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Resonances for a Semi-Classical
Schrodinger Operator Near a
Non Trapping Energy Level

By

Michel ROULEUX*

Abstract

We give an example of a short range potential F on the real line that is dilation
analytic at infinity, non trapping at energy £>0, but oscillating in the neighborhood
of some points, so rapidly that the Schrodinger operator P= -/?2A+ K shows a string of resonances
near E in the lower half plane when /?>0 is small enough. The extended states behave as standing
waves partially reflected off the bumps of V. Such a potential is the analogue of the Wigner-Von
Neumann potential in the case of embedded eigenvalues.

§0. Introduction

Let V be a potential on R" such that V( — A+l)"1 is compact, and
consider, for /z>0, the Schrodinger operator P-— /z 2A+F on L2(R"). Then
Gess(P) = [0, 4- oo[. To fix the ideas, assume V(x) goes to zero as \x\ -> oo. One
would expect the discrete spectrum of P to be negative, for a quantum particle
with strictly positive energy would eventually escape to infinity through
tunneling; the celebrated Wigner-Von Neumann example shows that this guess
is wrong. Namely there exists a potential V on the real line as above such
that, for h = 1, P has an embedded eigenvalue E=l. The asymptotic behaviour
of V reads (see [ReSim]):

S 2), M-+OO
X

and the eigenfunction associated with E=l
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behaves as a standing wave reflected coherently off the bumps of V.
(Of course, it should be pointed out that a coherence condition in the

frequencies is not sufficient to get an eigenvalue, as shows the case of periodic
potentials ; the decay of V at infinity also plays a role).

Conversely, Froese and Herbst (see [CFKS]) showed that if V(x) = KO
x

+ Vl(x)9 where 7c0eR, F^-A + l)'1 and (-A+l)" l jc-VF^-A+1)'1 are
compact, then P verifies a Mourre estimate at all positive energies but 0 and
1, which implies that P has no (strictly) positive eigenvalue except possibly at
E=\. In a recent paper [Kl], Klaus gives asymptotics of the analytic
continuation of the S-matrix near such a critical energy (see also [Ku]).

Assume further that V is dilation analytic at infinity, i.e. V is smooth and
extends analytically outside a compact set K of R" in a domain:

r = {x e C": |Im ;c| < C(l + |Re x\), Re x e Rn\K}

for some C>0, where:

lim V(x) = Q
xer.|x|-» oo

Then P has only continuous spectrum above 0 and we may define the
resonances of P near the energy level E>Q by the method of analytic distorsions
of Hunziker [Hu]. In the semi-classical limit (h -> 0) the existence of resonances
relies very much on the underlying dynamical classical system. Namely, let
p(x,£) = £2+V(x) be the classical hamiltonian. For I=[E—e,E+e] define
the outgoing and incoming tails:

r± = {(x,®Ep-i(I)\exptHp(x,®^ao as f ^ + o o }

(here Hp denotes the hamiltonian vector field) and /£(/) = r + n F _ as the set
of trapped trajectories (see [Ge Sj]). We say that V is non-trapping at energy
E if K(I) = ® for 8>0 small enough. Generically, if Fis non trapping at energy
E, there are no resonances too close to the real axis near E\ resonances free
domains were extensively studied by many authors. Thus, if V is everywhere
analytic, there are no resonances in a /z-independent neighborhood of E in
the lower half plane; if V is only of Gevrey class Gs (s>\) in some compact
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set of Rn, but dilation analytic at infinity, there are no resonances in a box
like [E-d,E+d]-i[Q,dh1~lls'] for some <5>0. If V is only C°° in some
compact set of R", but dilation analytic at infinity, there are no resonances
in IE—<5,£+(5] — z[0, — <5/zlog/z] (see [Ro] and references therein). Note that
these results have a natural counterpart in the scattering by a non-trapping
obstacle for the wave equation. Thus, if the obstacle has an analytic boundary,
then there are only finitely many resonances inside any neighborhood of the
real axis of the form — Imz<C<Rez> 1 / 3 ; if the boundary is Gs, s>l, then
for any sf>s there are only finitely many resonances inside any neighborhood
of the real axis of the form -Imz<C<Rez> 1/(2s' + 1); at last if the boundary
has C°° boundary, then there are only finitely many resonances inside any
logarithmic neighborhood — Imz<Clog<Rez> of the real axis (see [Mel],
[BaLeRa], [SjZw] and [LasLas].)

On the other hand we know many examples of resonances created by
trapped rays for the classical hamiltonian flow. Among typical examples are
the shape resonances ([CoDuKleSe], [HeSj], [HiSi], [Nal], •••) , the barrier top
([Sj], [BrCoDu2], [Na2],---) and the closed trajectory of hyperbolic type
[GeSj]. The last example is a quantum analogue of the resonances which
appear in wave scattering by convex bodies which has also received considerable
attention (see [Ikl,2], [Ge], and [LaxPh], [PetSto], [Me2] for recent
surveys). Thus, a single ray that bounces between two convex obstacles gives
raise to finitely many strings of resonances (depending on the dimension.)

One can then address the following problem: is there any potential which
would give raise to resonances below a non trapping energy (necessarily far
enough from the real axis)? Of course, the Wigner-Von Neumann potential
would not do, nor any of its natural semi-classical extensions, for it is not
dilation analytic and is certainly trapping at the relevant energies. But we
keep in mind the salient feature of this example, namely the creation of a
standing wave pattern. This can also be achieved for resonances if part of
the extended state is reflected coherently between some bumps of the potential,
which nevertheless would not be sensitive to the classical hamiltonian flow;
indeed, the virial condition holds near the resonance with real part E, that
is, there exists (5>0 such that 2(V(x)-E) + x-VV(x)>6, xeR. Under this
condition the resonances cannot be too close to the real axis. Our example
relies on a certain (local) non analyticity of V, due to fast oscillations.
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Let s>3, a>0 (a has to be slightly adjusted in function of h\ and

We look for resonances of P= — h2A + V(x,h) near E=- (we could also
4

introduce a coupling constant AeR; our results for Px= — h2A + AV(x,h) hold
with a good uniformity with respect to A). Note that V is analytic, but if we
are also interested in the dependence in h, as h -> 0 we only have:

\8j
xV(x,h)\<Cj+1(j!)s, 0<h<l, x near 0 and a

for some C>0, i.e. V is uniformly in Gs as A->0, near 0 and a, while V
verifies uniform Cauchy estimates away from these points. Then the result
of [Ro] shows that we have to search for resonances with an imaginary part
less than ~-hl~lls.

This is precisely the order of magnitude we shall obtain. Let P= — A2 A + V

be as above. For £ in a complex neighborhood of - (whose size will depend

on h), we define P(£) = P-£2 so that <f e a(/>>0 e cr(P(£)). For 0>0 small
enough (but independent of h), let T0 be a family of standard distorsions of
R in the sense of [Hu], so that P extends as a closed operator on L2(T9) with
domain H2(T0), the usual Sobolev space, with norm ||^||2= ||( — A + i)il/\\L2(rey.
The contour T0 is parametrized by xt-*xe = xeie(x} so that 6(x) = Q for
— b<x<a + b, and 0(x) = 0 for x< ~2b or x>a + 2b. Here b>0 will be also
chosen small enough but independent of h (the choice of Te is specified in
beginning of Sect. 1). We still denote by P(£} the distorted operator.

Theorem 0.1. Fix s>3 and a0>0. For % as above, let n = 2£ — l. For
any C0 > 0, and e0 > 0 small enough, consider the set

Then, if a = (2m + l)h, meN in such a way that \a — a0\< Const, h, there exists
a discrete subset Q,h c: Wh such that, for h>Q small enough:
1° IfnGWh\Q,h, then P(£) : H2(YQ) -> L2(T0) is bijective with bounded inverse.
2° If ri<=&h, then Oecr(P(^))5 P(£) is Fredholm of index 0 and splits into a

direct sum P(Q:F(Q@(F'(QnH2(re)) -+F(Q@F'(Q, ^ere F(Q is finite
dimensional, F(£) is closed and P(£):F'(£)nH2(T0) -* F'(£) is bijective with
bounded inverse.

3° I f r j e Q h , then either dim ^£) = 2 and P(%)\F($ is nilpotent of order 2 (i.e.
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^^^9 P2(£)\F(& = Q and we say we have a double resonance) or there

exists ffeQj,, with %=-fj-{ — such that Q<\rj-rf\ = @(e~1/chi/s), C>0, and

dim /<(<!;) = dim F(<f) = l, F(£)nF(£) = Q (we say then that we have splitting of

resonances).

4° There exists a surjection f from £lh onto the set of the roots of the equation:

l (0.1)

in Wh,such thatf(n)-rj = CO(e-1/Chi/s)y C>0, where y(Q = -(
Moreover, if r\k is such a root, then

DO

where f f c~ £ h'*£kmj{h) in the sense of classical analytic symbols in h' =

tf-2 l s . J=1

Let us make a few remarks.

1° The range of the eigenprojector Il(^0) associated with some rj0 = 2£0 — 1 6 Oft

•("double" or "splitted" resonance) is spanned by functions exponentially
close to F+(x) and F_(x) (see (2.4)). The frequency set of F+(x) (as defined in

[GuSt]), is concentrated near [0, oo[x <->u(finite set); this of F_(x)

near] — oo,a] x < — > u(finite set).

The number 2a£ in the phase factor e2ia^lh of the quantization condition (0.1)
can thus be interpreted as the classical (complex) action the particle acquires
from commuting between 0 and a, with constant momentum £. The idea of

the proof is to "quantize" this loop.
2° Because of symmetry, we believe that we have splitting of resonances

rather than a double pole for the resolvent (by analogy with the self

adjoint case). If it is the case, then this splitting has certainly something

to do with the distance between the two components £, = + - of the energy

surface.
3° This example may be extended to higher dimensions. For instance in R3

(odd dimension are easier to tackle) one could take:
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where aeR3\0 and co is a unit vector not parallel to Oa, and R is the
rotation of angle 2n/3 in the plane (0, «,&>).

4° The choice of a potential independent of h, i.e. replace for instance
V(x,h) by:

with /(A) decaying as e~*i/s as A -» oo would presumably lead to the same
kind of results, and by stationary phase arguments, the main contribution
of this potential to resonances would come from A = /z~1 .

We conjecture that there are no other string of resonances near E=-
4

when dimension is 1; namely if we keep in mind the analogy with a closed
trajectory as described above, we can infer from Bohr-Sommerfeld
quantization rule that 2a% is the only relevant action that is responsible
for creation of resonances (and no multiple of 2ag). In other terms there
will be no new resonance revealed by winding around the loop several
times. (Compare with [Ge] for the multidimensional case; according to
another convention made in that paper, resonances are located in the
upperhalf plane Im^>0, which corresponds to the substitution 0\-»— 9

for the distorsion.) Note that we have found the first string of resonances
(if several).
The proof we present here is straightforward but very tedious. Note that
the quantization condition can be obtained (heuristically) as follows: let
u±(x) be the solution of (P-<f)w = 0 in L2(Te) with u±~e±ix*lh

9 x-» ±00;
then £2 is a resonance iff PF(w+ ,w_) = 0 where W(u+,u_) denotes the
wronskian of u+ and w_ . To compute W(u+ , w _ ) it suffices to know the
asymptotics of u+ and w_ near a point between 0 and a. Let

G+(Q = i(2£h)-lx(y<x)ei(x-M/h and G^) = i(2^h)-1x(y>^~i(x~ym be
the half Green kernels for Q(Q=-h2& -?. Put: »_(*) = *""'*"*
-G+(^Ve-^lh(x) and v+(x) = eix^h-G.(^Ve^/h(x). For 8<x<a-d we
have: v+(x) = ^-c(/2)£r''x^ and v_(x) =

e-ix^/h-c(h)eix^hoc(x,rj) + CO(e-llCh'). (See the definition of a(jc,^) in the

beginning of Sect. 1; here d = h l f s , h' = hl-2'\ c(h) = z(4£/z)~ 1^/2h/ne~h~1/s.)

Then computing the wronskian for 8<x<a — 6 we find W(v+,v_} = — (1
h

^lcw} and the equation W(v+9v.) = Q gives
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precisely the quantization condition in the theorem. Unfortunately we
have not been able to give this idea a rigourous form.
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I. Fredholm Alternative for I-(G(£)V)2

§1. The Kernel

Let £ be in a complex neighborhood of -, and Q(£) = —h2& — £,2 be the

free hamiltonian. The Green kernel for Q(^) is:

G(x,j,£) = G(<D-/(2£/rH%(y^^

where, here and hereafter, % denotes the (sharp) characteristic function. (Among
all arguments of the various functions we shall consider, we omit the variable
h which appears everywhere.) All quantities will depend holomorphically on

£ in a neighborhood of -. First we specify the standard distorsion. Let

, and t be a smooth function on R such that £=1 on ] — oo, — 2b~]
\j[a + 2b, +oo[, t = Q on \_ — b,a-\-b~], t is strictly decreasing on [ — 2b, — 6],
strictly increasing on \a + b, a + 26]. We put xe = xel0t(x\ which we shall denote
xe = xei0(x) for simplicity. Let also j/ be a subset of entire functions on C
such that:
i) for any 6 in a complex neighborhood of [0, 00], (xe) (jtf) is a dense subset

of L2(R).
ii) for any ^ e ,c/, 6^> (xe) \l/ = i//°xe is an analytic family for 6 in a complex

neighborhood of [0,00]. Such a choice is given by (see [Hu]):

3/ = {\l/ entire: V7V, 3CN>0, \l/(x)<CN((l + \Rex\rN),

if |Im*|<C(l + |Rejc|) for some C>0}

We shall extend G(x9y,^) to complex variables x,yETe. For this purpose
we can consider the action of G(£) on u e s/. Namely, for real x and y, we have:

ei(x ~ y^lhu(y)dy + e~i(x~ y™h
u(y)dy j , u e ^

o Jx /

and this equality still makes sense for jc, y e T9 , utstf provided Im(eie£,) > 0. It
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is also clear that for fixed 0>0, <!; (-»(?(£) is an analytic family of bounded
operators from L2(Fe) to H2(T9) (the usual Sobolev space) for £2 away from
e~2WR+ (the essential spectrum of — /32A acting on L2(Te).) G(0 is symmetric
in the sense:

where < • , • > denotes the bilinear symmetric pairing:

<w, u> = (xe) (u(x)v(x)dx)
JR

that we simply denote by:

f= \(u(x)v(x)dx\.

Let now P(0 = e(0+K It is known that when 0>0, £/0, P(0 is a
closed operator L2(T9) on with domain H2(T0). We are interested in the
values of £ such that 0 6 ad(P(Q). For 0 £ <!(/>(£)) u cr(6(0), iterating the first
resolvent formula: P(Q-l = G(!;)-G(QVP(®-\ we get:

(/- (G(0 F)2

We will show below that for f close to -, I-(G(®V)2:H2(re)^ H2(Te) is

Fredholm and invertible except for a discrete set Q,'h of <fs (see Proposition
1.8; here OJ, corresponds to D,h through the mapping rj = 2£ — 1.) So when

0^(7(P(0)u 0(6(0) and ^O;,

/XO"1=(/-(G(On2)"1G(0(/- ^G(0)- (1-1)

This shows in turn that the spectrum of P near - is precisely contained in
4

. In section II, we shall prove that this set is actually a set of
resonances by computing the projector (2.1) associated to an element of Qfc.

The standard formula (1.1) provides a better approximation to the spectral
radius of P\ further it codifies or "quantizes" the loop we have mentionned
above. Following [RiN] in a very concrete way, we approximate (G(^)V)2

by a finite rank operator. We begin with computing (G(£)F)2 in the real
domain. Set rj = 2^—\9 rj' = 2£+l and define the functions for real x, y:
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= Y\ or rf

<y)\V V(f)dt
J X

where:

and:

(y - a, n') + a(y - a, ij))

- y) = a( - j, ̂ ) + a( - y,r,) + e2fa«/*(a(fl - j;, ffl + a(a -7, if))

The frequency set of a(̂ :, rj) is concentrated near [0, + oo[ x {0}; this function
can be considered as a smoothed characteristic function of [0, 4-oo[(up to a
normalization constant.) On the other hand, a(x,^') is oscillating and its
frequency set is concentrated near {(0, — 2)}. To estimate a(jc5i), it will be

convenient to use the following formula : let F(t) = -(l+(2nh)~1/2f_te~y2f2hdy).

Then for all t,teC:

rer
ey*/2he-iy(t-lmr)/hdy ^ ̂

We set also:

that is,

Let y(£)=-(8nh£2rle-2h~1/s be as defined in Theorem 0-1-4°, and put
as usual for real x and y:x/\y = mm(x,y\ x\/y = max(x,y). After some
straightforward computation, we find:
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with:

(we have identified an integral operator with its kernel.) Let us make a
few comments on the kernels K(^) and K'(£,) which might help to understand
the interference pattern, at least on a heuristic level. It is easy to see, by
stationary phase arguments (at least after reading the Appendix) that K(^) roughly
takes a function outgoing at 4- oo and whose frequency set is concentrated on

[0, + oo [ x <-> (we can check this for eiy^/ha(y,rj)\ into a function which is also

outgoing at -f oo and whose frequency set is concentrated near [0, -hoo[x<->u

(finite set). In the same way, K(£) roughly takes a function outgoing at — oo

and whose frequency set is concentrated on ] — 00,0] x< - > into a function

whose frequency set is concentrated near ] — oo,a]x< - >u (finite set). So

we can say, somewhat loosely, that K(Q essentially preserves each of the

frequency sets [0, + oo[ x < - > and ] — oo, a] x < - > (modulo a finite set in phase

space). So K(£) set up constructive interferences at frequencies + - . The action

of operator K'(^) is somewhat more difficult to describe (it exchanges incoming
with outgoing waves,) but it will be treated mainly as a perturbation.

Again, the kernels K(£,) and K'(^) can be extended to x,yeT9. For
instance ft(x,y) can be viewed as a kernel:

r+oo ry ^
P(x9-)u(x) = dyu(y) V(t)dt, WGJ/

J x J x

where the integration is performed along Te, with xeTe. Similarly, a(x/\y, T)
denotes the kernel

>-r. ~ *2'2h"le inlhdt I u(y)dy,
t
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which can be written also in the more convenient form:

V A ( * )

where, for xeF0 , yA(x) = {(t,y)eTe\t-<y and t~<x} and •< means: put on
increasing order on Te. Here we have ordered Te with the natural order on
R induced by the injective map x\-+xe. In the sequel we will often identify
F0 with R, and carry out the computations exactly as if the variables were
real, dropping the indices 9.

We now explain how to replace K(£) by a finite rank operator
modulo a remainder term //'(£). This will be the starting point when applying
Fredholm theory to /-(G(£)F)2, the errors y(QH'(§ and y(QK'(Q being corrected
by a Neumann series. From the expression of K(£) we see that away from the
diagonal x=y the kernel of this operator is a simple tensor product. On the
other hand the functions \l/±(y) decay rapidly outside j; = 0 or y~a.

To be more precise, let h' = hl~2ls. We shall work modulo exponentially
small errors, whose order of magnitude is either exp( —l/C/z1/s), exp(— l/Ch')
or exp(— l/Ch) (C>0). The exp(— l/Ch) terms are completely negligible, but
when ,y>3, the exp(— l/Ch') errors are also very small; namely for any quantity
f(h) of temperate growth in the scales exp(c//z1/s), c>0, i.e. /(/z) = $(exp(c//z1/s)),
/z-»0, we have exp(-l/C/z')/(/z) = ^(exp-l/C'/i/) for some C">0 when /z>0
is small enough.

So let d = hlls. The functions \//±(y) behave like e~y2l2h or e~
(y-a)2'2h and

\l/±(y) = @(exp(— l/Ch')) outside ^ = 0 and y = a. So we can remove from K(£)
(as it will be stated precisely below,) the contributions of the domains
(jc< -(5)n(y<-<5), (6<x<a-d)r\(d<y<a — 8) and (a + d<x)n(a + d<y) sur-
rounding the diagonal. The remaining part close to the diagonal is then
( — d<x<8)n(-5<y<8) and (a — 6<x<a + 8)n(a — S<y<a + 8). There, by
(1.2) we have respectively:

and:
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and we see that modulo an error 0(1), K(g) is again a tensor product near
(0,0) and (a, a). So we will tile up the (x,y)-pl&ne in different domains where
K(£) is of the form fj(x)gj(y) (possibly modulo a small term,) and label the
functions //*), g/(y) accordingly.

We can now give precisely the structure of K(E). Let (again identifying
an operator with its kernel):

With Dirac notations, f}(x) will range among:

«1±|, <2-|, <5±|, <6-|, <8 + |, <9±|,

and g/y):

{l±l>, |-2>, |±5>, |-6>, | + 8>, |±9>, | + 12>,

respectively (precise labelling will be given in (1.5),) where:

<8 + 1 = i(a-
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I - 9> = fa -

Here we have put d=hl/s as above, and omitted the subscript 9 in the
formulae, according to our abuse of notation. Note that we could have
probably "cut-off the tails" of the gj(y)'s for y outside [ — d, d~] and [a — 6, a + <5],
but then new remainder terms had to be estimated. Actually the resonant
functions will be built (in a good approximation) from a linear combination
of the ffs. Now we define the remainder term. We have:

In Appendix we sketch a proof of the following:

Lemma 1.1. Let s>3, C0>0 and rjeC as above such that \rj\ < Coh1 ~ l/s,
Im q < 0. Then for any b>0, there exists 9b>Q such that ifO<6< 9b we have:

in operator norm L2(Te) — >• L2(T0)9 when h>Q is sufficiently small.

The estimates on K'(£) are not so good; this is why we need shrink from
below the domain where we are looking for resonances. In Appendix we
sketch a proof of:

Lemma 1.2. Under the same hypotheses as in Lemma I A, for all £>0, there
exists 0b>0 such that if 6<9b and b'>b\
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K'(Q = 0(e ~(a+ b')Im «'2h) : L2(Te) -+ L2(Te)

for h>0 small enough.

In the sequel, we shall keep the notation b instead of b'. We set:

It follows from Lemmas 1.1 and 1.2 that for given b and 9 as above, and any

£>0, we have \\y(QH(Q\\<l when -lll^-^ImTj, and A>0 is small

enough. Next we estimate the L2-norm of the /)-'s and gt's; along the same
lines as in Lemma 1.1 we easily show:

Lemma 1.3. Under the same hypotheses as in Lemma 1.1, we have:

= 0(1) 1 4- 1> =e~almrt/2h®(l)
| - 1> = £rfllmi|/2*0(l)

| + 5> =
|-5> =
|-6> =

<8 + 1 = e-
almri/2h&(l) | + 8> =e-

al

where all the estimates are understood as L2(T0) norms.

To simplify the notations we have disregarded possible powers of h as
prefactors for they are irrelevant. Now we are ready to compute the inverse
for 7-(G(£)F)2. Let/;^/-?©//^))-1/} and T'(® the operator with kernel

We have:

When — Imrj is not too large as above, the operator (/— y(^)//(<^))~1 makes
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sense as a Neumann series. The inversion of I—y(^)T'(^) is standard; namely,
12

to solve the equation (/— y(£t)T'((>))u = v9 we try u = v-\-y(^)^ ^jfh anc* set

j = i
Yj=(v,gjy. Using that the /J's are linearly independent, we are led to the
system:

Yi, i = l,2,-,12 (1.3)

§2. The Interaction Matrix

Before we proceed we need to recall some definitions ; in the sequel we
shall compute many wave packet interferences, that is, gaussian integrals. We
recall from [Sjl] the precise definition of classical analytic symbols, like
a(x,h) = Iik>0ak(x)hk. A realization can be obtained by summing up the first
— h~l terms, and we shall denote it again by a(x,h). Classical analytic symbols
in h' introduced in [Le] occur also in the treatment of Gevrey singularities.
They are of the form : a(x,h,h') = l<k>0ak(xji)hfk and a realization is obtained
by summing up the first ~h'~l terms. Since hk = (h2kls)h'k, classical analytic
symbols in h are, a fortiori, classical analytic symbols in h'. Now we are
ready to compute the scalar products </J | g£>, and start with the leading term

. We set K(£)

Lemma 1.4. Under the same conditions as in the previous Lemmas, we have:

K($ + C(h)

<6 - 1 - 2> = K
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< 1 3 + 1 + 1 2> = J2nhe " *2/2fX£) 4- 0(h)

/fe a// other brackets entering the definition of T(^) are either 0 (for reason
of support), or 0(e~l'ch>).

Sketch of the proof- Most of brackets are obtained using (1.2), Lemma
a.l, and (non-) stationary phase arguments. In particular,

a(x,if') = 0(e-1/c*'), \x\>6

^^.A, rjj — \s'\e J, X '\ O

We are left with scalar products such as <l + |4-5> or <13 —| —1>, whose

leading terms are given by Im= ] e~y2l2heiyrilhvLm(y,r[)dy, m = l,2,
-d

or

But Il=e~^2/2hle~y2l2ha(y-ir],r])dy + (9(e~1/ch') and analytic stationary phase
gives

^2/2*(27r/i) ~ 1/2/! = a( - in, rj) + G(YI)

while a(-/^,i/) = e"I|2/2fc(-<27cA)1/2 + (P(7/)). The integrals 72 or 7mtll are computed

similarly. Q.E.D.

Remark. Actually, the 7m's or 7m M's are classical analytic symbols in /?',
as well as all the terms G(h) or (9(h312) in the Lemma.

We now estimate the remainder terms </J|g;>, i.e.
<(y(^H(^ + y2(^H2(^+'-')fj\giy. It is clear that the rough L2 estimate from
Lemmas 1.1 to 1.3 are not sufficient, since some fj or gt are of temperate
growth in the scales expc/A1/s. Nevertheless, it suffices to estimate the term
which contains the first power of //(£), for the higher order terms

2(<!;) + • • •)// 1 &> can be controlled only by the L2 norms. This amounts
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to saying that //(<!;) acts only once in perturbation. We shall denote by
a(x,h) = a(x,£Ji) the realization of analytic symbols. Further we adopt the
following conventions: let vye{0, ±1}, ^-6(1,2,3, •••}, //e{0, ±1, ±2, •••} ,
m7-e{0,1,2}, «,.e {0,1,2}, be some finite sequences of integers. We denote
by /+ (resp. /_) some finite subset of N such that /,- is even (resp. odd)

for ye 7+ (resp.ye7_), and TH,.+ /!,.<2. Let S+(x)= £ e"fc^2/2Vx(v^+^am^,^)
76/-

a"7( — x,ri)aj(x,h); S_(x) is defined by the same formula with 7+ replaced by
/_. If / is a finite subset of N, we write:

T\u, v) = £ e~ k^2/2heiy ™/*a
m'(y, i/)a"J( - 7, ̂ fl/y, h)dy

je/ J M

As usual, by S+(x)®T(u,v) we denote any finite sum of products of a term of
type S±(x) with a term of type J\u,v). We use Lemma a.2. Computation of
<K'(g)\j\ involves terms like S+(x)®T(x, ±6) or S+(x — a)®T(x — a, ±§) with
ra^ + ft — 0, 1 in the definition above. Then it remains to evaluate the other
components of H(£,). Most significant terms are ^H6(^)\j\ and (Hs(£,)\j\. Their
computation is analogous to that of ^K'(^)\j\9 but we need also take
mj-\-nj = 2. All integrals with non stationnary phases are treated with help
of Lemma a.3 and Remark a.4. As a result we get the following:

Lemma 1.5. Under the same conditions as above, with the notations just
defined and omitting the subscript 9, we have:

1° (H(®\j\ = ®(e-llCh'), 7 = 2-, 5±, 9±, 12 +

2° (H(f,)\\ + \ = i(-d<x<$)ei*v><

, r,)T(x, 6) + S+

, 6) + S_

(- x,

- 6 < x < 6)ei
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" 1/cfc'

+ e2ia*/hx(x <a-S)e~

Here all estimates (9(e~ l/Ch') are uniform in L2(Te) norm and yeC, \n\ < C0h
l~ 1/s,

Imj7<0, if /z>0 is small enough', the @(l) terms are constant, just depending
on h and £.

Now we can compute the matrix elements </J | gf>, 1 < ij< 12. If quantities
<y(^)//(^) \fj\gi) are evaluated with the same accuracy as in Lemma 1.4, then
the remainder term <(y2(^)^2(<^)H — )L/}|gj> can be estimated with a crude
L2-inequality. So the accuracy to which matrix elements are computed in
the following Lemma depends on the terms. This remarkable fact hinges on
the structure of the matrix which will be discussed below. Now we state
precisely (and with a comfortable margin ) the domain allowed for r\. For

small enough, we put:



RESONANCES FOR A SEMI-CLASSICAL SCHRODINGER 505

We set also </" + ! = <(/- y(£)H(£)) ~1\j±\. After very tedious but straight-
forward computations, we have as in Lemma 1.4:

Lemma 1.6. For t]eWh, the following estimates hold when h>0 is small
enough:

2° <1'-| + l>=e-*"1VWa*1/'(P(l)

l'-| + 8> = <1'-
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<6' - 1 - 2> =

= eh~ '

8' + 1 + 8> = <8' + 1 + 9> =

5°
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6° <13'-| + l> =

'- 1 + 5> = e~h~ Ils
e
6blah"s(9(\)

At last we get the important relations (see Lemmas 1.4 and 1.5, 1°):

</"l±0 = 0(<?~1/c*'X j' = 2'-, 5'±, 9' + , 12' + , Vi (1.4)

We are ready now to solve system (1.3).

§3. The System

We label as follows:

| (1.5)

and correspondingly for the g^'s. We solve explicitely (1.3) modulo errors of
order e~c/hi/s. Introduce

X =\X j , • • • , X§) X =(Xj , • • • , X 12)

y-=(r l t -,Y6) y»=(r7J...,y12)

With the almost orthogonality relations (1.4), system (1.3) rewrites:
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i=l,...,12 (1.6),

where &(e~1/Ch')(Xb) denotes a linear form in Xb with 0(e~1/ch') coefficients if
r\£Wh. The determinant of the system (1.3) vanishes of nearly second order
for some discrete values of £. It will be computed in the next section. We
proceed to discuss the resolution of (1.3). First we solve for (X29X4) vs.
( Y2 , Y4 , Xl , X3 , X5 , X6 , Xb). For Y\ E Wh , the determinant of this 2x2 system
is 1 + y2(§e2ia*lhG(\\ so is very close to 1. Then we plug (X2 , X4) in (1.6)6 . This
gives a linear equation for X6 vs. (Y2,Y4,Y6,Xl9X39X5, Xb). The coefficient
of X6 writes:

(1.7)

The roots of d6(£) will be shown to be exponentially close (in the scales e~c/hi/s)
to the resonances of our operator. Assume for the moment that ^ is chosen in
such a way that:

. >0 (1.8)

(this condition could be substantially weakened, e.g. \d6(%)\>e c/hl/s for small
C>0, but it is sufficient to our purpose.) If we substitute X6 vs.
(Y29Y49 Y6yX^X3,X5,X

b) into ( X 2 9 X j when (1.8) holds, we get (X2,X4) vs.
(Y29Y49 Y^X^X^X^X"). Next, using (1.6)3 and (1.6)5, we solve for (X39X5)
vs.(Y39Y59Xl9X29X4,X69X

b). Again, we get a 2x2 system whose deter-
minant is \+y2(^)e2ia^thO(l\ so is very close to 1. Then we substitute these
values for (X39X5) in the expressions giving (X2,X49X6)i so whenever
(1.8) holds, we get (X29X^9X6) vs. (F2, F3, 74, YS9Y69Xl9X*)9 which in turn
gives (X3 , X5) vs. (Y29Y39Y49Y59Y69Xl9 Xb). Substituting into (1.6)! we get
a linear equation for Xl vs. (Ffl, Xb\ and the coefficient of Xl is found to be:

where 0(1) is holomorphic in Wh\ so dt(^) is very close to d6(£) on
\d6(%)\> Const. >0. We still assume:

\d^)\ > Const. >0 (1.10)

Having determined Xl vs. (Ya,Xb) we can substitute into the former expression
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giving Xa. Using also (1.4) to get rid of the Xb dependence, we eventually
obtain the following Lemma. Let us specify again some notations. By
Hol(£) we mean any holomorphic function f(£,h) of £eWh with temperate
growth in the scales expc/z1/s. By Mer(^) we mean any meromorphic function

f ( £ , h ) of £eWh whose numerator is el2b/ahi/s&(l), and whose denominator is
of the form d^}kd^}\ with l<k + l<2. We have:

Lemma 1.7. Assume r\e Wh and (1.8), (1.10) hold. Then system (1.3) has
a unique solution given by.

1°

Y5

2° X2 = e-h~1/'Mer(QYi+(Ho\(Q + e-5h~1''MeT(^

+ Hol«) + -1

elC) ^

7,
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5° X5 = e-«2i2hy(®^^

i /

4 + Holtf) +

/

1^elC)

§40 The Determinants

A straightforward computation shows that the determinant of the whole
system (1.3) is given by:

0({) = (l-2nhe~ ^

(1 - 2nh e-«2/he
l/s), 00. (1.11)

all $'s being holomorphic in Wh. Now we investigate the roots of d6(£\

and d0(£). First we rescale r\ by setting rj = fjhi~1/s, so that fj = 0(l). For
keZ such that:

—\k\h<-CQh l~ l ls (1.12)
a 2

we set fjk = 2knhlls/a, and jy = ijffc—* + (, where |ReC|<-/z1/s, |ImC|<^. Let:
a a a

[ri = hi~1/s(fjk + Q, |ReC|<-/z1/s, |ImC|<-—}, so that the union over
a a a2
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satisfying (1.12) of small neighborhoods of the B'k(h) cover the "bottom"
of Wh . It is clear that d6(Q d^) and d0(£) do not vanish in Wh\ u B'k(h). Next
we fix a = a(h) = (2m + l)nh where meN is so large that \a — a0\<consth, for
some constant a0. This is a coherence condition to get a standing wave
pattern. We set:

(1.13)

We have:

We rescale again £ by setting £ = /z1/s£, f=0(l), which amounts to shrink £ in
B'k(h)\ again it is clear that none of d6(£), d^), ^0(£)> or ^(£) vanish in B'k(h)\Bk(h\
where :

-) + C |Ref|<~,
a) a

where C1 > 0 is so far arbitrary. So :

L \ « / J

By a Taylor expansion, we see easily that:

(1.14)

uniformly for Y\ e Bk(h). Now, if |Re fl <~ and |Im f| < Ct , the equation e'^= 1
<3

has the unique solution f=0 and this is a simple root. Moreover, it is easy

to see that \—eia^ is bounded away from 0 on the boundary of |Re£j<-,
a

\lmt\<Cl . So by Rouche's theorem, one can assert from (1.12) that equation
= 0 has a simple root in Bk(h). The same holds for d6(£) and d^\ and

has exactly 2 roots in Bk(h). Further, all these roots depend smoothly
on /z>0, and admit clearly asymptotic expansions. Namely, when:

(1-15)
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denotes such a root (the roots of d^), d6(£) or d0(%) differ only by (9(e~c/hl/s)
from these of </(£)), then we have:

00

C>in,jW (1.16)

in the sense of analytic symbols in h' (see definition above), and we can choose
a realization of this symbol up to G(e~€lh') if rjk is a root of d(£), and up to
&(e~clhl/s) if fyfc is a root of rf0(^), d^) or rf6(^). At the level of principal
symbol, we have:

where ck = fjk -- ^0. Note that it seems impossible to get rid of the
a

/z-dependence of t*ktj(h)9 as is usual with Gevrey asymptotic expansions [Le].

It is easy to strenghten the previous estimates to H 2(r^)-norms (this amounts
to introduce some negative powers of h, that will be damped by the
exponentials). Further all our estimates equally hold for the formal adjoint
P(£>)* which has the same structure. So far, we have proved the following
standard Fredholm alternative for the operator U(^) = I-(G(^)V)2 which is
close to our final result:

Proposition 1.8. Let s>3. For h>Q small enough we have the following:
ifa = (2m + l)h, raeN in such a way that \a — a0\ < Const./z as h -> 0, there exists
a discrete subset Oft c Wh such that :

1° If rjE Wh\Clh, then C/(<J) is an automorphism of L2(T0) and of H2(YQ).

2° If rie£lh, then Oe of £/(<!;)), U(£) is Fredholm of index 0 and splits into a
direct sum £/(£): F^)©^) -» F(£)@F(£\ where F(£) is finite dimensional
vector space, F'(^) is closed, U(£)fi(^ is nilpotent of order at most 2, whereas
U(£) is an automorphism of*F($ and of~F(£)nH2(Te).

3° There is a surjection f from Q,h onto the roots of the equation:

2nhe-i2lhe2iaS/hy(t)=l in Wh, such that /fa)- f/ = 0(<Tc/*1/'), C>0.
4° Ifrje£lh, then rj admits an expansion as a classical analytic symbol in h' given

by (1.15) and (1.16)
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II. End of the Proof

We show that Q,h is actually a set of resonances for P. Let ^0 be one
of the roots of d(£) = Q in Wh. We know that there exist two roots (counted
with possible multiplicity) of d0(£,) = 0 in \£ — £0\<eh (e>0) and that they are
exponentially close to £0 in the scale e~clhlls. Consider the spectral projector
for Fin |£-<

(2.1)0) = - f (/-
mJ

where J denotes integral along the closed loop |£ — £0| = e/z. It is easy to
check that (1.8) and (1.10) hold on this loop. So we have:

where :

12
and d^Z,) is given by X~ ]£ d^QYj. By Cauchy's formula and relation

n«0)=- f Z
mJ i t

where ^(^) = G((^)(/- KG^QX/-?^^))"1. Because of (1.6)£, Lemma 1.7 and
Cauchy's formula, we get:

n(£oH- I f F^M(OGJktyMOW«+^-1/c*f) (2.2)^ f c = l j

where :

/*'«+ Z

7 = 1

We shall compute Ffc(x) and Gk(y) in the following lemmas, which we can
prove by a straightforward computation.
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Lemma 2.1. For Y\eWh, we have:

+ e6blahi/s®(l)

2° F2(x) = x(

3° F3(x) = e

- 8)e

eMaVh

6° F6(x) = ̂ 2nhe ~ ̂ ^heix^\(l - d($)i(6 <x<a-S)

Now we compute the (j&(y)'s. We put:

Functions cp1 and cp2 are "normalized" in the sense:

~ l'€h\ 6<x<a-S

We introduce again some notations. By Hol(y, £) we mean any holomorphic
function g(y,£,h) of {e Wh with temperate growth in the scales expc/z1/s, and
which decays as fast as e-y

2w + e-(y-«WM with respect to jeR. By Mer(y,^)
we mean any meromorphic function g(y, <^, h) of ^ e Wh whose numerator is

+ e-(y-a)2/2h)el2blahl/s(9(ll and whose denominator is of the form:
)'» with *,/eN, l<)t + /<2. We have:
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Lemma 2.2. For \£ — £0\ = eh, we have:

2°

4°

5°

where all estimates are uniform on a neighborhood of\^ — ̂ 0\ = eh.

Replace d^) and d6(^) by d(£) in the formulae giving Gk(y) and denote
by jffiGk(y) the meromorphic part, modulo e~h~ 1/sMer(y, <^), of the corresponding
functions. Since rf1(0srf6(f)=d(0mod0(e-1/c*1/'), and |40|>Cst on |{-{0|
= sh, we get:

and G4(y)|^=?0=0. So we define the outgoing functions:
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(2.4)

Note that F+(x) and ^F_(x) are outgoing except microlocally near the points
(0» +i), (a, ±%). Now we apply the formula of residues to (2.2). The analysis
of the determinants carried on in Sect. 1.4 shows that (1.8) and (1.10) are
fulfilled and we get:

1/c""s) (2.5)

where the dot denotes derivative with respect to £. Thus there remains to
compute A(£)(jj(y)\£=£09 j=l,-~,4. First Lemma 1.3 gives L2(re)-estimates :

(2.6)

while (the proof of ) Lemma 1.1 and 1.2 yields:

(2.7)

and

(2.8)

as bounded operators on L2(T9). An easy computation gives the kernel of
which we write as:

t y y

where we have omitted as before, the indices 6 referring to distorsion, and

C(h)= -(2^h)-2^/h/2ne-h~i/s. For £ = £0 we readily find:
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(2.9)

as bounded operators on L2(T0). Relations (2.6)-(2.9) show that the main

contribution to ^(£)<SiO)|^0
 is given by £(£)(/- VG(^))G ^(y)\^= ^ • Explicitely,

after some straight-forward computation, we find:

(2.10)

where the terms 0(1) are microlocally concentrated near £ = |-, ^. So
Gi(y)\t = %0 *

s microlocally concentrated near [0, + oo[u (finite set), with amplitude
(9(1). Similarly,

« - & < y < « + *)0(i) + «CW(e- 1/chl/s) (2. 1 1)

where the terms 0(1) are microlocally concentrated near ^ = ̂ , \. So G2(y)\^=^0

is microlocally concentrated near ] — oo, a] u (finite set), with amplitude
Moreover, it is easy to see that F3(x)A(^)G3(y)\^^0 and F4(x)A(£)

£=£0 can be neglected in their contribution to n(£0). So we have, putting
= and G+(y)

(2.12)

and the two terms inside the bracket have same amplitude ~ K(£O)- The
projector n(^0) is of rank at least 2. Our purpose was to solve the eigenvalue
problem Pu= -h2u"+ V(x,h)u = £2u ou L2(T9) for <* close to \. We know
from the general theory of ordinary differential equations that the eigenspace
corresponding to a resonance £2 is one dimensional. Namely, for given £,
Re£>03 let u±(x) be the solution of (P-£2)u = 0 in L2(Te\ with u±~e±ixV\
x-> ±00 (i.e. u+ is outgoing at +00, w_ is outgoing at — oo); then I;2 is a
resonance iff u+ and w_ are colinear. But as P is not self adjoint, it cannot
be excluded that £2 is a multiple pole for the resolvent (P — ̂ 2)'1; in that case,
stability arguments (see [Ra] and also [Sj2], [KaRo] for related results) show
that this multiplicity is at most 2. So we can conclude that the eigenprojector

<^0) is of rank exactly 2 and that the alternative of Theorem 0.1, 3° holds. The
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other statements easily follow from Proposition 1.8. So we have proved the
Theorem. Q.E.D.

Appendix

Proof of Lemma 1.1. The error H'(^) consists in: 1) replacing cpi(x/\y)
and <p2(x\/y) by constant values near and (0,0) and (a, a); 2) ignoring the
contribution to K(£) of a neighborhood of the diagonal outside these points ; 3)
omitting some products fj(x)gj(y\ where /}(jc)'s and g/y)'s range among <2-f-|,
<6 + |, <8-|, <12-| and | + 2>, | + 6>, |-8>, |-12> respectively (the definition
of these functions is clear from the expression of K(£,).) Consider first :

(<p2(x Vy) - e2ia^lhe ~ «2'2h^/2nh)-j

[-«^],a(a-z,ffl = 0^^^
0(e-1/ch). On the other hand,

a( — z,w /)

Since lmrj = &(hl~lls) and s>2 we get a(-z,^) = (P(l); the same holds for
a(-z,f/). Moreover for x,ye\_-5,d~] we have e~l'(x">')^-(y) = ̂ (l). Collec-
ting these estimates gives:

A similar argument leads to:

and finally //6(^) = 0(1). We have the same estimate for the term H8(£,) localized
near (a, a), and an L2 estimate for the corresponding operators. Consider
now, on one side of the diagonal,

where we have omitted the subscript 9 referring to distorsion. By Schur's
lemma we need estimate:

SUPy<_
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For — b<x<— 6, we may replace the first quantity in (a.l) by sup_ & < j c y < _ 5

\H3(Q\ = &(e-ilCk>). Write H3(Q = Hf(Q + H^(Q. We analyse H^(Q first.
We have:

-h)2 /2K]dt (a.2)

It is readily seen that for 9 > 0 small enough (depending on b only) we have :

*(-y9,fi), K(a-ye,ti) = ̂ /Me-^2h + ®(e-VChl y<-6 (a.3)

*(-ye,n'l a(fl-^,i,0 = 0(*-1/cfc'), y<-d (aA)

all estimates being uniform on the given intervals. Next we have:

so:

W±(y9)\ < CexpC-j2 cos 29{y)/2h)

x (exp(+ yIm(r]eieW)/h) + exp(+yIm(rifeie(y})/h), y<-d (a.5)

From these estimates, it follows easily that if 6 > 0 is small enough, we have :

For the integral with respect to ;c, we use also that \e~
ix0^h\ is integrable

when x -» - oo. So : supy< _ Jy_ J H^(^)\dx = 0(e~l/ch'). Now consider //3
+(^).

The result follows this time from the exponential decrease of q>i(x^. Namely,
by (a.l) we have:

% - t2/2heitr/hdt + i Im xee " x2/2h

J — oo

x exp[-(Re
Jo

so when 0>0 is small enough:
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with uniform estimate on x < — 6, with ensures integrability. The exponential
decrease, again is given by \l/+(ye). Thus we have H3(£>) = @(e~i/ch/) in operator
norm L2(T0) -» L2(T0)9 when the distorsion is suitably chosen and h>0 is
sufficiently small. The term H4(£) on the other side of the diagonal is treated
similarly, as well as all other terms entering #'(£)• Thus we have proved the
lemma. Q.E.D.

Proof of Lemma 1.2. We have:

e''(xe+^
We need first estimate j8(y0,jc0); as V(f) is a sum of terms like e-M*e-(t
and e-1/2fc£-( f- f l±*)2/2Ji we can compute ft(xe,ye) by integrating the function

e-z2/2h aiong suitable polygons. For instance:

£ e (Reyo
-(t± i)2l2hJf _ -t2l2hjf

Lxe
f1

— i(x sin 9(x) ± 1) exp[ — (x cos 0(j
Jo

> exp[-|
Jo

+ i(y sin 0(y) ± 1) exp[ - (y cos 9(y) + it(y sin %) ± l))2/2/z] A.
o

So if 0>0 is small enough, we have, uniformly along T0:

Look first at — b<x,y<a + b, that is the case without distorsion. Using (a. 12)
and similar estimates on \l/i(y) and i^20

;) we get:

(a. 13)

Now we apply distorsion outside — b<x,y<a + b. As above, Schur's lemma,
together with the above estimates, show easily that (a. 13) holds in the sense
of operator norm in L2(F0), when the constant b on the right hand side, is
replaced by any b'>b. Q.E.D.

Lemma a.l. Let T= +rf. Then there exists a classical analytic symbol
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a(x, h) ~ ]T ak(x)hk defined in a neighborhood of 0 such that:
k>0

1/0ll C>0.

Proof. This follows from repeated integrations by parts since the phase
is non stationary, and from the fact that Imr = (P(/i1~1/5). Q.E.D.

Lemma a.2. There exist classical analytic symbols a±(x,h)^ £
fc>0

defined in a neighborhood of 0 such that :

h

(again the same letter a denotes several symbols, and we sum over ±.)

Proof. By Cauchy's formula we have, for instance:

e-ti/2he-it/hcjt=_e-l/2hiy
 e-t*l2hdt_ie-\!2h e-(x + it)*/2hdt

Jx Jo

\
J

e~(y+it)2l2hdt.

Consider e~ll2h\le-^^^dt = e-^
2he'^h^lhe-^^2hdt. Introduce

XeGs
0
/(s~2}(R) equal to 1 near 0, and to 0 near 1. We have:

f1 f1
eixt/he-t(2-t)/2h^_ ei

Jo Jo

~ t(2 - t)/2h / __ / - l/Chh)
J o

The phase (p(t) = xt + it(2 — t)/2 is non-stationary near 0; so after const.//z'
integrations by parts we get:

= ha(x,h) + (9(e~1/ch')

where a(x, h} is the realization of a classical analytic symbol. As e *2/2he it/hdt
J X

is a linear combination of such terms, we eventually get the Lemma. Q.E.D.
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Lemma a.3. When T ̂  0, Im T = (9(hi ~1 /s) we have:

e ~ y2/2hehy/ha(y, v)a(y, h)dy = e~ *2/V(t ~ ̂ x/hb(x9 h)

where b(x, h] and c(x, h) are classical analytic symbols defined in a neighborhood
0/0.

Proof. Denote by La(x,h) the left hand side of (a.14), and set
cp(yj) = it2/2 + iy2/2 — trj+yc. We have dycp(y,t) = iy + i^Q, and

r , M h fx flOJ
La(x,h)=—

ij-diy +

Integrating by parts, we find:

where La^x, h) is of the same form as La(x, h) for ^(y, /z) = dy\ — - — ] . Iterating

this procedure const, /h' times (we could do it const, /h times, which would
give a smaller remainder, but we do not need it ) and using simple induction
arguments based on Cauchy inequalities, we are led to (a. 14). Q.E.D.

Remark aA. Simple variants of this Lemma are also needed, e.g. replacing
the integral over [ — <5,x] by an integral over [x,^], a(y,fy) by a2(y,ff), etc...
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