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§1. Introduction

As is illustrated by the computation of monodromy groups of second-order
Fuchsian equations (cf. [AKT1]), the exact WKB analysis provides us with a
powerful tool for studying global behavior of solutions of linear ordinary
differential equations. To generalize such an analysis to nonlinear equations,
T. Kawai (RIMS, Kyoto Univ.), T. Aoki (Kinki Univ.) and the author have
developed the WKB theory for Painleve equations with a large parameter in
our series of articles ([KT1], [AKT2], [KT2]). (See [Tl], [T2] also.) In our
treatment 2-parameter formal solutions called instanton-type solutions, which
were constructed through the multiple-scale analysis in [AKT2], are playing
a central role. Although we have succeeded in analyzing their local structure
near simple turning points in [KT2], some of their important properties such
as the behavior near fixed singular points have not been clarified yet. In this
paper, to investigate their behavior near fixed regular-type singular points, we
propose a new construction of 2-parameter formal solutions of Painleve
equations with a large parameter.

The new construction of formal solutions we propose here is based on
Takano's work [Tkal] (see [Tka2] also), where he constructed a 2-parameter
family of analytic solutions at each regular-type singular point of (ordinary)
Painleve equations. He made use of the well-known fact that Painleve
equations can be written in the form of Hamiltonian systems (which we call
Painleve Hamiltonian systems here) and established some reduction theorem for
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Hamiltonian systems to construct analytic solutions. His reduction theorem
is closely related to the following "Birkhoff normal form" of Hamiltonian
systems (cf. [B], [SM]).

Btrkhoff normal form. Consider a Hamiltonian system

(1) dq/dt = 3H/dp, dp/dt=-dH/dq

with a Hamiltonian H=H(t,q,p). If we can find a canonical transformation
(q,p) -»(q,p) which transforms the original system (1) to

(2) dq/dt = dfi/dp, dp/dt = - dH/dq

with

(3) H(t,q,p)= £ Kn(t)(qp)"+1

n>0

(i.e., H is a function of t and the product qp only), then the new system (2) is
called Birkhoff normal form of (1).

Roughly speaking, to construct 2-parameter formal solutions, we will modify
Takano's proof so that it may be adapted to Hamiltonian systems of singular
perturbations and prove the existence of a canonical transformation which
reduces the Painleve Hamiltonian system to its Birkhoff normal form in
a singular-perturbative manner. The existence of singular-perturbative reduc-
tion will be shown in Section 2. Compared with the multiple-scale analysis
employed in [AKT2], the method discussed in this paper is more
singular-perturbative in the sense that a canonical transformation reducing to
Birkhoff normal form can be determined recursively in an algebraic manner,
i.e., solving differential equations degree by degree is not necessary. This
character of the method actually enables us to analyze the behavior of our
2-parameter formal solutions near fixed regular-type singular points of Painleve
equations quite explicitly, which will be discussed in Section 3.

The contents of the paper have been already reported in [T3]. Although
we discuss only the Painleve Hamiltonian systems in this paper, it can be
proved without any difficulty that singular-perturbative reduction to Birkhoff
normal form is possible for any Hamiltonian system. As is explained in [T3],
WKB solutions of second-order linear ordinary differential equations can be
constructed also through reduction of Hamiltonian systems to Birkhoff normal
form. Thus the construction of formal solutions proposed in this paper should
be regarded as a natural generalization of that of WKB solutions to Hamiltonian
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systems of singular perturbations.
The author would like to express his gratitude to Professors T. Kawai

and T. Aoki for the stimulating discussions with them. He also thanks to
Professor M. Yoshino for his valuable comment on Birkhoff normal form. This
work is supported by Grant-in-Aid for Scientific Research for Encouragement
of Young Scientists (No. 09740101), the Japanese Ministry of Education,
Science, Sports and Culture.

§2. Construction of Iiistanton-Type Formal Solutions
via Reduction to Birkhoff Normal Form

First of all, let us list up Painleve equations (Pj) (/=!, • • • , VI) with a large
parameter r\ in Table 1 below.

Table 1,

«->

t*

d2i\(\ i i

Co c2t Ci^+i)i
A2 (A- 1)2 (A- 1)3 J

*-""\'>' /\ / I •<
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As is well known, Painleve equations can be represented in the form of
Painleve Hamiltonian systems

(4) dl/dt = rjdKj/dv, dv/dt = - r

(cf., e.g., [O]). One explicit choice of Hamiltonians K3(t, /I, v, rj) is the following:

2o

: + 2d) .

A-1

In this section we try to construct 2-parameter formal solutions of (Pj) by
using reduction of this Hamiltonian system (4) to its Birkhoff normal form.

Let us first note that each Painleve equation has the following structure
in common:

(5)
at \ at

where F, and Gj are rational functions. In view of (5) we easily find that
(Pj) has the following formal power series solutions denoted by

(6)
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where the top term h0(t) satisfies

and the other A2j(0 (/^ 1) are determined in a recursive manner. Corresponding
to these solutions (6), there exist formal power series solutions called 0-parameter
solutions of (4):

- 2

(cf. [KT1, Proposition 1.1]). Let us next consider the following localization
of (4) at this 0-parameter solution:

(7) A = ASr0)(0 + »r1/2£/, v = vS0)(0 + fT1 /2^

that is, we transform the unknown function of (4) from (A,v) to ([/, K). Then
we readily verify that (C7, F) must obey another Hamiltonian system

(8) dU/dt = rtdtfj/d V, dV/dt = -

where Jf} is given by the following:

Now the main result of this paper is the following:

Theorem 1. There exists a formal canonical transformation (U, F)t-»((7, K)
the form

where Uj and Vj are homogeneous polynomials of degree (j+1) in (U, V) (whose
coefficients are formal power series ofy'112 with coefficients being functions of
t\ so that the Hamiltonian system (8) may be taken into the following normal form:

(11) dU/dt = r]dtfj/dV, dV/dt= -

where

(12) JTf= V ri~lf(l}(t,ri)(UV)l+1

and each f(l\t,rj) = lLlj>0i
/i~il2f}[l(t) is a formal power series of rj~l/2 with
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coefficients being functions of t.

Remark. The concrete form of the first few terms of f(l) in the case of
/=! is the following:

/<2>=-3-5-47(mor9/2 + - - . .

For the top degree part /o0)(0 we also have the following equalities for any
/ (cf. (27) and (36) below):

(13)

Theorem 1 claims that the Hamiltonian system (8) can be transformed
into its Birkhoff normal form. Since the reduced Hamiltonian $*3 depends
only on the product UV, the following relation holds for the system (11):

(14) ^(^ = a

Taking this relation (14) into account, we can easily solve the system (11). As
a matter of fact,

(15)

gives a solution of (11). Subsituting (15) into (10) and then into (7), we obtain
2-parameter formal solutions of (4) and (P,). The formal solutions of (Pj)
thus constructed are sometimes called instanton-type solutions and have the
same form with those constructed through the multiple-scale analysis in [AKT2].

Let us now prove Theorem 1. The proof consists of the following two
steps; reduction of the linear part and that of the nonlinear part.
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§2.1. Reduction of the Linear Part

We first seek for a linear canonical transformation

U=a(t9ri)U+b(t,>i)V
(16)

[V=c(t9fj)U+d(t9ri)V

which transforms the Hamiltonian system (8) into its Birkhoff normal form
up to quadratic terms. Here a(t, r]) etc. are formal power series of t]~l.
To guarantee that (16) is canonical, we suppose

The transformation (16) is obtained also by using the following generating
function W(t9U9V):

(17) mt,u,V)=-^V2 + ̂ 02-~UV,
La 2d a

in other words, (16) is equivalent to

(18) U=-dW/dV, V=-dW/dU.

By (16) the Hamiltonian Jf, is transformed into Jf/ which is described in
terms of the generating function W as follows:

(19)
dW

Tj = Jf# , U( U, V), V(U,V)) + n-
1~-(t, U, V( U, K))

ot

= l~(aU+bV)2 + ~~
2 OA OAOV

+ (terms of degree greater than 2 in (U, V}\

where ' denotes the differentiation with respect to t. (Here and in what follows
we often omit the suffix / for simplicity and abbreviate (d2KJ/d^
VJ0)(0> n) to d2K/BA.2 etc. if there is no fear of confusions.) Namely

(20) (coeff. of UV'm
dv2
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(21) (coeff. of U2 in ^) = fl
2

"* * ^ "^ 1 ?2 <5A2

(22) (coeff. of V2 in1 ; l 2 2d

We are thus required to choose a, 6, c and £/ so that (21) and (22) may vanish.
It is really possible, that is, we can prove

Proposition 1. There exist a, b, c and d which sastisfy

(23) ad '-be = 1,

(24) (coeff. of U2 in Jf,) = 0,

(25) (coeff. of V2 in JQ-O

together with the additional requirement

(26) a=-b.

These conditions (23)-(26) determine a, b, c and d (almost) uniquely. Furthermore

(23)-(26) entail the following:

(27) (coeff. of UV in ^J) = i?"15odd

where 5odd denotes the odd part (in the sense of [AKT2, Definition 2.1]) of
solutions of the Riccati equation associated with the Frechet derivative (i.e.,
linearized equation) of (4) along the ^-parameter solution (ttf\ v^0)).

Remark. It is obvious that (23)-{25) cannot determine the transformation
uniquely. To determine a, b, c and d we make the additional requirement
(26) in Proposition 1. The meaning of (26) is to pick out the odd part of
solutions as the coefficient of UV (i.e., (27)) and the even part as the canonical
transformation a and b (cf. (42) below).
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Before proving Proposition 1, let us recall here the definition of the Riccati
equation associated with the Frechet derivative of (4).

Substituting A = ^0) + ^ and v = v(f} + (p into (4), we find that the Frechet
derivative of (4) is given by the following:

(28)

d2K

B2K
H

We consider WKB solutions of (28), which is of the form

PSdt, cp = Q\p Tdt.

Then S and T must satisfy

d2K\ r S2K
'

5v

d2K
(30)

Let us take the logarithmic derivative of (29).

dt

Furthermore, since neither expfS^ nor expJ'TA is equal to zero, (29) and
(30) imply

(32)

A single equation which determines S can be easily obtained from (31) and
(32). In fact, putting

„, „ S2K _ „ d2K
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we have

.
dt dldv dt dv2

912 dv2

Hence

dSi ( d2K d, d2K\
— + (2r,~- log \
at \ 9/3v at dv J

or, in terms of the original S instead of S1",

(33) s2
 +

 dS-^og
d2K- <(**** "^

\2\
j J

- -
dt dt dv2 \8l2 dv2 \dldv

id2Kd, d2K d d2K\ n+ n( -- log — ~ --- =0
\dXdvdt dv2 dtdldvj

should be satisfied. This is the Riccati equation associated with the Frechet
derivative of (4).

We can solve (33) in a singular-perturbative manner to obtain two formal
power series solutions

(34) S± -

= +5;

Note that comparison of the odd part (in the sense of [AKT2, Definition 2.1])
of (33) entails the following:

(35) Seven=l^(log^-logSodd2dt\ dv2

Furthermore, since the degree 0 part (in 77) of (d2K/dhdv) vanishes, by
straightforward computations we can show the following:

(36) S_lW-(£

(cf. (1.11) in [KT1], (1.35) and (1.41) in [KT2]).
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Proof of Proposition 1. Let us note that

,37, ,25) ~ £?+1 ;

a2 K B2Kd_d2Kfd\2

—\~ JL-
dAdvb dv2\b,

82Kd\2 ( 82Kd\

dv2bj V 8v2b

„„ „ „, d2K\ 82Kd ,82K82K n2n log M h»r = 0.
dAdv dt dv2J dv2 b dA2 dv2

Hence r\ \-rj is a solution of the Riccati equation (33). Similarly,
dv2 b dAdv

since (23) implies (b/d)' = (a/c)'—(\/cd)', we have

82K , d2K 82K
(24) o -~a2 + 2 —-ac + --7 c2

dzK . d2K B2K
— Ta2+2 —

dXdv dv2

82K 82Kc d2K c\2 . c\
nr + 2TTT—+-— - +*?"1 - =°

W

82Kc\2 ( 82Kc\

dv2 a) \ dv2 a

, 82K d, 82K\ 82Kc ,82K82K
2ii log M \-rt = 0.a ia- dt 8v2} 8v2a dA2 dv2

That is, rj — - — }-r] - is also a solution of (33). In view of (23) they cannot
dv a

be the same solutions. Thus we may assume
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1 82Kc 82K „

(38)
82Kd
~^~27 ^-r= ~Sodddv2 b 818v

and

82K 1 82Kid
V^"' ' n 7 i 'I ^ 9 \ ib a

These relations (38) and (39) together with the additional requirement (26)
determine a, b, c and d almost uniquely (i.e., up to the choice of the branch of
S_i). In particular,

(40) a=-b = (d2K

Furthermore, it follows from (37), ad— be—I and the identity

b\ , AY, (d\b2c d'
- cd—\ - d=\ 1—
d) \d \b d d

d d

(d\ , (d\b d'
= (-} ab-[-}-+—

\bj \b)d d

d b'_

that the coefficient of UV becomes

82K , d2K, . _ 82K ,_ _,iid\ , b'

dtf dttv' ' dv2 ' \\bj b

,^82Kd 82Kfd\2\ , 82K, , ,s 82K
= -2 +—- - }ab + — ' ' • ' - * •

Bldvb 8v2\b Bttv dv
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d2K ad2 \ Jo'
——+cd

8vz V b J ' b

S2K 82Kd ,-1

Since (35) and (40) imply

(42)
dt 2\dt dv2 dt

we consequently have

(coeff. of

Q.E.D.

Summing up, as reduction of the linear part we have obtained a linear
canonical transformation (16) with the following coefficients:

'2(43)

By this linear transformation the Hamiltonian is reduced to

(46) #J = *i-iSo

§2.2. Reduction of the Nonlinear Part

By the reduction of the linear part explained in Subsection 2.1 we have
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obtained the following reduced Hamiltonian:

1 3j+kK
(47) jTj -

(cf. (46)) where /=(/! J2) and Jc = (kl,k2). Here and throughout this subsection
?;~1/2 is denoted by e and e25odd is abbreviated by /(0). (We have omitted
tildes ( ~ ) in (46) for the sake of simplicity.) The Hamiltonian (47) is written
also in the following form:

(48) Jf~ =f^UV-{- y £p + q^ f* s-Mrp+i r^«+i

where

(49) K^t,e)= X 4

In this subsection we consider reduction of the nonlinear part, that is, we try
to find a canonical transformation with the trivial linear terms

r, t7, F,£)+ •

where

(51)

(52) vs(t,U9V9e)= X ^,£)^+1F^+1

P+q=J-l
P , « > - 1

with WM and ypq being formal power series of e, which transforms the Hamiltonian
Jf; into its Birkhoff normal form.

For that purpose we again make use of a generating function of the
following form:
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(53) W= W(t, C7, V)

= -UV+ Y ep+qapq(t,6)Up+1Vq+l.

In what follows we try to determine {apq} so that the associated canonical
transformation

dW ~ _

(54)
dW

p,q>-l

reduces the Hamiltonian (48) into its Birkhoff normal form. If we successfully
find such {apq}9 then Uj(t9U9V9e) and Vj(t9U9V9t) are explicitly given in the
following way: First let us substitute V=V-\-ev^-\-e2v2-\— into the second
equation of (54) and compare the coefficients of like powers of 6, then we find

(55) Vj= X (P + l^w^Vr"^^!

(/= 1,2,3,- • •) where i;0 denotes V. Next let us substitute the same expansion for
V into the first equation of (54), then we obtain

(56) Uj=- £
p + q + m + ••• + fik = j

(7=1,2,3, • • • ) . (We conventionally define uQ=U.) The relations (55) and (56)
recursively determine {uj} and {i;̂ } from {apq}. For example,

In general, we can prove the following by an induction.
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Lemma 1.

( vj= Z

"j= Z

(57)

where Rj and Rj are some polynomials of {apq}p+q<j_i.

Now let us show how {apq} should be determined. Substituting the
expansion (50), we find that (50) transforms the Hamiltonian Jfj into

dW
(58) tfj = tfj + e2

dt

j>0 / \j>0
p,q> -i

Here {w^-} and {t;7-} are expressed in terms of {apq} through the relations (55)
and (56). In particular, the degree / part (in (U, V)) of JT7 has the following form:

(59) Jf,,(=/«V-2 X Ujvk

+ ..tivfil=i-2 dt
p + q> l,p,q> — l , V f > 0

Let Jf(1) (resp., JT(2), Jf(3)) denote the first (resp, second, third) term of the
right-hand side of (59). Then it follows from Lemma 1 that
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(coeff. of Uj +1V"+' in jf <•l') =/(0)£( ~ 2(j - k)ajk •

where j + k = l— 2 and ^(1) is a polynomial of {apq}p+q<i-3- Similarly, we
can show

(coeff. of UJ+lyk+1 in

(coeff. of Uj+iVk+l in

where ^(2) and ^(3) are also polynomials of {apq}p+q<i-3 (and of their first
derivatives with respect to t). Hence we have

Lemma 2.

(60) (coeff. of Uj+lVk+l in #j)=f(*hl-2(j-k)ajkjk ~ jk
dt

where j+k = l—2 and $jk is a polynomial of {apq}p+q<l_?t and of their first
derivatives with respect to t.

In order that Jf; is of Birkhoff normal form, we have to require

(61) (coeff. of Uj+l¥k+1 in J?}) = 0

for any j, k satisfying j¥=k. Note that, when j ¥ ^ k , this relation (61) can be
solved for {ajk} (j^k) in a singular-perturbative manner thanks to Lemma 2.
Thus {ajk} except {a -̂} are uniquely determined by the relations (61) in a
recursive way and they actually transform Jf} into its Birkhoff normal form.

At this stage {a^} are not still fixed. To determine them we introduce,
in addition to (26), more additional requirements in the following way: The
canonical transformation obtained so far produces 2-parameter instanton-type
formal solutions of (Pj) of the form

(d2K 1 V/2

(62) W + n-i'2 — ~^~- Z n-JI2(u& ft V,l)-Vj(t, ft M))
\<3v2 2*i lSoddJ j>o

where U and V are given by (15). In particular, we look at the degree (2/4-1)
part (in (U, V)) of (62), which is represented as

V/2

_ : _ ) (~—- ~ —
dv2 2rj
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l /2

1/2
W/'+l*' P\k+l

xexp ((/-%

Among these terms the following two terms

.1/2

n

and

'/•••*)
l/2

("(±lHnstanton terms") are important in the sense that WKB solutions of
the Frechet derivative of (Pj) contribute only to them. Taking this fact into
account, we make the following additional requirement

(63) gi+i,i=-gi,i + i

for any / with /> 1 as a generalization of (26). Since Lemma 1 entails

where g i + 1 j and gu+i are polynomials of {ajk}j+k<2i-i> the requirement (63)
becomes

(65)v ;
2(1+1)

and uniquely determines {a,,} from {ajk} (j^k) in a recursive manner. This
completes the proof of Theorem 1.
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§3. Local Behavior of Instanton-Type Formal Solutions
of (Pj) near Regular-Type Singular Points

We have seen in the preceding section that singular-perturbative reduction
of (4) (more precisely, its localization at the 0-parameter solution) to Birkhoff
normal form produces 2-parameter formal solutions of (Pj). Looking at this
construction of 2-parameter solutions more carefully, we try to analyze their
local behavior at fixed regular-type singular points in this section. As a typical
example of fixed regular-type singular points of Painleve equations we pick up
the origin t = Q of the sixth Painleve equation (Pvl) and discuss the problem
only for this typical example in this paper.

As is shown in Theorem 2 below, the regular-type singularness of fixed
singular points of (Pj) (t = Q of (Pvl) here) should entail the simpleness of poles
which the coefficients f(l)(t,rj) of the Birkhoff normal form may possess
there. Furthermore, in the global study of (Pj) the residues of f(l)(t,r]) at
regular-type singular points would play an important role. Hence it is desirable
to be able to compute such residues explicitly. However, our choice of
Hamiltonians Kj(t,hv9rj) which is listed up in Table 2 is not convenient for
that purpose; if we work with Kj, we can show the simpleness of poles, but
the computation of the residues becomes quite difficult. To overcome this
difficulty we use the following "polynomial Hamiltonian Hv"

(66) dA/dt = rjdHvl/dn, dfi/dt =

where

(67) /
t(t—

+te-w-i)},i+iir2^

which is first discovered by Okamoto ([O]), instead of A^ in this paper. (Roughly
speaking, by using Hvl we can "triangularize" the problem of computing the
residues in a sense (cf. (90) and (91) below).) The relations between Hvl9 \JL,

K^ and Kvl9 v, c^ are given by the following:

-(K\— l) = cj]2 where * — 0,1,£,
4

-(Ki-Ko-Ki-K2- l) = Coo>/2,
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"V

Note that every K^ (* = 0, l , f , oo) is a quantity of degree 1 in r\.
Let us now state our result. The top degree part XQ(t) of our formal

solutions is characterized by the equation FVI(A0(r),0 — § i-e->

, , x ' '-1 #-1) „

This algebraic equation has six solutions, one of which shows the following
behavior at £ = 0:

(68) J,0(f) = at + 6f2 + • • • with fl = ^ C°

We restrict ourselves to this special choice of A0(f) in this paper. (The
other cases will be discussed elsewhere.) Then, for 2-parameter formal
solutions with the above top degree part A0(f), we can verify the following:

Theorem 2. Let f(l\t,rj) be the coefficients of the Birkhoff normal
form obtained in Theorem 1 from the localization of (66) at the ^-parameter
solution with the top degree part 10 satisfying (68). Then each f(l\t,rj)
has a simple pole at t = 0 and

(69)

(70)
f = 0

(71) Res/Wfc •,) = () (/>2).

Proof. During the proof we often omit the suffix VI. Let us first inves-
tigate the local behavior of the 0-parameter solution (A(0\//(0)) = (Zf7~-/'A/(f),
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Lr]~iiJ,j(t)) at t = Q. (Note that ^(t) identically vanishes for every odd integer
/ Similarly Vj(t) vanishes for every even integer j, but this is not true for
fJLj(t).) In view of (68) and the explicit form of (Pvl) (cf. Table 1) we find

djF
' for any j> l ,

,
dt

(where (9 denotes Landau's symbol). Making use of these properties,
we can verify the following by an induction:

(72) /I/O - 0(f) for any j > 0.

Then the first equation of the Hamiltonian system (66), i.e.,

) - 1P(0) - 0^(

dt

' 1¥J<0 ) t\-\-lC ^<°VJ<°'-JL J\A> IJ ~\ »v i A ^A

entails

(73) Af/W^C"1) for any y >0.

Furthermore, we can compute the coefficients of the top degree part in
t of (/L(0),^(0))5 which is denoted by (A,B) in what follows, explicitly. (Of
course, A and B are formal power series of /y"1.) As a matter of fact,
comparing the top degree part in t of the Hamiltonian system (66), we
obtain

(A = 2r]A(A - l)fl-(K0 + Kt-\)A + KO ,

(5 = nQA -l)B2- (KO + K, -1)5.

This algebraic equation (74) for A and 5 has the following two solutions:

or

Comparison of the top degree part of A in rj l with (68) tells us that the first
one gives a true answer in our case. We have thus verified
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Lemma 3B The ^-parameter solution (/l(0), //0)) with the top degree part
/10 satisfying (68) has the following expansion at t = Q:

(75) tt0) = At+-.-9 !*» = -+...

with

(76) A

Lemma 3 and a straightforward computation also show

Lemma 4. We abbreviate (Sj+kHvl/B^d^k)(t^(0\^°\ri) to
Then we have

far 7=1di+2H_

dAjV~

2A(A-l)t +

2(2A-\)+..

4
t

12
|_ . . .

4

for j=Q and k = Q,l

for j=l,2,3 and k = Q,L

Furthermore

Let us next consider the linear canonical transformation, which reduces the
linear part of (66) to Birkhoff normal form, obtained in Section 2.1. Note
that all formulas in Section 2 are valid even for the polynomial Hamiltonian
Hvl , if we replace Kvl and v by Hvl and ju respectively. For example, the Riccati
equation associated with the Frechet derivative of (66) is given by the following:
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dt dt

^^_(^H^\?1-i^I£d S2H_^_ld
dfi2 VSAdji/ d^diidt diJi2 ' dtdtfn)

It follows from Lemma 4 that

d, d2H 1
- —log—-=—+••- ,

dt O\JL t

d2Hd2H _^d d2H

dk2 df-i2 dtdhdii

Hence, by a similar argument as in the proof of [AKT1, Proposition 3.1], we
can verify

Proposition 2. The formal power series solutions S± of (11) have a simple
pole at t = Q and their residues are given by

(78)
t = 0

The relation (69) is an immediate consequence of (27) and (78). The following
local behavior at t = Q of the coefficients of the linear canonical transformation
also follows from Proposition 2 and (43)-(45):

- /2

(79)

(80)
-K0Kt

(81) d=0--+

Let us now discuss the nonlinear part of the canonical transformation, which
reduces
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{%1\ ?&?\OjL) cX6 yj

with

to its Birkhoff normal form, obtained in Section 2.2. By Lemma 4 and
(79H81) we readily find

(84) ffM = 0(rl)

for any /?, q and further

(85) only //3_ l 5 //2o> #11 > ̂ 2-1 an<^ #10 nave a simple pole at f = 0.

Let us recall that the coeflficients {flpq} of the generating function (53) of
transformation are uniquely determined by the requirements (61) and
(65). Hence, in view of (84), we can prove the following by an induction.

Proposition 3. (i) The coefficients {apq} of the generating function are
holomorphic (more precisely, formal power series of rj~1/2 with holomorphic
coefficients) at t = 0 for any p, q with p,q> — l and p + q>\.
(ii) The coefficients f(l\t, rj) of the Birkhoff normal form shows the following
behavior at £ = 0:

(86) fW = CO(rl) for any l>l.

We finally compute the residues of f(l\t, f/). A key idea is to use the
relation between the two Hamiltonians

(87)
8t

or,

,88,

Our determination of {apq} entails that (88) identically holds for any (C7, F).
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(Otherwise stated, (88) is an equality as formal power series of (U9 V).) Note
that both sides of (88) has an at most simple pole at £ = 0 thanks to Proposition
3. In particular, the second term of the right-hand side is holomorphic
there. Therefore, comparing the residues at t = 0 of both sides of (88), we obtain

(89) /(0) £
p + q> i

p,q> -1

M , v > - 1 p,q> - 1

where /(I), npq and «p€ respectively denote Resf=0/(0, Resf = 0//M and
a

pq\t = o- F°r example, comparison of cubic terms (with respect to (U,V)) of
both sides of (89) deduces

a/Ho)- _ -^ /HO)- _ A
47 fl2-l~ — ̂ 2-1 » / a!0— ~^105

Since //01=//_12 = 0 by (85), we consequently have a0 1=a_1 2 = 0. More
generally,

Lemma 5.

(90) ap€ = 0 /0r;?<?.

Lemma 5 can be proved by an induction in the following way: We compare
the coefficients of Up+iVq + i (p<q) of both sides of (89). Then from the
left-hand side

appears, while there is no contribution from the right-hand side because of
the induction hypothesis and the following relation

(91) frpq = Q for/7«?

(which immediately follows from (85)). Thus we have (90).
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To compute the residues off(l\t, ?/), we compare the coefficients of Uj+ * Vj+ 1

(/>!) of both sides of (89). The coefficient of the left-hand side is trivially
equal to 0. On the other hand, taking Lemma 5 into account, we find that
for the right-hand side the contributions come only from

+i

Hence the coefficient of the right-hand side is

/> l , m > 0

(where we define <z00 = — 1 for the sake of convention). Since all Hn vanishes
except for 1=1 (cf. (85)), we obtain

(92) £ (
l + m=j

l> l , m > 0

For y=l the relation (92) becomes

and for 7 > 2 (92) implies the following:

/°'>= I (-D'+7(i) Z (pi + D-^i +
l + m=j pi + . - . + p i + 1 = m

!>2,m> 1

Here it follows from (79), (80), (83) and Lemma 4 that

Thus we have verified



INSTANTON-TYPE FORMAL SOLUTIONS 627

/< J >=1 and /"> = () (/>2).

This completes the proof of Theorem 2. Q.E.D.
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