
Publ. RIMS, Kyoto Univ.
35 (1999), 1-29

Existence Theorems for Ordered Variants of
Weyl Quantization
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Daniel A. DUBIN*, Mark A. HENNINGS** and Thomas B. SMITH"

Abstract

We consider some mathematical properties of Weyl-like quantizations based on two families of

orderings of e
l(af+bQ): the first family, WW interpolates between Wick U = 1) and antiWick (/I =

— 1) ordering, while the second family, Wco,^, interpolates between the Q-(//=!) and P-(fj.= — 1)
orderings. The ordering W(o,<» common to both families is the unordered Weyl system.

The most important property is that of the existence of quantizations. For all orderings W(o,#>

and for Wu.o with — l</i<0 quantization is a well-defined map from the tempered distributions on

phase space into the continuous linear operators from j*8 (M) into j£ (M)'. For the orderings Wu.m

with 0<^<1 we have to restrict the class of wave functions from s& (IE) to a certain dense subset

of it, and the resulting quantization procedure sends tempered distributions on phase space into

sesquilinear forms on this subspace. For Wick ordering itself we have not been able to find any

useable quantization scheme, and we doubt whether any one exists that is based on tempered

distributions.

We also consider questions of boundedness, and determine the matrix coefficients for the

quantizations of phase space functions of radius or of angle. In particular, we consider various

quantizations of the angle function in phase space.

1. Introduction

In a series of earlier papers [6, 7, 14, 15, 20], we have considered the problem
of Weyl quantization in polar coordinates. Our principal purpose has been the
analysis of the properties of the Weyl quantized angle function in phase space,
which we have proposed as a quantum phase operator. With that purpose in
mind, our analysis was based on the function space of Schwartz and its dual,
the space of tempered distributions. The phase space functions to be quantized
are supposed to be tempered distributions, and their quantizations are linear
maps from ^ (M) to
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The proposal to consider the Weyl quantized angle function as a phase operator
was made independently by Royer [17, 18], who suggested at the same time that
one ought to consider non-Weyl quantizations of the angle function as well. In
support of this suggestion, he calculated the matrix elements (with respect to
the standard Hermite basis) of some other quantizations.

What has not been discussed until now is the mathematical structure
surrounding non-Weyl quantization of angle functions, based on Schwartz space
as in the Weyl case. Thus, although non-Weyl quantizations have been
discussed in a mathematically rigorous way before, the particular details needed
for this application have not. The purpose of this paper is to fill some of that
gap.

The non-Weyl quantizations we shall consider are obtained from the
generalized two-parameter Weyl group

Wn ,(o b}=e^(a+be^(v+e"'QeiaF (1 1)v v (A.,(Jt) \u/i ( / / tJ e> e - t / , \J_ . _L/

where a, 6 G M and /!, ^G [—1, 1], and where Q and P are the usual operators
of position and momentum in the Schrodinger representation. We note that this
two-parameter family contains the standard Weyl group

W(0,o) (a, b} =e^
abeibQeiap=ei(ap+bQ\ (l. 2)

The family of quantizations obtained from the one-parameter subfamily {W^^i
— 1 <££<!} is known as the PQ-family of quantizations. The P~ordering of an
operator-valued function of P and Q is the operator obtained by writing it
formally with all incidences of the P operators to the right of all incidences of
the Q operators. The reverse is true for the Q~ordering. Using the
Baker-Campbell-Hausdorff formula for exponentials, it is easy to show that the
P- and Q-orderings of the Weyl group W(o,o) are

W(o,-i)(a, b}=etbQeiap, (1.3.a)

W«u>(a, b}=eiapeibQ, (1.3.b)

respectively.

The family of quantizations obtained from the one-parameter subfamily {Wa.Q)'.
— 1 <X <!} is known as the Wick/anti-Wick family of quantizations, or
WAW-family for short. If we write P and Q in terms of the lowering and
raising operators

>) / i+——L-f /n — vp) (i A)
/ , SI /o' W **/ ' V1 • ̂ 7

then the Wick-ordering of an operator-valued function of P and Q is the
operator obtained by writing it formally with all incidences of the A operators
to the right of all incidences of the A+ operators, with the reverse being true for
the anti-Wick ordering. Again, simple considerations enable us to show that the
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Wick and anti-Wick orderings of the Weyl group W(0,o) (a, b) are

W<i.o)(a, fr)=*^Va
f (1.5. a)

W(-if0)(a, b)=e-*~AezA\ (l.B.b)

respectively, where z=—7=-(—a+ib}.

The first question we must address is the one of how to use these variations on
the Weyl group to obtain viable quantization schemes. Our starting point is the
formula

4Q^[T] =^ffR2^T^ (fl> &) WWfo, b)dadb, (1.6)

to obtain the quantization Au,^ [T] of the function T. Here 9 (T) denotes the
Fourier transform (in two dimensions) of T. We shall be taking Fourier
transforms in one and two dimensions frequently, and using the same symbol 9
each time — our convention for the Fourier transform in n dimensions is

yi, ...,yn) = (Zn) -f n #(*!,..., Xn)e-
i(™^"+*^dXl - • -dxn. (1 . 7)

•-'IE

We shall use without comment the facts that & and its inverse are unitary
operators on L2 (ffiw) and topological isomorphisms s£ (fflw) and (after a suitable
extension) of its dual.

Equation (1.6), in the case X—[JL — 0, is the formula given by Weyl, who points
out that it is not to be taken literally. Wrhat this means is that it needs to be
reworked into a form that is capable of rigorous mathematical interpretation.
This process is done as follows. We define 4« f jM) [T] in terms of its matrix
coefficients with respect to wave functions which are suitably smooth. The
choice of the appropriate class of wave functions will be discussed later — for
now we shall assume that a suitable choice has been made. Thus our definition
is going to be weak, and the integral in (1.6) will be defined weakly — this is
going to be necessary if we wish T to be a tempered distribution.

Before we proceed to show how this is to be done, we need to clarify some
notation. We always use angular brackets to denote inner products, and choose
the first (leftmost) factor to be antilinear. However we also need a notation for
the (real) bilinear pairing between &$ (Mw) and its dual, which we shall write as

|T;#], Te^'(Mw),#€Ej(ir). (1.8)

We shall use this symbol most often when the domain is phase space, and we
shall reserve the symbol II for M2 so interpreted.

For suitable functions/, #€=L2(ffi) , consider the function

(a, b) •-» <g,Wu,0(a,b)f>. (1.9)
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As we shall see below, by "suitable" we mean functions /, g such that the above
function belongs to &3 (ffl2). We can then define a function ^u,^ (g®f) e^ (H)
such that

(a, b}=(g, W<M (a, b)f) . (1 . 10)

We can then hope to define Ju,^ [T] by setting

= IT; £„.„> (g*f) }. (1.11)

At least formally, then, the above definitions are such that

(a, b} (g, WM (a, b)f)dadb,

and it is in this way that the formula (1.6) is interpreted weakly to define the
operator AU^ [T]. In what follows we shall see that it is sufficient, in nearly all
cases, to assume that / and g simply belong to jJ (ffi) , in which case J</u) [T]
defines a linear map from & (ffi) to j^i'(ffi)- However, in some cases, it is
necessary to restrict/ and g to belonging to a much more restrictive space than
$ (ffi) . For this reason, and others which will become clear, it is necessary to
deal with the PQ-family and the WAW-family separately.

20 Quantization for the AW-Family

As we shall see, the PQ-family poses no problems as far as questions of
existence of qtuantizations go. The WAW-family is different in this regard, for
the WAW-family 4W|0) is more regular than Weyl quantization for — 1<>?<0,
while it is less well-behaved than Weyl quantization for 0 </!<!, while the
quantization 4(lt0) does not exist in any useful sense for a general tempered
distribution. The subfamily of the WAW-family corresponding to — 1</1<0 is
called the antiWick-family (or AW-family) , while the other half of the family
(for 0<^<1) is called the Wick-family (or W-family). With this in mind, we
shall start our discussion with the best case, namely the AW-family.

At the end of the previous section, we showed how quantization can be defined
rigorously, subject to certain conditions being satisfied. That these conditions
can be satisfied in the case of the AW-family is dealt with by the next
proposition.

Proposition 2.1. For every f, g^s£ (ffi) and all — 1</!<0 the function

[^u.o) (F®/) ] (a, b) = (g, WM (a, b)f) (2 . 1 . a)

belongs to d (ffi2) , and the map
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(/, *) -> »u,o> (g®f) =-^P Wao> (f®/) 1 (2.1.b)

is a jointly continuous sesquilinear map from s£ (ffi) X ̂  (ffi) to j*5 ( II ) . 77ms w0 can
define 4u,0) [T] as a linear map from s£ (ffi) to $ (ffi) /or any T^ $ (II) ina £/i£
/ormw/a

Mao) [T]/; * ] = [T; »«.«(* ®/)]. (2.1. c)

These quantization schemes are related to Weyl quantization through the convolution
formula

»Gw»=Qj* 0(o,o>, (2.2.a)

where Q* is the Gaussian

(2.2.b)

Proof. Note that Q_4f is the kernel of the semigroup generated by the
negative of the Laplacian in two dimensions. We also need the one-dimensional
heat kernel

/ \ 1 .r2/;

and for convenience we introduce the following notation for the unitary groups
generated by the Schrodinger operators P and Q,

#,/(*) =/(*+a) , Jf&/ W =«'te/ W ,

respectively. The proof involves a number of standard manipulations of
integrals, which we shall omit — the reader can readily supply them.

Firstly we show that

Now we take the Fourier transform of this identity with respect to the second
variable only, obtaining

from which we deduce that "W^,® (g ®/) belongs to ^ (ffi2). This implies that
^u,o) (l7 ® /) belongs to ^ ( I I ) . It is now easy to obtain the convolution
relationship between ^u,o) and ®<o,o). From this result follows the required
continuity of the sesquilinear map $u,o), and hence the quantization 4u,o) is
well-defined. I
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This answers the question of existence. For the remainder of this section we
shall consider the properties of the AW-quantizations in respect of marginal
distributions and the taking of adjoints. These results are known in other
contexts — these quantizations do not yield the correct marginals, but they do
have desirable conjugation properties — what we are doing now is checking
that the necessary manipulations are valid in the setting of tempered
distributions.

For the marginals, continuing to restrict our attention to the case — 1<^<0, we
consider a tempered distribution h^s£' (ffl) . Then the distributions l®h and
h®l both belong to s& ( II ) , so we can calculate 4«,o) [1 ®h\ and 4a,o) [h ® 1] . If
we do so, we obtain the following result.

Proposition 2.2. For an arbitrary tempered distribution h^s&' (ffi) and — 1
<X <0, we have the following identities between linear maps from s£ (IR) to s& (ffi) :

( fc* t t ) (Q) , (2.3. a)

( fc*fc ) (P) . (2.3.b)

These define the marginals for the AW-quantizations. While the AW-quantizations
do map a function of q into a function of the operator Q, it does not map h to h (Q) .
A similar statement holds for functions of p alone. As has been seen elsewhere, the
Weyl quantization 4(o,o> does not suffer from this defect.

To obtain the properties of the adjoint we need the following integral identity:

[Q, * 9(g®f)] * = Q, *9(f®g) , /, g^d (ffi) .

From this result we obtain the following:

Proposition 203. For any T e $ ( H ) , its adjoint T* e &' ( n ) is given by
the formula

[T*;/] = [T;/], /e^(E). (2.4.a)

We have that

l4u.o)[T*]/; g] = Uu.o,[T]^;/] (2.4.b)

for f, g^-s& (ffi) and —1<^ <0. If T is sufficiently regular, so that 4u,0) [T] is a
bounded operator on L2 (ffi), then so is 4^,0) [T*], and

4«,o)[T*]=4ui0)[T]* (2.4.c)

Thus, if T = T* is real-valued and sufficiently regular, then 4u,0) [T] is
self-adjoint.
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It is possible to investigate the behaviour of the marginals with respect to A
and A+ rather that P and Q. Indeed, it is possible to show that if T^$ (H) is
such that T(p, q) is an analytic function of p+iq, then

4tt.0)[T] =4(o,o) [T]=T(ij2A+) (2. 5. a)

for any — l</i<0, while if S^j^' (II) is such that S (p, q} is an antianalytic
function ofp+iq, then

4u,o>[S] =4(0,0) [S]=S(-tV2A) (2.5.b)

for any — 1</!<0. This is particularly easy to prove, since any T ^ s&' (II)
such that T (p, q) = T (p + iq) is analytic (or antianalytic) is polynomially
bounded as a function (since it belongs to $ ( n ) ) , and hence must in fact be a
polynomial in p + iq (p — iq) , and the required calculations for polynomials are
straightforward. If we wish to deal with more complicated functions of p + iq, it
would be necessary to reformulate our quantization scheme in a manner which
did not concentrate on quantizing elements of $ ( H ) . As to the relevance of
this to quantum theory, since measurements of P and Q are certainly possible
we should expect the marginals for AW-quantization with respect to P and Q to
appear whenever the classical limit was relevant. In an older terminology,
AW-quantization is not wholly consonant with the correspondence principle.
This point has been emphasized by Berezin and Shubin [3] .

3. Polar AW-Quantization

We continue our discussion of AW-quantization by considering how it differs
from Weyl quantization in respect of functions of the radius or of the angle in
phase space. Since AW-quantization is obtained from Weyl quantization by the
simple addition of an operation of convolution, it is to be expected that
techniques which worked for Weyl quantization will also work for
AW-quantization. This is indeed the case. In particular, we may calculate the
matrix coefficients of such operators With respect to the standard Hermite basis
in L2 (ffi) . Although our methods differ from those of Royer [17, 18] , our results
are the same.

We follow the methods we used in our paper on polar coordinates for Weyl
quantization [6] . Matrix elements with respect to the Hermite-Gaussian
functions {hn\ n>0} can be calculated using the generating function

(3.1)

Taking the convolution of Qi with the known result
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[0((M)> (G>G,)] (p, q) =^exp[-^st+ (q+ip)s+ (q-ip)t-?-f\ (3.2)

we deduce that

(3.3)

Now we introduce polar coordinates by substituting p = r cos^S, q==r sin$ in the
above. Using polar coordinates enables us to find relatively simple expressions
for the matrix coefficients of the AW-quantizations of functions of the radius or
of the angle with respect to the Hermite-Gaussian functions. While there is no a
priori reason for us to expect the AW-quantization results to resemble the Weyl
results closely, it turns out that they do so.

As in the Weyl quantization case, radial quantization is particularly easy to
deal with, so we consider it first. We have that

Tt}] (rcos$, rsin0)dft

=, 1 f 1 l+X J* / 2r2

for any — 1 </i <0. We now integrate this expression against a tempered
distribution which depends on the radius alone. In order to ensure that all
quantities which occur are well-defined, it is sufficient that we restrict attention
to functions /: ffi+-^]S for which all the integrals

•X}u}du (3.5)

exist for all —1</!<0 and n>0. Such a function defines a phase space function
of the radius alone by setting

/rad(p, q) ~/Cv/52+<72)- (3.6)

Then J«,o> 1/rad] exists as a densely defined operator on L2 (ffi) whose domain
contains all the Hermite-Gaussian functions. Moreover, the Hermite-Gaussians
are its eigenfunctions, and

Just as for Weyl quantization, AW~radial quantization leads to operators with a
discrete spectrum of (in general) unit multiplicity and oscillator eigenfunctions.
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We note that the case X = — 1 is not singular, although the above calculations
seem to show that it is. This is because the eigenvalues of 4u,0) [/rad] are

(3. 8. a)

and we can calculate that

E-ltn= lim Et,n=-^T f VM/C/2^) nndu, n>0, (3.8.b)^_! nlJo

so we deduce that 4(_i,0) [/rad] is still diagonal, with

^, n>0. (3.8.c)

We have not considered placing sharper controls on the functions / in order
that 4u,0) [/radl be of any particular operator class (for example mapping s£ (IK.)
to itself) , but this would not be particularly difficult to do. Summarizing these
results, the quantization scheme 4u,0) behaves well in respect of radial elements
(when — 1 </i <0) and the operators 4u,0) l/radl are of the same sort as the
operators 4(0,0) [/rad] of Weyl quantization.

Integrating ®u,0) (Gs ® Gt) over the radial variable will enable us to find the
matrix elements for the operators 4u,0) [/ang] , where for a function/^!2 [— TT, n]
we set

/ang(rcosft rsin£) ={ f ^ (3.9)10 r=0.

This was done for the standard Weyl quantization scheme in [6] , and we were
able to find an expression for the matrix elements in terms of ratios of gamma
functions and the Fourier coefficients of/, namely

7* = _/(£)*-'w dj8 k^Z. (3.10)

In the case at hand, analogous calculations to those in [6] yield a similar result,

(3. 11. a)

for any — l</i<0, where
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We can proceed to simplify this expression as in [6]. There are two special
cases worth noting:

/-I ->\ <n

(3.12.a)

i>Q. (3,12.b)" ^ mini

Our general solution is that

mintin.n) /

x Z r ( - /O m i n ( w ' B ) -^ |n-m,-+ S y ) , (3.13.a)

where

* y C V C i i (3.13.b)
0 ; odd.

From this we can readily deduce the matrix coefficients for 4u,o> [fang], namely

Wu.o) [fang]^»; hnA ~2 "2

(3.14)

for w, n>0 and — l</i<0. We note that putting A = Q in the above regains the
matrix coefficients for Weyl quantization. Thus the AW-quantization coeffi-
cients are comparatively simple extensions of the Weyl quantization coefficients.

We note in passing that a number of authors have proposed the (Toeplitz)
operator X, with matrix elements

•m-n+l
(hm, Xhn) = [l~dmn]^^, m,n>0,

as a phase operator. We have previously shown that X is not the Weyl
quantization of any function fmg. The same result holds here, since it is not
difficult to show from its matrix elements that no function / exists for which
4u,o) [fang] — X for some —•!</(<0.
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4. The AW-Phase Operator Kernel

The question as to which quantization scheme is "preferred" by nature is, in a
certain sense, empty of content. Quantum theory tells us that all self-adjoint
operators containing the Hermite-Gaussian functions in their domain are
measurable in principle. There is a caveat about the possible accuracy of the
measurements that can be made, especially for operators with a continuous
spectrum, but the important point is that no mention is made of how the
operator was originally obtained. Thus, if different quantization schemes lead to
different self-adjoint operators for a given distribution T, these different
operators can all be measured in principle. What is problematical is determining
what observables they represent, and to this question there is no general
answer. No more is there an answer to the question of what operator is being
measured when faced with a jumble of laboratory equipment with banks of dials
and flashing lights attended by people we know are scientists since — in the
best traditions of cinematic science fiction — they are wearing white lab coats.

Nonetheless, any quantization of a function of the angle has some connection to
what might loosely be called quantum phase phenomena. This statement can be
strengthened somewhat by a result concerning coherent light which we have
proved and will publish elsewhere [8] . Suppose that we take it that the laser
model originally suggested by Dicke [4] and by Graham and Haken [11] ,
upgraded and treated rigorously by Hepp and Lieb [16] , Sewell [19] and
recently by Alii and Sewell [l] , does indeed describe the "ideal" coherent
radiation (as the thermodynamic limit of the Bose gas describes "ideal"
condensation, that of the strong coupling BCS model describes an idealized type
of superconductivity, and so on) . Our result is that the operator 4(0,o) [T] may
be treated in this model in the same way as the base photon operators A and A +

are. Moreover, if we do so, the intensive global observable it determines is

This means that if the Weyl dequantization of an operator is a function of angle
alone, it must have something to do with the phase of the coherent light. If we
first U, IJL) -quantize a function of angle alone, and then Weyl~dequantize the
resulting operator, we get a function of both the angle and the radius, so such
operators determine intensive variables which depend both on the intensity and
the phase of the laser light. However, in many cases, the limit as r tends to °°
can be taken, and will yield a well-defined function of angle. This will be a
global observable associated with the (/I, //) -quantization at high (infinite)
intensities.

We do not mean for this discussion to be definitive, but only to suggest the
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importance of considering the operators 4u,#) [fang], and Aatll) [<p] in particular,
where (p=0Bns, where

0(£)=A -7T<£<7r, (4.1.a)

so that

(p(rcos@, rsin/J) = { ' ' ' (4.1.b)10, r=0.

Note that we give values to (p along the negative real axis (the cut associated
with the principal branch of the arctangent), even at the origin. Thus we have
defined (p on the whole plane II, even though it is not continuous everywhere
there. Clearly, the definition of the value of (p in the negative real axis is
somewhat arbitrary, but does not make any difference since, as a tempered
distribution, such a level of uncertainty has no effect on the definition of (p.

Of course, we could use the results of the previous section to obtain explicit
expressions for the matrix coefficients of 4u,o> i(p] with respect to the Hermite-
Gaussian functions when — 1</{<0, but we shall not do so here. What we shall
do is derive an expression for the integral kernel of 4u,o) [(p] when —1</1<0.
The derivation of this kernel requires some integral identities.

Lemma 40L The following identities hold:

J^ sgn (q) ft (q ~y) dq = erf (~^rr ), (4.2. a)

r i3 2 r 9 r°° / Y2M2\ i
I sgn (<?)ft (q-y)e-Mdq=e~^xsgn (y) le^ j= \ exp ~?2-^ d? ,

^E I VTT- ' I^I \ 4? ' *

(4.2.b)

for any — I < X < 0.

Proof. The first identity is straightforward to establish, and we omit the
details. Consider now the quantity

A U, x, y} =e~Wy f~ u e~qz dq~e^y f ~ e~q2 dq.
JfVj^ixl—*= J|YuT|x|+--L2 Vjl| z vj^|

It may be verified that A satisfies the differential equation

and the boundary condition
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lim A U, xt y) ^sgn (y)e~|Jvl.
A-+O+

From this it follows that

JT sgn (q}qx (q-y)e-^dq=e~~^ A U, x.y)

as required. •

We can now use these results to derive the integral kernel representation of
4u.o>l>3 for -

Theorem 4.1. The operator AM,® [<p], where —1 <A <0, has integral kernel
representation given by

Uu,o>!>]/;*l=f CerftjyjGO/Cy)^ (4.3)
^ •/ ffi. V /'m V|xi|

/or a-wy f. g^s£ (M). Here ^/(L) is flie convergence factor

,. .
(4.4)

- 0, otherwise,

and the integrals are meant in the sense of Lebesgue.

Proof. It is convenient notationally to introduce the function Hf,g&s£ (ffi2),
where

so that

where the subscript on the Fourier transform indicates that it is a one-
dimensional Fourier transform taken with respect to the first variable only. We
shall adopt a similar notational convention with the one-dimensional Fourier
transform with respect to the second variable, and with respect to
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one-dimensional convolutions. With this understanding we note that

»«.o> (/®f) =&T1 [ ($qx ® D • (fc *2 Hftg) ].

We now use the technical result found in the Appendix in [6] to deduce that

f <p(p,q)[9M(l®f)](p,q)dp
a/misL

=f sgn (q) [3 *2 #,,,] (0, g) -|sgn (9) lim/

and the preceding Lemma can now be used to identify the two expressions given
above with the desired two expressions in the result H

5. The AW-Phase Operator Is Bounded

In the previous section, we performed the convolution of Q* with §(0)o) (g ®/)
before integrating against the angle function <p. It is clearly equivalent to
calculate the convolution of Q^ with q> first, since then 4u,o) [cp] is the standard
Weyl quantization of the resulting distribution. Our first task will be to identify
this convolution.

Proposition 5eL If we define the scaled beta function Bx (x,y) by the formula

Bi&y) =x r~~r~2e^dt ^^0, (5.1)Jo r+x2

then

[?)*QJ b,y) =<p(x,y) -f [sgn(y) - e r f ( - ) ] +B,(y, x) . (5.2)

The proof, which we shall omit, is a fairly straightforward consequence of the
lemma to be found in the Appendix of [6]. It is clear that the Weyl
quantizations of the first two terms on the right-hand side of equation (5.2)
yield bounded operators on L2 (M) , and so we need to concentrate on the third
term. By first differentiating, and then integrating, with respect to X, we can
show that

from which we can deduce that

• t / \
) — sgn (y )]#/,*(*»
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1 (1 -e^2) sgn GO Hf,g (x, y) dxdy.

Let us investigate these two terms separately. We need to develop a
generalization of the technique used in [6].
For any h^L°°(0, oo) and a>0, consider the function Kh>a: (0, oo) x (0, oo)->ffi
defined by

(5.3)
0<;y<a*:.

Then direct calculation shows us that

^llMU (5.4.b)
VA:

We can thus use the Schur test [13] to define a bounded operator ^ (a) from

L°° (0, oo) to itself, such that \\Kh (a) ||<7rWoo (and, in particular, \\Kh (1) ||< yWU) ,

by setting

[Kh («)«] (x) = rKk,a (X, y)u (y)dy= fh^+^u^iy (5 . 5)
J o J ax x ~ry

for any u^L°°(Q, oo) . Next we introduce the continuous linear maps P±: L2 (ffi)
-> L2 (0, oo) given by

[P+g](*)=g(x), (5. 6. a)

[P-g](x)=g(-x), (5.6.b)

for g ^ L2 (ffi) and #> 0. Putting these various maps together, we obtain a
continuous linear map Xh (a) from L2 (ffi) to itself, with \\tfh (a) ||<7r|i/i||oo (and

\\Xk ( D l l ^ l W o o ) , by setting ,

[#*(«)*](*) =

It is now a piece of lengthy, but elementary, analysis to show the following
result:

Proposition 5.2. If, for any — I <2 <0, me consider the function h (X) e

0, x = 0, g^L2(W. (5.7)
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L00^,00) given by

[hU)] Of) = 1 ~e^x\ * >0, (5.8)

then

rr i
(x, y) dxdyfLJJM?

= m (g, sgn (Q) o [Sgn (?) -erf -—]/> -2(g, Xkm (I)/) . (5.9)

From these above results, it is now straightforward to show the following
result.

Theorem 5.1. The linear operator 4«,o) [<p] is bounded on L2(ffi) for any
-l<X<0,with

(5.10)

and we have the integral representation

(g, 4Uf0

= (g, 4(o.o, [?]/> - Jffe, %<0,~> (P) ° sgn (Q) -

(5.11)

We note finally that the map X *-* h (X) is continuous from [—1, 0) to
L00 (0, oo) f and hence the map A ^ tth(» (1) from [- 1, 0) to ^(L 2(ff i ) ) is

norm-continuous. We can also show that the map X •-» er f ( /rT) is norm-x

continuous on [—1, 0), and so we deduce that the map /I ^ 4«f0) [^?] is norm-
continuous on [—1, 0), in addition to being weakly continuous on [— 1, 0]. It is
not clear whether the map X "-* 4u,0) [<p] is norm-continuous at 0, since two of the
operators which add together in equation (5.11) to form 4u,o) [<p] are, while the
other two are not, cancellation of these discontinuities could conceivably occur.
It has taken some considerable analysis to show that 4u,0) [<p] is bounded when
— 1 < X <0, and the consequence is that it is highly likely that the upper
bound we have established on the norms of these operators is not sharp. This
mirrors the currently-known situation for the Weyl quantization 4<ofo) M itself,

where the best that is known at present is that 7T<||^(o,o) [<p] ll^~o~, whereas we
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have good reason to believe that the actual norm of this operator is it.

6. W-Quantization

Having considered the AW-family at some length, it is now the turn of the
W- family. The first thing that we have to establish is the framework for a
useful quantization scheme. In the case of the AW-family, we could show that
1 ,̂0) (g®f) belonged to *3 (M2) for all /, g e= J (M) whenever - 1 <1 <0.
However this is no longer necessarily the case for the W-family, since we now
have to deal with increasing Gaussian functions. What we must do, therefore, is
define an appropriate space 2 (M) of functions, which contains all Hermite-
Gaussian functions, such that 1fu,o) (g®f) belongs to s£ (M2) whenever/ and g
belong to 2 (IK) • To make the correct definition, we introduce the following
operators. For any a> 0, define the linear map ea\ j^(IR) — *#°°(]R) by the
formula

\eaf} « =>*/(*) , /e^ (E) . (6.1)

Note that operator ea leaves a test function smooth, only affecting its fall-off
properties. We make the following definition.

Definition 6.1. By the space *£* (M) we shall mean the following subset of
^(E):

2(ffi)={/e^(]R):g^a/eJi3(IB) whenever 0<a<l,

(6.2)

The utility of the space Zl (M) is based upon the following result.

Lemma 6.1. The function *W{a,m (g®f) belongs to & (ffi2) for all f,g^
Z(M) and 0<a<l.

Proof. After a number of standard calculations we can show that

(a, 6) = Jteefr* [q-,a ^ [ (Pq-e ® l) •

(q-w *2 ̂ (0,0) (e&ejtoe&eag) ) ] ] (-ft, a)

for any /, # e S (ffi) , 0 <a <1 and 0 <^8 < (l - a) -1. Since W^o) (a, &) is a
unitary map, it follows that

(p, q) \ <

and hence
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(p. q) |

In particular, by setting /?= (a"1— a)""1, we see that

(a, ft) =

is a bounded function for any 0<a<l.

By simple generalizations of the results for Weyl quantization, it is possible to
show that any function *W(a,Q) (g®f) is smooth, and moreover any multi-
derivative of such a function, and any polynomial times such a function, is a
linear combination of functions of the same type. Since we have seen that all
functions of this type are bounded, it now follows that every function of this
type belongs & (M2) , as required. HI

Consequently we deduce that §u,0) Gf®/) belongs to s£ ( E ) for any /, g e 2 (IB)
and 0 </i <1. Thus any T €= s& ( I f ) defines a sesquilinear form A^>0) [T] on
2 (E) by the formula

Wu.o> [T] ] (f, *) = IT; »tti0) (f®*) ] , /,^e Z OR) , (6.3)

for any 0</I<1.

Note that we can only define 4uf0) [T] as a form on Z (M), and not as an
operator. This is mainly because we have not attempted to impose a topology on
2 (M) . Although our definition of 2 (ffi) seems rather restrictive, this space is
a dense linear subspace of & (IR) , and does contain a large number of useful
functions.

Proposition 6.1. The, space 2 (IB) is a dense linear subspace of & (IB)
which contains all the Hermite- -Gaussian functions and their translates. In
particular, 2 (M) contains the generating function Gt of the Hermite -Gaussian
functions.

Proof. For any n>0 and a^E the translate (^ahn)(x} of the nth Hermite-

Gaussian function is equal to e~^(x+a} times a polynomial of degree n in x. Thus,
if 0<a<l, the function (0a5^iw) W is a linear combination of the functions

Consequently (2Feat7ahn) (x) is a linear combination of the functions
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and so, if 0<£< (1— a)"1, then

(e^eaSTahn) « =e'^^''l'Me'^Qnia^ W ,

where Qw,a,0 W is a polynomial of degree n in x, and hence e^ea^ahn belongs to
J(ffi) for all such a, £ Thus we deduce that STahn belongs to Z(M)
for all a^ffi and all n>0, and hence ZI (IB) is a dense linear subspace of ^3 (ffi) ,
as required. •

We can now apply this result to the case of angular quantization. Because

#«,o) (GS®G,) exists and belongs to & (E) for all s, £^E and 0</1<1, we can
calculate the numbers

[4Wf0)|/,ng]](G5>G f)

for any /GL 2 [—TT, TT] and s, teff i , and we can use this result to obtain the
matrix coefficients of the sesquilinear form 4u,0) [fang] with respect to the
Hermite-Gaussian functions. When we perform these calculations, we obtain the
following result:

Corollary 6.1. ///eL2[-7T, TT] and 0<X<1 then

3,0) [fang] (Jim, O ~ ' !<„+„?'* /»-» (6 '^J /-l -j\ -gdn+n)

for all m, w>0. This is the natural extension of our previous results for the matrix
coefficients in the antiWick ordering case.

However, the fact that these matrix coefficients diverge as 2 tends to 1 would
indicate that we cannot create an appropriate sesquilinear form 4d,0) [<p] on
2 (IB). Consequently, although we can approach the Wick ordering case
arbitrarily closely, we cannot find a successful quantization scheme of this sort
which works exactly for Wick ordering.

Recall that the quantization of the phase angle (p was a bounded operator
on L2 (IB) for all orderings between Weyl and anti-Wick ordering. Assume that
for some 0< / t< l the form 4u,o) [(p] defines a linear operator from 2 (IB) to
L2(M) (which, by an abuse of notation, we shall also denote by 4Uf0) [<p~\) such
that

Then we would deduce that

(hn, 4u,
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where, as in [6] , we define

We deduce from this that

I <hn, 4«,o> [cp] ho) I - (1 -

Hence the sequence ({hn, 4ufo) [#>]^o))w>o does not belong to I2 for any
Hence, although we can define 4u,o) [#>] as a sesquilinear form on ]C (M) , it is
not possible to interpret this form as coming from a linear map from 2 (ffi) to
L2 (M) . In this sense we see that the quantization schemes that we have obtained
for the series from Weyl to Wick ordering are much less satisfactory than those
schemes we have obtained for the series from anti-Wick to Weyl ordering.

7c Smooth AW-Observables

We have seen that, while we can provide some form of quantization 4u,0) [<p] for
any — 1 </!<!, it is only in the case — 1</!<0 that the resulting quantization
takes the form of a unbounded linear operator on L2 (M) (which is in fact
bounded) . For this section, therefore, we shall again restrict our attention to the
case — 1 ^2 <0, and ask whether the space & (M) of Schwartz functions is
preserved under any of these quantizations of phase angle. When this is the
case, the map Aa,o) [(p] will then provide us with a continuous linear map from
the Frechet space & (IE) to itself.

Since s& (IE) is the natural domain for all polynomials in the operators Q and P,
its elements have claim to be the set of wave functions which can actually be
prepared. Moreover, the usual formulation of quantum mechanics can be recast
in terms of operators which leave s& (IE) invariant [5] . Of course, not all of the
standard operators considered in quantum mechanics have this property, but all
operators can be deformed slightly in such a way that the resulting deforma-
tions do preserve s£ (IE) .

It is then desirable within this view of quantum mechanics that an operator
should leave the space s& (IE) invariant, and consequently it is disappointing
that the Weyl quantization 4(0,o) [<p] of the phase angle does not do so. However,
since the quantizations 4a0) [<p] are, in some sense, deformations of the Weyl
quantization 4(0,o) M , it is worth considering whether any of these anti-Wick
quantizations preserve s£ GE.) .

We start with the simplest case, namely that of J(-i,o) [<p] , and here the result is
positive.
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Proposition 7.1. In the antiWick ordering case X = ~1 we have 4(_i,o) [(pi

Proo/. We are going to make use of the seminorms

/>*(/) =11 (AH- 1)*/||, /e^(ffi),

where N is the number operator, which define the usual Frechet topology on
j^(M) (The intersection of the domains $(Nk) for all integers &>0 is equal to
^(ffi).)
Direct calculation shows us that

(hm, 4(_li0

so, since there exists a constant A>0 such that f^i^A (;' + !)4 for ally ^ 0, we
see that

I// /i r,«l 7 \\ <? A /9"o-i^+w+i) //m+n+l\\(hm, A(-i,Q)L(pjhn)\ ^ AJ22 2 M w y

for all m, n>0. If we define the polynomials.

tt W = n (« +y) , cr W = *ff (« -y ) ,
y=i ;=o

then we see that

_ (w+n + 1)! _~ ~
w

m>k,n>0,
and hence

C*- W | (hm, A-u

for all m>fe and n^>0. Since C^ (w) =0 for all 0<m<& — 1, it follows that

< 2A2&ki(n) f fe,m,n>0,

where we write Co" W = 1. Since (C,r U): j^O} is a basis for the space of all
polynomials, for any &^N we can find constants a* (/) for 0<j<2k such that

2k
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Hence

(m + l}2k\(hm, 4(_1(0)M^)|2 < 2A2E
;=0

'2k/ 2 k \
^2A*Ea*(/) )

v=o '

V=o

so we can certainly find a constant^ [k] >0 such that

Thus we deduce that 4(_i,0) M^»e^J (ffi) for all w>0, with

2 ~2 k>0.

Hence, if /e J (E) then J (_ l f0) [p]/e^ (ffi) , with

for any fe>0, which establishes the required result. H

In previous sections, it proved an important and useful technique to compare
4u,0) with 4(o,o). For example we showed (essentially) that 4u,0> [T] =
^(o.o) [T * Qj , and proved that 4u,0) \_(p] was bounded by explicitly calculating
the difference between 4u,0) [<p\ and 4(0,o) [<p] - However, this technique is of no
use to us here, since we already know [6] that J(0,o) [<p] does not leave s& (W
invariant. However, since we have just shown that 4(-i,o> \_<p\ is an
endomorphism of ^ (M) , it will be interesting, and will prove useful, to compare
4u,o)[<p] with A (-i,o) [<p] instead.

Lemma 7X We have that

(7.1)

ig operator Yu,n is defined by the formula

[1W] (p) = ($-qYe-^p-*\rig(q)dq (7.2)

for anyn>Q, /^>0 and
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The proof is a simple consequence of identities already given in this paper, and
we shall omit it We already know that the function 4(_i,0) [(p\ belongs to
£ (&3 (IB.) ) , and it is clear, since the error function is smooth and all of its

derivatives are bounded, that the map erf ("/fyFJ ~~ erf (Q) also belongs to

£ (s£ (IK.) ) . Thus we only need concentrate on the last term.

Proposition 7.2. The function Yu>ng belongs to s£ (E) for any ££>(), n>0

Proof. Since simple calculations show us that

g] (p) = [Yu,n+1g] (p) + [Yu,nQg]

for any ^>0, n>0 and g^s£ (E), it is clear that each such function Y^^g is
smooth, and it merely remains to show that each such function is bounded to
deduce the result. Now since

,,ng] to I < k

the result follows.

From this it is easy to show that the function

belongs to J (E) for any //>0, a^M, g*=d (E), n>0 and Q<A<1, and so it
follows that 4u,0) [cp]g^d (M) for any -1</KO and g^ & (E). Since 4Ul0) [<p]
is self-adjoint as an element of £(L2(W), it is symmetric as an endomorphism
of ^ (E) , and so, by the Helliger-Toeplitz Theorem, it is a continuous endomor-
phism of & (E) . We have proved the following result:

Theorem 7.1. The operator Ju,o) [<p] belongs to £ (d (E) ) for any — 1 </l <0.

8. PQ-Quantization

Having considered quantization for the WAW-family, we turn now to the
question of quantization for the PQ-family A(o,U) where — l</jt<l. Proceeding
in the same manner as for WAW-quantization we can show that:

f/ q~~ (1 "^f
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Consequently §(o,,) (g ®/) belongs to s£ (II) for all /, g ^ s£ (E), and the map
(/, g} *-* 9(0.0 Of®/) from J (E) * ^ (E) to .*3 (10 is jointly continuous and
sesquilinear; hence the existence of PQ-quantization presents no difficulties, and
we obtain the quantization scheme 4(0,,): s&' (II) -+& (d (E), *£' (E)) given by
the formula

Having established existence, we consider the properties of the behaviour of
these quantization schemes with respect to marginals and to the taking of
adjoints. From the identities

( p , q ) d p = 7 ) f ( q ) , (8. 3. a)

f
«^E

] fo q)dq=(^g)(p)(^f) ( p ) , (8.3. b)

for/, £-^.&5 (ffi) we deduce that

(8.4.a)

(8.4. b)

for any li ^ ^' (IE) . This demonstrates that the PQ-quantizations have the
correct marginals, as well as being well-defined in the j^-class based scheme.
However they do not behave well with respect to the taking of adjoints and so
are, in these various respects, complementary to the WAW-quantizations. To
determine the behaviour of these quantizations with respect to taking adjoints,
we note that

(p, q) = [^(o,-,> (f*g) ] (p, q) (8.5)

for/, g^s& (US.), and hence it follows that

[4(o,,) [T*]/; g] = [4(0,-,) [T]g; f] (8.6)

for T^$ (n) and/, g^-s& (M). This result can be interpreted most clearly in
the case where 4(0,#) [T] is a bounded operator on L20R), in which case we see
that

4(0,,)[T]*=4(0,_,)[T*]. (8.7)

Except in very special cases, therefore, or in general in the case of Weyl
quantization, the operator 4(0,,)[T] will not be self-adjoint if T=T*.

Note that this result, while disappointing from the point of view of self-
adjointness, has certain advantages, for it gives us a method of deducing a
property for the quantization scheme 4(0,-,) from a corresponding property for
the scheme 4(0,,). In general, then, it is only necessary to consider half the
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PQ-family, say the range; —

We turn now to the particular case of the phase operator. We start by showing
that the operator 4(o,-D [<p] is bounded (and hence Jko.i) [(p] is bounded as
well) . It will be observed that even this result is by no means straightforward
to prove. The analysis begins with the observation that

&, q) =~

and this in turn leads to the particularly simple expression

(8.9)

We recall the Fresnel integrals

C GO = fXcos(^t2)dt, SGO = fXsm(~t2)dt, (8.10)

noting that C and S are continuous odd functions, both of which tend to 1 as x
tends to °°, so there exists a constant # >0 such that

Some standard analysis enables us to establish the following result

Lemma 8.1. // ? > 0, and if h^L1 (M) fl L2 (IB) w 5 /̂1 ^/iaf ^"^ ^L1 (ffi) ,

. (8.11)

This technical lemma turns out to be what we want to prove the boundedness of
4(o,-i) [<p] . To proceed further we shall have to employ geometric and group
theoretic methods, as we did when proving similar results for Weyl
quantization. By this we mean using the unitary rescaling map E%^ & (L2 (ffi) )
defined for any f >0 by

[£,/] 00=-^/(|), /€EL2(M), (8.12)

and the metaplectic unitary transformations f/e ^ £ (L2 (ffi) ) for any real £,
originally introduced in [6] , where

[Usf] GO =e~^xf(x], /eL2(E). (8.13)

Then if f >0 and/, g^£ (E),we see that
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if sgn (/?+§?) sgn (<?) [9«>.-u (g®/)] (p, q)dpdqJJ m2

- -V2/me-^xZ (C+iS)

so that

ff sgnfo + &)sgn
•'•'m2

Taking the complex conjugate of this inequality, we also deduce that

I ff sgnfo-&)sgn(</) [f(o,-i)(W)] (p, q)dpdq <Kj2\\f\\ •
| J J 2

In earlier work on Weyl quantization we needed to consider the distributions
Da for 0<a^7T which are symplectic distortions of sgn ®sgn, namely

Da (r cosjS, r s'm0) —'

1 r>0, -TT

-1 r>0, a<P<7t (8.14)

I 0 r=0

so that

A|_arctan? (p,q) = sgn (p—^q) sgn (q)

for any ?€=ffi. From the above we now deduce that

II U(o,-i) [£«]/, J] II < Kj2\\J\\ • \\g\\, /, ^e^OR),

for 0<a<-f- and y<a<7T. Clearly

4(0,-i) [D0] = —/, 4(0.-i) [Dj ^sgn (Q) o sgn (P), 4(0,-i) [Dff] =/,

so we deduce that the family {4(o,-D [Da]: 0<a^7r[ is a uniformly bounded
subset of £ (L2 (E)), and since

i i r*71
O,-D [<p] =~2Trsgn (Q) — -g J 4(0,-i) [Djdor,

it follows that the operator 4(0,-D [<p] is bounded.
Proving the general result that 4(0f/t) [??] is bounded for any —!<//<! is more
complicated. We shall omit the details. It is possible, however, to extend the
techniques used in [6] to establish the following identity:
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/; g]

f fc+tsgn (tf)S\ (^f=) [^sgn (Q) £7^] (y) [^t/e/] (y)dj>
•/US. L J \y^ wf ?£ '

(8.15)

for any 0<|//|<1 and ?^ffi\{0}, where the function EU^L°° (0,°o) is given by
the formula

Eu,(q)=e-^\ (8.16)

From this it is now possible to show that the family of operators (4(o,#) \Dd\ : 0
<a^7r) is uniformly bounded for any — l< jH<l , and hence it follows that
4(o,#) [<p] is bounded for any — !<//<!. Indeed, we can deduce from this that
the family of maps {4(o,#)[^]: — 1</^<1} is also uniformly bounded.

However, as has already been indicated, the adjoint of 4(o,-i) [<p] is equal to
4(o,D [#>j , and so one does not expect 4(o,-D [#>] to be self-adjoint. We can prove
this by calculating the expectation value of this operator in the state ho. For

[4,0,-i, [<p] fcj (g) =f sgn (9) fc0 (?) ~{fco (?) f~'~***-1 [1 -«•**"'] <**.

so that

<fco, 4,0,-D [?)] feo) - — l/f*''*'*'1 [1 -«x2erfc (x) ] dx.

Now since

for all jc>0, it is clear that (/io, 4<o f-D [^]^o) is not real, and hence 4(0,-D [^] is
not self-adjoint, as required. Finally, we note that this sort of quantization does
not behave well in respect of radial functions. For example, we see that

and so 4(o t-i)[(fto)rad3fto is not a scalar multiple of ho, and hence A(O,-D [0*o)rad]
is not diagonal with respect to the Hermite-Gaussian functions.

9. Conclusion

Thus we have seen that the Weyl quantization enjoys a special position amongst
the various quantization schemes that we have considered, in that it is the only
one of the various schemes which enjoys all of the following properties:
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0 4(o,o) provides the correct marginal distributions,
0 4(o,o) [T] is self-adjoint whenever T is real,
• 4(o,o) l/rad] is diagonal with respect to the Hermite-Gaussians for all

suitable functions/,
• 4(o,o) [(p] is a bounded operator on L2(M).

After the Weyl quantization scheme, the AW~quantization are the most
well-behaved, satisfying all of the above properties except for the first one.
However the AW-quantization have the added property that 4u,0) [(p] is also a
continuous endomorphism of s£ (IS.) for —1<>}<0. Although we still prefer to
use Weyl quantization, particularly in the light of its central role in the laser
model as discussed by Alii and Sewell [1], in view of general view that
quantum mechanics should be expressed in terms of observables which are
endomorphisms of s£ (IE). the fact that 4<o,o> [<p] can be approximated, at least
weakly, by AW-quantizations of (p is of interest in itself.
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Errata

Correction to Vol. 35, No. 1:

Daniel A. DUBIN, Mark A. HENNINGS and Thomas B. SMITH, "Existence

theorems for ordered variants of Weyl quantization", pp. 1-29.

page 1; the first line of the footnote should be replaced by

Communicated by T. Kawai, October 28, 1997. Revised April 7, 1998.

We sincerely apologize for the misprint.
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