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Spaces of Finite Loop Spaces
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By
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Abstract

We consider the maps between classifying spaces of /7-compact groups of the form
BX x B Y -* BZ. The main theorem shows that if the restriction map on B Y is a weak epimorphism,
then the restriction on BX should factor through the classifying spaces of the center of the
/7-compact group Z.

Introduction

In [8], the author investigated certain pairing problems for classifying
spaces of compact Lie groups. The main work in this paper can be regarded
as a /?-compact group version. Dwyer-Wilkerson [3] defined a /7-compact
group and studied its properties. The purely homotopy theoretic object appears
to be a good generalization of a compact Lie group at the prime p. A
^-compact group has rich structure, such as a maximal torus, a Weyl group,
etc. A note of Moller [13] summarizes their work. Further development on
the homotopy theory of /7-compact groups can be seen, for example, in [4],
[14], [15], [2] and [18]. We first recall some basic things about the/7-compact
groups and pairing problems, and then state our main results.

A /7-compact group, [3], is a loop space X such that X is Fp-finite and that
its classifying space BX is F^-complete. The /7-completion of a compact Lie
group G is a /7-compact group if n0(G) is a /7-group. For an odd dimensional
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sphere S2n~l, it is known that its ̂ -completion has a loop structure if n divides
p— 1. This is an example of /7-compact groups other than compact Lie
groups. More examples are known as Clark-Ewing/7-compact groups, [13, §2].

For /7-compact groups X and F, a pointed map /: BX -»B Y is called a
homomorphism. Let Y/Xdenote the homotopy fibre of/ The homomorphism
/is called a monomorphism if Y/X is Jyfinite, and an epimorphism if the loop
space fl(Y/X) is a /7-compact group.

The centralizer of / is loop space of the component containing / of the
mapping space of unpointed maps, denoted by Qmap(BX,BY)f. A homo-
morphism is called central if the evaluation map, ev:map(BX,BY)f -*BY, is
a homotopy equivalence. According to [4], any /7-compact group X has a
unique maximal central subgroups that is called the center of X and denoted
by C(X). It is also shown in [4] that BC(X) ~ map(BX, BX)id where id :BX-*BX
is the identity homomorphism.

Next we recall pairing problems for /7-compact groups and compact Lie
groups, [8] and [17]. Suppose that X9 Y and Z are /7-compact groups, and
that a:BX-*BZ a,ndf:BY-*BZ are homomorphisms. The homotopy class
of a is said to be contained in the set of the homotopy classes of axes
fL(BX, BZ) if there is a map (called a pairing) \JL : BXxBY-* BZ with restrictions
(axes) ju|BX~a and ^\BY—f- ^n other words, if %EfL(BX,BZ), we have the
following homotopy commutative diagram:

BY

BX

We note that fL(BX,BZ) is a subset of the homotopy set {_BX,BZ~\. For a
weak epimorphism / of the classifying spaces of connected compact Lie groups,
the set of homotopy classes of axes has been determined in [8]. In this paper
we will obtain analogous results for /7-compact groups.

In [9], for connected compact Lie groups L and G, a map BL —»$G or
BLp -> BGp is called a weak epimorphism, if there exists a fibration F -> BL -> BG
or F-+BL; -»£Gp

A such that £f*(QF;0 is a finite dimensional g-module or
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that //*(QF;Zp
A)®g is a finite dimensional Q*-module, respectively. The

second condition of the following theorem requires a similar assumption for
a homomorphism of connected ^-compact groups f:BY-*BZ. By the way,
the connectivity is not assumed in the first condition. The result below is a
generalization of [8, Theorem 1].

Theorem 1. Suppose X is a p-compact group. If either

(i) f\BY-*BZ is an epimorphism of p-compact groups, or
(ii) f\BY-»BZ is a homomorphism of connected p-compact groups such that
H*(Q(Z/Y)iZp)®Q is a finite dimensional Q*-vector space

then the following hold.

(1) If a efL(BX, BZ\ then the map en factors through the classifying space of
the center of Z, denoted by C(Z), up to homotopy.
(2) Moreover, we have fL(BX, BZ) = [BX, BC(Z}].

If the mapping space map(BY,BZ)f is homotopy equivalent to BC(Z\
the proof can be immediate. This is the case under the assumption (i). A
result of Dwyer-Wilkerson [4, Lemma 10.3] implies map(BY,BZ)f~BC(Z) if
f\BY-+BZ is an epimorphism. Our proof of Theorem 1, however, doesn't
rely on the precise recognition of the mapping space. Under the two different
assumptions, the arguments go parallel. Since there may be independent
interest, a portion of the argument under the assumption (i) is included.

Here we make a remark analogous to the one in [8]. Taking Y=Z
and f=id, our problem asks possible BX-actions on BY. A consequence of
Theorem 1 shows that such an action under a exists if and only if the orbit
map a :BX-^ BY is central. We see, for instance, that there are no nontrivial
BX-actions on B(S2n~l)p for n> 3, since the center C((S2n~ *)*) is contractible.

A connected p-compact group Y is called semi-simple if n^Y] is finite,
[14]. In this case, the center C(Y) is a finite abelian /7-group, [15]. If X is
connected and Y is semi-simple, the homotopy set \_BX, BC(Y}] is trivial.
Consequently, there are likewise no nontrivial BX-actions on BY.

Furthermore, if we take X= Y= Z and /= a = id, the problem now asks
whether BX is an H-space. A pairing n:BXxBX-+BX could be the
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//-multiplication. Before stating our result, recall that a /7-compact group X
is called abelian if ev: map(BX, BX)id -»BX is a equivalence. Any abelian
/7-compact group is equivalent to the product of a /7-compact torus and a finite
abelian /?-group, [4] and [15]. Corollary 2 stated in §2 implies that BX is
an H-space if and only if X is abelian. This result holds when a /?-compact
group X is replaced by a finite loop space.

Theorem 2, Suppose X is a finite loop space. If its classifying space BX
is an H-space, then X is equivalent to the product of a torus and a finite abelian
group.

The above result is a generalization of Corollary 2.4 in [8]: If G is a
compact Lie group and BG is an H-space, then G is an abelian group. Theorem
3 in §2 will give the ^-completed version of this result. Namely, if
(BG)p is an H-space, then G is /7-nilpotent in the sense of [6]. The group
G need not be abelian. We can find, however, an abelian compact Lie group
A such that (BG)*~BA.

The author would like to thank Chuck McGibbon for his comments.

§1. Mapping Spaces and Proof of Theorem 1

We will prove Theorem 1 in this section. To do so, we need a few basic
results about /7-compact groups. The following lemma translates a setting of
groups to a homotopy setting of/7-compact groups.

Lemma 1. Suppose j \BX^ BY and q:BY-+BZ are homomorphisms of
p-compact groups. If the composite map q-j is a homotopy equivalence
(isomorphism), then j is a monomorphism and q is an epimorphism.

Sketch of Proof. We sketch the proof. From our assumption, one can
show that 7~Q(Z/7)xZ and Q(Z/Y)~Y/X. Thus Y/X is F^-finite, and
Q(Z/ Y) is a /7-compact group. Therefore j is a monomorphism and q is an
epimorphism. D

We recall [3, Theorem 9.7] that if a /7-compact group X is connected,
the cohomology algebra H*(BX',Z*)®Q is a polynomial ring over Q*
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concentrated in even degree. The number of the generators of the polynomial
algebra is called rank of X and denoted by rank(X). If n = rank(X\ it is known
that the maximal torus of X is equivalent to (BTn)p. It is also known that
H*(BX\Z*)®Q is isomorphic to the invariant ring (H*(BTn;Zp

A)®Q)W(X\
where W(X) is the Weyl group of X.

Proposition 1. Suppose either

(i) X, Y and Z are p-compact groups, i:BX-*BZ is a monomorphism and
f\BY—>BZ is an epimorphism, or
(ii) X, Y and Z are connected p-compact groups^ i'.BX-* BZ is a monomorpism
andf:BY—>BZ is a homomorphism such that H*(Q(Z/F);Zp

A)(x)g is a finite
dimensional Q*-vector space.

If there is a map (extension) f'.BY-* BX with f~i• /,

then BX is equivalent to BZ under the map i.

Proof. First assume the condition (i). It suffices to show that i: BX -> BZ
is an epimorphism. Recall that f:BY-*BZ lifts to / if and only if the
homotopy fixed point (Z/X)hY is nonempty, [3, §3.3]. Since f\BY-*BZ
is an epimorphism, by definition, the loop space O(Z/F) is a /7-compact
group. Let U=Q,(Z/Y) so that BU-+BY-+BZ is a fibration of/7-compact
groups. Then (Z/X)hY is homotopy equivalent to ((Z/X)hV)hZ. Notice here
that the action of U on Z/X is trivial. Since the Sullivan conjecture for
p-compact groups holds, [4, Theorem 9.3], we see (Z/X)hU ~ Z / X . Consequent-
ly (Z/X)hY ~(Z/X)hZ. This means that (Z/X)hZ is nonempty, and therefore
the identity map 1BZ:BZ-*BZ lifts to a map r:BZ-*BX so that /-r^!B Z .
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From Lemma 1 the monomorphism / is also an epimorphism. Hence / Is an
isomorphism.

Next assume the condition (ii). Since //*(O(Z/7);Zp
A)®g is finite

dimensional, we see that H*(Z/Y;Z*)®Q is a finitely generated polynomial
algebra, and hence we have

Thus we can find a homomorphism (left inverse) of polynomial algebras
r:H*(BY;Zp

A)®Q-»H *(BZ ;Zp
A)®Q with r • /* = id. Consequently r • / * • /*

= W, since /~ i • f. Hence / * is injective.
We claim that i* is surjective and hence this homomorphism is

bijective. It's enough to show that the composition (p = i*-r-f* is bijective.

Since / : 5X — > 5Z is a monomorphism and / * is injective, we see
rank(X) = rank(Z). Hence the Krull dimension of the image of (p is equal to
rank(X). Thus, at each degree, cp is an injective linear self-map of a finite
dimensional Qp -vector space, and therefore this linear map is bijective.

Consequently the monomorphism i is a rational isomorphism. According
to [14, Lemma 2.5 (1)], we see that ̂ ^is equivalent to BZ under the map i. Q

Proof of Theorem 1. (1): We will show that if a zfL(BX, BZ\ the composite
a

map BX-* BZ-*B(Z/C(Z)\ say #a, is null homotopic.

BQZ)

BX~ BZ

B(Z/C(Z))
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Using a result of M011er [14, Theorem 6.1], it's enough to prove that qx • £ ~0 for
any homomorphism £: BZ/pn -» BX and any n > 1. Since a efL(BX, BZ\
according to [8, Proposition 1.1], we see a • £ is contained infL(BZ/pn, BZ). So
/ factors through map(BZ/pn,BZ)(t^, which is the classifying space of the
centralizer of a- <£. A result of Dwyer-Wilkerson [3], [13, Theorem 5.1] shows
that Q.map(BZ/pn, BZ)^^ is a /^-compact group and ev: map(BZ/pn, BZ)a.^ -> BZ
is a monomorphsim, since Z/pn is a/7-compact toral group. If ILL : &Y x B Y -»£Z
is a pairing with restrictions (axes) n\BX — a and ^\BY—f> tnen the map
f:BY-*BZ is expressed as the following composition:

where /} is induced by the adjoint map. In fact, for any ye BY, we see
^t;o/i();) = /i();)(*) = ^(^(*)J3;)~/();). Since ev is a monomorphsim, by the
assumption of/, Proposition 1 implies:

map(BZ/pn, BZ)a.£ ~ BZ

Thus a-^ is central. Hence the map qai:BX^B(Z/C(Z)) is null homotopic.
Consequently, the map a : BX -> .8Z factors through BC(Z).

(2): Using [4, Theorem 9.3], one can show that the map of homotopy sets

is injective, since its kernel [_BX,Z/C(Z}] is trivial. The image of the map is
included inf\BX,BZ). We have just seen in part (1) that [BX,BC(Z)'] maps
onto fL(BX,BZ\ Consequently, f\BX,BZ) = [BX,BC(Z)']. D

As seen in [8, Proposition 1.1], there is a strong relationship between
pairing problems and mapping spaces. The following result shows that, for
the homomorphism /: #7-+ BZ in Theorem 1, no /7-compact groups find a
difference between BC(Z) and map(BY,BZ)f. The proof uses the uniqueness
of the pairing in our case.
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Corollary 1. Letf:BY—> BZ be as in Theorem 1. For any p-compact group
X, the map of homotopy sets

[BX,BC(ZJ] -> [BX,map(BY,BZ)f]

is bijective, where the above map is induced by the canonical map

BC(Z) = map(BZ, BZ)id -» map(B Y, BZ)f.

Proof. First notice that there is a map

YI : [BX, map(BY, BZ)f~\ -*fL(BX, BZ)

induced by adjoints. In fact, a map BX-»map(BY,BZ)f induces a pairing
BXxBY-* BZ, and one of its axes is contained mfL(BX,BZ). Thus we get
the following commutative diagram:

[BX9 BC(Z)] ^ [BX, map(BY, BZ)f~]

I'

By [4, Lemma 5.3], for a e/1(/?lr,/?Z), there is a unique pairing ^:BXxBY-+
BZ with n\BX — a and n\BY—f> Hence r\ is bijective. Theorem 1 shows
[BX, BC(ZJ] ->fL(BX9 BZ) is bijective. Therefore the desired result holds. Q

Remark. This result seems to indicate that map(BY, BZ)f can be homotopy
equivalent to BC(Z) for such an/ For instance, if map(BY,BZ)f were shown
to be a/7-compact group, the statement would be true. When f\BY-* BZ
is an epimorphism, as mentioned before, a result of Dwyer-Wilkerson [4,
Lemma 10.3] implies map(BY,BZ)f~BC(Z).

§20 //-Structures on the Classifying Spaces

In this section we will prove Theorem 2 using the following result, which
is an easy consequence of Theorem 1.

Corollary 20 Suppose X is a p-compact group. If BX is an H-space, then
X is abelian.

Proof. Since BX is an H-space, we see (\BX)L(BX,BX) = [_BX9BX~\.
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Because, If m:BXxBX-+BX is the H-multiplication, for any ctE[BX,BX]9 a
pairing is given by the composite map m ° (a x 1BX). Taking oc = 1BX in Theorem
1, we see that the identity map of BX factors through BC(X). Proposition
1 implies BX~BC(X)9 and therefore X is abelian. D

Remark 1. A double loop space is homotopy commutative, and McGibbon
[11] shows that Gp is homotopy commutative if p>2nr where G is a
simply-connected compact Lie group and G~QS2n^~l x ••• x S2nr~l with
« !< • • • <nr. The twice deloopability or the existence of an //-structure on the
classifying space is, however, far different from the homotopy commutativity,
[12]. Corollary 2 implies BGp is an H-space if and only if G is a torus. We
note here a theorem of Hubbuck [7]; Namely Tn is the only nontrivial finite
connected homotopy commutative H-space.

Remark 2. Corollary 2 can be proved without using Theorem 1. We
sketch the proof. Consider the fibration BX0 -> BX -» Bn0X where X0 denotes
the identity component of X. Since BX is an H-space, the connected /7-compact
group X0 is a /7-torus Tp and n0X is abelian. The map BTp =BX0 -> BX is
central, and [BT£ ,BTp

A] -> {BT£ ,BX] is injective. Consequently the Weyl
group W(X) acts trivially on BTp. One can show that BX~BNT~
BTp

A x BnQX.

Proof of Theorem 2. First consider a connected finite loop space X. At
any prime /?, the ^-completion X* is a /7-compact group, and BX* is an
H-space. Corollary 2 says that there is a torus Tn such that 5^p

A ^(BTn)£ ,
where n = rank(X). Hence BX~BTn.

Next consider the general case so that we begin with the fibration
X0 -»X -* TIOJf where Z0 denotes the identity component of X Since BX is
an H-space, then n0X=nlBX is abelian. Consequently, we have a fibration
/?r" -+BX-* Bn0X. Notice [1] that this fibration is principal so that it is
preserved by the /7-completion. So the loop space Q,BXp is a ^-compact
group. Corollary 2 says that there is a finite abelian p-group yp such that
BXp ^(BTn)p xByp. We notice Byp = (Bn0X)p so that n0X=Tlpyp, since n0X
is a finitely generated abelian group. Considering the fiber square,
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BX —
I

(BX)0 — (

we see that the splitting of each BXp induces a section for the fibration
BTn — » BX -» Bn0X. Since this fibration is principal, the classifying space J9Jf
also splits. Consequently BX~BT"xBn0X. D

If a compact Lie group G is connected and the/>-comletion of the classifying
space (BG)p is an H-space? then G must be abelian. When G is not connectd,
however, the analogous result does not hold. A counter-example is given by
a /7-nilpotent group.

A finite group n is called p-nilpotent, if the subgroup v of n generated
by all elements of order prime to p does not contain any /?-torsion
element. It is known that n is the semidirect product vXI np where
np is the /7-Sylow subgroup. Consequently, if np is abelian, the ^-completed
space (Bn)p ~Bnp is an H-space (actually, an infinite loop space). Henn [6]
provides a generalized definition of the /7-nilpotence for compact Lie groups.

Theorem 3. Suppose G is a compact Lie group and the p-completion of
the classifying space (BG)p is an H-space. Then G is the product of a torus
T and a finite p-nilpotent group a whose p-Sylow subgroup ap is abelian, and
hence (BG)* ~(BT)£ x Bvp.

Proof. Suppose P is a maximal /7-toral subgroup of G, [10]. The
//-structure on (BG)p induces a group homomorphism P x P -» P which makes
BP an H-space, [5] and [16].

According to [8, Corollary 2.4], we see that P is an abelian group. Let NP
be the normalizer of P in G and let W=NP/P. Since the maximal /7-toral
subgroup P is abelian, the mod p cohomology H*((BG)p ;Fp) is isomorphic
to the ring of invariants H*(BP;Fp)

w = H*((BNP;Fp) and therefore
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. Consequently (BNP)* has an /f-structure:

and we obtain the following diagram

M
(BNF); - map(BP,(BNP);)Ei

(BNP);

Notice [5] and [16] that map(BP,(BNP)*)m~BP, since the classifying
space of the centralizer of P in NP = P X! W is /^-equivalent to BP.
Consequently (BNF)$ ~BP and hence (BG)* ~BP. This implies that the
compact Lie group G is /7-nilpotent in the sense of [6]. By [6, Proposition
1.3 and Theorem 2.5], we can show the desired result. D
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