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§1. Introduction

We are concerned with a free boundary problem for the two-dimensional
and irrotational flow of incompressible ideal fluid around an obstacle. We
assume that the domain occupied by the fluid is surrounded by two closed
Jordan curves. The inner curve is the boundary of the obstacle, while the
outer curve is a free boundary. We take the gravitation due to the obstacle
into account. Physically, this obstacle represents the earth and the fluid
represents the ocean or the atmosphere. This type of problem was already
considered by Okamoto [3], [4], [5], [6]. He studied stationary solutions
as a bifurcation problem and the stability of trivial stationary solutions. Up
to the present day, however, there is no existence theorem of the corresponding
Cauchy problem.

On the other hand, Nalimov [2] investigated the Cauchy problem for
surface waves of different type from the above one. In his formulation, the
domain occupied by the fluid has infinite extent and depth. He showed that
the problem is well-posed in suitable Sobolev spaces of finite smoothness
under the restriction that the initial data are close to the equilibrium rest
state. Then, Yosihara [7] extended the Nalimov’s result to the case of presence
of an almost flat bottom. It is worth while mentioning that they used the
Lagrangian coordinates to reduce the problem to an equivalent one on the
free surface. Moreover, there was a cancellation in quasi-linearization of the
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reduced system of non-linear equations. This cancellation was essential to
show the well-posedness of the Cauchy problem.

In the present paper, on the basis of their analysis we shall investigate
the well-posedness of the Cauchy problem for our case. In section 2
we formulate the problem, transform it into an equivalent one by using the
Lagrangian coordinates and give the statements of main theorems. In section
3 some notations, definitions and preliminary lemmas are presented. In section
4 we give the explicit form of the operator K, which appears in the transformed
problem. In section 5 the properties of K are investigated. To this end, we
study a certain class of integral operators. In section 6 the transformed
problem is reduced to a quasi-linear system. In this reduction a cancellation
appears as in [2], [7]. In sections 7 and 8, we give the proofs of the main
theorems.

§2. Formulation and Results

We assume that the domain Q, occupied by the fluid at time ¢>0, the
free surface I', and the rigid boundary X of an obstacle are of the following forms

Q,={z=re";ro(1 +bO) <r<r,(1+y(0), 0<0<2n},
I,={z=re’;r=r,(1+y(0), 0<6<2n},
T={z=re";r=ro(1+5(0), 0<0<2n},

where r, and r, are positive constants satisfying the relation ro<r, and b is
a given function, while y is the unknown. Here and in what follows, the
two-dimensional Euclidean space R? is identified with the complex plane C
in the usual manner, and this identification is used not only for the spatial
variables but also for unknown vectors. The motion of the fluid is described
by the velocity v=(v,,v,) and the pressure p satisfying the equations
ov 1.
2.1 p<a+(v-V)v)+Vp=ng~| in  Q, >0,

|z

W1, 00 o 2 1 iy o) i,
0z, 0z, 0z, 0z,

2.2)

where V=(0/0z,,0/0z,), v- V=v,(0/0z,)+v,(0/0z,), p is a constant density, gis a
gravitational constant and it is assumed that the center of gravity is located at
the origin. The dynamical and kinematical boundary conditions on the free
surface I', are given by
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(2.3) p=p, on TI,, >0
and
0
24) E+U'V (r,1+y)—r)=0 on T,, >0,

respectively, where p, is an external pressure assumed to be constant. The
boundary condition on the rigid boundary Z is given by

2.5) vn=0 on X >0,

where n, is the unit outward normal vector to X. Finally, we impose the
initial conditions

(2.6) 10,0)=70(60),  v(0,2)=0,(2).

The initial velocity v, is assumed to satisfy the compatibility conditions (2.2)
and (2.5).

We transform the above system of equations using the Lagrangian
coordinates. Let

@.7) Tz=r,(1+ X, 0)eC X 0<g<2n

be the parameter-representation of the free surface such that
0 . .
Q8 (14 Xt O) D) =ty (14 X0, )T )

Then X=(X,,X,) satisfy the following system of equations:

29) (T+ X5)(1+ X1 o)(1 + X)X 10 +2X 1, X))
+ X0o(X o — (1 + X)X 2+ k(1 +X,)"%)=0 for >0,

(2.10) X, =K(+X,)X, for t>0,
@.11) X=U X,=V at (=0,

where k=g/r} and K=K(X,b,p) is a linear operator depending on X, b and
p=r,/ro. These are derived as follows. Differentiating (2.8) with respect to
t and using (2.1) we see that
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(K= (1 X)X E o MK X (14 X)X )50
_ — K(l + XZ)—zei(9+X1) _(prl)— IVp 'r, .

On the other hand, differentiating (2.3) with respect to the tangential direction
0 we get

(X +i(1+X,)(1 +X19))ei(0+xl) "Vplr,=0.

Eliminating Vp|r, from these two relations, we obtain (2.9). (2.2) and (2.5)
imply that the normal and the tangential components of the velocity v on the
free surface are not independent. (2.10) represents this relation, which is
explained in section 4 in full detail. Finally, the initial data U and V are
calculated from y, and v, by utilizing (2.8).

The following is one of our main results in the present paper (The function
spaces used there are described in section 3).

Theorem 1. For any f>1 and k>0, there exists a small positive constant
0,=0,(B, ) depending only on B and x such that if s>4+1/2 and

(212) UeH**'?, V,beHS, |U|;<6,, |VI,<6,, |bl3<64,

then problem (2.9)—(2.11) has a unique solution X on some time interval [0,T]
satisfying

4
(2.13) Xe () CH[0, T]; H+112=712),

ji=1

Moreover, let X™, n=1,2,... be the solutions of (2.9)—(2.11) with initial data

(U™, V™) satisfying (2.12) and (U™, V™) — (U, V) in H**'>x H® as n— 0.
4
Then it holds that X™ — X in () Ci[0,T]; H**'>7J1%) a5 n - co.

j=1

Remark 2.1. Once the solution X of problem (2.9)-(2.11) has been
determined, we can easily obtain the solution of problem (2.1)-(2.6) in the
following way. In view of (2.7), y is obtained by the implicit function
theorem. We solve the boundary value problem (2.2) with the boundary
conditions (2.5 and vl =(r,(1+X,)e®"*V),. Although these boundary
conditions are overdetermined, the problem can be solvable because of
(2.10). Then p is determined by (2.1) and (2.3) due to (2.9).
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Next, we restrict ourselves to the case b=0, that is, the rigid boundary
Y is just a circle with a radius r,. In this case, problem (2.1)-(2.5) has a
circulating stationary solution of the form

y=0, v(z)= —rla(~a———i—aa—> log |z,

0z, 0z,

1 1 prfa2<1 1)
= + —— )= —_— ],
PEI=po pg(!z; r1> 2\l 7

where a is a real parameter, which denotes the speed of the flow on the free
surface. In our Lagrangian coordinates, the above solution corresponds to
X=(at,0) with a=a/r,. Now, we proceed to investigate the well-posedness
for the Cauchy problem (2.1)-(2.6) around the stationary solution (2.14). To
this end, we replace X; by X,+af in (2.9) and (2.10). Then, we obtain

(2.14)

(2.15) (14 X)(1 4+ X o) (1 + X)X 1 + 2 + X)X 5,)
+ XXy —(1+ X+ X1, +x(1+ X,)"?)=0 for >0,

(2.16) Xy =K(1+X,)a+X,) for >0,

where K=K(X,0, f) is the same operator as in (2.10) with 5=0.
Before stating our results concerning the initial value problem for (2.15)
and (2.16), we consider the linearized equations:

(2.17) Xin+20X5,+(k—0a?)X,=0,
(2.18) X5 =KX, + 20K, X,

(for (2.18), see section 4). These imply the equation
(2.19) X,y +(c—0?)KoX,5=0.

This equation for X, can be easily analyzed and we see that the initial value
problem for (2.19) is well-posed in the class X, e ()7-oC([0, T]; H**'/277?) if
x>o?, and that the problem is ill-posed if a®>>x. Since parameters o and «
represent the speed of the flow and the strength of the gravity, respectively,
these facts express in a physical point of view that if the gravity is stronger
than the flow, then the problem is well-posed. On the contrary, if the flow
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is stronger than the gravity, then the problem becomes ill-posed. For the
non-linear problem, the same statements are valid and we obtain the following
results.

Theorem 2. Suppose that B>1, a,keR* and k>a>. There exists a small
positive constant 6,=03,(p,a, k) depending only on B, o and x such that if
s>4+1/2 and

UEHS+1/23 VEHS, ”U”3Séz, ”V“2S52’

then problem (2.15), (2.16) and (2.11) has a unique solution X on some time
interval [0,T] satisfying (2.13). Moreover, the continuous dependence of
solutions on the initial data is also valid in the same sense as in Theorem 1.

Theorem 3. Suppose that B>1, a,keR! and o?>>x. Then, problem
(2.15), (2.16) and (2.11) is not well-posed. More precisely, the following statement
is not true: There exist a large number N and a positive constant T such that
for any number n>N, problem (2.15), (2.16) and (2.11) with initial data

(2.20) U=0, V=g +ind
has a unique solution X=X™ satisfying

2.21) X" 50 in  CY[O,T];H**'?) as n- .

Remark 2.2. The initial data in (2.20) are smooth functions and converge
to zero in the Sobolev space of any order. Hence, Theorem 3 implies that
the well-posedness for the Cauchy problem (2.15), (2.16) and (2.11) does not
hold in the case o >k even if we assume that the initial data are sufficiently small
in suitable Sobolev spaces.

Remark 2.3. The assumptions that the initial data are small in Theorems
1 and 2 can not be removed in general, because the solution of (2.15) and
(2.16) with a=0,; +a, and (2.11) is also the solution of (2.15) and (2.16) with
a=0o, and (2.11) with V replaced by V+a,, and we have Theorem 3.

§3. Preliminaries

For a real number s we denote by H* the usual Sobolev space of 2n-periodic
functions on R! equipped with the norm
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) 1/2
Hfl!s=<27r ) (1+|nl)“lf,,lz> )

n= —oo

where f, is the n-th Fourier coefficient of f
1 [ .
f,,=—J‘ fOe~"do, n=0,+1,+2,...
2n ),

For an integer j>0 and 0< T < oo we say that f e C¥([0, T]; X) if f is a function
of Ci-class on the closed interval [0, 7] with the value in a Banach space X.
A pseudo-differential operator P(D), D = —id/d0, with a symbol P(n) is defined by

00

P(D)f(0)= Z P(n)f,,emo for f(0)= i f,,Ci"e.

n=—oo n=—o0

We define the pseudo-differential operator K, and the symbol sgnn by

0=

pP—1 {n/ln[ ifn#0,
—i——— and sgnn= .
B*P +1 0 ifn=0,

respectively. For operators 4 and B, the commutator of 4 and B is denoted
by [4,B]=AB—BA. Throughout this paper, the symbol C denotes various
positive constants, which are different in different lines and C=C(a,b,...)
means that C depends on a,b,.... For any 0eR’, we define the translation

operator T, by (Tof)@)=/(0+¢).

Lemma 3.1. For 0<r<], there exists a constant C,>0 depending only
on r such that for any fe H"

‘- f i f | fl9)—fO)*

D I VA~ |ei“’—e"9|1+2'd0d(pscr PRI VA

n=-o 0 Jo n=-o

Moreover, || f ||+, is equivalent to the norm

2n o2 1)2
||f|rs+<f 1o/ {l‘;,do) ,
71|

0

where s is an arbitrary real number and fe H*".

Proof. Using Parseval’s formula, we see that
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2n (2w 2 27 inf 2
|/ (@)1 0) & le™ -1
f f ,911+2,d0d(p=27r Z |fn|2 0 lei0_1’1+2rd0

0 |e'¢ n=-o

™2 (sin nf)>

—n Y| S g
T Z U;'l J;) (Sin0)1+2r

n=—oao

Since 20/n<sinf<0 for 0<f<n/2, it holds for any integer n#0 that
/2 3 2 'n/2|n| 2 2r
j (.sm nl(JJ)r dOZJ (2n0/m) = 1 (M)
o (sinf)t*2r 0 or+2r 20—\ =
and

w2 (o 2 /2 || 2 /2 3
J (.sm nng),z dé)sf (nB)1 i d0+f d61+ <" i,
o (sinf)t*2r o (20/m)t* w/2in] 0/m)t*2r~ 16r(1 —r)

These imply the first assertion. For the second one, it is sufficient to note that

ITof—f12=2n 3 (1+In)>|£71e™ — 112,

n= — o0

because of the above estimates. The proof is complete.

Lemma 3.2. Let f>1 and s>0. For any fe H° we have
lisgn D+K)fI,<Clfllo,  NA+KNSfN<Clf llo>

where C=C(f,5)>0.

Proof. In view of the inequalities

. ﬂZn 1 . _BZ"—I 2
zsgnn—zﬁz'I <272 and |14 _ZW

we obtain the desired estimates. The proof is complete.

S4ﬁ—llnl,

Lemma3.3. Letr,t>0ande>0. ForacH" 'andfe HY?**"! we have
I[sgn D,alf|l,<2m)~ (1 +1/e) |lall,+.ll Il 12 4=

For the proof of this lemma, we refer to Lemma 1 in [2] or Lemma 2.14

in [7].

When we investigate the properties of K, it is convenient to use the operator
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classes L(r,s;t) and L(r,s;t) which were introduced by Yosihara [7]:

Definition 3.1. Suppose that 0<r<s and 0<¢<s. For an operator
M = M(P) depending on P=(P,,..., Py), we write M(P;P(J))e L(r,s;t) (J is the
subset of {1,...,k}, PU)=(P),, ..., P;) if J={j;,....ji} and P(J)=0 if J is empty)
if the following condition is fulfilled: There exists >0 such that if P, P°e H®
satisfy |P()|,, IIP°(J)l,<e and |P|,, |P°|,<c for some c>0, then
IM(P)fl,<Clfll, and | M(P)f—M(P°)f|,;<CIIP—P°|,lfll, for fe H", where
the constant C does not depend on P and P° but on c.

We write M(P;P(J))e Ly(r,s;t) if M(P;P(J))eL(r,s;t) and |M(P)f|,
<CIPl 1, for feH"

The following is a slight improvement of Lemma 4.22 in [7].

Lemma 3.4. Suppose that 0<r<s and 0<t<s<s,. Then

1) L(r,s;t) and Ly(r,s;t) are algebras,

2) Ly(r,s;1) is a two-sided L(r,s;t)-module,

3) If m is smooth in a neighbourhood of 0cRF, then the operator M
defined by M(P; Pyu=m(P)u belongs to L(s,s;t) for 1/2<t<s,

4) If M(P;P)eLy(q,q;t) for any qels,s,] and ToM(P)=M(T,P)T, for
0eR’, then M,(P;P)=(1+M) *eL(q,q;s) for any qe[s,s,].

§4. Representation of K

Throughout this section the time #(>0) is arbitrarily fixed, so that we
simplify Q,, X(¢,0) as Q, X(0), etc. Assume that the velocity v is of C*-class in the
domain Q, continuous up to the boundary 0Q=T"UX and satisfies (2.2), and
that X is a 2m-periodic C!-function on R!. These assumptions are always
satisfied if we deal with the function spaces (2.13). Recall that the free surface
I' and the rigid boundary X are parameterized as

{F: 20)=ry (14 X5(0)e® @, 0<0<2x,
2 w(0)=ro(1+b0)e”®, 0<0<2m.

Put

Hz)=v,(2)—iv,(2), f(O)=Fz(0)), g(0)=Fw(0)),
V(@) =f(9)e'w+ X1(9)), yoO_ipy®_— v,
W0)=g(0)®, WO—iwO=w.
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Then F is holomorphic in €, since (2.2) asserts that F satisfies the
Cauchy-Riemann equations. It follows from (2.8) that

4.1) VO=r X,,, VO=r(1+X,)X,,.
The boundary condition (2.5) on £ can be rewritten in the form
4.2) wWO=(1+b)"'0'Ww®,

Taking z,=z(0)eT, applying the Cauchy integral formula to F in the domain
Q(r)={z;|z—zo|>r} nQ and letting »r - +0, we obtain

1 Hz) —7i 1 Hz) dr— _1_ Az) d

27 ) 00y 2 —Zo 2m' 2mi rzZ—2zo 2ni Jyz—z,

Transforming the coordinates yields that

0= px f TS dio),, ! J __glp)  dwlp)

4.3 .
&3 o 20)—20) dp " 7y wg)—2(0) do

The integral kernels can be rewritten in the form
=— »—~1
z(p)—z(0) do e""—e"’ o

L awlg)_ e 0 ((1+b(¢))e'“’ /3(1+X(9))e""+x1("”)
w(@)—2(0) do —‘e""’—ﬂe"’ 0 — e -

1 dz(p) ie'® ((1 + X, (@)@t X1 @ _(1 4+ X, (0))61(9+x1(0)))
ei¢ _ elG ’

Substituting these, f=Ve ‘®*¥) and g=We ™" into (4.3) and making use
of the integration by parts, we can get
: 10 -0

e i[> e
- — V(p)do +— B ——
elv — elB ((P) ? B Jl) ei? ﬂelﬂ

1 (20 eiXie) __giX1(0) 120  1—eX1®
! J ef-iXi@” 7 W)do +E C'em W(p)dp
. _

Wo)do

i 2n
4.4 Vo= — p-v. j
0o

nJo elv—e't Be
_|_1 f” ¢lO+ X1~ i+ X1(0) |og (14 X,(p))e’® +X‘('f’” — (.1 + X,(0))e®* X’w»)
nJo el? — elﬂ

ax(e) .dV (o)
x(<1+ do >V( )+ do ) ¢
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] J‘“ ei0+X10) ~io log <(1 + b(ﬁ”))eiq, — B+ Xz(o))ei(e * X1(0))>
0

- ei?_ fei

T
X (W((p) + idW((p)> do.
do

Define the projection P, by

2

Pyf =§1—f f(0)d0 (=f, the 0-th Fourier coefficient).
TJo

It is not difficult to see that

1 27 ieiO ] )
(4.5) —p.v.f o /(@)do =(isgn D—iPy)f,
i o €%—e
12" ¥ isgn Dol = fi(@Pl=1 g~ 1Py)f if 0<a<l,
- ﬁf((P)d(P: . -|D|-1 < —|D|-1 -1 .
nJo €Y—ae isgn Do f—i(o +a Py f  if a>1.

Therefore, by (4.4) we have

(4.6)  (1+Py)V=—i(isgn D)V + B~ 'PoW+(1 +i(isgn D)B~1P1= 1w
+(—A+As—A)+il(—A,+Ag+AQ)V
+(A3—A;+A )+ (A, —Ag—A )W,

where

2n

1
(Ajf)(9)=nj aj(e,0) flo)de, j=1,...,8,

o]
ajp,0) are real-valued functions,

eiX1(0) _ oiX1(0)

in. —eif ~iX1(@)

a,+ia,=¢ gt
) 1 _ein(G)

@7 % aytigg=c®——

eup__ﬂeie ’
a5+ g =@+ 1O ~i@+ Xi(o)
X i+ X1(0) _ (1 4 X.(0))ei®+ X1(6) dX
«log (1+X,(p)e . (. +X,(0))e 14 1(®) ’
e'? —gif do

(1+b(g))e — B(1 + X,(0))e"®* xlwn>
el — ﬁeie >

a,+iag=e'®*X10-iv]gg <
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(f)(e)——f a(0,0) f;"” 0, =912,

ajo,0) are real-valued functions,
(4.8) 'ﬂ ag+ialo=ei(9+X1(9))—i(¢+Xx(¢))

((1 + X (@)@t X1 _(1 4 X, (0))e'(9+x1(9))>

eiq) ezo

. . ip__ X i(8+X1(8)
an_H-au=e.(o+x;(o))—mlog<(1+b(§0))e B+ X,(O))e )

elv ﬂe“’

Similarly, taking w,=w(f)eX and proceeding in the same way as above, we
obtain

4.9 (1—Py)W=i(isgn D)W —BP,V+(1 —i(isgn D)B~P1* 1y
+(Ay3+A17—Ay)+i(Aa+A1g+A42))V
+(—Ays+A430)—i(A16+ A1) W,

where
) 1 2n
(Ajf’)(g)z;gj‘ a,(ﬁo,o)f(‘P)d(Py .1:13""18’
0
afo,0) are real-valued functions,
] B we—ixl(«v)_l
a;3+iaa=¢ m,
I 1456 i _(1+b(0))e’®
4.10) < a15+ia16=e,9_,¢log(( +blo)e—(L+50)e )
ele gl
a17+ia18=ci0—i(¢+xx(¢))
<(1+X((p))ez(¢+h(¢)) ﬂ 1(1+b(0))eio)<l+Xm(q))>

eiq) _ ﬁ 1e:o d(p
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1 (3 d
(A,/)0)=- f a(0.0 7 Py, j=19,...22,
n de

ajp,0) are real-valued functions,

ip__ i0
(4.11) ,ﬁa19+l'a20=eio—,-¢log<(]+b((P))€ (1+b(0))e )

eiqp__eiﬂ
a,, +ia,, =@+ Xio)

log ((1 + Xl e KD — g1 4 b(f»)e“’) |

eiv _ plei

It follows from the equation (4.6) applied the projection P, that
PoW=BPyV+(B/2Py(A;—As+ Ay o) +i(A—Ag— A))V
—(B/DPy(A3—A;+ A )+ i(A,—Ag— A ))W.
This together with (4.9) implies that
4.12) W=i(isgn D)W +(1 —i(isgn D))~ 1?1+ 1y
+{(A13+ A4, —Az)+i(A s+ A5+ A3,)
+(B/DPN Ay —As+ A o) +i(Ay— Ag— A}V
+{(—Ays+A450)—i(A6+A;0)
—(B/DPo(A3—A7+Ayz) +ilAs—Ag— A1)} W.
The real part of (4.6) and the imaginary part of (4.12) become
(14 Po)V® = —(isgn D)V'O 4 B~ 1P1~ Y(isgn D)W ®
+(B T P+ IPIT Ay — A+ A WO (A, — Ag
+(—A;+As—A )V +(—A,+ A+ A)V®
and

W(6)=ﬁ—|D|+ 1 V(O) +ﬁ—lD|+ l(isgn D)V(r)

+(—(isgn D)+ A6+ Ayo+(B/2Po(Ay— Ag— Ay )W

+(—Ays+A30—(B/DPo(As— A7+ A ) WO
_(A14+A18+A21 +(ﬂ/2)PO(A2_A6_A9))V(r)

537

— A WO
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+(Ay3+ A=Az +(B/2)Po(A; — As+ Ay)) VO,

respectively. Eliminating W® and W® from these two relations and (4.2),
we obtain V®¥=KV® with

(4.13) K=Ko+K;, K,=B,+B,(1-B,) '(Ko+B,),
where
By=(14+B72Ph)"Y(— A, +A5—A,,)
+(B~ P~ Y(isgn D)B; + B,)(1— B,)~ ! f~IPI* Y(isgn D)
—(B~1P1~!(isgn D)+ B,)(1—B3) ™"
X (Ayq+Ajg+ Az +(B/2)Po(As— Ag— Ao))},
B,=(1+B72P)"1(— A, + Ag+ As)
(4.14) J +(BIPI~ Y(isgn D)B3 + B,)(1 — By) g~ IPI*!
+(B~ "1~ Y(isgn D)+ B,)(1—B;)~ !
X(Ay3+A7— Az +(B/2)Po(A, —As+A,0))},
By=(—(isgn D)+ A g+ Ao +(B/2)Po(Ay—Ag— A, )1 +5)" ¥’
—Ays+Ay0—(B/2Po(As—As+Ay,),

B, =B 'Py+B P 4 Ay — A+ A ) +b) O+ Ay —Ag—A,y, .

Thus we get (2.10) because of (4.1).
As for (2.16), it is sufficient to note the above arguments and that in such
a case, the free surface I and the rigid boundary X are parameterized as

T 2(0)=r,(1 + X,(0)@* =+ 0 0<f<2n,
Z:w(0) =roei® ), 0<60<2nm.

Remark 4.1. In the case b=0, applying the above arguments to the
velocity v(z) of the stationary solution (2.14), we obtain

(K1+X,)"X0)=0 for 0<0<2m.

§5. Properties of K

In order to investigate the operator K defined by (4.13), it is sufficient to
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consider the integral operators of the forms

5.1) (Af)0)= f ( e Z{ff”))F(”fZ “f‘”) f(oMy

and

(5.2) (A41)0)= f (H ’(0)+b’,(f )) ("(,f“”("’))f( o
0 pe e

where u=(u,, ..., uy), v=(vy,...,0y), a;, b;, 4, v, are complex valued functions,
F is holomorphic in a neighbourhood of {ze C";|z|<1/2} and B is a positive
constant with f#1. In the study of these integral operators, of course, it is
always assumed that

u(9) + v(cp)
0 — e’

1
T o 5 for 0,peR’,
e?—e

__u(G) _ u((P)l <l and
T2

To begin with, we construct estimates for some integrals. For simplicity,
we introduce the notation

a(9) a(e)

—eio

a(o, P)=—

Lemma 5.1. Let k be a non-negative integer, seR!, e>0 and A the integral
operator of the form

2n k 2n k
(A1Y0)= f ((%) 6, qo))f(qf)drp or (Af)(9)=j ((%) 0, <p))f(<p)d<p-

Then we have |Af|s<Cllalls+ill /112 +e-

Proof. By (4.5), the former integral operator can be rewritten in the form
(AfX0)=(—1)nie™*{[a, isgn D)(iD)/(6) — ia(0)Po(iD)f+ iPoa(iD)f}.

Since Pya(iD)f=P,((iD)*a)f, the required estimate follows from Lemma 3.3
and the trivial estimate ||Pouv| = ||Pouv|lo<l|lulollvllo. For the latter one, the
evaluation can be reduced to the former case, because we have

0 . 0 . - .
— (0, p)=——_—d(0, ) +a'(0, p)—ia(0, ¢).
00 op



540 Tatsuo IcucHr

The proof is complete.

Lemma 5.2. Let k be a non-negative integer, 1<p<oo, 0<r<1 and

e>0. Then we have
a k
) a@,
<89> a@, o)

(5.3) sup ( J 2”
[ 0
(5.4)
0\ P
((3—0) (@®,+0,,9)—ao,, <p))‘ d«))

(el

Here, the integrals with respect to ¢ should be replaced by the essential supremum
in the case p= oo.

p 1/p
dp ) <Clallx+3z—1/p+e>

2/p

. 1/2
|e:92__ 1|—(1 +2r)d02)

<Clallksr+32-1/p+e-

Proof. By the Fourier expansion of a and Minkowski’s inequality, we have

s ([0 onof)"« 5 (2 55T )"
. — ) a(o, s O 30) e '
G-3) o 1\00 ©.0)) do n=z—ooll o I\80) e’—c* !
Since
n—1 . ..
Zel(n—1—1)0+w for n>1,
j=0
ing __ oing
(5.6) eia eitp =1 0 for n=0,
€’ —¢
_Zlei(n—l—j)f)'*'ij‘ﬁ for n<-—1,
Jj=n

it holds for n>1 that

a keinﬂ _ el'mp n—1
00) e¥—¢'?

Y (11—t

j=0

Here, we see that

n—1 . n—1 ijq’—-l '
D N T A
j=0 j=1 —_
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where 0, is Kronecker’s symbol. Therefore

2 a k ein() _ eimp P 1/p
NOFE==)
o |\08/) e¥—ei?

n—1 2n
<Y (=)~ 1)")(L

el —1

e—1

4 1/p
dqo) + 8yo(2m) 7.

In the same way as in the proof of Lemma 3.1, we obtain
elr—1

2n )4 1/p
5.7 - d
G1 <Jo e?—1 <P>
4 1/p 1+1/p
(i) ) o oo

n*(1+logj) if p=1

for j>1. On the other hand, it is clear that

n—1
T (=)~ —j = 1) <k2(n—1)"

Hence we get
2 k ninf __ Ling|p 1/p k+1—1/p if

(5.8) sup(J (i) E—.e—e—.‘ d ) S{Clnlk ?p>1,

0 o I\00/ e“—¢e'* Clnl*(1+log(1+1n))) ifp=1

forn>1. We can show that the above estimate is also valid for n<0. This fact
and (5.5) lead us to (5.3).

As for (5.4), we have
2n a k p
(59 (J (55) (@06, +6,,p)—al0, ,<P))‘ d<P>
0 1
a k ein(01 +62) eimp ein91 _eimp
—60_1 eil01+62) _cio - eif1 _civ

< i la.,lq’r
n=-ow Y
=0 Y la)L0,,0,).

n=— 00

1/p

)4 1/p
d(p>

We consider the case that n>1 and p>1. By (5.6), we have
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px
In(91 ’ 02)=<J
0

Here, it holds that

n—1

Z (ei(n— 1-j)62 __ 1)(n -1 _j)keiirp

j=0

4 1/p
d(p) .

n—1
Z (e"(”_ 1-j)62 __ 1)(n -1 __j)keijtp
j=0

n—1
= .Zl {(ei(n—j)ﬂz —1)(n _j)k —(—j— l)k)

J

+ ei(n —Jj— 1)92(61'02 _ 1)(1’1 _j— l)k}

elie —1
@

elv—1"

This together with (5.7) shows that

L(0,,0,)<C Y, j11r{je " %2 —1f((n —j)F — (n—j— 1) + e~ 1|(n—j— D*}.

i=1

On the other hand, by (5.8) it is clear that I,(0,,0,)<Cln/**'~'?. Thus,
using the similar calculation in the proof of Lemma 3.1, we see that

27 2 . 1/2
(j (SUP 1(0;, 92)) le®2—1]7¢ +2"d92)
] 01

2n—n/n 1/2
SClnlk+1—1/p<f (ei92_ll—(1+2r)d02>

n/n

n—1 ZnIei(n—j)02_1|2 1/2
+Cy {«n —j} == l)k)( j I?Td())

ji=1 0

n/n 27 1/2
+(n —j—l)"(J +f |e""2—1|"2'd92> }
0 2rn—mn/n

< Clnl“” 1- 1/p.

Similarly, we can show that the above estimate is also valid for n<0. This
fact and (5.9) show that (5.4) holds for p>1. The proof in the case p=1
is almost the same. The proof is complete.

Lemma 5.3. Let k be a non-negative integer, 2<qg< oo and 0<r<1. Then
we have
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2n 2n a k
5.10 -— ) a(@,
10 (J (L (ae) ©.0)

(5.11)
0 k q 2/q ) 1/2
(50—> (@@0,+0,,9)—ao,, (p))‘ d(P) do,le®>—1]7¢ ””d92>

(RN

Proof. By the Fourier expansion of a and (5.6), we have

q 2/q 1/2
d‘P) d()) <Cllalk+1-1sg

SC”a”k+r+1—1/q-

k o0 ©
<E> a0, )= Z < Z a,,(i(n -1 __j))kei(n—- 1 —}')0) elie
60 j=0 \n=j+1

Fy ( 5 a,,(i(n—1—j))"ef<""“""’>e“"”-

j=—w \n=—w

This and the Sobolev imbedding H'/2~ 4 g L1 imply that

22|/ 5 \k . q 2/q
(1) 1) aoofe)

<C Y, (]jpan-e

i=0

2

i (a,(i(n—1—j)reir=1-00

n=j+1

i . |2
Y aii—1—j)Fein- -

n=—ow

-1
+C L (1l

j=-w

Integrating this with respect to § and using Parseval’s formula, we obtain

2r/ (2n|/ k~ q 2/q
U ) awofar) e

-1 -1

o n—1
<c(3T+ B3 e uen o1t
n=1j=

n=-—o j=n

o)
<C €17 1Da, 2 < Cllalls s - 1q-

n=— oo

By virtue of Lemma 3.1, we can show (5.11) in the same way as above. The
proof is finished.

Lemma 5.4. Let j and k be non-negative integers, 0<s<1/2, £>0 and
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o ol
=], Nao) ™ ?|\aa) 77| “%

Then we have [Ilo<Cllallj+12+s+lbllk+1-s-

Proof. Put p=1/(1—s) and g=1/s. Then it holds that 1 <p<2<g< oo
and 1/p+1/g=1. Hence, by Holder’s inequality, (5.3) and (5.10), we obtain

) 2 a j~0 pd 2/p (2= 2n a k~
(N O EN (N LT

SC||a||f+3/2—1/p+g||b||f+1—1/q-
This shows the required estimate. The proof is complete.

q 2/q
d(p) do

Lemma 5.5. Let j and k be non-negative integers, 0<s<1/2,0<r<1, ¢>
0 and

10,,0,)= ( >(a(9 +0,,9)— a(&xv))“( )b(fh,qo)'dq).

Then we have

2n (2% 10 ’0 2 1/2
(ff WO, 09 4 d@) <Clallurs o remelBlles s —s.
0

0 |elez 1|1+2r

Proof. By virtue of (5.4) and (5.11), the above estimate can be proved
in the same way as the previous lemma. The proof is finished.

Lemma 5.6. Let k be a non-negative integer, 0 <r<1,&>0 and A the integral
operator of the form

(41)0)= J << )0(9 @))F(u((’ ?)/(9)do,

where F and u are of the same as in (5.1). Then we have |Af],<
Cllales L+ Nl 2+ )21/ 1242 -

Proof. To begin with, we consider the case »=0.
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. 27 a k
(A1)0)=F(ie”)” 1u'(G))J <<£> ao, qo))f (@)
0

2n a k .
N j ((55> a0, (p)){F(ﬁ(@, o) —Fl(ic™) " w(0)} /(o)

0
=14, /)0) +(4,/)0).
It follows from Lemma 5.1 that |4, fll,<Clallllfll;2+.. Since
~ - i =1, . —igi0 i O
(0, p)—(ie”) " 'u' (@) =ie~“( —e"’)%u(G, ?)
we can rewrite 4, as
N 2n a k ) ) ) a
(A2N0)= ), f ((—) a, <p)> F{(0, p)ie ™ (e — &) — (0, 9) f(@)do,
j=1 0 69 60
where
1

Fj(o’ (p): -[

a—F(ta(é?, )+ (1 —0)ie®)~ W (0)dt, j=1,...,N.
0 0z;

For k=0, we have
27
0

N . 0
CE DY ie“"’a(9)f F{0, 90)%17;(9, o) f(@)do

N ) 27 a
-2 ie""f F{0, 9)_ii/6, p)a(p) f()do.
i=1 0 a0

Using (5.3) with k=p=1 and e=1/2, well-known estimate |f(@)|<C| fll12+.
and Schwarz’s inequality, we get

27

I(A2/XO) < Cla@)llull 211 1242+ C(J

0

0
— (0,
6(9“( ®)

2 1/2
d€0> lallol SN2 +e-

This together with (5.10) with k=1 and g¢g=2 implies that [A4,f],
<Cllallohull sl flly2+.- For k=1, we differentiate the identity a(0)—a(ep)
=d(0, p)(e"® —e'?) k-times with respect to 6 and get

Jooofom-<5e (2
<%> a(g’(p)_eiﬂ_ei(p{a (0)—e l;ol 1Nao al,9) ¢,
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where a®(0)=(d/d0)*a(f). Therefore, it holds that

N 2 2
(42/)0)= .Zl e” “’a""(B)f 10, o) (0, 0)f (@)
= 0

J

A o\ 8
—j;l :Z,o i ( l) J ) F{®, <P)<(5é) ao, q0)><6—0 0, tp)>f (o).

By the same evaluation as above and Lemma 5.4 with j=/ k=1 and s=¢=1/4,
we obtain [ 4, fllo < Cllallllull | fll1/2+.- Hence, the required estimate is proved
in the case r=0. Furthermore, we can show it for 0<r<1 in the same way
as above, because we have Lemmas 3.1, 5.5 and (5.4). The proof is finished.

Lemma 5.7. Let k be a non-negative integer, 0<r<1, ¢>0 and A the
integral operator of the form

0

2 k M
ANO= f (<%) ao, <p)><_ C co))F(ﬁ(B, o) (@),
0 Jj=1

where F and u are of the same as in (5.1). Then we have

”Af”rS C“a“k+r"b1”2+r”' lle||2+r(1+ "u“2+r 2||f" 1/2+¢-

Proof. This integral operator is the same type as in Lemma 5.6 with F(z)
replaced by z; -- 2y, F(Zpr 1+ 1, .- Zy+n)- By noting this fact and that 4 depends
linearly on each b;, j=1,...,M, the required estimate follows from Lemma
5.6. The proof is complete.

Lemma 5.8. Let s>2, >0 and A be the integral operator defined by (5.1)
with M=1. Then we have |Af|l,<Cla |1+ 1ul )" "I fll1/2+., where [s] is
the integer part of s.

Proof. Put m=[s] and r=s5s—[s]. Then, it holds that m>2, 0<r<1
and s=m+r. By Lemma 5.6, we have [|Af],<Cla (14 ull;+)?1 112+
Therefore, it is sufficient to evaluate |(d/dO)"Af],.

d\m 2n o \"
(25) (Af)(9)=L <<a—9) a, (6, <P))F(ﬁ(9, @)f (9)do



IRROTATIONAL FLOoW IN A CIRCULAR DOMAIN 547

f f (( ) o, w))a,(e <p)—(u(0 o)/ (0o

27 a a~ g2
RN (ORC=

=:(A4,/)6)+(42/)0) +(43/)6):

J \k Hie
(@0, QD))kf:Il((%) (0, <P)> S(p)do

where the symbol X in A4;f means the summation over all (o, a, 4, 1) satisfying

0<o<m—1, 1<|d<m, 1<i<m—1,
2 p

o+ ) klwl=m, Y |wl=lal.
k=1 k=1

From Lemmas 5.6 and 5.7, it follows that |4 fl, < Cllay [ m+ 1+ lall2 SN 1/2 4
and that |4,/ |, <Clullms @il 1+l ) f1l1/2+.> respectively. Noting

that
a k
— | o,
<60> (0, o)

which comes from (5.3) with p=o00 and ¢=1/2, we proceed to evaluate

1:=((6%)6a1(9 w))” (o, <p))n(( ) a0, ¢)>“k

In the case A<m—2, we have
a\’.
<%> a0, 9)

In the case A=m—1, if m>3, then |u;|=1 and

2\ 0\*
(56) a, (0, (P)”<@> (0, )

If m=2 and o=|u,;|=1, then the above estimate is still valid. If m=2, 6=0
and |u,|=2, then

sup
0.0

<Clullg+2

<c

laall

1<c

ol 1=

2

0
I<Cllayl, Eu(e, o) -
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By these estimates, (5.10) with g=2 and Lemma 5.4 with s=¢=1/4, we obtain
43/ llo<Cllay 1+ lulm)™| fll12+.. Moreover, we can show that [4,f],
<Claylms A+ 1l 1112+, in the same way as above, because we have
(5.4), (5.11), Lemmas 3.1 and 5.5. The proof is complete.

Lemma 5.9. Let s>2, ¢>0 and A= A(a,u) be the integral operator defined
by (5.1). Then we have

Q M
llAfllssC<I_I Ila,-lls>(1 S L1/ e W PP

and
lA(a', u') f— A@@® u?) f |
<CA+llatlls+ Ia® A+ s+l 1) (la* —a? [l g+ Nt =[S 11z 4e-

Proof. By Lemma 5.8 and the arguments in the proof of Lemma 5.7,
we obtain the first estimate. In order to show the second one, we write

Aa, u') f—A@® ) f= fi B(n)fdt,
0

where B(¢f) is almost the same type as A4 and ||B(f)f|, can be estimated by
the right hand side of the required second inequality uniformly in ¢€[0,1],
because of Lemma 5.8. The proof is complete.

Next, we consider the integral operator defined by (5.2). The estimation
for it is straightforward and easier than the previous one. This is the reason
why we state the following lemma without proof.

Lemma 5.10. Let s>1 and A= A(a,b,u,v) be the integral operator defined
by (5.2). Then we have

M
IAfNs< C(]—Il (llajlls+ ”bj”1)>(1 + llulls+ ol )2 f Nl
j=
and
4@, b, u',v") f— A(@®, b2, 4%, v*) f ||
<C(L+|lat s+ la® s+ 16 My + 167 )™
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X (14 [l s+ la? s+ ot + 102 )+
x(la' —a*||;+ 16" =2y + llu' — |+ lo* =02 DI S No-

Now, we are ready to investigate the operator K, defined by (4.13).

Lemma 5.11. For the operator K, defined by (4.13), we have

{KI(X,b;X,b)eLO(Z,s;3) for 5>3,
K(Xb,b; X,b,b)eLo2,5:2) for s>2.

Moreover, it holds that ToK,(X,b)=K,(TyX, T4b)T, for 0eR!.

Proof. By virtue of Lemmas 5.9 and 5.10, for the operators 4;, j=1,...,22,
we have 4,(X;;0)e Ly(1,s5;0) for s>2, etc., and T,A4,(X,)=A,(T,X )T, for 0eR’,
etc. Therefore, for j=3 and 4 we obtain

{Bj(X,b;X,b)eL0(2,s;2) for 5>3,
B{(X,b,b'; X,b,b')e Lo(2,5;2) for s>2

and T,B{(X,b)=B|(TyX, Tyb)T,. These facts and Lemma 3.4 imply that
M,(X,b,b'; X,b,b)=(1—B3) e L(2,2;2).
Hence, for j=1 and 2 we get

{Bj(X,b;X,b)eLo(Z,s;li) for 5>3,
B{(X,b,b'; X,b,b')e Ly(2,5;2) for s=2

and T,B{X,b)=B{(T,X, Tyb)T,. Using these facts and Lemma 3.4 again, we
see that

My(X,b,b'; X,b,b)=(1—B,)" ' e L(2,2;2).

Consequently, we obtain the desired results. The proof is complete.

We introduce the following notations which are the same as those in
[7]. Assuming that X depends also on ¢, we define

Kl.k,l(Xs "'565616X’b9 sy aéb,X,b)s ksl=09 19 29 ey

inductively by
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d
K1.0.0=K1, K1,0,1=|:—’K1,0,l—1:|, [=1,2,3,...,
00
0
Kl,k,l= a,Kl;k_l'[ N k=1,2,3,--., l=0,],2,...,

and replace 0P03X by X?%. Since [R,ST]=[R,S]T+S[R, T], [R,(1-T)"']
=(1-T)"'[RT](1-T)"! and

( 0,0 ) a(0)—alg)_a(0)—a(e) a(0)—ale)

@ 5;0 eif _giv el _ei® eif _eiv
( a0 >a<e>+b(qo)=a'<0)+b'(<p)_ia(0)+b<<p)
00 0¢p) e?—peiv e —Be® e —peie ’

we see that the operators K, ,, are the similar type as K;. Therefore, we obtain
the following lemma.

Lemma 5.12. For non-negative integers k and I, we have

Kl.k,l(Xoo7 ""Xkl)bs seey alﬂb;XOO,b)ELo(z,s;3) for S23,

Ky X0 . X b, ..., 05" b; X0 bb) e Ly(2,5;2) for s>2.

§6. Quasi-linearization
Assuming that X satisfies (2.9) and (2.10), and putting
6.1) Y=Xx,, Z=X,, W=W\X,Y,Z), W=(XY),

we derive a quasi-linear system of equations for W. It follows from (2.10)
that

(6-2) anthK(l +X2)65X1:+Fk0(X1 ees an),
(6.3) 010pX 5= K(1+ X,)0{0pX 1+ Fi(X, ..., 0{0pX, 0 " ' X)),

where k=0,1,2,..., [=1,2,3,..., and F,=[0%},K(1+ X,)]X,,. Although F,
depends also on b and it’s derivatives, we do not indicate them. Similar
simplification of notations will be used in the following without any
comment. By (6.2) with k=2, we have

(6.4) Y, =K1+ X)) Y+ Fo(X, X,, Y)=: fL(W, W)).
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Differentiating (2.9) with respect to ¢, we obtain
6.5) (1+X)A+X)Y 42X X3)Z , + (Yo — (1 + X)X+ x(1 4+ X5) "2 Z,,
+(1+Z)A+ X)) Y+ 41+ X)X, Y +2X X2+ 2(1 + X)X, Y5)
+Z)(Yy— X0 X2 — 201+ X)X, Y1 — 2 X, (1 + X,)~3)=0.
It follows from (6.3) with k=0 and /=1 that
6.6) Z,,=—isgn D(1+X,)Z,+(isgn D+ K)(1+ X,)iD)X,,+ Fo (X, Z, X1,)-
Eliminating Z,, from (6.5) and (6.6), and substituting f, for Y,,, we see that
Z,=—{(01+X) Y, +2(1+ X)X X,
—(Y,—(1+ X)) X2+ k(1 + X;) ™ Yisgn D(1 + X,)} !
x{(Y,—(1+ X)X & +x(1+X,)"?)
x ((isgn D+ K)(1 + X,)(iD)X,+ Fo1(X, Z, X1,))
+Zy(fo(W, W) — X2, X1 — 21 + X)X 1, Y — 26 X, (1 + X,)73)
+A+Z )1+ X)) Y, +4(1 + X)) X5, Y 42X X7+ 21+ X)X, Y5)}
=:f3(W, W)).
This and (6.6) imply that
Z,,= —isgn D(1 4+ X,) f3(W, W;)+(isgn D+ K)(1 + X,)(iD) X, + Fo(X, Z, X1,)
=: fu(W, W}).
By virtue of (6.2) with k=3 and (6.3) with k=[/=1, it holds that

{YZttzK(l +X)Y1ut F30(X, X, ¥, YY),
Yo=K(1+ X)) Yo+ F1 (X, X,,Z,Z,, Yy).

Differentiating (2.9) two times with respect to ¢ and putting these into the result,
we obtain

(I+Z)A+X)*+Z,K(1+X,)) Y,
+{(1 +X2)2 Y1 +2(1 +X2)X12X2t

+(Y,—(1+ X)XT+ k(1 +X;) )KL+ X,)} Yy



552 TATsuo IGucHI

+(1L+Z )1+ X)X5, Y1, +6(1 + X,) Y, Y,
+6X3, Y +6X, X5, Y, +2(1+ X)X, Y,}
+2Z, (L +X,)2 Y+ 41+ X)X, Yy 4+ 2X, X234 2(1 + X)X, Y,)
+Z,{F30(X, X, Y, Y) =21+ X,)(X 1, Yy, + Y) —4X,, X, Y,
— Y, X246k X214+ X,) "4 =2k Y,(1+ X,) "3}
427, Yy — X X2 =21 + X)X, Yy — 26X, (1 + X))
+(Y,—(1+ X)X 2+ k(1 4+ X,) " d)F, (X, X,, Z, Z,, Y,)=0.
It is easy to see that
A+ Z)A+ X))+ Z,K1+X,) !
=((1+Z) (1 + X2+ ZH) 11+ X,) M1+ Z)1 + X,)? — Z,K(1 + X)) + Py,
where
Pi=((1+Z )21+ X,*+ZH 1+ X,)"%Z,
x {[K,(14+Z )1+ X521+ [K, (1 + X,)Z, 1K+ Z,(1 + X,)1 + K2)}(1 + X,)
x(14+Z )1+ X,)* +Z,K(1 + X,) "4,
and that
(14 Z )1+ X,)2 = Z,K(1 + X,))
x {(14X,)2 Y, +2(1 + X,) X1, X,
+(Y,—(1+ X)X 24 x(1 + X,) " )K(1 + X,)}
=1+ X)X {1+ Z ) )(1 + X2)* Y, +2(1 + X)X, X5,)
+Z,(Y,—(1+ X)X & +x(1+ X,) ™)}
—(1+X)HA+Z )N+ X )Y, — (1 + X)X+ k(1 + X,) ™ 2)
—Z,(1+X,)Y, +2X,,X,)}isgn D+ P,,
where
P,=(1+Z )1+ X)X (Y,— (1 + X)X &+ x(1+ X,) " I)[K, X,]
—Z,[K, (1 + X,)M(1 + X,) Yy +2X . X;)]
L+ X {4+ Z )1+ XY, —(1+ X)X 2+ Kk(1+ X5) 72
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—Z,(1+X,)Y, +2X,,X,)}(K+isgn D)
—Z,[K, (1 + X,)(Y, —(1+ X)X T, + k(1 4+ X5) ") IK(1 + X5)
—Z,(1+ X )Y, —(1+ X)X+ k(1 + X,) 2K+ 1)1+ X,).

Therefore, we obtain

Yiut(1+Z)(A+ X+ Z3) 7Y
(1 +Z )+ X)* Y +2(1 + X)X, X5)
+Zy(Y,—(1+ X)X+ k(14 X,) " 2) Yy,
H(I+Z )M+ XY, — (1 + X)X+ k(1+X,)7?)
—Z5(1+ X)) Y, +2X,,X,)\D|Y,}
=—{{(1+Z )1+ X)*+Z) 71+ X)) 2P,
+Py((1+X5)* Y, +2(1 + X)X 1, X,
+(Y, —(1+ X)XZ+ k(1 + X,) " ?)K(1 + X,))}(iD) Y,
—((1+Z)1+ X))+ Z,K(1 + X,) !
X {(1+Z )41+ X)X, Y, +6(1+X,)Y, Y, +6X2,Y,
+6X X, Y +2(1+ X)X, Y,)
+2Z (1 + X2 Y+ 40 + X )Xo Y +2X 22X+ 21+ X)X, Y,)
+Z(F30(X, X,, Y, Y) —2(1 + X)X, Yy + YT)—4X, X, Y,
— Y, X2+ 6kXZ(14+X,) =2k Y, (1+X,)7?)
+2Z,(Y 3 — X5 X3 =214+ X)X 1, Y, — 2 X, (1 4+ X,) 73)
+(Y, —(1+ X )XE+ k(1 + X)) F (X, X, Z,Z,, Y1)}
=:H(W, W),
where Y,,, Z,, and Z,, were replaced by f,, f5 and f,, respectively. It is a
remarkable fact that the coefficient of Y, in the above equation is identically
zero because of (2.9). This is the cancellation stated in the introduction and

it makes our problem to be well-posed. Consequently, the required quasi-linear
system for W has the form

6.7) {)(n: Y, Y“,+a(I’V, X)ID\Y, =f1(VV’ W),

Yo=H(W, W),  Zu=f(W, W), Zyu=f(W, W),



554 TaTtsuo IGucHI

where
aW,X)=(+Z) 1+ X,)*+ZH)!
x{(14+Z)A+X )Y, — (1 + X )XE+x(1+X,)"?)
—Zy(1+X,)Y, +2X,,X,)}-
Remark 6.1. It holds that
pri((+Z)*(1+ X5)* + Z3)' (W, X) = —n; - Vplr, ,

where 7, is the unit outward normal vector to the free surface I,.

Remark 6.2. For the non-linear equations (2.15) and (2.16), we can also
derive a similar quasi-linear system of equations in the same way as above.

We proceed to investigate the properties of the functions a and
f=(f1,..-.f4). Define the operators P, and P, by

Py={(1+ X, Y, + 21+ X,)X,, X,
—(Y, = (1 + X)X + (1 + X3) " 2)isgn D(1+ X5)} 7,
P4={(1+Zl)(1+X2)2+Z2K(1+X2)}_1-
Lemma 6.1. Let s>2. Then for operators P;, j=1,...,4, we have

{Pl(X, Z,b,b'; X,Z,b,b), PA(W, X, b,b';X,b,b)eL2,s;2),
PyX,X,,Y;X,X,,Y), PiX,Z,b,b;X,Z,b,b)eL(s,s;2).

Proof. From Lemma 5.11, it follows that

04X, Z,b,b'; X,b,b):=(1+Z,)(1 + X,)* — 1 + Z,K(X, b,b'; X, b,b)(1 + X)
€Lo(g.q;2) for g=>2.

Using this fact, the relations
Pi=(14+ 047",  ToQuX,Z,b)=Qy(T,X, T,Z, Th)T,,

and Lemma 3.4, we see that P,(X,Z,b,b";X,Z,b,b')e L(s,s;2). Since
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Py=x"tisgn D{1+((1+X2)* Y +2(1 + X)X, X,
—(Y,—(1+ X)) X?+ k(1 + X,)” ?)isgn DX,
—(Y,—(1+ X)) X7, +x((1+ X,)~* —1))isgn D)~ 'isgn D} ™1,
by the same consideration as above, we obtain P,(X, X,,Y; X, X,, Y)e L(s,s;2).
By Lemmas 3.2, 3.3 and 5.11, it is not difficult to see that

{Qx(V, X,b,b; X,b,b"):=[K(X,b,b"; X,b,b'), V]€ Lo(2,5;2),
02X, 5,65 X,b,b):=1+(K(X,b,b"; X,b,b)* € L(2,5; 2).

These facts, together with Lemmas 3.2, 5.11 and the above result for P,, show
that P,(X,Z,b,b";X,Z,b,b"), P,(W,X,,b,b';X,b,b')e L(2,5;2). The proof is
complete.

Making use of Lemmas 3.2, 5.12 and 6.1, we can easily obtain
Lemma 6.2. For any f>1 and k>0, there exists a small positive constant

g0 ==6o(f, k) depending only on B and x such that if

(6.8) {W’Wt'EHS, beH*"!, 523,
U, 180, 0212, 1 X2 Y Ha<eo,  IW I+ I W N+ 1B]sr 1 < >0,

then a(W, X)—xk,f(W, W,)e H® and

27 <a(W, X)<2x,  |f (W, W)l <CUIW I+ W)
Moreover, for W° and W2 satisfying (6.8) it holds that

la(W, X)—a(W°, XO)|,< CUIW =W+ 1 X,— X21),

1AW, W) —f (WO, W)l < CUW— WO+ I W, — W),

where C=C(p, k,s,c)>0.
Next, assuming that X satisfies (2.9)-(2.11) we determine the initial values

W=W)|,_, and W,=W,|,_, from the initial data U and V. It is clear that

X=U, Z=U,, X,,=V and X,,=K(U)1+U,)V. By virtue of (6.2) with k=1,
we have

6.9) Y,=KX)1+X,)Y +F (X, X)).
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Substituting this into (2.9), we see that
Y, =—{(14+Z)1+X,)*+Z,K(X)1+X,)} !
X {201+ Z)(1 + X)X X,
+Z,(Fyo(X, X)) — (1 + X)) X7, + k(1 + X5) )}

This and (6.9) imply that Y,=K(X)1+X,)Y, +F,o(X,X,). Eliminating Y,,
from (6.4) and (6.5), we obtain

Yii=—{(1+Z)1+X,)*+Z,K(X)(1+ X,)} !
x {0 X1 (1 + X5)2 Y, +2(1 + X)X, X>,)
+ (0 X )Y, — (1 + X)X Z+x(1+ X,)7?)
+(1+Z )1+ X)X, Y, +2X, X2+ 201+ X)X, Y>)
+Zy(Fyo(X, X,, V)= X0 X2 —2(1 + X)X, Y, — 26X, (1 + X,) 3)).

For W and W, defined above, we get the following lemma as a consequence
of Lemmas 5.12 and 6.1.

Lemma 6.3. For any f>1, there exists a small positive constant &, =¢,(ff)
depending only on 8 such that if

(6.10) {UEH””Z, V,be HS, s>3+1/2,

1Ulss 16l <y, [Ul+ 1V I+ 10l<e,  ¢>0,
then
XNt 12 HIX DA N N - 12+ 1y lls— s HNZ o= 12 SCU Ul 12+ 1V 1L,
where C=C(f,x,s,¢)>0. Moreover, if we assume, in place of (6.10), that
UbeH? VeH? |Ul|s,|bls<e;, [Vl,<¢, ¢>0,
then

IX13+1Z1+ 1 X2+ 1Y 1< CU U+ V1),

where C=C(f, k,c)>0.
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§7. Proof of Theorems 1 and 2

The proof of Theorem 2 is carried out in the same way as that of Theorem
1. Therefore, in this section we only give the proof of Theorem 1.

Assuming that the condition (2.12) is fulfilled, we define W and W, from
U, V and b according to the previous section. If we chose ¢ suitably small,
then the quasi-linear system (6.7) under the initial conditions W|,_,= W and
W,|,—o= W, has a unique solution W=(X,Y,Z) satisfying

.1) XeCX[0,T];H*™Y, Y,,ZeCY[0,T];H*™Y),
. Y, e CI[0, T]; H~ 12792, j=0,1,2,

for some time interval [0, T], because of Lemmas 6.2 and 6.3. The proof of
this fact is standard (for example, see [7, section 6]), so that we omit it. We
proceed to show that X is the desired solution. By the definition of ¥, equation

(7.2) (I+X)1+Z )1+ X,) Y, +2X X))

+Z,(Y,—(1+ X)X+ x(1+X,)"%)=0
holds for t=0. The equations for Z and X in (6.7) imply that the time
derivative for the left hand side of (7.2) is identically zero for 0<¢<7T. Therefore,
(7.2) is also valid for 0<t<T, and it is sufficient to show that Z= X, and (2.10),
because we have Y=X,. The equation for Y, in (6.7) can be rewritten in

the form (X5, — K(1+ X,)X,,), =0, and it is clear that 6}(X,,— K(1 + X,)X;)l;=0=0
for j=0,1. Hence, (2.10) is shown. Differentiating (2.10), we have

Y2t=K(l +X2)Y1,+F20(X, X, Y),
(7~3) Y2tt=K(1 +X2) Ym+F30(X,XVt, Y, Yt)’
X2:0=K(1+X2)X1:9+F01(X,X9,Xu)-

Differentiating (7.2) with respect to ¢, we see that (6.5) is valid. The equation
for Z, in (6.7) can be rewritten as the equation (6.5) with Z,, replaced by

—isgn D(1+ X,)Z,,+(isgn D+ K)(1 + X5) X0+ Fo1(X, Z, X 1)
Subtracting such an equation from the equation (6.5) itself, we obtain

(7.4) Zy=—isgn D(1 + X ((Z, — X,), + K(1 + X)X g+ Fo1 (X, Z, X 1,).
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This and the last equation in (7.3) yield that
(7.5) (Zy—X30)= —isgn D(1 + X (Z1 — X 1), + Fo1 (X, Z, X1,)— Fo (X, Xg, X1,).

If we subtract the equation obtained by differentiating (7.2) two times with
respect to ¢ from a similar equation derived from the equation for Y, in (6.7)
by taking (7.2) into account and use the second equation in (7.3), then

(Z1—X10(1 + X)° Y + 21 + X)) X, X))
HZu—(K(1+ X)) Y o+ F (X, X,, Z, Z,, Y1)
X (Y, — (14 X)X7,+ k(1 +X,)"%)=0.

Differentiating (7.4) with respect to ¢ and putting the result into the above
equation to eliminate Z,,,, we see that

(7.6) (Z1—X19)e={(1 + X,)* Y +2(1 + X)) X | X5,
—(Y,—(1+X)XZ +x(1+ X,) " ?)isgn D1+ X,)} 1
X (Y, —(1+ X)X+ k(14 X5) DK, 1 o(X, X)Z1 — X 1), -
On the other hand, by the definition of Y,,, the equation (6.5) holds at =0,
if Z,,, Z,, and Y,, are replaced by X,,, X, and K(1+ X,)Y{,+ F,o(X, X,, Y),

respectively. Subtracting such an equation from the equation (6.5) itself and
using the first equation in (7.3), we get

(Z; = X101 + X2)* Y, +2(1 + X)X, X3,)
H(Zo= XY —(1+ X)X T+ k(1 +X,)"%)=0 at ¢=0.
Putting (7.5) into this relation, we obtain (Z; —X,g),,-o=0. It is clear that

Z—Xyli=0=0. These facts together with (7.5) and (7.6) imply that Z=JX,.
Hence, it has shown that X is a solution of (2.9)-2.11). Note that

Xi=YeC[0,T]; H*~1277%),  j=0,1,2,
‘X,2t1=1<(1 +X2)Y1 +F10(A,9 Xt9 Y)E C!([O, T] > H*~ 1/2—]'/2), J=0! 1,2,
Xo=ZeCY[0,T]; H*™Y).

These relations yield that X satisfies (2.13). The uniqueness of the solution

comes from that of the corresponding initial value problem for the quasi-linear
system (6.7). Finally, the continuous dependence of solutions on the initial
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data can be proved by almost the same way as in [1, section 5], so that we
omit it. The proof is complete.

§8. Proof of Theorem 3

Assuming that X satisfies (2.15), (2.16) and (2.11) with U=0, we derive an
equation of an evolution type for X. Differentiating (2.16) with respect to ¢,
we obtain

Xou=K(A+ X)X 1+ KX, (a+ X )+ Ky o(14+Xo)(+ X))
Putting this into (2.15), we see that
8.1 X+ 20X, — (0 —K)X 5
={(14 X914+ X,)*+ X,,K(1+ X,)} !
X {((1+ X 10)(1 + X5)? — 1+ X36K(1 + X)) 20X 5, — (0 — k) X 5)
—20((1 4+ X)(1 + X19) — DX, — 2(1 + X)(1 + X 1) X1, X5,
— X KX+ X1+ Ky 1 o1+ X))o+ X))
—((1+ X )+ X1 )? — o)+ (1 +X;) "> —1))}
=:g;3(X, X)).
On the other hand, according to Remark 4.1 we can rewrite (2.16) as
8.2) X, =K+ X))o+ X, ) — ) +aK(1+ X)X, .
The equation (8.2) differentiated with respect to ¢ and (8.1) yield that
X0 — (02— 1)Ky X 59
=K(1+ X,)g5(X, X)) — KX,(20X 5, — (2> — k) X 34)
—K(X 5, X1, +o((1+X5) " 2= 1)X,) + (o> — 1)K, Xy
— K 1.o{(1+X )0+ X )— o)+ o1+ X,) 71X}
=:85(X, X,).

Differentiating (8.2) with respect to 6 and using the relation X,,=(a*—x) " (X,
+ 20X, — g5(X, X)), we get

X0 =(K(1 +X2)X19+2zx(:x2 —K)” 1Ko(X1z+2"“"2)):"‘(9‘2— k)~ lhl(X, X)),
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where
hy(X, X)) = —20Kg3(X, X)) +(0® — k){ — KX, X1, — K, 1 o(1+ X)X 14
+ 20K X+ KX X1, + K o1 (14 X5) 0+ Xy,) — )
+oK(1+X,) 2= D)X+ 0K, o (1+X,) 7' X,
Hence,

(8.3) X29=K(1 +X2)X19+206(062 - K)— IKO(XIt— V+ 2“X2)

+(@*—x)"! Jt hi(X, X,)dx.

0

Putting (8.2) and (8.3) into (8.1), we obtain
Xio—(*— K)KoX19=—20KoV+g,(X, X:)"‘f hy(X, X,)dr,
0
where
g1(X, X))=g;(X, X:)+(“2"K)(K0X2X19+K1(1 +X3)X 1)
_Z“KO{K0X2X1:+K1((1 + X))o+ Xy,)—a)
—aKo(1+X5) 71 X7 +aK (14 X5) 7 X, }.

Therefore, the desired evolution equation for X has the form

t
(8.4) X, — (> — 1)Ky Xy= W+g(X, X))+ J h(X, X)dt
0

with initial conditions
(8.5) Xli=0=0, Xli-o=(V,KoV),
where W=(—2aK,V,0), g=(g,,g,) and h=(h,,0).

As a result of Lemmas 5.12 and 6.1, we can prove

Lemma 8.1. For any B> 1, there exists a small positive constant &, =¢&,(ff)
depending only on B such that if

XEHas XtEHza ”XH3S823 ”XIHZSC’ C>0s

then
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lg(X, X)ll2 + 1A, Xl < CUX N5+ 1X.112),
where C=C(f,a,k,c)>0.
In view of (8.4) and Lemma 3.2, it is natural to consider the equation
(8.6) Uy —w|Dlu=,

where w is a positive constant. Fix an arbitrary number n and define
projections PV and P@® by

PYu@)= Y u,e™ for ul)= Y u,e™, PP=1-p0,

|m|zn m=— oo
Using these projections, we decompose a solution u of (8.6) as
8.7 u=uM 442 YD =pUy j=1,2.
Then, it is easy to see that
DU, 2 Dl DU <nt ],
for any A>0 and seR!, and that
ud —w|Du? = PYf,  j=1,2.

In the following, we fix a real number p such that 1<p<2. Since
d
5% lu? + /D)3 = £ (@I D)@ £/ | Dlu™) |13

+(fu" £/ wlDu™),,

where (-,-), is the inner product in H?, we have

1d

7 UtV +/ @IDIu V)3 =/ wnllu® + /| DIuVIN3 = || fll2lluf + /ol D,
1d
EENHS”—\/&)U)M“’} —JonluP —/olDu P13+ 1 Sl 1u” — /@l Dlull, .

These inequalities, the identity

d _.d
EIlui”i\/wlDu“’ll§=gllu§“i-\/wlDu“’ll‘z’ LSRN
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and Young’s inequality imply that

d
o I +/ @l D5 = (py/ con — Dllu® + /0 D5 —pl £15,

d
d
o luf? — /@D V]| < — (p/on—Dlu’ — /ol D5 +pl £115.

Similarly, we obtain
d. @) @)
= (Pl + 1/ @IDl ]+ 1)
<V on+ )14+ I/ oD@ )+ 1 f12-
Using these estimates, we show the following
Lemma 8.2. Let ¢, be the constant in Lemma 8.1 and M, T>0. There

exists a large number N,=N,(B,o, 1, M, T) such that if n>N,, XeC*([0,T];
H** %) satisfies (2.15), (2.16), (2.11) and

XN s<es, 1 XDlgs1)2+1XDNgs1 <M for 0<t<T,

and the initial data in (2.11) satisfy U=0 and PPV=V, then the estimate

1 1
I1X(0) +/(@* = %) DIX()Il, ZZ” Vll.exp (—2-\/ (0?— K)’”)
holds for 0<t<T.

Proof. We decompose X into X and X® according to the decomposition
(8.7). Since X satisfies (8.4), by the preceding arguments we see that

8.8) %IIXJ” ++4/0* =1 DX V|3
2 (p/(@* —n = DI XD +/(o* — )| DIX V]I

—p(ll(e* — K)(K, + isgn DYiD)X V|14

+I W5+ lglx, XI5+~ fllh(X,X,)ll’édt),
0
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89) ditnx,“’—\/(al—x)wa“)nI;
< —(p @i — )X — S —DIX |3

+p(l @ — K)(Ko + isgn DYiD)X (|5

+IWI5+1g(X, XI5+ 1271 f IA(X, X)15d),
W]

d
(8.10) d—t(I|X§2’|lz +lV/ @ =X, + [ XP|,)

<@ =+ (1 X2, + I/ (@ =) DIX P )

+|(o® — k)(Ko + isgn DYiD)X ||, + lg(X, X))l + J IA(X, X)) d.
0

Define E.(f) by

EL()=21X"+/(@® = =) DIX V)5 £ | X[~ /(> — k)| DIX ||}

X2+ 1@ =) DIX P, + | X2 ).

Then, it follows from (8.8)-(8.10) that
(8.11) %E_(t) ZI%IME_U)JF (%m— 1) E.(f)
- 317(||(°<2 —K)(Ko +isgn D)iD)X V|13
FIWIE+ g0 X2+~ f;uh(x, X,)ngdr>
- (II («* —k)(Ko + isgn D)iD)X |,

t
+HIXP,+ lgX, X))l +J 12(X, X zdf>-
0

By Lemma 3.2, we have
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(8.12) (Ko + isgn D)iD)X V(|5 + [|(K, + isgn D)(iD)X ®||, < CE . (¢)

with a constant C independent of n. By Lemma 8.1 and the interpolation

inequality [lully <|ull335% - plull§? 12, we get

(8.13) (X, X)llo + AKX, Xl o < CUX 2 + 1 X 34 1/~ )~ PE 4 (2).

Putting p=4/3 and combining (8.11)-(8.13), we see that

d 1
SE z’%\/(az ZHnE_()—3p|| W2

+ (f’—;—lm - C) E.(0)- Cf E. (t)dr,
0

where C is independent of n. Therefore, by Gronwall’s inequality there exists
a large number N, such that if n>N,, then

E_(1)>E_(0)exp (’%1 f(o?— x)m)
=3plw5 J exp <’%1\/(x2 —n(t— r)>df
0

2(1 —\/%> 1V I8exp (‘%1 (ocz-—x)m‘).

Hence, we obtain the desired estimate. The proof is complete.

t

Now, we can easily prove Theorem 3. In fact, if we assume that the
statement in Theorem 3 is true and apply the estimate in Lemma 8.2 to X™,
then for t€(0, 7] it holds that

1XO0) +/o? — OIDIX (1), > %n oo zexp(%\/(az - x)m)
=@(1 +n)%exp (%. [ — K)nt—nl/"')

— 0 as n — 00.

This contradicts (2.21). Theorem 3 is proved.
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