y) is the prime form [7]. We remark
that, as to the ¢4 dependence, R (x, yleA) depends only on the divisor class of es.

Let w(x, y) be the canonical symmetric differential, that is, w(x. y) is the
section of the canonical bundle of C X C, symmetric in £ and y, has a double
pole at x =y, has the vanishing A period in each of the variables and has some
normalization (for more precise definition see [7]). Theorem 3 is a corollary of
the following proposition.

where

Proposition 1. For 1<p<Nm we have

N1 g L
=N () Y oz, Q) +NZZ A871D50,10g0 [ea] (0) v, ().
1

1=18=

As in [7] the value of a (half) differential form at the branch point @, is
defined as the coefficient of d¢t (or Jdt in the half differential case) in the
expansion of the form in the local coordinate t = (z — 2,)"". Assuming this
proposition let us first prove Theorem 3.

Proof of Theorem 3. Since the integral of w(x, Q) along the cycle A, is
zero for any ¢, we have

L
=N ) 257 Dy0,loglea] (0).

B8=1

where we use the normalization condition of {v,}. Thus we have

det(L ﬂgk>131,ks1.

=N2det (0,Dslogble4l (0)) 1<, p<rdet (A7) 1<ui<L
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=(-1) L(Lz NZLdet (0;,Dglogb [e4] (0)) 1<,8<1det (Ap; ) 1<ki<L
=(—1) ¢? Nz"det(B,-,Dglogﬁ leal (0)) 1<,8<2A (b1, =+, ).
Substituting this equation into (4) we obtain the formula of Theorem 3. O

In order to prove Proposition 1 we first prove
Proposition 2. For 1<p<Nm we have
N-1
(7) =N () ¥ R(x, Qplea) R (x, Qpl—ea).

For the proof of this proposition let us recall the following notation [7] [1]:

l+i+L_1
q: N N \

where IEL+Z, i€Z and {a} =a—[a] is the fractional part of  EQ.
In [7] we have proved

Proposition 3. For an ordered partition A we have

Zzeffz(x A)f_i(y. A7)

zly) —zlx

(8) R(x, yles) ==

Farlz, A®) =”ﬁ” (2 () — ) 2% iz (T
1=1

where A== (Ao, An-y, >+, A1), AT=A and k,=j is determined by i€ A,.
By Proposition 4 in [7]. for iI=— (N—1) /2-+j with j€Z, we have

N
(9) div f; (x, A*) =Ag15,t 20105, -+ N—1) Az1z,— Z oo,

where {00®} are N infinity points. The index %k of Ay is considered by modulo
N. The As, is missing in the right hand side of (9). Let p€A,, 0<r<N—1. We
set y=@Q, in (8). By (9) only the term —I=— (N—1)/2+7 in the sum of the
right hand side of (8) is alive. Hence we have

1 f- Ly (-1 A)f—

1, (Qp. A
R (I Qple/l) -‘_ 2(1) (Qp )

where r¥"=N—1—r. Similarly

_N=1 (e, AT FoN=1, e, (Q,, A)
Rz, Qsl=ea) =R (z. Qsles-) z%f e 2;:‘3(353 e
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Therefore
(10)  R(x, Qoles) R (x, Qol—ea) =
1

(/oo & A @ A)f it (@0 A (@ ).

NE(z(x) —2,)?
Let us calculate the right hand side of (10).

Lemma 1. The following equations hold:

1

i N (2) Y

(11) S, Qo Ay, (@ )= 0
(12) fowoty, & A ey, (2 A7) =£4§(_2le'

Proof. Let t= (z—25) ¥ be the local coordinate around @,. Then

Nm
fowa,, (o A7) =UN ] ] (= 2) Y aE (140 ().
2

j*p

Nm
fowmty, @ A =VN ][] 2= 2,) =9 Ja 1+0 (),
2

1¥p

where we use the relation — ¢;(i) = q-,(N — i) [7]. Therefore we need to
calculate the number

Q_MH,(N——]‘?J) +q_N—1 (kl) .

3 —2—+N—T
By a direct calculation we have
1 ...
1+N ifi=rmod N

q—i——l—ﬂ'(N_i) +q~M+N—r (1') =
2 z if i#7 mod N.

Z|~

Hence

f_%_H(Qp, A‘)f_#+N_r(Qﬁv A)

=N[T =2 T Gp=ap-reo

j€Ay jeA B}

_ N[ (/{Q) 1/N
HIEA,\(M (/IP - RJ)

Similarly, using
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1——1— if i=r mod N

. . N
4w, @tg wa, W—i)=y
2 2 —y ifi#Frmod N
we have
- _ILes, (z—2,)
— €A
f—ﬂ—zﬂw‘ (x, /l)f_%w_l(x. A7) —-—*’—’—’—S dz.

Thus the lemma is proved. O

Multiplying (11) and (12) and substituting it into (10) we obtain the
equation (7). O

Recall the Fay’s formula ([2], Corollary 2.12, see also [7] section 4):

(13)  R(x. yleadR(x, yl—es) = (x, y) + Z —a—%%gz[%ﬂ](o)u,(x)v, ().

1,7=1

By calculation we have

L
N _
(14) vy (QP) :&ﬁizo}w—w)]g g
f,(’zﬁ) NB=1
Substituting (14) into (13) and using Proposition 2 we have the equation in
Proposition 1. O

In order to prove Theorem 4 let us recall the Thomae formula for Zy
curves [1][7]:

6[6,1] (O) 2N=CA (detA)N H (A,A,) 2Nq(:,J)+Nu,

1<y

where C, is a constant independent of A,;s and

(15) q<i,j)=Zq;(i)qz(7‘). #=LJ\L_—%VM,
leg
)= I (a—=2) fori#;,
(44,) = H (A,—2As).

The number ¢ (i, j) depends only on |i —j| [7]. In particular ¢ (0, 0) =¢ (. i),
¢, 7) =q(, i) for any i and j. We define the action of the symmetric group Sy
of degree N on the set of ordered partitions by

A= (Asoy, ***, Aov-1), OES.

The subgroup Sy-; acts on the index 1, 2, =, N—1 as we already defined.
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Proposition 4. For an ordered partition A we have
_ 6 GN-L __12N
TT (A4 =CTy (det A) THANFIG [ ] (0) T,
1<7

where €4 is some N(N+1) 1/3-th root of unity and C is a constant independent of
A's and A.

Let us prove Proposition 4. By taking the product of theta function with the
characteristics ey for all c€Sy we have

He [eq] (0) 2N = (HCA,> (det A) NN HM (ApinrAgey) V0N

o€Sy oeSy oESy 1<
H [ t 1 E E i
=+ ( CA’) (det A)N-NAN.Na (/LAJ) ZNZ.,ESNq(a(z),U(;)).
€Sy 1<7

Set y=¢(0, 0) and
F:= H (Az/l;) 2NZ,c5,4(0(1),0)

1<y

'—M A,1 )N' ZN"H A ) 2NZpe5,9(0 (10,0 ()

i<y

Since, for 17,
Y alo6). o)) =2+ (=2)1) q(r.9),
OESN r<s

we have

F= H A4 ¥ ] (4,4,) 902 et

1<J7

Using ¢ (i, j) =q(i+1,j+1) and Lemma 10 in [7] we have

NZ—1 _N*—1
ati.f)==% 24+ 7T 1aN -
1<y
Thus
(N+1) (N-1 (N+1)’N
s [ Haa)”
1<J
From this we obtain
'N(N 1) (N+DIN

Motesd == (TTcy) ety = [Jan)™ ¢

OESN OESNK 1<y
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Recall that the ordered partitions which are obtained from A by the cyclic
permutation of indices correspond to linear equivalent divisor e4 [7]. Therefore

H 6 [ee] (0) 2N == ( H CY.) (det A)NVNA NN DH(A, o) W+

OESN-1 OESN-1 1<j

Since C% does not depend on A, we have the equation in Proposition 4. O
§ 4. Proof of Integral Formurae
In this section we shall give a proof of Theorem 1 and Theorem 2.
§4.1. Proof of Theorem 2
Theorem 2 follows from the following proposition.

Proposition 5. For any p

L V-1
ZC? (2) 577=p3 (2) +Nd 7
24

The proof of this proposition is totally similar to the case of si; [14]. For
the sake of making the paper selfcontained we give a proof.

Proof. Let p € A,. It is sufficient to prove the following equation, the
coefficient of dz/s:

LN (Ak
(16) ZZ no) [ 08 g
9 Ap)gthn(e) _ Nf) | (N—1)f"(2)
24 (z—25)? z=Ap

Since both hand sides are rational functions in z. it is sufficient to prove (16)
for |z| sufficiently large.

Let t be a complex parameter. More generally we calculate the right hand
side of (16) replaced A, by t. We have

Bl t i pmtlf e

1=1 1=0
:—i[g_(/llc) (Z):l
dzL z—t lo

_d g4R (z) —guw (t
T dz z—t
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Thus

- d g ()] .,
12§:gAk<z> L e £l

_ N, (N— l)j”(z) 94 (2)9“% (1)
(z—t)2+ Z (z—p2z

In this calculation we use

o=

(17)

._.

7

9ar(2) g0 (2) = (N—1)f (2.
dz

k=1

If we set t=21, pEA, in (17), then we get the right hand side of (16). ]

§4.2. Some Notations

For an ordered partition A let us denote by A“” the ordered partition which is
obtained from A by exchanging i and j. For example if A, ={({—1)m+1, -,
im}, 1<i <N, then A"? = A (assuming m=>2), A V={m+1. 2, ==, m}, AF"*V
={1, m+2, -+, 2m}, AA™tV=A, for k=3.

In terms of the components f,, if pEA,, the KZ equation of level zero is

Ng'% <<1*_> Z z,,—z NZM—/1>fA+Zx—A S

JEA %D J1EAs JTEAs

If we define the function fa by

— N1
fa=A Ny,
the KZ equation above is equivalent to
Ofa__1 Z
(18) 621: - N /1 fA(m)
I$A¢ j&EA:

For a nonnegative integer 7 and a subset {py, ***, p,} {1, **, Nm}, set

(ﬁ ...j‘i>=det<,uﬁ, (z;))lgwg.

Then Theorem 1 is equivalent to the following proposition.

Proposition 6. Let

_ (py, **, pr) A4 A
(19) Ja jﬁﬁﬁfﬂfﬁ)
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Then, modulo exact forms. f4 satisfies the equation (18) and Xfa=0 for any X Esly.
Our aim is to prove this proposition. Let us set
A=y e i) for 1<r<N.

For the sake of simple exposition we shall prove the equation (18) for p=i}.
Other cases are similarly proved.

In the following sections we use the usual equality symbol=for the equality
modulo exact forms. We remark that all the modulo exact relations, which we
use, follow from the relation in Proposition 5.

§4.3. Fundamental Relations

Now let us give all the relations which we need for our purpose. For the sake of
simplicity, in the formulae below, we denote A, by 4. For instance i—j=A,— 4,.

We set X={illr<N, (r,1) # (N—1,m)} and

Hs =1 (lm_'ls)
H (lm—ls)

For p#i¥ and 1<j<Nm we also set

=(47)

for the sake of simplicity. Now the relations are given as follows.

1. For p€A,, r#N

@ D L)

1€EAyTFY

A=

2. For 1#V, (n, 1), (r, 1) = (N, m),

o (54

m=1
+ im—ip I earsza GF—5) T %00 GY—i2) [ A + im !
‘N _-N-1 H ( N—1__ ) N—1 N .
im—im = jEdad e\l T v vk

3. For I+,

i) Gt =) G =) [ A ) =) (=i [
@2) ('f”‘l >_ @1 =i ) G —in ™) (tf“‘1>+ @ 1=if =) =il ( )
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L - —m—;u%—w-l) e (i ]

(z A I
4. For v¥#N,
(23) ( ) X H ( >
keX jE€EH,j¥k
K% A N-1
Z H MBO’, ) [_<-N—1 >+<1Z_ >]’
kol FEH A k Tk 1%
where we set
Mz, GYt—i2)
B 1, k)—l —sj————‘s—.
Ar H (t —z’;’)

5. For (r,1) # (N, m),

i | _ Z i =4 i [ il =g [ if
2 (u’) g U Vg Vi )
kEH kbt JeH 1#kA IEH gl "

The proofs of these relations are given in appendix.

§4.4. Equation for f4

Let us take (py, ===, pr) = (i}, * 1) in the expression of f4. By differentiating
the defining equation (19) in /L;,«‘ we have
s _ Z AGY, iy Dt 9 (A A
(25) 6'/2;%~ ",Vn fA+ Ht<u (AtAu) 5/2;9,’ ill i%:} '
JEAy

Substituting (20) into (25) we have

AGL - ipzh ™ Oy N =i NLfi—i/\a i

iz

Using (23) in the second term of (26) we obtain

Ht<u( :Au) afA
A, -, izl 7t 0y

(27) (=N)
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N-2m
+ZZ A, nrG—=d) (A A
SO G Tm G \id i

m=—1
H E Ay g F1l (11 ])
+Z z et UL B (1,1 1)
(5—iD (tm—L% h o= w?'n—tk [Lew,2g G 1=

EH
A A 1A A
. . N . N-1
S AV A S 14 B s |

‘N-1 A
where in the second term (% L ) is on the I-th position counted from (_r ) In
[y 11
the derivation of (27) we have used

ZZ m—t{)Z 1"1':11’7" ! gm ((LLII:;;)

r=11=1

=___N:_2_+Zi 4, 85 6=
w—int HA G —i? [T G

which follows from

=iyt 1 1

(=) (B —=) N —ir -

1

and

\ mt (% =) ot G — i) -
(28 Hs 1 \'m S s 1 =A; 1'
) Z (l%—ﬁr) Hgnskl (llr'_ls’: Hs=1 (1m_1«s)

The equation (28) follows from the residue theorem for the function

21 s)
(Z_lm) H s=1 (Z_'lsr) .

This is the typical argument to prove an identity in the proof below.

§4.5. KZ Eguation

We shall rewrite the KZ equation in a similar manner to (27). We take (p1, ***,

pr) = G}, -+, i371) in the expression (19) for f,, for any j € Ay. Then the KZ

A(lm
equation substltuted by (19) is
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H t<u (AtA ) a}:A

1 1 (A4 A
29 “ =—=
@9) AGY o 3= -1 0Ay N i’,‘f,—j(ill i%:ﬁ)
JEAN
N-1m
+£EZ 1 [l (4iAW) u
N 1, i Ht<u(/1“"'tnAu""’r))
r=11=1
Note the relations
(30) MeeMiA) 4, TI25'GI—=iY)
H¢<u01§""““/1,i‘”‘”) im—if % GI—i)

Thus we have

Mowlddd G _ LY _L (A 4
BU Gt i) o NZi’,‘,’,—j it

u, lm 1
JTEAy

N-1

—
-

r=11=1

By the equation (24), if ¥#N and i/#i% . we have
(32) i’r... i’r... i — H ﬂ ilr... if il
R St im—i\it i i)
m—1 1€EH. E1] 1 m m—1

Using the relation (23) we have, for r<N—2,

(33) A... i’r... u i A
i1 e N -7 V-1
11 1 Tm Tm Tm-1
U .N .
- _zm—._1<A. i A A )
- .1 ¥3 .y N-1
1 1 Tm—
kol 1K #i k™) 1 11 k im m—1
in—j A ot A
B(T, I, k) e .o e )
iy =g RS Q7 R 1 B Mt
k=1 JEﬂjitf- 1 k m m—

and, for [¥m,

(34) (‘/1

R /A AR 7t
N __» N _;N-1 m N—-1__ N—l N—-1
= H Tm ™) Tm s*l ('Ll ) (A | . A
N-1_ - A -1__, °1 N—1 N -1
N-1 -
Jew, ey U ] s-l (11 11;’) 11 11 11

)

m
1 Z P G—d) (i
N (i% _1;') M7 G—id) \id &
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N -1 ‘N—1 N—1 |
m

11 1 1

+Z IT ——iBW‘11w<

k=1 EH s+

If we substitute (32), (33) and (34) into (31) we have
L) 0§ 1 (A A )
. j . 1

(35) (—=N)

. N—1\ — N—
A - 2D OAg -
7 N
o VIR N—-1 N-1
+ An_y i H 1=y (A i im
N __-N-1)2 N-1__:N-1 \ -1 N
(1m_1'm ) s=1 'm Us 151 111V ! Llr\y],_i
N-2m m
+ E 1 Z A, HJEE/LJ*IM " ‘( ]) . 117 A 1
N - N __r 4. e . -1
y—1io “rkzl iv—ik I ex,2aGE—5) (SR TR VAR 1/ B M|
m=t N-1 N-1
+ 1 A N L2 A A LW
-N _:N— -1 N — -N—1 N —
T AN S ) im_i

]eA ,il,,(ll ])
+’Z )(1 _1, Z m -1 rljexjéz“‘ N—-1__ )B(’V l k)

r

A
where as in the previous case ( ) etc. are all on the /-th place counted from
23

ii’
<'r> etc. For the economy of space we set
31

Q0 1, A B =(/}
11

A 11" ,iN—l i A
QU I N—1. k) =" et tm
< SO 7 At LA R 7ot

A N-1
where the positions of ( ,1) and (14’:—1 ) are as above. If ¥=N—1 then iz should
1 1k

be replaced by im-1.
A A (e L (e
AN 7t A O e A U e

The forms
are linearly independent in the cohomology group H'(C, C). Since we do not use



458 ATSUSHI NAKAYASHIKI

this fact in this paper, we do not give a proof of it. But the fact helps to
understand the strategy of the proof below. The right hand side of (27) is
written using these forms only. We shall rewrite the right hand side of (35) in
terms of these forms.

§ 4.6. Reduction of Expressions of Fundamental Determinants

For 1<rSN—1, I={s; <+ <sp}, J={t < <tg}, pFHq=m (¢ <N—1), p+q=

m—1r=N—1), we set
A (A4 )4 Ai”‘1 iN-1 A
o =T . i
im-1 U AT 1{! L 7

A Ay [ -
e

"
A . A
where { _ |is on the (r—1)m—+1-th position counted from g )
s

11

o The coefficient of QF in Q(r, 1, A, k).
We assume r<<N—1. Let us denote this coefficient by det};. We set

1 1

Fru=- o, Gi= -
* 1’21_1—1;’ H]@A,]#t’,‘,’, (lfr_])
and
pi Im 4 7,6 —i)  Fh
A=

im—im " H;*mxufz'(t =) G

Then (21) can be written as

(36) <:>=<:1 )+§A,@l[_<i;1)+<i§: )}

Using this equation we have

! 0 | Al - At
< .
1 0 |
0 1 0 l 0 - 0
dett;= 1 0 ’
1 0 |
-
L] AR - A

=<;3’i:7i1’7>"ﬂ( Mz, G -(1 i2) )) H"} -

Tim uej ]#"1% DR
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Gl 0 | Fh
-l

Gl o | -

0o - - GI 0| o

% Gl o | -
: S

Gi 0o | -

| .

Gn IF;nl

459

F:;zm—l I

The meaning of the determinant symbol of the matrix above is the
following. The matrix consists of two matrices, say, the left matrix and the right
matrix. We take I-th columns from the left matrix and J-th columns from the
right matrix. Then form the determinant of the resulting matrix of degree 11+

/l. We shall use similar notations from now on.
Notice that, by definition, det};=0 unless kE1.

o The coefficient of Q7 in Q{r, I, N—1, k).

We assume ¥<N—1. Let us denote this coefficient by det}. Then, again by (36),

iy —if \JI-! m, G —i)) 1
detu‘(ﬁ) H<H I u(Nl ))

Vm ueJ\lk} s FE Gl HH:!Gt

GI :
Gi

Gl

where
Atrklez WG

o The coefficient of Q%' in QIN—1,1, A. 7).
This coefficient is denoted by detj;. Let us set, for s#I,

7l
me—l

o =it G — ts ) ol = (' —if 1) 1=

== (Y= (¥ 1=y 0 N N1y (V-1
(¥ —if-1) (@ -1—4-1) _

Dh = Ziy @iy DT TG

) H i‘s"“—z"

JeAN—x.J41ﬁn ! ]
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Then, (22) is written as

-N—1 A A *N—-1 <N—-1

12 _ im im
(37) < ol )—cgs( e >+c§’<i§"—1 )+D§s<lw_1 )+D§,< -1 >

s s ]

Using (37) we have

d€t131=
Chy Cly 0 | Dy - D v 0
Cl-1-1 . | o . .
0 . 1 . . o | o0 0 0
° C§+11+1 ° | ° ° °
0 Cin—ll cin—lm—l l 0 D£n—ll Din—lm—l

o The coefficient of Q1 in Q(N—1, 1, N—1, k).
This coefficient is denoted by det};. Then

det§;=
Ch Cli 0 | Dh 0 Di, 0
c;_”_l o ‘ . o ees . .
0 . 0 . . 0 | 0 « 1 - 0 0
. Cliier I . . e eee .
0 Ch-u1 Chi-1m—1 l 0 = 0 - D£n—11 “** Diy—im—1

In the right matrix 1 is in the (I, #) component.
§4.7. Comparison of Two Equations

Now let us calculate the reduced expression of the right hand side of (35) and

compare it with (27). We shall calculate the coefficient of Qf; by dividing the
case into nine as

(1).r=N—1,1=¢,J=11,2 -, m—1},

(). r=N—11={1,2 =, m—1}, J=¢ or r<N—1I={L, 2, =, m}, J=¢,
(). r=N—1,1=A1, 2 -, m—1\{t}, J= {8},

(V). r=N—1,1=1{1, 2, ==, m— 13\ {u}, J= {8}, u#¢,

(V). r<N—1,1=A{1, 2, -, m—1\{u}, J= {1},

(VD). r=N—1,INnJ=9¢, 1|21, U =2,
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(). r=N—1, [INJ|=1. ) =2,
(V). r=N—1, [INJ|>2,
(X).r<N—1, |J|=2.

(I). The coefficient of Q) with I=¢. J=1{1, 2, -, m—1}.
Let us calculate the contribution from the term which contains Q(N—1, [, N—1,
k) (1<1<m—1). We have, for k%I,

deti;= _—HD

Dick s*1
N—1__:N—1 /iN _ :N—1 ol
_4 e (Lm V- ’”‘2! Ez “1— E E Z
N—1__;N—1 \:N _:N-1 . N
i i N —i iy i
k m m m s=1 U s 1$A~1/¢1m ]

For k=1, dety;=II%'Di;. If we set k=1 in the right hand side of

= L =

<N -
v
DI 1N -1__
kk k JEEAN u#rm

we have — 1. Thus the formula for detf; given above is valid for all 1<p, | <
m—1. The contribution to (35) is

(38) — A L U T ZH""*IN D 3)

(N—"tN 1 m—2

m—1

v G i) _
s Z(i%——iﬁ‘l)ﬂz”*k(ik" — )B(]V LLE.

k=1

By the residue theorem we have

Z 75t 1= _ 1 75 Gy~ —zs)

i I)Hs*k(if"l“iﬁ"l) S Av-r Gl T R Y
mz ns¢1 7 At ) 1
Nl ) M2 G =) Aw-d

Thus, substituting the definition of B(N—1, I, k) to (38),

m—1

[z (i %) (=)=
39 38) =Ay_ S M M
(39) B8 = gyt LTl i)
PR = X ey

=)oy =i
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Here we again use the residue theorem to evaluate the summation in /. Hence the
coefficient of Q in the right hand side of (35) is zero. This is the case for (27).

A A
(II). The coefficient of Q;’;=( 1 et > with r=N—1, I1={1, 2, >, m—1}
1" Tm-1

and J=¢ or r<N—1,1={1, 2, ***, m} and J=¢.
(II-T). The contribution to (35) from the term which contains Q (7, I, 4, k)
(1Z1<m).

We have

0 k#1

dety;= { 1 k=i

Hence the contribution to the rhs of (35) from the term containing these deter-
minants is

N-2m
(40) X A, 1@/1 1F Ml ’( _])
r=1I1=1 (l _m ]Eﬂ]$p{(ll ])
N-2m
Z Ay 25t Gr—4%)
r=11=1 (1’ —LD Hs*l (u s)

(O-1I). The contribution to (35) from the term which contains Q (N—1, I, A, 1)
(1<i<m—1).

We have
N — N 1\ m-2 — N1
1 l
det[j_HCss < ) H 1 S
s+l m s*1 11

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(41) L5 (i) Z . )

(1 -‘z %—lz 1 s¢1 (l _Ls )

_ Ozt Gh—aY Res (z—ih~)m2

(=i )m=2 o=y (z—i)? 123t (=i )

m—
- Tm—1s

lm

From (40) and (41) the coefficient of Q in the rhs of (35) is
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N-2 m
R +Z SVE ) N S o)
iw=j i i A R =iD? T8 G =)

JEAN

Rl et L L
in—in i A H bt h—if)? Hs*l(u"“ig)

s=1 r=11l=1

This coincides with the coefficient of Q in the rhs of (27)

(I). The coefficient of Q! for which I={1, 2, **-, m—1}\{t} and J={¢}.

(II-I). The contribution to (35) from the term which contains Q (N—1, 1,
AD).

It is obvious that det§;=0 for t=1. We have, for t#I,

m—1

detyy= (—1)7+1pt, T [ i

S*t,i

_ (qymeees GO (i) T =)
(i —ip~1)m-2 ML (iN=1_ N1y

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(42) (_1)m+t+l (ilrx_l—ilrv_l) gn*—tl ’lm_ls l> Z 11 yie -N-l)m—s
(i —im (=) Tl G =)

(II-0). The contribution from the term which contains Q (N—1, I, N—1,
DA<Li<m—1).

If 1 then det};=0. We have, for [={,

. — N1 mop=t A N1
det}’, m+t+1i Ect _( 1) m+t+ <—__N_1._> E E ‘__.*
1z

- ‘N—1
s+t tm s+t 14 —1s

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(__1)m+t+1AN 1(iN 1,N 1)m—3 l(,LN 1 N)
(43) e H

(i?/ -t 1m) (1m—'lN l)m z s*_ s*t lz

W= iy —id!

m—
(_.1) m+t+1<~N 1(N 1>m—ZH 111Vn_L{gv_l
+ m s T
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Note that the second term of (43) is the =t case of the summand of (42).

(II-M). The contribution from the term which contains Q W—1, I, N—1,
k) with 1<k 1<m—1 and k#I.

If k#¢ then det{;=0. We have, for k=t,

m—1
detty= (—1)"*ci, ] [l
s*t.l
= ("‘1)’”+t+1<i11V_1—i]rvn-l>m_2 [z (1%_ ) ’L'{'V“l_;
b i T2 GV =) Jed, e 5

The contribution to the rhs of (35) is

<— )m+’+1AN—1Hs¢_rl(7:m—1s I)H (1N 1—g )

@ =Y GE— ) I (V=Y

(44)

m—1

» (iN~1_1:N—1) m—3

b (i =it ™) T3t G =)

In deriving (44) we use

PN N-1 [[mot (N1 — ) o
Av-1 [5G —)

which is a consequence of ¢ #1. Note that the first term in (43) is the [=t case

of the summand of (44).
We add (42), (43), (44) and obtain

1 m+t+1A H N m__ N-
(45) ( (IL“‘lfv 1§,(:m_1m l)m -2 ) @ it N 1) B(N—l, t, t)
K=y N l)m 3
X
P (1/m 1) Hs#l ( {9\/—1)

( )m+t+1A Hs’[l-_1 (it - 1;{) B(N—l‘ £ t)'

i) (1m—1m D Nz —a)

In deriving (45) we use the identity

('LN l""LN l)m -3 _ (’l _1N l)m -3
(46) Z E—d-) I =AY Iz G —a)

The equation (45) is nothing but the corresponding coefficient in the rhs of
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(27).

(IV). The coefficient of Q¥ with I={1, 2, -+, m — 1} \ {u} and J= {t},
uFt.

(IV- I). The contribution to (35) from the term which contains QIN—1, 1, A. 1).

If I=u then det};=0. We assume [ #u. Then det};=0 for { #1. since u-th
and I-th rows are proportional. Thus we assume [=¢ We have

m—1

dety;= (—1)“"™*'Dj, ﬂ i Css
s*ut
N-1__N—1\m— —1(;N _N-1 N-1__;
=(— 1\u+m+1("_~_1 )m 2 St Gy —iN Y i
1

N __-N-1 m-1(;N=1__ N—1 N—-1__ ;"
m~ tm Hs*t ('Lt Ts )1&‘/1,,,,‘];&;&’, 1t ]

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(47) (_U“*’”“/i”‘l—i”“)m-z [ (=R iy =
A A A V E O e I mi

(IV-T). The contribution to (35) from the term which contains Q (N —1. I,
N—1,1) with 1<1<m—1.

If 1#¢ then det};=0. We have, for [=¢,

m—1
dEtI]_ ( l) u+mCutHCss ( 1) u+m+1Dt Hcgs
S*u,t S=u,t

N—l) JN-1

— (_1)u+m+1<u>m ZLSﬂ_(Lm_.__m____ Tu ]
i Mt GV =&Y edy Se i1

The contribution to the rhs of (35) from the terms containing these determi-
nants is

(=)o, (i)™ T =) Tegy e 68~ —1)

(48)

=i 26— )™t &G =) T ean, i a0 GV 1 —5)
+( 1)u+m< N 1__ 1,N 1) s*ul(im"l 1) iﬁl—l_'
1N 1N ! im % - Hs*z s*t (h - Isv l) 1€ ANy F A ifv_l_]‘

Note that the second term of this equation is the minus of (47).

(IV-T0). The contribution to (35) from the term which contains Q(N—1, I,
N—1, k) with 1=k, IS<Sm—1 and k#1.
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If k#¢ then det};=0. We have, for £=t,

detu-— ( 1) utm = Cu’ MCss

CW s*l
N=1__:N=1\m— —1(;N _:N—-1 N-1__,
=( l)u+m+1(1«l “im >m 2 ;n*u (@m_ s ) Ty _7
—1(;N-1__:N-1 i
lN -1 H;nﬂ (11 s ) JE AN, 1 F 1Y, “ 7
Here we understand C%/ClL,=—1 for w=1. This follows from the equation
Clu _ _ =i e
! ‘N __-N—-1 -1__
Cun Tm ™ lu €Ay, # L ]

The contribution to the rhs of (35) is

(_1)u+m+lAN—1 ssu (1m—1‘s 1) HIGEAN W (7— _].)

(49)

=i =i ™)™ 2L ex e G 1)
m-l N N l)m 3
X (i) :
(=) Mzt G- 1—& )

I+t

Note that the 1=t term of this equation is precisely the first term of (48).
Thus, using (46), we have

(47) + (48) + (49)

_ 1) AN H oy (i]rvn_ilsv_l) HJSEAN—»J Fim (ig_l _—JQ
A A G A R | R N i )

m=1

N l)m 3
X
by (lm s*ll (1
— ( 1)u+m+1AN 1 H7$A~ 1#F1 (lu—l_])
(7' _'LN 1) <1m_1m 1) (lm"'"’lN ) H}ej{ j#E (7't - _])

which coincides with the coefficient of Q37! in the rhs of (27).

(V). The coefficient of Qf for which I={1, 2, ===, m} \ {u} and J= {8},
r<N—1.

(V-1). The contribution from the term which contains Q(r, I, A, ).

If I=u then det;;=0. We assume [#u. Then
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N __ 7 m N—1__,
Tm ’Ll H s*l (‘lt 1 )
detl;= (— 1)“+"' - Fi ] 1G¢
—2m Hﬁhﬂ‘ AT (7" -—]) H IGS * g *
— (_1) u+m 1’%—/‘{ Hs*l(it -1'.?) HJ$A11¢‘M (1'u—1)
(—im ) ¥ —id) I1 o G2 =)

The contribution to the rhs of (35) is

(50) ( 1) "Ay s*u(lfll W) HJeArJ‘EM(lu_']) Z(l 7 (1 m-—l(“_tN)

=i ) I, e, i - G —5) Y= T1% (i7—12)

(V-1). The contribution from the term which contains Q (r. I, A, k) with
BFI.

If 1% u then deti;=0. In fact if further 2% u then k-th, I-th, and #-th rows
are proportional and if ¥ =wu then I-th row is a null vector. Thus we assume
I=u. Then

N 7 m sN—1 -7
4 _7'1,4 Hs*u(tt 1) 1
detly= (—1)#+m-1 2 Ny Fid 1GE
L e e e Y =5) TI20GE g *
— (-—l)’”m‘l i%_‘iz Hg;u(it —k) H1$A 18 (14: J)
(m—in™) G¥ ' —ip) IL e o i G —5)

The contribution to the rhs of (35) is

(_l)uﬂn—lA H’sﬂu(%N I_Ls) H:éF.A 1#1?. 9 + iy -7)
(1' —-1'm 1) Hy#t’d, (R ’("f )

(51)

V=il I =)
% Z GY—=ip) GV =) 1T Gi—i)

k*u

Note that the k=wu term of this equation is equal to the minus of the |=wu term
in (50).

(V-TI). The contribution from the term which contains Q (v, I, N—1, k).

If k#t, dety) =0. We assume ¥ =t, Then detf; =0 for ! #u, since I-th and
u-th rows are proportional. Thus we assume [=u%. Then

dety;= (—1)*+m,

The contribution to the rhs of (35) is
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(52) (_l)u+mA7H1$Ay JEITA (1'15_])

B(r, u,t)
(=) =i ™) (=i [Lex ypa- G2 =)
(= 1)"+AH$A #"(iu j)
= T B(r, u, t)
(7'm_7ru (lm_’rm 1) ('Lm_lt 1) H;ej{;$;,“ (1N_1—].)
(=D“mA, 1], ep, 2 ia—7)
N 7 1F 1w \Nu 3(7 u, t)
(=il =il @ =) [ ex,eam GV —4)

where we have used

1 1 1
(llrvn_hf) (lu"'lm ) ('Lm_11u> 'Lm"'im 1) (747—12]1_1) (’t%_l%—l)

Note that the first term of (52) is nothing but the coefficient of Q in (27).
Let us calculate (50) + (51). We have

(50) + (51)
—1)*m4, 17, G~ ')H,eA )
@ —in ™) I e g - G —5)

i[” il ] Izt Gif—it)

iyt i —ip) (Y- -—zz’? Mz, G—i)

By the residue theorem

i 21t G —i%)

1 (’ _“’) <1 _7/1) [z, (if—12)

_ 21 i —i%) I 216N =)
(iyhl—i%) H?:l (%n‘k) (lm"U l) H ( _19 '

~

i (=) T 27 G — i)

=G ik) G =) T3 (i —id)
(lm_'lN D Hsmll(lm N) + (ifv—l—'im_l) Hs"i_l (7/ B _7/15\',)
GVt —) T, G —42) (=) I, GV 1=4) -

Hence

(50) + (51)

= (= 1) A M sy G —40) T g,y G ) X
(=) =i ) Tl 00 (681 =)
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[i%—iﬁ Mzt GY—¥) | ip—t [I2 G- —zs)]
ig—ip~! Hs=l (=i a—ikt [ G —iD)
— ( )u+m+1A1H1$A, 1#E (tz:—]) B(?’, ” t).

=il GE =) (=i D) TL g, Y1)
This is the minus of the second term of (52). Hence
(50) + (51) + (52) =the first term of (52)
which is equal to the coefficient of QF in (27).
(V). The coefficient of Q7 for which INJ= @, [1]=1 and | /| >2.
Let us set I={p; <+ <p,} and J=1{q: < <q}, u, t<m—1, u+t=m—1.
(VI-I). The contribution from the term which contains Q(N—1,1, A, 1).

1f 1€ then detj;=0. We assume [€]. We have

det};=sgn - H CégHDés

sel\{l} seJ
—en - (if‘”l—iN“l)”_l(iN _,iN—l)t i%—i?’_l_ i%—l"‘ils\’—l
g (1 —"lN l) 'LN 1__ ,LN-l 1N_l—iN—1
m tm senin “! s sey U s

where sgn = sgn (b1, ***, pu, qi, ", q:) is the sign of the permutation. The
contribution to the rhs of (35) is

Hsel(im_is—l)Hse](iN_l_ls 1) Z (@N 1_1m l)u 1(’ _7'N l)t 2.

(l _lN l)m -2 N 1__ N 1)

(53) sgn
lel S*l

(VI-1II). The contribution from the term which contains Q(N—1,1, N—1, 1)
with 1<51<m—1.

If 1€, dety;=0. We assume [E€J. We have

det”=sgn . HC.{;S H Dés

sel se/\l}
—gn - @ =iy ) =i - ‘H iy iy ! H iy bt
g (i) — -1y m-2 N—1__N—1 N-1__.N-1"
tm ’lvm ser U s " sepin U ts

The contribution to the rhs of (35) is

AN—IHseI(i% 1.s_l) Hse](im—l_i{g—l)
(1' _lN 1)m-—2

(54) —sgn
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XZ @t =i 2 6 =il e =)

N— 1_N -1} 2
leJ H (1/ )

+sgn Hsel(im 15 1) HSE‘LZ 1— N 1) Z (1N 11— N ! u—l(i N 1)

(‘L 1N 1) 1('LN 1__N 1)

o] s*l

Note that the sum of the second term of this equation and (53) is zero by the
residue theorem and the conditions =1, t=2.

(VI-I). The contribution from the term which contains Q W—1, I, N—1, k)
with 1<k, I<m—1, k#1.

If k€] then detf;=0. We assume k€.
(VI-II-1).1€] case.
We have

det‘}]= —sgn * Ch H Cis H Dis

sel\{l} seJ\ik}

@ = “ 65— ) T senn G5 _ig_l) Hsenim G5t =)
(1m_7/m l)m znsﬂl (1 N_l)

=sgn
.N_l_-

x I w2
sN—-1__ -°

1€ Ay # U )

The contribution to the rhs of (35) is

- An-Ilser (=i ™) Tses in~ =17 ‘ “"(i —i )
(50) N-1llsel\lm $ se] Z
e (i) Lo I )

X s=1 (l _1N> .
Z:] ¥ —ih) 2 G — i)
(VI-II-1). €] case.
We have

detf;=—sgn * D’MHCQS H Dis

sel  sej\ikD

= s Gt =) =) Mser =187 Tsenun Gn =t =)
R A L | Ll Gl )

x 11

JE A F T

N-1__-:
k ]
N-1__ ;"
! ]

o
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The contribution to the rhs of (35) is

(56) SSIjAN—IHsel(im .s— Hsel(i _l"is Z ("N 1_'1m u_l(f' ‘7/N l)t 2
(1' _’er l)m—2 o stl (1N l—tN l)

Z‘ S Gy —i")
(N l-lm s*k(1' 1;1;[-1) ‘

kel k=l

If we set K=/ in this equation, then it is equal to the first term of (54).
Thus we have

(53) + (54) + (55) + (56)

— AN—IHseI(im_ls )Hse] = N 1) Z (’LN 1’_lm u—l (1. _'Lulv_l)t_z
sgn (G — N1y m—2 m=1(;N=1_N-1)
lel

x Z 5 =)
A =) T8 G =)

=0,
by applying the residue theorem to the summation in I.

(VI). The coefficient of Q! for which |[INJ1=1, |j[=>2.
We set I={p, <+ <p}, J={: <+ <q} (u+t=m—1) and INJ={k}.

(VI- I). The contribution from the term which contains Q(N—1, I, A, I}.

If k%1 then det};=0. In fact if k#1, either the I-th row is a null vector or

there exists a row proportional to the I-th row. We assume I=F. Let us define v,
w, y by pp=qu=1,T1UJ=11, 2, -, m—1}\{y}. Then we have

det}y=sgn * Dy H Cis H Dss

sel\'ly  seJ\{l}

G~ =) (i =i ™) Tsenan (=i ™) epun (57 =)

=SgI1 .

<1fm—1m 1>m_2 ?$11(1'1 —.Isv_l)
X ———M
JE AN F iy “ _J
where sgn=sgn (p1, ***, pu. q1, ***, Y. **. qs), y being on the place of g,. The

contribution to the rhs of (35) is
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(57) —sgn - T =) 2]y (=) Ty (B =)
=i ) Tl G =)

.N_l__ .
X ly 7]
N-1__.*

1€ Ay g #1y Ve ]

(VI-I[). The contribution from the term which contains Q (N—1, 1, N—1, 1)
with 1<I1<m—1.

If k#1 then det{,;=0 by the same reson as (VI- I). We assume /=F. Let us
define v, w, y as in (VI-I). We have

detf;=—sgn * Cy H Cis H Dss

sel\{l} seJ\{l}

— 1 I !

=sgn ° Dy ] E Css E [ Dss
sel\{l} seJ\il}

which is same as detj; in (VI- I). The contribution to the rhs of (35) is

An-a G =y )2 (g —if -3

(58) —sgn
¢ (=i
» 750 G =) Tlser G =) [loe G =) iy t—;
57 G =12 P e |

T = =i ) P T e =Y Toey G =)

+sgn
N “N— - m—1/.N—1 N—1
('Lm_'L% l)m Zns*E (’LE s )
.N_l_»
X lﬂ_____l_
N—1 .-
JEAN 1 F 1 z;; )

The second term of this equation is equal to the minus of (57).

(VI-1I). The contribution from the term which contains Q (N—1, I, N—1, k)
with 1<k, I1<m—1, kFI.

If k#k then det’;;=0. In fact if k# % then k-th column in the right matrix

and that in the left matrix are proportional. We assume k=Fk. Let us define v, w,
y by pp=qu=k, IUJ= {1,2, -, m"l}\{y}

(M-T-1).I€] case.
We have

dethy=—sgn - Ch | L ¢% 11 Dk

seN\{l se/\ik}
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(ifvn —1m 1) (lm—ll ) Hsel\m (1«m 13 )Hss]\(k}(‘lm 1—15 )

=sgn *
(1 _7fN l)m ZHS*I ( s )
X ig——i—lw'
JEAy g F 1 ‘dv - J

The contribution to the rhs of (35) is

Moenm (=i ") Meenm @R =i ™) Iep,pem G —1)
(i) " Tt i )

% Z (’L.fv_l“'i%_l) u—1 (‘LN _ilIV—l) t—2

P )

(59) sgn - Ay_y

lell+#k
(MI-M-1). €] case.
We have

detdy=—sgn - Dy, J 1C% §1 Db

sel seJ\{k, I}

=sgn - (111\] N I)u(,t —lN 1)[ lI_Isel(lm_ls )HSCJ\{k‘(Lm —. )
(i —im ) 2Tl G =i )
gt
JE Ay, 7#;,,, B _]

The contribution to the rhs of (35) is

Hsenm GH—i¥") Msene Gp~'—id") H,esAN-. e (B 71 —7)
(’LN zN 1)ym= H,ea{,#,ﬁ“ 1k _J)

Z (ifv—l 'N—-l) u—1 (iN __iN—l) t—2
X .

s*l ('L

(60) sgn * An-1

1eT1#k
Note that the first term of (58) is equal to the [=F term of (60).
(I-M-10)..=y case.
We have

det‘}]=sgn . HC!‘S H Dés

ser seN\{k;

(7'11\, -l N 1) (lm_ll 1)‘ IHseI(lm—'Ls )Hse]\(k} (1' —ilsv—l)
(7«m—1rm l)m ZHQ"*II(H - {sv 1) '

=sgn *
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The contribution to the rhs of (35) is

Hsenm @ =) e G =) || P y (1 -1—7)
() "1 ey )
('I'y—l 'N—l) u—1 ('Ll;ln — '1;/—1) t—2
Hs*y ( 11— -15\/—-1)

This equation coincides with that obtained from (59) or (60) by setting I=y.
Now we have

(57) + (58) + (59) + (60) + (61)

(61) sgn - An_1

Hsenm Gn—i ) Msenm G =& ™) Il eay, 2 (iy1—j)
G D L | R ()

N 1 u— 1(1( ifv—l)t—z

Hé‘i:‘ (t 1—@&-1)

=sgn * Ay-1

m—1

X

I1=1

=0.
The last equality follows from the residue theorem.
(V). The coefficient of Q%! for which [INJ]=2.

(VI- I). The contribution from the term which contains Q(N—1, 1, A, I) is
zero.

In fact detj; = 0 since at least one pair of common column is linearly
dependent.

(VI-1I). The contribution from the term which contains Q W—1, I, N—1,
1) with 1<i<m—1 is zero by the same reason as (VI-I).

(W[-1). The contribution from the term which contains Q(N—1, 1, N—1,

k) with 1<k, IS<m—1, k#I is zero by the following reason. Since Ci;= —Dj}; for
k # I, the common column except k-th column is linearly dependent. Hence

dEt‘}/=O.
As a whole the coefficient of QY7 in the rhs of (35) is zero.
(IX). The coefficient of Qf for which |J]=2.

Let us set I={p<--<p,}, J={q<--<q}, =11, 2, =+, m}\I=F: <+ <p}
with u+t=m.

(X-1I). The contribution from the term which contains Q (r, I, A4, 1).

If 161, det};=0 We assume [€1. Then
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Sperbuw i =il \! E; 1
deth;=(—1) HG’det(F ,)(. - > - :
o PN ) T =) TG
_ EJDI]< i —if )' 1
=sgn —
Eer @ i =i Moy @ =i

Dot Suat D) +1e+D

, G"(T) =Tlse1Gf and

Ha<ﬂ (7'15":,_7'55) Ha<B (lq{.v _1/(]5 )
HseTHs’e](i;-is' 1)

where sgn= (—1)

1
Dyy= (__1) 2t<t+1)det (Fp‘,q,) _

E]=H< 7, Gy~ —id) )

yel H]$L’,"n1ﬁl171(ll ~])

The contribution to the rhs of (35) is

sgn * A,EDyy (i —if) 2118 =)
(iN"?,m 1) tGr (I) Hs*l(“ "s) Hse](?«s —11)

(62)

(IX-1I). The contribution from the term which contains Q (v, I, A, k) with
k¥l

If 1€ or k€] then det};=0. In fact if ! €I then I-th column in the left
matrix is a null vector and if £ €T then [-th row is a null vector. We assume
1€ ] and k€L Let us set T={p, < <p} =T\ {1} U (&} and p¥=p, (B #1), p¥=
E(p,=1). Let us define v, w by py=Fk, pu-1<I<py. Then

Sperfuturvrt-krv-w( iy —if \* E;G/IlsenwG5 - det (Fpq)
1 — 2 J \
det;;= ( 1)

im—im 1> ses A-1=i) [T72,GE

)2p1+%u(u+l) -1 Ey ( 1,%“‘11’ >t det(Fp*q,) _G_{
G (1) e, @1=ip) Gf

= —san EDy ( i1l )t 1 e, a G—5) Tservn Gi—d2)
G’ (I) Hse](ls_ “1/;) H]eEA,,mm(u ]) Hse[\(l)('lfl_lg

=(_1

i =i

iy —g-t
where we use
det (Fp,) = (= 1) ¥~ 1*w=v=1det (Fyy,) .

The contribution to the rhs of (35) is

(63) ___sgn * AEDy Z =i
G7(I) (h—id™Y) (=5 Ilsepva GI—i2)

(i7—iy™) M5t Gr—i%)

X .
= (@ =10 Mseavinm @ —i3) Mses (1 —1f)
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If we set k=1 in this equation then it equals to the minus of (62).

(IX-1I). The contribution from the term which contains Q (, I, N—1, k).

If IE] or k€], det};=0. In fact if I €I then [-th column in the left matrix is
zero and if k€] then I-th row is zero. We assume [ €] and kEJ. We define v, w
here by ¢,=k and p, <I<py+1.

We note that
#slps<t}=1—1—w, #{slg<r}=v—1.

Using these relations we have
)Eh+%u(u+l)+1—-w+u< ’L%—L{ E]Hﬂg,lxx WN-1 K (1,kN_1""J)

-1
im—im ‘> M2, GY 2 —il) Mses (V1= 1172465
x HG; det (Fﬁq,)

sel (T\{D x D\kD

(64)  dety= (-1

EDy < il )H 7% - GV =)
G” (I) 1%"1% ! H,@A,.;#;,,,(ll ]) Hs*z(l 15’)
Hserva GI—i¥ ™)

Mservn G7—12) Msep G 1=&-1 -

=sgn

X

The contribution to the rhs of {35) is

(=1)*'sgn - ArE!DI] iw—if) 2
65
(65) Z o=

GT(I) Gh—ik™) 1) Hservn Gi—id

Z =)
(t —if )Hsez(z '—40) Msenuw G ==&

____sgn-EDy Z (im—ip'!
GT(I) @Y=y ) & (=il Mservn G7—i2)
IeT
Hse] \{} (1s Trk 1)
(’L _1k Hss]\(k} (T«k _1:1.;]_1)

— _ (—l> thﬂ ° ArE]D[]
GT(I) (i%—id™") Moer(i—i2)

o it )
* Z (1, _'1k ) Hsel (l _’Ls) Hse!\(k) (illy‘-l_ig_l)

kel
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sgn * EDyl]ser(i7—i%)
r(I) (1%——1%-1) Hsef(ilrgt—'il!-l) Hsef('im— _15)

In deriving the last equation we use

) t-2 (N — N -1) 1=
(66) Z (7'm 1) _ m
o (7'17_7'm )Hsef\{l} (1{_1§) Hsel(lm_ "'13)
€7
Z Hsez\m(ls i _ servn Gi—i3)
(@ =) Msepao G 1= Tlse, G —d¥1) "

Let us name the first and the second term of (65) Z and W respectively.
Now we have

(62) + (63) + (65)

m
sgn * A,E/Dyy (=) P15 G =if)
(i —in) G (1) & T8 G —id) Tee, (871 —iD)

sgn -° rEID[] Z i “"1,1")t !
(1) 'Lm_'Lm 1)‘ (H"im Hse]\{l) (‘LI s)

% Z (lk—lm 1)“ Ulc_—"/N) +74+W.

i —ip) Hseavumm (hc"ls) ey (N ~1—ip)
keluil}

Let us name the first and the second term of this equation X and Y respectively.
We shall rewrite X and Y. Using
m
Z iy —if) It G =) Z —if ) R E G =)
1z

7 G —i) ey (Y1 =i 1(t '—i0) Msepn GY =i 1)

we have
x=—Sen * AEDy N =y D2 mat @ =)
%=y [Gr(f) H L @ =) Msepun 1= 7Y
Using
Z Gr—im ) 125465 —i%)
rerom (@5 —iF) seavwnim @F—1i2) Msey ¥ —if)

— ( N_'Lm 1) H (’Lm_lN)
(i%_ll’j Hsel(lm""ls) Hse]('bs _1/Irvn)
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n X @' =) 23t Y =)
& (=il ™) @@ =) Tleer G =10 Tlsepun (871 =i )

we have

y=— sgn * AE Dy T175 6% —i%) Z (t —if) !~
T & (if—

( <1m—1N 1 = 1Hsel(im ls) Hse] 7fm Hse]\(l) (11 )

_ sgn AEDyy Z ) “if) -1
G’ ’fm_im 1)' (7' _7vm 1) - —11’) Hsel—\(l) (“r_,l;)

Z (z gD 12t G =)
@ =) Mser GY 1 =) Msepn (¥t —if )

Using further (66) and

Z _“1)! 1
Gr—id) (1 Y—iD) Hservin GG7—1)

(1, _’LN l)l -1 ('L __1N l)t 1

(i';rv_ —'Lm )Hse](im _'ls) ( B _'lm )Hse[(“(_ _7«;)
we have Y=—W—Z—X. Thus
(67) (62) + (63) + (65) =0.

This completes the proof of (1) of Theorem 1.

§ 4.8. Proof of (2) of Theorem 1

Let us prove the remaining part of Theorem 1. Let {E,;} be the standard basis
of giy where E,; is the matrix unit with 1 in ¢ component. Set 7, =E,, — E t1:+1
(1<i<N—1). By the definition of /= Xfavs it has weight zero, h, f=0 for any
i. Hence it is sufficient to prove E,; f =0 for any i #j. First we assume N=3.
Then it is sufficient to prove

(68) Enwf=0, r=1 - N—2.

In fact by the following reason the proof for an arbitrary E,, case is reduced to
the above case. In our description of our basis of differential forms the index N
and N—1 play a special role. For E;; we replace the role of N by j and that of
N—1 by k with k%1, 5. This is possible because N=3. Then the following proof
is totally the same in this modified situation. Thus let us prove (68).

Let A= (A -+, Ay) with A,= (4, -+, i) (1< <N). We consider A" =
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(A, -+, Ay) with
=A;(G#Er, N), A=, =, i, i), Ay= (Y, =+, i%1).

Define v, in an obvious way. Then the coefficient of var of E,nf is

m
fA‘i'ZfA(zr.m.
I=1
Hence it is sufficient to prove
m
(69) fA+ZfA<,,u~m> =0
I=1

We shall devide the case into two for the proof of (69).

. A A :
(1). The coefficient of Q={  -++ o | of the left hand side of (69).

11 lm-1

In (II) of the proof of 1 of Theorem 1 we have calculated the coefficient of Q in

AGL e il 1 -
( 1 m— 1) = .,,fA .
1

Ht(u(AA ) =1 Vm™—

From the calculation there we can easily read off the coefficient of Q in

Gi)

Al - ) §
H1<H(A3Al{) Z

It is

_Z 1(11_13) —A H’g:ll(lm_i s) —1
I m -N .

i —if sﬂ(zr*t’) m (i —i?)

Thus the coefficient of Q in the lhs of (69) is 0, since

A Lm 1) -1
Ht<u( tAu) fA

(1). The coefficient of Q}; with |J| =1 in the lhs of (69).

In (IX) we have proved that the coefficient of Q; in

A(i%,"',iﬁ"n:%)"i L7
Ht<u(AtAu) i —if A

=1
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is zero. There the condition [J|=2 is used only when the residue theorem is
applied. Taking care of it we can again easily read off the coefficient of Qf; of

A (11 1m 1 Y
(11 i’n’u)
H t<u (A tAu) Z

from the calculation in (IX). We used the notation (62), (63), (65), X, Y to
denote the equation apeared there. We shall use the prime of them for the
corresponding equation like (62)’, X" etc. Then

,_ (=1)'sgn * A,EDy, Gy i)
Gr(l—> Hsef(ilrvn _13) (’Lm_lN 1) Hse[ (Lk_ '—19 Hse]\ik} Gﬂcv_l_ig_l)

_ sgn * EDy]1seiiI—i%)
Gr(l) HSE](i%—ig-l) Hse]_(ilyz _'13)

Also we have

y =580 " AEDy &=V It GV =)
(ih—im )6 (1) & ALk (=) Hsenm G =i )
and
« ED 1] e i —i%)
(70) Y= __S8N ° Lyl llsef\lslm
GrU) nse](im—ls l) Hse](’lm _ls)
(=1)"'sgn - A,E JDUZ T )
G"(I) Meer 1= (tm-zk ) Mser@ =) Tsenm @ 1—=A)
__sgn - AEDy (i —if~ DI Sy =)
(i%—i%”) tGT([—) Py Hs:l (lk _13) Hse]\{k) (15_ '—'Lk )
__W Z/ ,—/
Hence

(62)"+ (63)"+ (65)'=Z'+ W+ X'+ 1"=0.

Thus the equation (69) is proved.
In the N=2 case we can similarly read off easily the coefficient of

it (A L)

from (1), (IO), (M), (IV), (VI), (VI), (V) in the proof of 1 of Theorem 1.
They are all zero as we expect.
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§ 5. Discussion

In this paper we give integral and theta formulae for the solutions of siw
Knizhnik-Zamolodchikov (KZ) equations of level 0 with the value in the trivial
representation in the tensor product of the vector representations of sly. The
formula generalizes the Smirnov’s formula in the case of sl;. We have found that
the differential form g%, which is a building block of the integral formula, is
obtained by evaluating one of the variables to the branch point @, in the
product of chiral Szegd kernels. This is a key for the proof of the theta formula.

Let us discuss remaining problems and related subjects.

In N=2 case it is conjectured that Smirnov type solutions span the singlet
solution space [16]. On the other hand the dimension of the vector space
spanned by our integral formulae is less than the multiplicity of the trivial

representation in VEN™ for N>3 and m>2. In fact the multiplicity is given by

Ny — (Nm)!
mult (O V® ) HQ’-—._OI H;n;ol (m-l—k—]') ’

On the other hand the demension D(N. m) of the vector space spanned by
integral formulae satisfies

DN, m) <I(N, m) =< (N‘N_'”;);Z_l >

where the right hand side is the binomial coefficient. The number Nm —2 is the
dimension of an eigenspace of the N-cyclic automorphism ¢ on the first
homology group of a Zy curve. Then

mult (0, 1°¥m) — N—
I(N. m) N—1 m—j+k

WN—=1) m—1—j) +k— (m—j+k) =(N—2) <m~2—j+%—:—g—>,
(71) is greater than 1 if N>3 and m=2. Note that mult (0, V®) =1(N, 1) =1.
For N=2 we have

mult (0, V") =1(2, m) — < Zm—2 )
m—3

where the second term in the right hand side comes from the Riemann's bilinear
identity [16].

This structure of solution space should be same in the gKZ case. To
construct remaining solutions for both KZ and qKZ equations is an interesting
and important problem. In the qKZ 'case to study a relation of these missing
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solutions with form factors is also interesting.

We still do not understand the relation between the integral formula given
here and those given in [6,10,11] in the case of sly, N=3. In N=2 case the
relation is given in [9]. If we understand this structure then it will help to find
the missing solution discussed above.

The relation of the solution to the KZ equation of level O with a classical
integrable system is still to be clarified. The relation with the Szegé kernel will
give some hint to understand this problem since the Szeg6 kernel is related with
the tau function of the KP hierarchy. Anyway it is true that we can introduce a
Jacobian variable in the theta formula for the solutions to the KZ equation.
Hence it is natural to ask what kind of equation governs the dependence on the
Jacobian variables and what the zero value means for that equation.

Once we introduce the Jacobian variable we can ask what is the difference
analogue, g analogue of the theta function? As to the abelian integral, Smirnov
[16.17] discussed its difference analogue.

Since the Smirnov type formula is related with the algebraic curves in the
case of sly, it is interesting to study Smirnov type solutions for other type of Lie
algebras and whether they are related with algebraic curves.

The determinantal structure of Smirnov type solution is still lacking an
understanding from the representation theoretical view point.
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§ Appendix

In this section we give a derivation of the formula (20) - (24). We recall the

definition of (;1 >

PEA,

A\_ 9" )P (2)dz
'y (z—p)s

(4,

where as in the main text z—p means z— A, and ¢ (p) means g (2,) etc.

(I).a derivation of the formula (20):

By differentiating the defining formula of (;1 ) we have

0 (A 1 A 1 g(A') (p)g((ﬁ,)) (z)dz
72 =— +=
72) 04y <p> p—ik (p) N (z—p) =il

m
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(73) =<1—-%) .Nl (/1>+,L 1 997 (p)9iNz) dz

iv=p\p ) Ni—p  (z—ik)s

(74) =(1-1) i%l——p<2>—l EEU § <;b >

N 'lm p;GEA 1#5 1’7" .7 P
Here to obtain (73) from (72) we use

483

im

(z~p)1(z—i%)='”1 [_ = R ]

Nyl z—p
and to get (74) from (73) we use

im

(Z) g /1 (pn”) (Z)
g(Ar) (p)

LA SN =i
A .N_ .t
g(A,w) G y&E A # Lm ]
(). a derivation of the formula (21)
Since
. (" . i)
<2;; >=9(A' ) (“f)gAr\.r;,,m (z)dz
i (z—iDs
we have

AN _ i \_g“ pgf® (2) dz[z L, i—if
ir) \a '

—ip = )|
(z—iDs ! i—i¥ "

1{1’\)/'1 r (Ar) (Lr)g ((H7al ( ) i

‘N __ 7 s z

Tm— U

where we set

g/(ff”') (2) = H (z—5).

€A 1Fa)0f
Hence

(75) g_}lf“ (Z)

dz= 1,n_11 1 [ A _ 'Llr' ]
$ =1 g4 D L\ f 7 A

If we set ¥=N—1 and I’=m in this equation we get

(76) g;;l::'_l) <Z) 'lN -1

_ 1 [ A\ i%“]
s dz—izv — N1 g W) (V-1 -1 V-l
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Now let F(z) be an arbitrary polynomial of degree at most m—2 then

m=1
F@EYY i
(77) FO= ), totori ey 04 ).
k=1
Thus we have
ol m—1 "N N-1

(78) (n)(z Z )(N 1) gA(N_h )(Z)d

Hs*k - —is —1) S “

Substituting (75) and (76) into (78) we get (21). The relation (22) is a special
case r=N—1 of (21).

(IN). Here we prove the formula

(79) < ) ;{]e@% < )

For the sake of simplicity we set i/=%¢-1m+, . By Proposition 5 we have

[(4 ) (.A >1=[c;m, e A,
11 L

where A is the L by L matrix whose k/ component Ay, is given by A, =A% Let
dy; be the kI cofactor of A.Then we have

L
1 Z A
A4) —
=G a <i,~ )d""
7=1

Again by Proposition 5

(80) (;}v )=zc§f’ng— Z}i 'y ldk,< )

" k=1 7=1

Using the expansion of the Vandermond determinant in a column we have

1 Z k=1, — 1/17\1;1_1/5
(81) 7 ) A H—i]_is.
k=1
Substituting (81) into (80) we have (79).
The relation (24) is proved in an exactly similar manner.
(IV). a derivation of the formula (23):

The derivation is similar to (II). We have
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AN [ » dz @) 94" @)
(82) iw/ \i g()(N)(z )[ &)= A (Z)]'

Since the polynomial in [ ] is devided by z—i% we can define the polynomial
G (z) by

6@ =i )~ By 0 )]
A, \Um
Then
M7t (i -1—4) ml NN o V-1
(83)  Gri(ymy=-tELE b [1 [T T =5,
Tk Tm s=1 Lk Ts sx; Tm ™ Is

Using (83),(77) and (76) we have, from (82),

A if
® iy >_ i%)
m—1

m— m
_‘ N _ N N—-1__ *N—1
— 1— E H Im—Lls E i 123 15 A | tm
N 1 N-1__.N N __r -1 ~No1 M-

Tk ] s=1 lk Tls 521 lmT s

Substituting (79) into (84) we have (23).
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