Atomic Positive Linear Maps in Matrix Algebras

By

Kil-Chan HA*

Abstract

We show that all of the known generalizations of the Choi maps are atomic maps.

§1. Introduction

Let M_n be the C*-algebra of all $n \times n$ matrices over the complex field and $P_s[M_n]$ (respectively, $P^s[M_n]$) the convex cone of all s-positive (respectively, s-copositive) linear maps between M_n . One of the basic problems about the structures of the positive cone $P_1[M_n]$ is if this cone can be decomposed as the algebraic sum of some simpler subcones. It is well known [22, 25] that every positive linear map between M_2 is *decomposable*, that is, it can be written as the sum of a completely positive linear map and a completely copositive linear map. But, this is not the case for higher dimensional matrix algebras.

The first example of an indecomposable positive linear map in M_3 was given by Choi [5]. Choi and Lam [7] also gave an example of an indecomposable extremal positive linear map in M_3 (see also [6]). Another examples of indecomposable extremal positive linear maps are found in [9, 16, 21]. These maps are neither 2-positive nor 2-copositive, and so they become *atomic* maps in the sense in [24], that is, they can not be decomposed into the sums of 2-positive linear maps and 2-copositive linear maps. Several authors [1, 2, 10, 15, 17, 24] considered indecomposable positive linear maps as extensions of the Choi's example. The first two examples [2, 10] are generalizations of the Choi's map [5, 6] in M_3 and the other maps $\tau_{n,k}$ in [1, 15, 17, 24] (see Section 2 for the definition) are extensions of the Choi map [7] in

Communicated by T. Miwa, June 19, 1998.

¹⁹⁹¹ Math. Subject Classifications: 46L05, 15A30.

partially supported by GARC-KOSEF

^{*} Department of Mathematics, Seoul National University, Seoul 151-742, KOREA.

Kil-Chan Ha

higher dimensional matrix algebra M_n . Among them, examples in [10] and the map $\tau_{n,1}$ $(n \ge 3)$ [17] are known to be atomic maps. But the atomic properties of the other indecomposable maps are not determined. Even decomposabilities of the maps $\tau_{n,k}$ are remained open except for some special cases [17]. The usual method to show the atomic property of a positive linear map depends on a tedious matrix manipulation.

The purpose of this note is to show that all of the above mentioned examples are atomic maps, using the recent result of Eom and Kye [8]. Generalizing the Woronowicz's argument [25], they considered the duality between the space $M_n \otimes M_m (= M_{nm})$ of all $nm \times nm$ matrices over the complex field and the space $\mathcal{L}(M_m, M_n)$ of all linear maps from M_m into M_n , which is given by

(1.1)
$$\langle A, \phi \rangle = \operatorname{Tr}\left[\sum_{i,j=1}^{m} (\phi(e_{i,j}) \otimes e_{i,j}) A^{t}\right] = \sum_{i,j=1}^{m} \langle \phi(e_{i,j}), a_{i,j} \rangle,$$

for $A = \sum_{i,j=1}^{m} a_{i,j} \otimes e_{i,j} \in M_n \otimes M_m$ and a linear map $\phi: M_m \to M_n$, where $\{e_{i,j}\}$ is the matrix units of M_m and the bilinear form in the right-side is given by $\langle X, Y \rangle = \text{Tr}(YX^{t})$ for $X, Y \in M_{n}$ with the usual trace Tr. For the convenience of readers, we briefly explain the results in [8]. For a matrix $A = \sum_{i,j=1}^{m} x_{i,j} \otimes e_{i,j}$ $\in M_n \otimes M_m$, we denote by A^T the block-transpose $\sum_{ij=1}^m x_{j,i} \otimes e_{i,j}$ of A. We say that a vector $z = \sum_{i=1}^{m} z_i \otimes e_i \in C^n \otimes C^m$ is an *s-simple* if the linear span of $\{z_1, \dots, z_m\}$ has the dimension $\leq s$, where $\{e_1, \dots, e_m\}$ is the usual orthonormal basis of C^m . Let $V_s[M_n]$ (respectively $V^s[M_n]$) denote the convex cone in $M_n \otimes M_n$ generated by $zz^* \in M_n \otimes M_n$ (respectively $(zz^*)^T \in M_n \otimes M_n$) with all s-simple vectors $z \in \mathbb{C}^n \otimes \mathbb{C}^n$. It turns out that $V_s[M_n]$ (respectively $V^s[M_n]$) is the dual cone of $P_s[M_n]$ (respectively $P^s[M_n]$) with respect to the pairing (1.1). With this machinery, the maximal faces of $P_s[M_n]$ and $P^s[M_n]$ are characterized in terms of s-simple vectors (see also [12, 13, 14]). Another consequence is a characterization of the cone $P_s[M_n] + P'[M_n]$: For a linear map $\phi: M_n \to M_n$, the map ϕ is the sum of an s-positive linear map and a *t*-copositive linear map if and only if $\langle A, \phi \rangle \ge 0$ for each $A \in V_s[M_n] \cap V^t[M_n]$. This result provides us a useful method to examine the atomic property for the generalizations of the Choi maps mentioned before.

Throughout this note, every vector in the space C^r will be considered as an $r \times 1$ matrix. The usual orthonormal basis of C^r and matrix units of M_r will be denoted by $\{e_i: i=1, \dots, r\}$ and $\{e_{i,j}: i, j=1, \dots, r\}$ respectively, regardless of the dimension r.

§2. The Maps $\tau_{n,k}$

Let ε be the canonical projection of M_n to the diagonal part and S be the rotation matrix in M_n which sends e_i to $e_{i+1} \pmod{n}$ for $i=1,\dots,n$. The map $\tau_{n,k}: M_n \to M_n$ is defined by

$$\tau_{n,k}(X) = (n-k)\varepsilon(X) + \sum_{i=1}^{k} \varepsilon(S^{i}XS^{*i}) - X, \quad X \in M_{n},$$

for $k=1,2,\dots,n-1$. The map $\tau_{n,0}: M_n \to M_n$ is also defined by

$$\tau_{n,0}(X) = n\varepsilon(X) - X, \quad X \in M_n$$

It is easy to see that $\tau_{n,0}$ is completely positive and $\tau_{n,n-1}$ is completely copositive. The positivity of $\tau_{n,k}$ is equivalent [1] to a certain cyclic inequality, which was shown by Yamagami [26]. The map $\tau_{3,1}$ is the Choi and Lam's example mentioned in the introduction. For $n \ge 4$, Osaka showed that $\tau_{n,n-2}$ is not the sum of a 3-positive linear map and a 3-copositive linear map [15], and $\tau_{n,1}$ is atomic [17]. In this section, we show that the map $\tau_{n,k}$ is an atomic map for each $n \ge 3$ and $k = 1, 2, \dots, n-2$.

For each fixed natural number $n=1, 2, \dots$, let $\{\omega_i: 1 \le i \le 3^n\}$ be the 3ⁿ-th roots of unity. Then we have

(2.1)
$$\sum_{i=1}^{3^n} \omega_i^k = 0, \quad 1 \le k \le 3^n - 1.$$

For each k = 1, 2, ..., n, we define $m_k \in \mathbb{Z}$ by $m_k = \frac{3}{2}(3^{k-1}-1)$. Then it is easy to see the following:

(2.2)
$$m_k - m_l = m_i - m_j$$
 if and only if $(k, i) = (l, j)$ or $(k, l) = (i, j)$.

For any $\gamma > 0$, we define a_{ik} , $c_r \in \mathbb{C}^n$ by

$$\begin{aligned} a_{i1} &= \sum_{j=1}^{n} \omega_i^{m_j} e_j, & 1 \le i \le 3^n, \\ a_{ik} &= \omega_i^{-m_k} a_{i1}, & 1 \le i \le 3^n, & 2 \le k \le n, \\ c_1 &= e_1 + \gamma e_2 + \sum_{k=3}^{n-1} e_k + \frac{1}{\gamma} e_n, \\ c_r &= S^{r-1} c_1, & 2 \le r \le n. \end{aligned}$$

Kil-Chan Ha

For each $r=1, 2, \dots, n$, $i=1, 2, \dots, 3^n$ and $j=1, 2, \dots, n$, we define $b_{rij} \in \mathbb{C}^n$ by

$$b_{rij} = \begin{cases} a_{ij}, & j \neq r \\ c_j \circ a_{ij}, & j = r, \end{cases}$$

where \circ is the Schur product of $n \times 1$ matrices c_j and a_{ij} . We also define $z_{ri} \in \mathbb{C}^n \otimes \mathbb{C}^n$ and $A_r \in M_n \otimes M_n$ by

$$z_{ri} = \sum_{j=1}^{n} b_{rij} \otimes e_j, \qquad 1 \le r \le n, \ 1 \le i \le 3^n,$$
$$A_r = \frac{1}{3^n} \sum_{i=1}^{3^n} z_{ri} z_{ri}^*, \qquad 1 \le r \le n.$$

Then we see that each z_{ri} is a 2-simple vector and so $A_r \in V_2[M_n]$. If we write A_r by $A_r = \sum_{p,q=1}^n (A_r)_{p,q} \otimes e_{p,q} \in M_n \otimes M_n$, then it is easy to see that

(2.3)
$$(A_{r})_{p,q} = \begin{cases} e_{p,q}, & p \neq q, \\ \sum_{i=1}^{n} e_{i,i}, & p = q, p \neq r, \\ S^{r-1}(e_{1,1} + \gamma^{2}e_{2,2} + \sum_{i=3}^{n-1} e_{i,i} + \frac{1}{\gamma^{2}}e_{n,n})S^{*r-1}, & p = q = r, \end{cases}$$

by (2.1) and (2.2).

Now we define $A \in V_2[M_n]$ by $A = \frac{1}{n} \sum_{r=1}^n A_r = \sum_{p,q=1}^n A_{p,q} \otimes e_{p,q} \in M_n \otimes M_n$. Then, by (2.3), we have

$$A_{p,q} = \begin{cases} e_{p,q}, & p \neq q, \\ e_{1,1} + \frac{1}{n} (\gamma^2 + (n-1)) e_{2,2} + \sum_{i=3}^{n-1} e_{i,i} + \frac{1}{n} \left(\frac{1}{\gamma^2} + (n-1) \right) e_{n,n}, & p = q = 1, \\ S^{p-1} A_{1,1} S^{*p-1}, & p = q, p \neq 1 \end{cases}$$

In order to show that $A \in V^2[M_n]$, define u_i , v_i , α_i and $\beta_{ij} \in \mathbb{C}^n$ by

$$u_{i} = \frac{\gamma}{\sqrt{n}} e_{i+1} \otimes e_{i} + \frac{1}{\sqrt{n\gamma}} e_{i} \otimes e_{i+1}, \qquad 1 \le i \le n,$$
$$v_{i} = \sqrt{\frac{n-1}{n}} e_{i+1} \otimes e_{i} + \sqrt{\frac{n-1}{n}} e_{i} \otimes e_{i+1}, \qquad 1 \le i \le n,$$

594

$$\begin{aligned} \alpha_i &= e_i \otimes e_i & 1 \leq i \leq n, \\ \beta_{1j} &= e_j \otimes e_1 + e_1 \otimes e_j, & 3 \leq j \leq n-1, \\ \beta_{ij} &= e_j \otimes e_i + e_i \otimes e_j, & 2 \leq i \leq (n-2), (i+2) \leq j \leq n, \end{aligned}$$

where suffixes are understood in mod n. A direct calculation shows

$$A^{\mathrm{T}} = \sum_{i=1}^{n} \left(u_{i}u_{i}^{*} + v_{i}v_{i}^{*} + \alpha_{i}\alpha_{i}^{*} \right) + \sum_{j=3}^{n-1} \beta_{1j}\beta_{1j}^{*} + \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} \beta_{ij}\beta_{ij}^{*},$$

and so, we have $A \in V^2[M_n]$. Furthermore, we also have $\langle A, \tau_{n,k} \rangle = \gamma^2 - 1$, for each $n = 3, 4, \cdots$ and $k = 1, 2, \cdots, n-2$, and so we see that $\langle A, \tau_{n,k} \rangle < 0$ for $0 < \gamma < 1$. By the result in [8] mentioned in the introduction, we conclude the following:

Theorem 2.1. For $n \ge 3$ and $1 \le k \le n-2$, the map $\tau_{n,k}: M_n \to M_n$ is an atomic positive linear map.

§3. The Generalized Choi Map

The other generalization of the Choi map is given in [2]. For nonnegative real numbers a, b, and c, the map $\Phi[a, b, c]: M_3 \to M_3$ is defined by

 $\Phi[a, b, c](X) =$

$$\begin{pmatrix} ax_{1,1} + bx_{2,2} + cx_{3,3} & 0 & 0 \\ 0 & ax_{2,2} + bx_{3,3} + cx_{1,1} & 0 \\ 0 & 0 & ax_{3,3} + bx_{1,1} + cx_{2,2} \end{pmatrix} - X$$

for each $X = (x_{i,j}) \in M_3$. The map $\Phi[2,0,\mu]$ with $\mu \ge 1$ is the example of an indecomposable positive linear map given by Choi [6], and $\Phi[2,0,2]$ and $\Phi[2,0,1]$ are the examples given in [5] and [7] respectively. Choi and Lam [7] showed that $\Phi[2,0,1]$ is an extremal positive linear map using the theory of biquadratic forms. Later, Tanahashi and Tomiyama [24] showed the atomic property of the map $\Phi[2,0,1]$ which is same as the map $\tau_{3,1}$. It was shown [2] that the map $\Phi[a,b,c]$ is an indecomposable positive linear map if and only if the following conditions are satisfied:

(i)
$$1 \le a < 3$$
,
(ii) $a+b+c \ge 3$,
(3.1) (iii)
$$\begin{cases} (2-a)^2 \le bc < \left(\frac{3-a}{2}\right)^2 & \text{if } 1 \le a \le 2\\ 0 \le bc < \left(\frac{3-a}{2}\right)^2 & \text{if } 2 \le a < 3. \end{cases}$$

In this section we show that these conditions imply that $\Phi[a, b, c]$ is an atom.

Let $\{\omega_i: i=1,2,3\}$ be the cube roots of unity and s be any positive real number. Define $a_{ik} \in \mathbb{C}^3$, $z_i, u_i \in \mathbb{C}^3 \otimes \mathbb{C}^3$ and $B \in V_2[M_3]$ by

$$a_{i1} = (\omega_i, 0, 0)^t, \quad a_{i2} = (0, \omega_i, \frac{\omega_i^2}{s})^t, \quad a_{i3} = (\frac{s}{\omega_i})a_{i2}, \quad i = 1, 2, 3,$$

$$z_i = \sum_{k=1}^3 a_{ik} \otimes e_k, \quad i = 1, 2, 3,$$

$$u_1 = e_2 \otimes e_1, \quad u_2 = e_1 \otimes e_3, \quad u_3 = e_3 \otimes e_1, \quad u_4 = e_1 \otimes e_2,$$

$$B = \frac{1}{3} \left(\sum_{i=1}^3 z_i z_i^*\right) + \frac{1}{s^2} \left(\sum_{i=1}^2 u_i u_i^*\right) + s^2 \left(\sum_{i=3}^4 u_i u_i^*\right).$$

It is clear that $B \in V_2[M_3]$. To show that $B \in V^2[M_3]$, we define z_i and $u_i \in C^3 \otimes C^3$ by

$$z_{i} = \frac{1}{s} (e_{i+1} \otimes e_{i}) + s(e_{i} \otimes e_{i+1}), \qquad i = 1, 2, 3,$$
$$u_{i} = e_{i} \otimes e_{i}, \qquad \qquad i = 1, 2, 3,$$

where suffixes are understood in mod 3. A direct calculation show that

$$B^{\mathrm{T}} = \sum_{i=1}^{3} (z_{i} z_{i}^{*} + u_{i} u_{i}^{*}) \in V_{2}[M_{3}].$$

It is also easy to calculate

(3.2)
$$\langle B, \Phi[a, b, c] \rangle = 3((a-3) + \frac{c}{s^2} + s^2b).$$

596

We proceed to show the conditions in (3.1) imply that the pairing in (3.2) is negative. We first consider the case bc=0. If b=0 then the pairing (3.2) becomes negative for $s > \sqrt{\frac{c}{3-a}}$. If c=0 then (3.2) is negative for $0 < s < \sqrt{\frac{3-a}{b}}$. When $bc \neq 0$, we take $s = \left(\frac{c}{b}\right)^{1/4}$, then the pairing (3.2) is reduced to

$$\langle B, \Phi[a, b, c] \rangle = 3((a-3)+2\sqrt{bc}),$$

which is also negative since $\sqrt{bc} < \frac{3-a}{2}$ in (3.1). Therefore we have Theorem 3.1

Theorem 3.1. The map $\Phi[a, b, c]$ is an indecomposable positive linear map if and only if it is an atomic positive linear map.

For the Choi's map $\Phi[2, 0, \mu]$, the condition (3.1) is reduced to the condition $\mu \ge 1$. Therefore, we see that the Choi's map $\Phi[2, 0, \mu]$ is atomic whenever $\mu \ge 1$.

§4. The Robertson's Map

An example of an indecomposable positive linear map on M_4 was given by Robertson [18] by considering an extension of an automorphism on a certain spin factors. To describe this map, let $\sigma: M_2 \to M_2$ be the symplectic involution defined by

$$\sigma \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}.$$

The Robertson's map $\Psi: M_4 \to M_4$ is defined by

$$\Psi\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \begin{pmatrix} \operatorname{tr}(W)I_2 & \frac{1}{2}(Y + \sigma(Z)) \\ \frac{1}{2}(Z + \sigma(Y)) & \operatorname{tr}(X)I_2 \end{pmatrix}$$

for $X, Y, Z, W \in M_2$, where tr is the normalized trace on M_2 . The indecomposability of this map was shown in [20] by using the Størmer's characterization [23] of decomposability.

It turns out that this map is an extremal positive linear map which is neither 2-positive nor 2-copositive [19,21]. So this map is an atomic map. We

provide a simple proof.

Define $z_i \in \mathbb{C}^4 \otimes \mathbb{C}^4$ and $D \in \mathbb{V}_2[M_4]$ by

$$z_1 = e_1 \otimes e_1, \quad z_2 = e_1 \otimes e_3, \quad z_3 = e_2 \otimes e_1, \quad z_4 = e_2 \otimes e_4,$$
$$z_5 = e_3 \otimes e_1, \quad z_6 = e_3 \otimes e_3, \quad z_7 = e_3 \otimes e_4,$$
$$D = (z_1 - z_6)(z_1 - z_6)^* + (z_5 + z_4)(z_5 + z_4)^* + z_2 z_2^* + z_3 z_3^* + z_7 z_7^*$$

Then we see that

$$D^{\mathrm{T}} = (z_5 - z_2)(z_5 - z_2)^* + (z_3 + z_7)(z_3 + z_7)^* + z_1 z_1^* + z_6 z_6^* + z_4 z_4^* \in \mathbb{V}_2[M_4],$$

and so $D \in V_2[M_4] \cap V^2[M_4]$. Furthermore, we can show that the pairing $\langle D, \Psi \rangle = -\frac{1}{2}$ by an easy calculation. Consequently, we conclude that Ψ is an atomic map.

References

- [1] Ando, T., Positivity of certain maps, Seminar Notes, 1985.
- [2] Cho, S. J., Kye, S.-H. and Lee, S. G., Generalized Choi maps in 3-dimensional matrix algebras, *Linear Alg. Appl.*, 171 (1992), 213-224.
- [3] Choi, M.-D., Positive linear maps on C*-algebras, Canad. Math. J., 24 (1972), 520-529.
- [4] —, Completely positive linear maps on complex matrices, *Linear Alg. Appl.*, 10 (1975), 285–290.
- [5] ——, Positive semidefinite biquadratic forms, Linear Alg. Appl., 12 (1975), 95-100.
- [6] ——, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285.
- [7] Choi, M.-D. and Lam, T. Y., Extremal positive semidefinite forms, *Math. Ann.*, 231 (1977), 1–18.
- [8] Eom, M. H. and Kye, S.-H., Duality for positive linear maps in matrix algebras, *Math. Scand.*, to appear.
- [9] Kim, H.-J. and Kye, S.-H., Indecomposable extreme positive linear maps in matrix algebras, Bull. London Math. Soc., 26 (1994), 575–581.
- [10] Kye, S.-H., Elementary Operators and Applications, World-Scientific, 1992.
- [11] ——, Positive linear maps between Matrix algebras which fix diagonals, *Linear Alg. Appl.*, **216** (1995), 239–256.
- [12] —, Facial structures for positive linear maps between matrix algebra, Canad. Math. Bull., 39 (1996), 74–82.
- [13] ———, Boundaries of the cone of positive linear maps and its subcones in matrix algebras, J. Korean Math. Soc., 33 (1996), 669–677.
- [14] —, On the convex set of all completely positive linear maps in matrix algebras, *Math. Proc. Camb. Phil. Soc.*, **122** (1997), 45–54.
- [15] Osaka, H., Indecomposable positive maps in low dimensional matrix algebras, *Linear Alg. Appl.*, 153 (1991), 73–83.
- [16] ——, A class of extremal positive maps in 3×3 matrix algebras, Publ. RIMS. Kyoto Univ., 28 (1992), 747–756.

598

- [17] Osaka, H., A series of absolutely positive maps in matrix algebras, *Linear Alg. Appl.*, 186 (1993), 45–53.
- [18] Robertson, A. G., Automorphisms of spin factors and the decomposition of positive maps, Quart. J. Math. Oxford (2), 34 (1983), 87-96.
- [19] —, Positive extensions of automorphisms of spin factors, Proc. Roy. Soc. Edinburgh Sect. A, 94 (1983), 71–77.
- [20] —, Schwarz inequalities and the decomposition of positive maps on C*-algebras, Math. Proc. Camb. Phil. Soc., 94 (1983).
- [21] ———, Positive projections on C*-algebra and an extremal positive map, J. London Math. Soc., 32 (1985), 133–140.
- [22] Størmer, E., Positive linear maps of operator algebras, Acta Math., 110 (1963), 233-278.
- [23] —, Decomposable positive maps on C*-algebras, Proc. Amer. Math. Soc., 86 (1982), 402-404.
- [24] Tanahashi, K. and Tomiyama, J., Indecomposable positive maps in matrix algebras, Canad. Math. Bull., 31 (1988), 308-317.
- [25] Woronowicz, S. L., Positive maps of low dimensional matrix algebras, *Rep. Math. Phys.*, 10 (1976), 165–183.
- [26] Yamagami, S., Cyclic inequalities, Proc. Amer. Math. Soc., 118 (1993), 521-527.