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Generic and ^-Rational Representation Theory
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Abstract

Part I of this paper develops various general concepts in generic representation and
cohomology theories. Roughly speaking, we provide a general theory of orders in non-semisimple
algebras applicable to problems in the representation theory of finite and algebraic groups, and we
formalize the notion of a "generic" property in representation theory. Part II makes new contribu-
tions to the non-describing representation theory of finite general linear groups. First, we present
an explicipt Morita equivalence connecting GLn(q] with the theory of g-Schur algebras, extending a
unipotent block equivalence of Takeuchi [T]. Second, we apply this Morita equivalence to study the
cohomology groups Hm(GLn(q),L), when L is an irreducible module in non-describing characteristic.

The generic theory of Part I then yields stability results for various groups Hl(GLn(q}, L),
reminscent of our general theory [CPSK] with van der Kallen of generic cohomology in the
describing characteristic case, (in turn, the stable value of such a cohomology group can be

expressed in terms of the cohomology of the affine Lie algebra gln(c).) The arguments entail new
applications of the theory of tilting modules for #~Schur algebras. In particular, we obtain new
complexes involving tilting modules associated to endomorphism algebras obtained from general
finite Coxeter groups.
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This paper falls naturally into two parts. Parti (§§1~7, 13) introduces and
develops some general concepts in generic representation theory. These ideas
arose out of (and are applied to) issues in Part II (§§8-12), which deals with
the non-describing characteristic representation and cohomology theories of the
finite general linear groups GLn(q). We open here with a discussion of this
latter topic.

Let G be a reductive group defined and split over a prime field IFV. Assume
that G has simply connected derived group G'. Fix q = rd and consider the split
Chevalley group G(q) — G (IF?) of Fg~rational points. Now let k be an alge-
braically closed field of positive characteristic p. The modular representation
theory of the finite groups G(q) over k naturally breaks into two cases—the
describing characteristic theory in which p=r, and the non-describing
characteristic theory in which p^r. In both cases, the central issues include the
classification of the irreducible modules, the determination of their characters
(or decomposition numbers), and other representation-theoretic properties (e.g.,
cohomology and submodule structure of natural modules):

© In the describing characteristic theory, Steinberg's pioneering work
shows that the classification and characters of the irreducible modules are
obtained (for all q = pd) from the solution of the analogous problem for the
ambient algebraic group. In that case, the characters are known generically, i.e.,
Up is sufficiently large (depending on the root type of G), thanks to [AJS],
[KL2] and [KT] .* Similarly, questions concerning the WqG(q) -cohomology and
submodule structure for natural modules can often be studied, and even
explicitly answered for sufficiently large q or p, by passing to analogous
problems for G [CPS1], [CPSK], [FP1,2].

• In the non-describing characteristic theory, however, even a natural
parametrization of the irreducible modules remains problematic for some types.
But, when G = GLn, there is a parametrization of the irreducible modules, due to
Dipper-James [DJ2], [Dl]. Further, their work establishes that the Brauer
characters of the irreducible kG (q)-modules are determined by decomposition
numbers of certain qa~Schur algebras along with characteristic 0 character
formulas due to Green [Gr]. In cohomology theory, the study of the groups
H°(G(q),L) (L simple) has largely focused on the untwisted L = k case, e.g., in
famous work of Quillen and others (cf. [AM] for discussion and references).

Part II of this paper makes new contributions to the non-describing

1However, no sufficient lower bound is known for p in any interesting cases.
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characteristic theory in the case G = GLn. In particular, we extend the work of
Dipper and James described above to obtain a more intimate connection between
the representation theory of kGLn(q) and that of <?-Schur algebras. Namely,
Theorem 9.17 presents a Morita equivalence:

(1) kG (q)/j(q) k ~ 0 1^8^ (m (s), nt (s)) k
S^%s>,p'l==l

between an algebra which is a direct sum of tensor products of certain qa-$chur
algebras and a quotient algebra kG (q) //(#)* of kG (q) by an ideal j(q) feO kG (q).
(See §9 for further explanation of notation.) Furthermore, the algebras kG (q)
and kG(q)/j(q)k have the same irreducible modules. A similar Morita equiva-
lence has been obtained by Takeuchi [T] in the special case of unipoint blocks
(in which case the right-hand side of (1) is replaced by a single g-Schur
algebra).2 Our Morita equivalence is derived from a second Morita equiva-
lence:

m(s)
(2) 0G(q)/j(q) ~ ® ®S^.(n,(s),n l(s))B.

ivionra . _
S<E#ssy>, * = 1

over a discrete valuation ring 6 with residue field k. (Here j ( q ) is an ideal in
0G (q} such that j(q) ®0 k is an ideal—namely, the ideal j(q)k of (1)—in kG (q)
= @G(q)®0k.) Cast this way, the correspondence between irreducible kGLn(q)-
modules and their decomposition numbers and the corresponding issues for
certain gfl~Sehur algebras becomes very conceptual—see (9.17(d)). The further
connection between the representation theory of g-Schur algebras and the
quantum general linear group GLn,q (k) explains at least part of the title of this
paper.3 We emphasize that these results rely heavily on the work [DJ2] as
well as that of Fong-Srinivasan [FS].

We wish to use the above Morita equivalence to study the cohomology
groups H*(GLn ( q ) , L ) . when L is an irreducible module in a non-describing
characteristic p. When p divides \G (q) |, the algebra kG (q) /j(q)k has finite global
dimension, while kG (q) has infinite global dimension. Hence, the precise relation
between the coholomogy of GLn(q) and that of <?-Schur algebras by means of the
Morita equivalence (l) is quite subtle. Sections 10,11,12, are devoted to
attacking this problem. To our knowledge, our results represent the first
progress in understanding the cohomology of finite reductive groups with
general irreducible non-trivial coefficients L in non-describing characteristic, (it
would be interesting to pursue Dwyer's general stability results [Dw] with
respect to n with these coefficients in mind.)

2An announcement of our results here appears in the proceedings of the 1997 Newton Institute
NATO conference [CPS8]. After our announcement was submitted, another generalization of
Takeuchi's result was given in a preprint of Dipper [D3]. His result involves a double centralizer
property, but does not include our Morita equivalence.

3As we hope this introduction will make clear, the title also recalls our paper [CPSK], written
with Wilberd van der Kallen. In that paper, somewhat similar topics were discussed in the
describing characteristic case.
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For applications to finite groups, e.g., to the study of maximal subgroups,
the explicit calculation of 1-cohomology for quasi-simple groups plays an
important role [AS]. In this case, our results are particularly strong and quite
easy to obtain directly from the Morita theorem in §9. This work is presented in
§10. For example, Theorem 10.1 establishes a direct connection between
ff1-calculations for GLn(q) and Ext1-calculations for g-Schur algebras. In
Theorem 10.2, we use the work in Part I discussed below to prove, for a fixed n,
and p sufficiently large (depending on n\ that there are only finitely many

possible values for H1(GLn(q),L), when L is irreducible (or has bounded
composition length), independent of q. The value is the same for all irreducible
modules with the same parametrization, and all q of the same multiplicative

order in Wp. The calculation of this ^-stable value can then be translated, using
the generic results of Part I, first to an Ext1-calculation for a g-Schur algebra
over the field (C of complex numbers (taking q to be an appropriate root of
unity), and then to an Ext1~calculation in the category of integrable modules for

the quantum enveloping algebra C/$(gI»). Using [KL2], that calculation trans-
lates into an equivalent Ext^calculation involving cohomology of the affine Lie

algebra gln(O (see(10.3)). We expect that a precise answer can be obtained in
the context of affine algebras,4 but we do not consider that problem (for either
Ext1 or the higher Ext* discussed below) in this paper. Finally, Theorem 10.5
computes 1-cohomology for SLn (q) in terms of the cohomology of GLn(q) in
most cases.

In §11 we begin to attack the higher cohomology groups of GLn(q) with
nontrivial coefficients, especially irreducible modules. The idea, of course, is to
exploit the above Morita equivalence and study instead questions for the
<?-Schur algebra. To that end, we develop an important projective resolution of
the ^-determinant representation of the <?-Schur algebra Sq(n,n). The result
hinges ultimately on earlier work of Deodhar [De] on Hecke algebra complexes
(reminiscent of the Solomon-Tits complex for the associated Tits building). But
to bring these results to bear on our problem, we require the tilting theory

work of [DPS3] for <?-Schur algebras over the ring TL [q, q"1] of Laurent poly-
nomials. In the process, we obtain another interesting complex, valid for endo-
morphism algebras associated to arbitrary finite Coxeter systems (W, S); see
Theorem 11.10.

We apply the results of §§9,11 in §12. For example, Theorem 12.4

establishes that the cohomology groups Hl (GLn (q), L) can be computed in a
range, subject to arithmetic conditions on q and i, in terms of the cohomology of
the g-Schur algebra Sg(n,n). In order to achieve this goal, it is necessary to

4We have in mind formulas like those in [CPS4; § 3]. For example, under the assumption of
the Lusztig conjecture for the characters of the modular irreducible rational representations of a
reductive group G, the groups Extc (Li, L2), for Li, Lz irreducible modules with regular highest
weights in the Jantzen region, can be explicitly given in terms of Kazhdan-Lusztig polynomials
[CPS4; (3.9.1)]. Similar remarks apply to the BGG category © for a complex semisimple Lie
algebra 9 and all irreducible modules; cf. [CPS4; (3.8.2)].
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reinterpret the projective resolution of detq given in §11 as a complex of GLn(q)~
modules, using the Morita equivalence of § 9. This is done in the technical
Lemma 12.1, and it leads to the arithmetic conditions on the cohomology
calculations. As an application, Corollary 12.6 also presents a stability result
for higher cohomology, similar to, but somewhat weaker than, the ^-stability
result given in (10.2). As with the ^-result above, the stable value of a given

Hl(GLn(q),L) can be expressed in terms of the cohomology of complex g-Schur
algebras and quantum enveloping algebras, and then in terms of the cohomology

of the affine Lie algebra glw((C).
Generic cohomology and representation theory study behavior which

stabilizes for large values of the parameters q, p, etc. For example, one can ask
if, for sufficiently large p, there is some explicit formula for the Brauer
characters of the irreducible kGLn(q}-modules, given in terms of ordinary
characters in the same spirit as in the describing characterstic case (as proved
by [AJS]). The answer is affirmative, and much easier in the non-describing
case here—in fact, this observation has been made essentially in [GH; (10.2)].
We include a proof in § 8 for completeness. As in the describing characteristic
case, explicit formulas in terms of Kazhdan-Lusztig polynomials (and ordinary
characters of GLn(q)} can be given, using the work [KL2].

More generally, Part I of this paper undertakes an examination of generic
representation and cohomology theory. Our development is new, though the
methods are all quite easy. Roughly speaking, this work provides a general
theory of orders in non-semisimple algebras, suitable for application to
problems related to the representation theory of finite and algebraic groups. For
example, let P be a property of finite dimensional algebras A over fields. Given
a domain & with quotient field K and an algebra A over 0, suppose that P holds
for the Jif-algebra AK. Then we call P generic with respect to 6 provided there is
a nonempty open subset Q ̂  Spec 0 such that P holds for the residue algebras
Ak(p) for all p^Q. Section 1 studies this and related notions quite generally.

Sections 2,3 study the genericity of various cohomological properties for
algebras over domains 0. For example, Theorem 2.1 states that, given finitely
generated A-modules M, JV, and an integer m>0, there exists a nonempty open
subset QCSpec 0 such that, for

dim Ext£(Mjr,

The stability results obtained in Part I (i.e., (8.6), (10.2) and (12.6)) are
eventual applications of the above formula.

The paper contains a number of further general applications of our
Ext-results; for example, we establish (in § 3) that the property of being Koszul
is generic, at least in the presence of a finite global dimension assumption.

Section 4 studies the genericity in the various senses of § 1 of quasi-
hereditary algebras. Given an algebra A such that AK is quasi-hereditary, we
observe that the Kazhdan-Lusztig polynomials associated to AK also exhibit a
generic property, so that the various parity conditions studied in [CPS3,4] are
also generic phenomena. Finally, §§ 5-6 return to general considerations



36 EDWARD CLINE, BRIAN PARSHALL AND LEONARD SCOTT

involving Morita equivalence (in § 5) and derived equivalence (in § 6), while §
7 takes up the theory of quivers and relations. The appendix §13 introduces and
briefly discusses the "constructible" topology. By using it, we are able to prove
a new constructibility result for subsets of schemes arising in generic
representation theory. Along the way, we recapture a classical theorem of
Chevalley.

Fart I: Generic Representation Theory

In the first seven sections (Part l) of this paper, 6 will denote a
commutative, Noetherian domain. (Unless we state otherwise, a "domain" will
always be assumed to be commutative and Noetherian.) In the remaining
sections, we shall place further restrictions on 6 as needed, (in particular, in
Part II , 6 will be a suitable discrete valuation ring.) Let v^=Spec 6. For p^X,
let @p be the localization of 6 at p and let k (p) = 0p/p0p be the associated
residue field. Often we write K=k(Q) (the quotient field of 0). For Q^f<E0, let
Xf be the basic open set consisting of those $^-X satisfying /$ p. If we write 0/
for the localization of 6 at powers of/, then J^/^Spec 0/.

Unless otherwise indicated, all ^-modules will be assumed to be finitely
generated over G (i.e., they are 0 -finite). Similarly, 0-algebras A will be
assumed to be ^-finite as modules. In particular, A -modules are all finitely
generated as A -modules, unless we say otherwise. (We freely repeat these
assumptions for the sake of clarity.) Let A~ mod (resp., mod— A) be the
category of finitely generated left (resp., right) A -modules. If M is an ^-module
and 6 — * R is a morphism of commutative rings, then MR = M ® 0R is the
j?-module obtained by base change. When Q=£f^0 (resp., $^X), we contract
the notation for the module Mef (resp., Me) to M/ (resp., Mp). A morphism

g gf 9?
M—+N induces morphisms M/— > AT/ and Mp — * N9 by base change.

§ 1. Representation Theory on an Open Set

We shall use continually, and often without comment, the following well
known and elementary lemmas. We include proofs for the convenience of the
reader.

Lemma 1.1. Lei V be a vector space over K and M an 0~submodule of V
such that KM— V. Then the natural map

is an isomorphism of vector spaces. If W is any K-subspace of V, the restriction of [I
to (W Tl M)K defines an isomorphism (WC\M)s=W.

Proof. Since M spans V, it contains a #~basis for V, hence a free
0-submodule N whose quotient M/N is an 0-torsion module. The exactness of
localization determines a short exact sequence
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0 -> N®ffK -* M(S>^T -> M/N®0K=Q -» 0.

The first statement follows from this and the isomorphism N&)@K= V.
For the second statement, we may regard (WHM)* as a subspace of W. If

w^ W, then w is a linear combination of elements of M, and for some a^0, aw^M.
Thus, w;e (WflM)*, so (wnM)jr=W. D

Lemma 1.2. ([Ma, p. 185; CE, Ch. Hi) If M is a (finite) 0-module, then
there exists a non-zero element a^0 such that Ma is a free 0a~module. If M is an
arbitrary torsion-free 0 -module, then the canonical map M— * MR : m*-*m®\ is an
injection.

Proof. If T(M) denotes the torsion submodule of M, then there is a
non-zero element b ^ 0 which annihilates T(M), hence Mb = (M/T(M)\ is
0$-torsion-free. The canonical map Mb—*MK becomes an isomorphism after
base change by — ®@bK. Let 3>= {&!,•••, br} be a subset of M& which is mapped
bijectively onto a #-basis UK of M#. Then the €^-submodule N=0b$ of Mb is
free. Since MbK — MK, the quotient module Mb/N is a finite ^-torsion module,
hence is annihilated by a non-zero element a ^ 0b. Thus, Na = Ma is a free

The final assertion of the lemma is clear from the definition of the
localization of a module. D

Corollary 1.3. If M is a finite 6 -module and X^MK is a finite subset of
MR, then there exists a non-zero a & 0 such that, under the canonical map
Ma — » MR, Ma identifies with a free 0a~submodule of MR containing X.

Proof. Choose 0^b^0 so that Mb is ^6 -free. Identify Mb with its image in
MR and consider the ^-submodule Mi generated by Mb together with the finite
set X. Then Mi/Mb is a finite 06-torsion module. Thus, there exists 0^=a^0b
such that (Mft/Mft)fl = 0. This implies Xc:Ma. D

Corollary 1.4. Let A be an 0 -algebra and M, N two A~modules which are
0-finite. If g : MK ~* NK is a homomorphism of AK~modules, then there exists a
non-zero a^0 and an Aa~module morphism h : Ma ~* Na such that:

(a) Ma (resp., Na) is an 0a-free Aa-submodule of MK (resp., NK)',
(b) HK=g.

If, in addition, Q—fK/or an A -module morphism f : M — * N, then
to h=fa.

Proof. Choose Q=£b^0 so that Mb (resp., Nb) is an £^-free A6-submodule
of M#(resp., NK). If X is an €^-basis of M6, then there exists Q=£a^0b such that
Na contains g(X). Then Mfl, Na satisfy (a) and the restriction of g to Mb defines
the required map h;Ma—*Na of part (b). If g=fx for a morphism /: M —* N,
then the functoriality of localization implies that the restriction of g to Ma

agrees with/fl proving (c). CH
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Let P be a property of finite dimensional algebras over fields. Let A be a
finite ^-algebra which is ^-torsion-free. There are at least two ways to say
that "P holds generically" for A:

(a) P holds for AK ', or
(b) There exists a nonempty open subset 0 £ X such that P holds for

Ak(tf for each peQ.
Of course, (b) implies (a), and often (a) implies (b). When this latter

implication holds for all ^-algebras A as above, the property P is called generic
with respect to 0. If condition P is true for all G in a class *6 of domains, then
call P generic with respect to %!. (Example: Any property P for algebras over
fields is generic w.r.t. the class ^ of discrete valuation rings.) If # consists of
all (commutative, Noetherian) domains, then P is generic.

If P is property of algebras over domains (and not just fields), there is yet
a third way to say that P holds generically for A:

(c) There exists a nonempty open subset 0 £ X = Spec 0 such that P
holds for the ^/-algebra Af for each non-zero f ^ 0 satisfying Xf <= Q.
Equivalently, there is non-zero ideal / £ A such that P holds for A/ for each
non-zero/^/.

Property P is integrally generic for a domain 0 if, whenever (a) above
holds, then (c) holds with respect to some nonempty affine open subset Q of X.

Similarly, we can define the notions of "integrally generic with respect to a
class of domains," and "integrally generic".

There are many other variations possible when P is defined for algebras
over domains (e.g., one could ask if P holds for the localization A9, for all p^Q,
...). However, we shall be content with the notions given, which seem the most
useful.

To give a simple example, consider the property Mn ' "A is isomorphic to
the n X n matrix algebra Mn (0} over 0" Then Mn makes sense for all domains
0. If AK—Mn(K), then for some non-zero h^0, the matrix units en of AK lie in
AH. Thus, we can regard Mn(0h) as a submodule of Ah with torsion quotient, so
A/ = Mn (0f) for some non-zero / ^ 0h. It follows that Mn is an intergrally
generic property. If Af = Mn(0f), then Ak(p)=Mn(k($)) for any prime ideal $
satisfying / ^ p. Hence, Mn is also a generic property. Similarly, the property
that an algebra be split semisimple, i.e., that it is a direct product of matrix
algebras, is both generic and integrally generic. However, we will see below in
(l. 7) that the property of being semisimple is not generic.

There are appropriate variations on the above theme for a property P
which may hold for pairs (or triples,...) of algebras, or for modules (or pairs
of modules,. . .) for an algebra (over a field or a domain). For example, let
MORITA be the property on pairs (A, B) of algebras which asserts that A and
B are Morita equivalent. Similarly, P might be a property holding for a
morphism between modules, or it might be a property holding for a complex of
m o d u l e s , . . . . Rather than write down a plethora of formal definitions, the
following remarks present some basic examples along this line.



GENERIC REPRESENTATION THEORY 39

Examples 1.5. (a) Given a morphism M —* N of modules (for an
algebra), the property that g is surjective (resp., an injection, an isomorphism)
is denoted SUR(#) (resp., INj(#), ISO(#)). Now assume g is a morphism of
modules for an algebra A over 6.

Suppose first that SURQ/jr) holds and N is ^-finite. By (1.4), we may
choose Q=£b^0 so thatM& (resp., JV&) is a free ^-submodule of MK(resp., NK)-
If X^MK is a finite set mapped bijectively onto an €^rbasis of Nb by ##, then,
by (1.3), we may choose Q=£a^0b such that XdMa. It follows that for O^c^
0a the map gc'.Mc—*Nc is surjective. In particular SUR(</C) is true for these
elements c. Also SUR (#&(*>)) holds for any $^Xa. Thus, the property SUR of
morphisms of .A-modules with ^-finite codomains is both generic and integrally
generic.

Second, suppose that INJ (QK) holds and both modules M, N are finite over
6. We choose Q^a^0 so that the canonical map M a —>M K is an injection. The
functoriality of localization implies ga'. Ma ~> Na is also injective. We now
choose 0 =£ b ^ 0a so that (Na/ga (Ma)) & is a free £^-module. Then each map
gc, Q^£c^6b, is a split injection of ^-modules. Consequently, for p^^&, g* '•
Mp—*N$ is also a split injection of ^-modules. This implies that gk(^ is an
injective Afe(p)-homorphism for such p. Therefore, INJ is both a generic and an
integrally generic property for morphisms between A -modules which are
^-finite.

The statements for SUR and INJ, taken together, show that ISO is both
generic and integrally generic for morphisms between A -modules which are
^-finite.

(b) The property SSUR (resp., SINJ) that a morphism of modules is a
split surjection (resp., split injection) is both generic and integrally generic for
A-modules finite over 0. Suppose that M~^> N is a morphism such that g* is a
split surjection with section map SK'.NK~*MK. By (1.4) we may choose O^a^
6 so that Ma (resp., Na) is an 0fl-free Afl-submodule of MK (resp., NK). In
addition, we may assume that the restriction h of SK to Na defines an
Afl-homomorphism h : Na —-> Ma. Evidently h is a section for the map ga. Further
hc is section for the map gc for each Q^c^0a, For $^Xa, the functoriality of
base change by fe(j)) implies that hkw is a section for gkty. This establishes our
claim for SSUR; a similar proof handles the property SINJ.

(c) Suppose that A is an 0-algebra and M,N are A-modules. If MK = NK,
then Mfe(p) and Nkty have the same composition factors for all p belonging to
some nonempty open subset Q of X. In fact, by (1.4), there is an isomorphism
g:Ma—*Na of 0a-free A.fl-modules for some non-zero a^0. Further, g^) 'Mk(^
—* Nk($) is an isomorphism for all p ^ Xa\ a fortiori the two modules have the
same composition factors.

(d) Let A be as in (c). Suppose that V is a finite dimensional A^-module.
Any finite A-module M which is ^-free and satisfies MR =• V is called an
A-lattice for V. Choose a finite A.-submodule M of V such that MK = V. By
(1.2), there exists a non-zero a e 0 such that Ma is 0-free. Thus, Ma is an

Afl-lattice for V. Suppose 0 =£ b e 0 and we are given an A6-lattice N for V.
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Then (c) implies there exists a nonempty open set Q^Xar\Xb such that for ^^
Q the Ak($) -modules Mk^ and Nk(& are isomorphic (and hence have the same
composition factors).

For the remainder of these examples, we assume that A is ^-finite and
torsion-free.

(e) Let FREE (resp., PRO], PGEN) denote the property that a (finitely
generated) module for an algebra is free (resp., projective, a projective
generator). Each of these properties is generic and integrally generic.

If F is an A -module such that FK is a free ^4^-module, then (1.3) implies
there is a non-zero a ^ 6 such that FK is an A^-submodule of FK containing an
Airbasis SK= (bi, . . ., br} for Fa. The set ^Ba generates a free Afl~submodule F'of
Fa. The quotient Fa/F' is a finite 0fl-torsion module. Thus there is Q=£b^0a
such that Fb — Fi is a free A&-submodule of FK. Clearly, for 0 =£ c ^ 6b, Fc

remains free as an Ac-module. Further, for $^-Xb, Fk(& is free as well.
Now suppose P is an A -module and PR is a projective .A^-module. Then

there is a free A -module F and a split surjection F#-^»P. By (1.4) and (1.3)
there exists 0 =£a ̂  (9 such that Fa (resp., Pa) are Aa-submodules of FK (resp.,
PK), Fa is free as an ^U-module, and there is a map h :Fa~*Pa such that h,K=g.
Applying (b) to the ^-algebra Aa shows that h is generically and integrally
generically a split surjection. Hence PROJ is a generic and integrally generic
property.

Finally, since PROJ is generic and integrally generic, (b) above implies that
the property PGEN that a module is a projective generator for a finite
^-algebra is both generic and integrally generic.

<«-i dK
0

(f) Let Pn - > • • • — » Pf be a finite complex of finite dimensional
dn-i d0

A ̂ -modules. There exists a finite complex Pn - » ' --- » Po of A -modules which
identifies with the original complex P? after applying the base change -®@K. If
the Pf are A ̂ -projective, then there exists a non-zero f^6 such that each P// is
a projective .A /-module and free as a ^/-module.

To see this, use induction on the length n of the complex. If n — Q, let P0 be
the A-submodule generated by a finite set of A^-generators of PQ. Applying

d£-i dl
induction to the complex C® : Pf - * ' m ' — > Pf , we assume there exists an

<**-i di
A -module subcomplex Pn - ^ ••• — »Pi of which identifies with C© on base
change to K. Let Po be the A -submodule of Pf generated by the image of PI in
Pf, together with a #-basis for Pf. By (1.1), P0# identifies with PK

0. Finally, we
define do • PI ~^ PO to be the restriction of d* to PI.

The remaining statement follows by applying example (e) to each term in
the complex P0.

(g) Let MJ, Q<i<r, be ^-torsion-free A-modules. Suppose there is given
an exact complex
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, x rff-i ft-* dl
(1.5.1) MrK - >Mr-iK - > ' ' ' ~* MOK.

Then there is a basic open subset XfdX such that the restrictions df of df to
define an exact complex

d{-i dU dt
(1.5.2) Mrf - >Mr-if - > ---- >M0,

of ^/-modules. Moreover, we may assume the sequence remains exact upon
tensoring with any residue field k()p) , $^X/.

To see this, we proceed as follows. By (1.2), we may assume, after
identification, that each Mi is an ^4-submodule of MiK. By (1.4), may choose
0 =£ a ^ 6 such that the restriction df of df to Mi+ia has image in Mia. The
exactness of (1.5.1), together with the fact that the Mt are all torsion-free,
implies that the sequence of modules and homomorphisms

</?-l rff-2 d*0

Mra - > Mr-la - » ---- > M0fl

is a complex.
Assume r = 2 and let Ra denote the kernel of d*. Because localization is an

exact functor, we may identify RK with the kernel of df. Since df :M2K~ * RK is
surjective, and SUR is an integrally generic property, there is a non-zero
multiple/ of a such that d{ :M2/— > #/ is surjective. As with df, the exactness of
localization implies R/ is the kernel of df. Thus the first statement is true for
r— 2. The general statement follows easily by induction. The second assertion is
also clear, since by (1.2), we can assume that all the kernels and cokernels in
(1.5.2) are free ^/-modules.

We now study the generic properties of being separable and split
(semisimple). For simplicity, we will assume that the algebra A is
0-torsion-free. Recall that A is seperable provided that A is a projective Ae =

TC

A ®.AOP '-module; equivalently, A is separable if the multiplication map A® A —*A
is a split surjection of C4,.A)-bimodules. We say that A is split, it if is
isomorphic to a direct sum of full matrix algebras over ff. If A is split, then it is

a
also separable: if A=-Mn(6), the map A — * A®A given on matrix units by etj ^
en®en is a bimodule map splitting Tt above. We say that A is nil-separable
(resp., nil-split) provided that there exists a nilpotent ideal N of A such that

A/N is a separable (resp., split) algebra over ff. Let SPLIT (resp., SEP,
NILSPLIT, and NILSEP) denote the property split (resp., separable, nil-split,
and nil-separable) for algebra A over a domain ff. The ideal N for either
NILSPLIT or NILSEP must necessarily be the Jacobson radical of A.

Lemma 1.6. The properties SPLIT, SEP, NILSPLIT, and NILSEP are
generic and integrally generic properties.

Proof. We have already indicated earlier (above (1.5)) that SPLIT is
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both a generic and an integrally generic property.
Suppose the algebra A is ^-finite and torsion-free. Assume that AK is

separable, so that the multiplication map AK®AK ~~ * AK is a split surjection as a
(AK, ^4tf)-bimodule morphism. By (l.5(b)), the SSUR property of a morphism
is both generic and integrally generic; whence, SEP is both generic and
integrally generic.

Now assume that AK is nil-split, so there exists a nilpotent ideal NK of AK

such that AK/NK is a split semisimple algebra over K. The ideal N=NKr\A of A
satisfies N ®@K = NK (so there is no ambiguity in notation) and (A/AT) K —
AK/NK. Thus, there is a nonempty open set Q£=X such that (A/N)f = Af/Nf is
split if X/^Q. It follows that NILSPLIT is an integrally generic property. We
can also assume that (A/N) kw is split £(p)-algebra for all p e Q. By generic
freeness, we can further assume, after possibly shrinking 0, that N$ is an 6$
direct summand of A$. Thus, for £^Q, Nk(& is a nilpotent ideal in Ak^}

satisfying A k(^/Nk(& = (A/N)k(&- This proves that NILSPLIT is generic.
A similar argument establishes that NILSEP is generic and integrally

generic. D

Example 1.7. The property that an algebra be semisimple (over a field)
is not a generic property, although the properties that an algebra be split
semisimple or separable are both generic. For example, let k be an algebraically
closed field of positive characteristic p, and let 0 = k[t] be the polynomial
algebra over k in an indeterminate t. Consider the ^-algebra A =k[t1/p]. It is
free of rank p over 8. Then AK is a purely inseparable field extension of the
function field K = k ( t ) , obtained by adjoining a pth root of t. However, let p be
any non-zero prime ideal in 0. Then p= (t—X) for some X^k. The commutative
fe(p) -algebra Ak(^ is a free fc(p) -module of rank p which is generated as a fe(p)-
algebra by the nilpotent element t1/p — Xl/p. Hence, Ak(& is not semisimple, and
"semisimple" is not generic.

We conclude this section by indicating some generic module-theoretic
properties. We continue to assume that A is a fixed algebra which is finite and
torsion-free over 0.

Lemma 1.8. Assume that AK is nil-separable. If M is an A-module such
that MK is a completely reducible A-module, then there exists a nonempty open
subset Q^X such that Mkty is a completely reducible A ̂ -module for all

Proof. The argument in (1 . 6) shows that there is an ideal N of A and a
nonempty open subset Q of X such that if p ^ Q then Nk(^ is the nilpotent
radical of Akw and (A/N)k(^=Ak(^/Nk(^ is a separable fe(p)-algebra. Since MK

is a completely reducible .A^-module, it follows that AT^M^^O. By shrinking Q if
necessary, we can assume that Mp is (^-torsion-free, hence is an Ap-submodule
of MK. Thus, NpMp = Q. Then Nk(^Mk(p)==NpMk(p)

=0, so that Mk(& is a completely
reducible Afe(p) -module. CH
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Lemma 1.9. Assume that AK is nil-split. Let Lf,i = I,---,n,be the distinct

irreducible AK~modules. There exists a non-zero f^0 such that each Lf has an

Af~lattice L{ and such that for ip^Xf, the set {L{k(&, ' ' ' , Lnk(^ is a complete set of

representatives for the isomorphism classes of irreducible Ak(^-modules. Each L4<p)
can be assumed to be absolutely irreducible.

Proof. Let {aj} be a basis for AK formed by first taking a basis (a\, • • •, am}
for a Wedderburn complement S1 consisting of matrix units from each simple
factor, and second taking a basis (am+i, • • • , an} for radGO- For some non-zero
f^0, A/ is a free ^/-module with basis {aj. Let S' be the ^/-subalgebra of Af

generated by {ai, • • • , am}, so that S' is a direct sum of matrix algebras of the
form Mc (0f), c^Z+. Also, (am+i, • • • , an} is a basis for A/fl rad(Ajf). We have:

'A,=S'0(A,nrad(Ajr))f

SK=S, and

(A/nrad(Ajr))*=rad(Ajr).

The lemma follows immediately from these observations. [H

Lemma 1.10. Assume that AK is nil-split, and let Q=
MK be a composition series of an An'module MK. If M ^ Ob (A -mod) is any
0- lattice for MK, there is a filtration O^Mo^MiC: ••• CMW=M and a nonempty open
subset Q^X such that:

(a) MiK=Mf for all i;
(b) For p e Q and any extension field E^k (p), 0 =MQE

 cMi£ C ••• CMWjE =
ME is a composition series of ME.

(c) For 0<i<n, set Lj=M//M,-_i. // 0<i,j<n, then LiE=LjE if, and only if,

Proof. For each i, let M/=Mf HM, so that Mf-£ = Mf. Choose a non-zero
such that each

is 0/-free. If Li=Mj/Mi_i, the Lr-x are the composition factors of MJT. If LiK—LjK,
we can assume by (l.5a) thatLj=Ly. The lemma is now clear from (1.9).

The following result will be used below and again in § 4.

Lemma 1.11. Let M, N be 0- -torsion- free A~modules. There exists a
nonempty open set Q^^=Spec 6 such that if

Also, if B is an 0 -algebra such that BK— EndAK(MK), then we can assume that
(Mk(^} for all
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Proof. (Sketch) Let 0— »L— »Q— »M— »0 be a short exact sequence in
which Q is projective. Let X be the natural image of Homu (Q, N) in Honu (L, JV).
For any non-zero f^0, we have Honu(M, AT) / = HomA/(M/, JV/). So by (1.2),
after replacing 0 by a suitable localization (of the form 0f), we can assume that
X is 0-free. Certainly, Honu(Q, N)k = HomAf(Qk, #*) for fc = fc(p), p e Spec 0,
because Q is projective. Because the exact sequence 0 — > Honu (M, JV) — *
Honufo, JV) -» Z-» 0 is 0-split, Honu(M, N) k^EomAk(Mk, Nk) for any such k.
Similarly, localizing 6 even further we can assume that Honu(L, N)k —
Horruf t(Lfe, Nk). (Let L play the role of M in the previous discussion.) Now an
elementary diagram chase (using the snake lemma) proves the first assertion of
the lemma. We leave the second easy assertion to the reader. EH

Lemma 1.12. Let M^ Ob (A -mod) be 6- torsion-free with MK = ®1}=iM^ a

decomposition of MK into a direct sum of AK~submodules. Put Mt=M f! Aff. Then

MiK = M^, and there exists a nonempty open subset Q of X such that M/ = 0?=iM//
whenever Xf£=Q and M^) — ®l=iMk($) whenever p €= Q. Moreover, if each Mf is
absolutely indecomposable, we may assume that each M^) is absolutely
indecomposable and that for each i, j, M^(p)— M/Hp) if and only if MJK= MjK.

Proof. This result is clear provided we observe that if M is an
0-torsion-free A -module such that MK is absolutely indecomposable, then there
is a nonempty open subset Q of X such that if p €: Q, M^) is an absolutely
indecomposable Afe(p)-module. But let E = End^(M). Then EK — End^ (MK) is a
nil-split algebra with radical quotient K. Thus, here is a nonempty open subset
Q such that if £^Q then Ek($ is nil-split with radical quotient fe(p) by (1.9).
By (1.11), we can assume that Ek(p) = EndAk(Mk(^}. D

§ 2. Ext Calculations: the Ungraded Case

In this section, we continue to assume that A is an algebra which is
^-finite and torsion-free for some domain 0. The main result below shows that

for two fixed objects M, AT in A-mod, the dimensions of the spaces Ext3.¥ (Mfe(p),
Ar*(p)) are generically constant for n in a finite range. As an immediate
consequence, the property FGLDIM that an algebra B over a field k has finite
global dimension is a generic property.

Theorem 20L Let M, JV^Ob(A-mod). If m is a non-negative integer, then
there is a nonempty open subset Qm^X, depending on m, such that for p G Qmt any
extension field E of the residue field fe(p), and

dim Ext2£(M*, NB) =di

Proo/. Let F*—*M denote a resolution of M by free A-modules of finite
rank and let dl :Ft+1— * Fl denote the iih differential of this resolution.

Let E be any commutative ^-algebra. Since the terms of F® are finite and
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A -free, we have natural isomorphisms of complexes

(2.1.1) Honu(F', N)E = EomA(F*, NE} = HomAE(FE,

Let C*E denote the truncated complex

(2.1.2) 0

-̂ -» Honu. (Ff , #*) — Im (dJT) -» 0.

When E = 0, we delete the subscripts. Thus, C® denotes the truncation of the
original complex Hoiru(F*, JV) constructed in parallel with (2.1.2).

By (1.2) we can choose 0^/^0 so that the terms of the resolution F/— »
M/, each term of the complex C«/, the kernels and images of the differentials of
Ce/, and the cohomology modules H*(C*f) are all free ^/-modules.

If p^Z/=Q and E is an extension field of fe(fc), it follows that F|— *Ms is a
free resolution of the A^-module ME. Using the isomorphisms (2.1.1), it follows
that the truncated complex C«E defined in (2.1.2) is obtained from C9/ by base
change from 6/ to E. Hence, for

dim ExtS, (M£, JV£) = dim H" (C9E) = rmk0f Hn (C./) . lU

The above result will be a applied in Part II to g-Schur algebras and to
the problem of calculating the cohomology of GLn(q) in non-describing
characteristic. See (8.6), (10.2) and (12.6).

Corollary 2.2. Assume that AK is nil-split. The following statements hold:
(a) The property FGLDIM is generic.
(&) If AK has finite global dimension, then there exists a nonempty open set

Q<^X such that for each non-negative integer m and any two M, N^ Ob (A -mod),
the function DM,N : 0 — » N defined by setting

DSU(fc) =dim ExtJ(p,(Mfe(p), ATMp))

for p^Q is constant on Q.

Proof. For (a), suppose AK has finite global dimension d. If Lf, . . . , Lf are
(up to isomorphism) the distinct irreducible ^-modules, then, using (1.9),
there is a non-zero element g^-6 and, for each l<t<n, an ^-lattice LI in Lf,
such that for $^Xg, the set (L/MpJi^^n is a complete set of representatives for
the isomorphism classes of irreducible A k(^ -modules.

For 1 <i <n, let Pf —* Lf be a minimal projective resolution of Lf. Our
assumption on the global dimension of AK implies that this resolution has finite
length at most d. By (1.5f), there exists a finite complex P*— *L,- of A-modules
which identifies with the original complex Pj— »Lf after applying the base
change —®@K. Since the Pf are A^-projective, there exists a non-zero multiple
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/ of g such that each term Pif in the localization Pf/ of Pf is a projective
A/-module (see (1.5e)). We may also assume, at the same time, that L//, each
PI/ and each kernel and image in the sequence

(2.2.1) Pi/-* Lif

is a free ^/-module of finite rank. Finally, by (1.5 (g)), we may assume that
Pif—+Lif is a projective resolution of Lif as an .A/-module. Since P°/ — ¥ L i f can
be viewed as a sequence of short exact sequences, split ^/-modules, it follows
for $^Xf that Pfkw —*Likw is a projective resolution of the A ̂ -module £/*<p),
of length at most d. Hence A^) has global dimension at most d, proving (a).

If M^ Ob (A-mod), we use induction on the length of MK together with the
Cartan-Eilenberg construction to obtain, for the element / above, a projective
resolution QJ—*Mf (in the category of A /-modules) which has length at most d.
We now apply the argument of the theorem to this complex to establish (b).
Note that the choice of/ is independent of M. This proves (b). CH

§ 3. Ext Calculations: the Graded Case

In this section A = (&!<=% A { is aZ-graded 0-algebra, finite and torsion-free
as an ^-module. We assume the structure map 6 —> A has image in the
subalgebra A0 of A consisting of terms of grade 0. Let A-grmod denote the
category of finitely generated graded left A-modules. If M = (B t e TL Mi ^
Ob(A-grmod), each Mt is naturally a finite ^-module. Given a non-zero f^G,
Mf=:@iMif is a graded module for A/ = 0*Aj/. Given M and /^ZJ, then M(I)
denotes the graded A-module whose nth-grade is given by setting M(i)n—Mn-i.
The category A-grmod has enough projectives. For M, N ^ Ob(A~grmod), we
have for any integer n,

(3.1) Ext3 (M, N) = ©Ext2-grmod(M, N(t)).
i^TL

The main result below is to show that the Koszul property (for finite
0-algebras) is generic. To do this, we extend the results of §2 to the category
A-grmod. For example, if MK ^ Ob (A^-grmod) and Mf^M is an A-submodule
such that M'K=MK, define M^Qb (A-grmod) by setting M/=Af fl Aff, j^-TL. We
have M/jf = Mf for all ;. Since M has only finitely many nonzero grades, there
exists a non-zero f^0 such that the graded A/-module M/ has ^-free grades
M,-/, by (1.2). It is now straightforward to extend the examples in (1.5) to the
graded case. Thus, we obtain the following result whose proof we leave to the
reader.

Theorem 3o2a Let M, N e Ob (A -grmod) be 0-torsion-free. For m>0 and
all n, Q<n<m, there is a nonempty open subset Q<^X depending on m such that for
each £^ Q, each extension field E of the residue field k (p), we have:

dim Ext2£-grmod(M£, NE) =dim Ext^-grmod^^, NK).
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Now let B be a finite dimensional algebra over a field k. (Our insistence
that B be finite dimensional is largely one of convenience here.) Assume that
B = ® n^ o Bn is positively graded and that J50 is a semisimple algebra. Each
irreducible J5~module L defines an irreducible graded jB-module, still denoted L,
by setting L=L0 . Recall that B is a Koszul algebra provided that for any two
simple S-modules L, L' we have ExtS-grmodCL (0, L'(i')) ^0 implies that i' —i=n
for all integers n, t, i'. There is an equivalent formulation which we will use in
the proof below: B is Koszul provided that each irreducible jB-module
L (regarded as a graded B module concentrated in grade 0) has a projective
resolution * PI~»P0 —»L--» 0 in the category B-grmod in which the head of
Pi is the graded term of Pi of grade i. For more discussion of the theory of
Koszul algebras, we refer to [BGS], [CPS5], and [PS2].

Corollary 3.3. Assume that AK is a nil-algebra. If AK is a Koszul algebra
over K with finite global dimension, then there is an open subset Q^X such that for
each p^Q, the k(p)-algebra Ak(^ is Kozul. Thus, the property FKOSZ that a finite
dimensional graded algebra over a field is a Koszul algebra with finite global
dimension is generic.

Proof. Let Lf, l<i<n denote the (up to isomorphism) distinct irreducible
A jr modules. Using (1.9), we can replace 6 by a suitable localization (of the
form 0f for some non-zero f^6} so that each Lf has an A-lattice Lf and such
that for p^Z=Spec 0, the L^(P), i —1, '",n, are the distinct irreducible A*(P>
(which are absolutely irreducible).

Since AK is Koszul and of finite global dimension, for each t, Lf has a
graded projective resolution of the form

- - Pi, - Pf,_1 ->•••-> Pf0 -»Lf-» 0

which has length <d (for some positive integer d) such that each term Pf/ has
the form Pfy = Qfy(;"), where Qf/ is a graded projective .Ajr-module generated by
its grade 0 elements.

Adapting the proof of (2.2) to the graded setting yields a complex P f - e — ¥ LI
in A-grmod and 0 ¥= f €= 0 such that the complex P,-./"-*£«•/ is a projective
resolution in A/-grmod whose terms Pijf have the form Pijf = Qijf(j}, where Qiif

is a projective object in ^4/-grmod whose head is the term in grade 0. In
addition, we can choose/ so that the freeness conditions of (2.2.1) hold. Then
Pik($ —* Lik(p) is a graded projective resolution of Lik(^ of length at most d. The
characterization of Koszul algebras mentioned above implies that Akty is Koszul.

n

§ 4. Integral Quasi-Hereditary Algebras

We begin this section by recalling the definition of a split quasi-hereditary
algebra over 0. That done, we will let QHA be the property that an algebra is a
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split quasi-hereditary algebra. After showing QHA is both generic and
integrally generic, we apply (2.2) to obtain a result on generic constancy of
dimensions of all Ext groups. Finally we relate these results to the variations on
the notion of abstract Kazhdan-Lusztig theory introduced in [CPS4, CPS5] .
Here are the details.

Let A be an ^-algebra which is finite and projective as an ^-module. An
ideal / in A is a split (resp., separable) heredity ideal the following properties
hold:

(1) A/J is ^-projective.
(2) / is projective as a left A -module.
(3) J2=J.
(4) The endomorphism algebra End^ (A/) satisfies the property SPLIT

(resp., SEP) .
By definition, A is a split (resp., separable) quiasi-hereditary algebra over

0 provided there exists a chain Q=J0c:jlc:°~jt=A of ideals such that each
Jt/Ji-i is a split (resp., separable) heredity ideal A/Jt-i in the sense above. A
detailed discussion of this notion is presented in [CPS3, § 3]. When 0=K is an
algebraically closed field, the split quasi-hereditary property coincides with the
usual notion of a quasi-hereditary algebra over K [CPS1] . In this case, each
ideal /,- is an idempotent ideal; observe that when J=AeA for an idempotent e,

Let QHA denote the property of being a split quasi-hereditary algebra.

Theorem 4.1. QHA is both a generic and an integrally generic property.

Proof. Let A be an ^-algebra which is finite and torsion-free over 0.
Assume that AK is a split quasi-hereditary algebra as defined above. Then we

can choose a defining sequence 0 — /f c/f c "°/f ~ AK of idempotent ideals
satisfying the above properties. Let/j=.A H/f, and consider the sequence 0=/o
c/xc ••• c/, = A of ideals in A. For each i, consider the short exact sequence

Q-*Ji-^Ji->Ji/Ji-^Q. Then Jt/Jf is a torsion ^-module since /f2 = /f.
Therefore, there exists a non-zero f^0 such that each/*/ is an idempotent ideal
in Af. By (1.2). we can further assume that A///,-_i/ is a free ^/-module. Since
PROJ is an integrally generic property (l.5e), we may further assume that
Jif/Jt-if is a projective right ^/-module. Finally, by (1.6), we can assume that
EndU,/7l_v (Jif/ji-if) satisfies SPLIT as does End/i]k(p) (/<-i*(p)//i*(p>) for all p e Xf.
Thus, Af is a split quasi-hereditary algebra over 6/. Next, the local
characterization of quasi-heredity [CPS3; (3.3)] implies that for p €= Xf, the
algebra A^) is a split quasi -hereditary algebra.

Theorem 4.2. Let A be an 6 -algebra which is finite and torsion-free over 0.
Assume that AK is a (split) quasi-hereditary algebra and let f^0 be as in the proof
of Theorem (4.1). Then there is a basic open set Xh^X/ such that for X,
Xh, we have:
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(4.2.1) dim ExlS,(LCi)jr, L(JJL)K) = dim Exfi,fcU)*, L(fi)B)\

(4.2.2) dim Extl (A U) Kt L (ft) K) = dim Exfl, (A U) s. L (fi) E) ;

(4.2.3) dim Ext^ (L U) *, %) K) = dim Exl5, (L U) *, V(fi) E)

for all integers n and all field extensions E of k Op) .

Proof. It is enough to prove these statements taking E = k()p). First, if A is
a finite poset, and B is any quasi-hereditary algebra over a field fc with poset A,
then B has finite global dimension bounded above by 2c (A) ~ 2, which c (A) is
the depth of A, i.e., the length of a maximal chain in A. See, for example, [DR] .
It follows from (2.2a) that the global dimensions of the algebras Ak(&, pe^/,
are uniformly bounded above. Therefore, the three statements (4.2.x) all follow
immediately from (1.5e,g) and (2.2a). D

Remark 4.3. In [CPS4, 5, 7] the authors studied various parity conditions
for a quasi-hereditary algebra. Suppose that B-mod is a highest weight category
with finite poset A. Let £:A—*7L be a function. The left and right Kazhdan-
Lusztig polynomials are defined, for A,fjL^A, as

dim

When these (Laurent) polynomials contain only even powers of t, then J5-mod
has a Kazhdan-Lusztig theory (with respect to £). If .B-mod has a Kazhdan-
Lusztig and the algebra B is Koszul, we say that jB-mod has a graded Kazhdan-
Lusztig theory.5 In view of (4.2) and §4, we conclude that the property of
having a Kazhdan-Lusztig theory (resp., a graded Kazhdan-Lusztig theory) is a
generic property. Similar remarks apply to the strong Kazhdan-Lusztig theories
(SKL) and (SKI/) studied in [CPS7].

§ 5. Morita Theory

Let A and B be algebras over the domain 6 (finite and torsion-free as
^-modules, as usual). Consider the property MORITA that A and B are Morita
equivalent.

Theorem 5.1. MORITA is generic and integrally generic.

Proof. Suppose that the algebras AK and BK are Morita equivalent, so that
there exists an (AK, -B#)-bimodule MK which, as a left A#-module, is a projective
generator for A^-mod, and which satisfies End^CM*) = BK. Let M be the

The original definition of a graded Kazhdan-Lusztig theory, discussed in [CPS4], was given in
terms of a parity condition involving graded Ext-groups. It was later proved to be equivalent to
the one given above [CPS5].
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A(8>0J3op-submodule of MK generated by a #-basis for MK. Then MK = MK as
(AK, BK) -bimodules. By (l.5e), there is a nonempty open subset Q£=X=Spec 0
such that if Xf^Q (resp., J>^Q), then M/ (resp., MMP)) is a projective generator
for A/(resp., Ak(^). By (l.ll), we can also assume that B^p)) =EndAfe(p) (Mfe(p))
for all p^Q. If Z/£Q, then the isomorphism B/ = End^(M/) is automatic. We
have shown that MORITA is both generic and integrally generic. CH

§ 60 Derived Category Constructions and Equivalences; Tilting Modules

Again, let 0 be a Noetherian integral domain with quotient field K. Let A an
^-algebra, which is torsion-free and finite as an ^-module. Let Kb(A) be the
triangulated category whose objects are finite chain complexes X = X°:Q-^
Xm —* > X"1 —> 0, m <n, where each Xi £= Ob 04-mod), and whose morphisms
are homotopy classes of chain maps. The distinguished triangles X~* Y-^> Z~*
in Kb(A) are those isomorphic to ones defined by taking Z to be the mapping
cone of X-^Y. There are obvious localization functors Kb(A)-*Kb(A^) ,Kb(A)-+
Kb(Af}, 0^/eg?, Kb(A)-*Kb(Aj, and specialization functors Kb (A)-^Kb(Ak(^,
t) e Spec 0. If uK:XK-+ YK is a morphism in Kb(AK\ there exists X, Y e
Ob(/JL*(A)) such that XK = XK, YK=YK. Also, there exists a morphism u : X f —>
y/ in #6G4/) for some non-zero/^0 such that UK — UK. Further, if UK is a
quasi-isomorphism, then we can assume that u is a quasi-isomorphism. There is
also a nonempty open Q^Spec 0/ such that Uk(& is a quasi-isomorphism for all
p ^ 0. All these facts follows easily from the methods in §1 and will be used as
needed below.

In this section, we will consider the derived category Db'(A) =D6(A-mod).
It is the localization of Kb (A) by the multiplicative subset of quasi-isomor-
phisms. The distinguished triangles in Db(A) are those triangles isomorphic to
the images in Db(A) of distinguished triangles in Kb(A). For more details, see
[W; §10].

As with K*(A\ there are localization functors Db(A)-*Db(AK\ Db(A)-+
Db(Af) and Db(A)-^Db(Aj, taking X to XK, Xf, and X? (in the notation above),
respectively. (The categories Kb (A) and Db(A) have the same objects.) We
have that X^^0/ = Xf and X<S)%Ap = Xp. The exactness of localization also
implies that HQ(XK) =H°(X)K, H*(Xf) =H*(X)f, and HQ(X,) =H@(X} p for any
non-zero f^G and any p e Spec 0. Similarly, Hom^fe, YK) =Eoml(X, Y) K,
etc. forX Y^Db(A).

For ZeOb(^6(A)), Xk($ is defined in D*(A) for any p e Spec 0, though
is not generally a functor! (The correct derived category functor is X*-*

However, there exists a non-zero f^G such that terms Xt of X, the
cohomology groups fT (X), and the kernels and cokernels of the differentials X*
—*Xl+1 become free upon localization at/. Then Xf = ®nH

n(X) [~n]. For p^
Spec Gf, Xk^=X®Lk(& and H*(XkW) =Hn(X) k(,}. Similarly, given X, Y^
Db(A), there exists a nonempty, open Q^Spec A such that Hom|ft(^(^(^, y*^))
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Recall that X €= Ob (Db (A) ) has finite projective dimension provided there
exists an integer N>0 such that HonrKX 7) =0 for all Y^Ob(A~mod) and all
n>N. In this case, there exists a finite complex P of finitely generated projective
A -modules and a chain map P~ *X which is quasi-isomorphism. (For example,
use the dual of [W; (10.7.2)].) Then for any Y^Ob(Db(A}), the derived
complex RHoml^, Y) is represented by Homl(P, 7), and so lies in Db(A)
(rather than in just D(A)}. Of course, RHornjC^, 7) / = RHom^ C^/, Yf) by
exactness of localization.

The following elementary result summarizes some further basic features of
this localization/specialization process.

Proposition 6.1. (a) The property that two morphisms a,b :X—* Y in Db (A}
be equal is both generic and integrally generic.

(b} Assume that X^ Ob(D600) has finite projective dimension. For any
), there exists a nonempty open Q^Spec 6 so that

for all

Proof. To prove (a), consider two morphisms a,b:X~+Y in Db (A) and
assume that aK — bK. A morphism a : X ~ * Y is represented by an equivalence
class of diagrams X+-Z— >Y (in Kb(A)) in which 5 is a quasi-isomorphism; see
[W; § 10.3], for example. There are several ways to say that aK = bK in £>&(Ajr).
One way is to say that ax — bK means precisely that there is a commutative
diagram

ZK

in which XK*~~~ZK~~> YK defines a#, XK*~~ZK~^YK defines bK and WK—*XK is a
quasi-isomorphism. We can replace 6 by a localization 6/ to assume that WK—
WK for some W^Db(A), that all the maps in the above diagram are defined over
0, and that the maps into X are quasi-isomorphisms (and remain so upon
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specialization to any residue field fe(p)). Also, if two chain maps c, d : S—»T are
such that CK and dn are homotopic, then the chain homotopy can be denned over
some fff. So, we can assume that a — b in Db(A), replacing 6 yet again by some
Gf. Also, by our construction, ak(^ = bk^ for any p^Spec G.

To prove (b), there is a chain map PK—*XK which is a quasi-isomorphism,
where PK is a bounded complex of projective ^4^-modules. Replacing G by some
localization G/, we can assume that PK = PK for a bounded complex P of
projective A -modules. We can also assume that there is a quasi-isomorphism
P— *X which induces a quasi-isomorphism Ph($r*Xkty for all p^Spec 6. Thus,
after replacing Specl? by a smaller open subset in order to assume that all
kernels and cokernels in Homl (P, 7) are 0-free, we have

= Eoml(P,

This completes the proof. D

Lemma 6*2, The property that a triangle TI — > T2 — » T3 — > Ti [1] in D6 (A)
50 a distinguished triangle is both generic and integrally generic.

Proof. A diagram 7\ — > T2 — » T3 — > Ti [1] in Z)*(A) defines a distinguished
triangle if and only if it is isomorphic to the image in Db(A) of a distinguished
triangle in Kb(A). Thus, if TIK ~^ T2K -+ T3K -+ TIK [1] defines a distinguished
triangle in Db(AK), there is a commutative diagram

(6.2.1)

Af -* Af

in D6 (AJT) in which the botton row is the mapping cone sequence for a chain

map g* :X^ —*X\ in Kb(AK} and the vertical maps are isomorphisms in Db(AK).
Now apply the remarks in the first paragraph of this section, together with
(6. la). D

Let DERIVED be the property on pairs (A,B) of algebras (finitely
generated and torsion-free over their common base ring) which holds if and
only if the triangulated categories Db(A) and Db(B) are equivalent. Recall that
Db(A) is equivalent to Db(B) if and only if there exists a bounded complex T of
finitely generated projective A -modules such that A lies in the triangulated
subcategory of Db(A) generated by the direct summands of T and, in addition,
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Homj(T, T) =B, i.e., Hom3(T, T) = { * W See [R]. We will call such a[B ifn = 0.
T a projective triangulated generator relating Db (A) to Db(B). Now we can prove:

Theorem 6.3. The property DERIVED is both generic and integrally generic.

Proof. Suppose DERIVED holds for the pair (AK, BK\ with A,B algebras
over 0 as above. Let TK be a projective triangulated generator relating Db (AK)
to Db(BK\ Using (1.5 (e, f ) ) , we replace 6 by some 6f to assume that TK = TK,
for a bounded complex T of finitely generated projective Ajrmodules. Also,
since AK arises from TK by a finite number of steps of forming distinguished
triangles and direct summands, the same is true for A and T after a further
appropriate localization of 0, as follows using (6.2). (The fact that "M is a
direct summand of N" is both a generic and an integrally generic property is
very easy to prove and is left to the reader.) Finally, using (6.1) and perhaps
localizing 6 further, we obtain that B = Homj[ (T, T) and Bk^ = Horn *f tff t ) (T*<P),

). The theorem now follows. d

§ 7. Generic Quiver Theory

As in the previous section, 0 is a Noetherian domain with quotient field Kt

and A is an ^-algebra which is torsion-free and finite as an ^-module.
We will assume throughout this section that the following holds.

Hypothesis 7.1a. The algebra A#/rad(A#) is separable. (Equivalently, the
algebra AK is nil-separable in the terminology of § 1.)

If (7.la) holds, the Wedderburn principal theorem implies that there is a
sub-algebra Af complementary to the radical NK of AK. Clearly, NK = NK = NK

where N=A C\NK. Similarly, A?=Ao#=A0tf where A0=A fl Af. We will usually
require, in addition to (7.la) that

Hypothesis 7.1b. With the above notation, we have that A = A0®N, and
N=M@N2 for some (A0, A0) -bimodule M.

In the presence of (7.la), we can always replace 0 by a localization 0f in
order to assume that (7.1b) does hold. Indeed, we could even assume that A0 is
separable, i.e., the algebra A is nil-separable, (in this case, standard
homological arguments also show that AO is uniquely determined up to an inner
automorphism of A. We do not know any way to canonically choose M inside A,
though as a bimodule it is isomorphic to N/N2.)

We will now take up the question of generators and relations for A and its
localizations and specializations. Observe that in (7.1b), A is generated as a
ring, by A0 and M. More precisely, since M is an (A0, A0)-bimodule, we can
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form the tensor ring

where Tn=M®n=M®A0'"®A0M and the multiplication is defined in the obvious

n times
way. Then there is a unique surjection it : T — » A which respects the inclusions
of AQ® M into both T and A. We view M as a direct analogy of the "quiver
module" used in the theory of finite dimensional algebras.

Now let R be any finitely generated (AQ, AQ) -sub-bimodule of T. We say R
is a module of relations for A with respect to AQ and M (or that the pair (M, R)
gives generators and relations for A with respect to AQ) if Ker(Tr) is the
T-ideal generated by R. (Notice that R necessarily is contained in only finitely
many grades of T, defined in terms of the number of tensors of M. We will
usually take R to be contained in grades ^ 2, though the definition does not
specifically require it.) Given a candidate finitely generated Ao~sub-bimodule R,
we will say the property QUIV(A0,M, R} holds if R is a module of relations for
A. If, in addition, R is a direct sum of its homogeneous projections of various
grades, we say HOMOG (A0, M, R} holds, and QUAD(A0, M, 1?) holds if R is
entirely contained in grade 2. Also, if HOMOG (A0, M, R) (resp., QUADUo, M,
#)) holds for some A0f M, R, we say that TIGHT (resp., QUADRATIC) holds
for A.

Theorem 7.2* Assume that A satisfies (7 .la, b} and that R is a finitely
generated Ao-submodule of T = TAo(M). The properties

QUIV (Ao, M, R), HOMOG (Ao, M, R), QUAD (Ao, M, R),

are all generic and integrally generic. Similarly, the properties TIGHT and
QUADRATIC are generic and integrally generic for any algebra A satisfying
(7. la).

Proof. Suppose that QUIV (A or, MK, RK) holds. Choose n>Q so that JVf =0;

thus JV* = 0, and Tf must be contained in the T#~ideal generated by RK. The
latter ideal is the J^-submodule generated by all products M*RM3 with i+j>0.
Upon suitable localization, Tn will be contained in the ideal generated by R. In
other words, we can assume that the T-ideal generated by R has as quotient an
0-algebra A', finite as an 0-module, and A'K = AK. Localizing further, we may
assume that A/ = A/ for some non-zero f^0. Now QUIV (A 0/, M/, Rf) follows,
and certainly HOMOG (A 0/, M/, £/), QUAD(A0/, M/, Rf) follow from their
counterparts over K just by requiring Rf to be torsion-free over 0. It follows
easily that QUIV(A0, M, R), HOMOG (A0> M, R), and QUAD(A0, M, R) are
generic and integrally generic, as are TIGHT and QUADRATIC. (Notice that if
we do not have Ao, M, # to begin with, it is easy to obtain them, assuming
QUIV(Ai MK, RK) for the algebra A*. We can write R* = RKt where R = TC\RK

once AO and M have been defined (passing to a suitable localization, if



GENERIC REPRESENTATION THEORY 55

necessary). Observe that the intersection T D RK involves only finitely many
terms.) D

As a corollary of the proof, we have

Corollary 7.3. Assume that A satisfies (7.1a,fc). Then there is at least one
module of relations R, in grades ̂  2, for A , with respect to some AQ and M as above.

Proof. This follows from the proof of the theorem, since it is well-known
that QUIVCAf, MK, RK) may be satisfied using RK concentrated in grades > 2.
This property is inherited by R = T fl RK and its further localizations in the
above proof. It is also easy to argue more directly: By adjoining finitely many
elements to R, we may assume that the ideal it generates contains Tn (where n
is as in the above proof). Then, as above, the quotient by the ideal generated by
R is a finitely generated by 0 algebra which clearly has A as a homomorphic
image (from (7.1b)). It is then an easy matter to add finitely many elements (of
grades > 2) to R so that this quotient is isomorphic to A. D

Part II: g-Rational Representation Theory

In this part, we let 3? = E[£, r1] be the ring of Laurent polynomials in an
indeterminate t. Let (W, S) be a finite Coxeter system, and consider the
associated generic Hecke algebra H = H(W, 3?) over 2f. This algebra has basis
{tw}wew satisfying the relations

, if SW>W/TT N

(H.l) TSTW= , . .
trsw-r (t—l) TW, otherwise

For /I CIS1, Wi= <s>5e,{ denotes the corresponding parabolic subgroup of W,
while Hx = <rs> se^ is the corresponding parabolic subalgebra of H. Thus, H* =

i, 3f). Also, put

(H.2) *,= TW and y*=
W<£Wi

The left ideals Hx* and Hyx have natural interpretations as induced modules.
Define linear characters on H by

rw *-* t*(w\ and SGN :H-» %, rw ^ (

for w& W. Putting IND^IND^ and SGN^ = SGN|ftf we have

Tw)xt and Twy^

so that 2?^(resp., 2fy^) is a module realization of IND^ (resp., SGN^). It follows
easily that

E.5) /^ = indfJNDa and
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Similar comments hold for the right ideals x*H and yjl.
There is a f^-automorphism 0:H~*H given on generators by (P(rw) =

(—i) *(W}T~-\. If M is a (right or left) //-module, let M0 denote the F-module
obtained by twisting the action of H on M by 0. For example, (Hx*) 0 = Hy^ for
all ^^5[DPS3; (1.4c)]. Also, IND0^SGN.

Let R be a commutative ring and *£—*R be a ring homomorphism in which
t*-»q^R. The algebra H(W, <£)R = H(W, 3?) 0^ will be denoted by H(W, R, q}
and sometimes simply by just H(W, q) R or even H(W, q). Although it should
always be evident from context, we alert the reader that the "q" may have
several different meanings in what follows: for example, it is often a power
q = rd of a prime r, while if k is a field of characteristic p=£r, then in the Hecke
algebra H(W, q) k, q—q ° 1* is a root of unity in the field k.

For w& W, let TW denote the #-basis vector TW®%\^H(W, q). The relations
(II.l) above provide a presentation for the /^-algebra H(W, q). The characters
IND and SGN on H(W, q) define linear characters WD:H(W, q)-+R and SGN:
H(W, q)~*R by base-change, and the isomorphisms (II.5) hold over R. Finally,
the automorphism 0 induces an automorphism on H(W, q).

§ 80 The Geek-Gmber-Hiss Very Large Prime Result

In this section, let (W, S) = (§>«, S), where @m is the symmetric group of
degree m and S1 = {(1,2), (2,3), • • • , (m — 1, m)} is the set of fundamental
reflections. Then H=H(®m, %), %=Z[t, r1].

Let V a free ^-module of rank n>0. The Hecke algebra H acts on V®m

once an ordered basis (t>i, • • • , vn} for V has been fixed. I f / — 0"i» ° 0 0 > /»*) *s a

sequence of integers satisfying 1 <jt<n, for all i, then write ]a— OVl(i), '",
/a-Hm)) for tre@w and put v/ = t;y1(8) — (E)i;ylll e 70W. For 5= (t, i + l) es, the
formula

(8.1) vjrs=\tVJs\ /f ^"~Jm

lf/s"r U""!/^/, otherwise

defines a right action of the generators rs, s €= S, of // on y®m. This action
extends to define a right H-module structure on V0m. (See [DD; (3.1.5)].) As
a right If-module, F^^ decomposes into a direct sum of various copies of the
induced modules x*H, /l^S; see below. The endomorphism algebra

is the f-Schur algebra of bidegree (n, m) over 3?. For any commutative ring R
and homomorphism 2? —* R, t^q, we often write Sq (n, m) or St (n, m) R for the
algebra St(n, m)R = St(n, m)(£)%R for the corresponding g-Schur algebra over R.
The natural map St(n, m) —*• EndH(@m,/?^) (VRW} defines (by base-change) an
isomorphism over R

(8.3) Sq(n,m)R
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See [DPS1; (2.3.4), (2.3.5)], or the proof of [DJ1; (3.3)] using [DPS1;
(1.1.1)].

The proof of (8.3) depends, in fact, on another description of the <?-Schur
algebras that will be useful in the sequel. Let A(n, m) (resp., A+(n, m)) be the
set of compositions (resp., partitions) of m with n (resp., at most n non-zero)
parts. Thus, 2^A(n, m) is a sequence /J— Ui, • • • , /U) of non-negative integers
such that /}H ----- \-An

 = m. If X i ^ X z ^ - • • • , then A is a partition of m. Any A ^
A(n, m) determines a subset /U) of S1 as follows. Let ^U) be the Young
diagram of shape A. Filling in the boxes in the first row of ^U) consecutively
with the integers V", /ii, the second row with the integers /li + l, • • • , ^i + xU,
etc. defines a standard tableau t* of shape X. Let /U) be the subset of 5
consisting of those 5 which stabilize the rows of t*. However, we usually write
Wt, xxt yx, etc. in place of W/u), */(/o,3>/u>, etc. Then

(8.4) V®m= 0 x,H= 0

as right ff-modules for some choice of non-negative integers fa = fa (n, m)
(A<^A+(n, m)) and m U £ S) [DD; (3.1.5)]. The second isomorphism above
follows from the fact that W* and W# are conjugate in W, then XjH = xuH. Now
(8 . 3) follows as above. Sometimes it is useful to work with the algebra

(8.5) A=EndH( 0 x*ff).

By (8.4), A is Morita equivalent to St(n, m).
If /I is a partition of m, write X i— m. The poset structure ^ on the set

A+(m) =UU»-w} of partitions of w is defined by /!= (y?i>^2> •••) <^= (^i>
//2^"-) if and only if /(i<^i, /ii + ^^^i + ^a, •" . Thus, /1+ (n, m) is a coideal
in /L+(w). By [DPS2; (2.5)], there exist (left) St(n, m) -modules AQ), X e
A+(n, m), such that for every field fc and algebra homomorphism 2f— >fe , ^ h^<?,
S^(n, w) -mod is a highest weight category with poset A+ (n, m), and standard
objects A( / l ) f e = A f f U). In particular, the irreducible 5 f f(w, m) -modules L fe(/l) =
L f f U) are indexed by the partitions A^A+(n, m}.

We will need to know that the <?-Schur algebras (or at least certain ones of
them) are nil-split Although this fact can be deduced using the theory of
quantum enveloping algebras, it can also be established directly using the
approach to <?-Schur algebras given in [DPS2] . First, there exist (left) St (n, m) -
modules V (/O, A^A+(n, m), such that for any specialization 3£—>k, t*-+q, into a
field k, the V (2) &, A ̂ A+(n, m), are the costandard objects in Sq(n, m)-mod.
(These modules can be defined first by taking 3f~linear duals of the standard
modules for the category mod-S^n, m) of right modules, using the right module
version of [DPS2] .) For k above, we have Ext4(w,m) (A (A) *, V U) fc) = 0, for
i>0, by standard highest weight category theory. By [DPS3;(4.4)]f

) (A U),

It is known that the QKO -algebra H^t) is split semisimple, so that St (n,
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is a split semisimple algebra. In fact, it has irreducible modules A
* ^A+(nt m). Thus, Homs,(w,m)(gXf) (AQ)(^), V U)(Q(n) S<Q)(f) . Since
(AGO, V (X)) is a finitely generated projective module for 2? (by

another commutative algebra argument using [DPS2; (0,1)3), it follows that

(Lk U), Lk U) ) =Homsf(M) (A U) ,, F U) *) =&,

so we conclude that Sq(n, m") /rad(Sq(n, w)) is a split semisimple algebra.
Now let / be a positive integer, let q = ̂ =^/T^ C be a primitive £th root of

unity, and set K = Q$(q). Consider the Dedekind domain % (£) of algebraic
integers in the number field K = ^(q). There is a homomorphism 3?— * $£(£)
under which t*-*q. Applying (1.9) and the previous paragraph, with K the
quotient field of 2f (£), there exists a non-zero/€=3?(^) such that each LK(X) has
an Sg (n, w) /-lattice I U) such that for all p e Q = Spec 3? (/) /, the I7 U) *(„>, X e
yl+(n, m), are the distinct irreducible 5€(n, m) Mprmodules. In the previous
sentence, Sq(n, m) denotes the 2T(^) -algebra St(n, m)%(i). We can, in fact,
assume that Lf(X)k^=LkW U).

We can now apply the results of §§ 1,2 to obtain the following result As
we discuss in the remark following, an immediate consequence of the theorem is
the Geck-Gruber-Hiss very large prime result.

Theorem 8.6. With the above notation, we can also assume Q^Spec
has the property that for p^Q and k=k($),we have:

(86 1)
dim

for all A,

Proof. The first assertion on composition factors follows from (1 . 10) since
we have already argued that St(n, M)K is nil-split. Finally, the second
Ext~ assertion follows from (2.1), together with the fact that the algebras
St (n, m) k have finite global dimension uniformly bounded above by 2c (A+ (n,
m) ) — 2, where c (A+ (n, m) ) is the length of a maximal chain in A+ (n, m) [DR] .

n
Remark 8.7. The first assertion in (8.6) proves "generically" an old

conjecture of James Da; § 4] : Suppose that, modulo £, £ is equal to the smallest
positive integer e with 1 + CH ----- hCe~1 = 0.6 (Thus, £=p if £ = 1 modulo p, and,
otherwise, £ is the order of C modulo p. So we are requiring, simply, that £ be p
whenever it happens to be divisible by p). Then James conjectures that each
LK(X] remains irreducible upon reduction "modulo £", provided £p>r. Gruber
and Hiss [GH; § 103 remark that this follows for (£ fixed and) p very large
(that is, sufficiently large, with no explicit bound) from an argument of Geek,

GThe formulation in Qa] contains a misprint, omitting the "modulo
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made originally in a Hecke algebra context. This conjecture is also a conse-
quence of the above theorem, particularly of the first part, which we found
before we were aware of the Geck~Gruber-Hiss remark. The result implies
there are generic character formulas for modular characters of the finite general
linear groups in "non-describing characteristics," cf. [S].

There is an analogous large prime result in the "describing characteristic"
case for each type of root system, by the much more difficult work of
Andersen-Jantzen-Soergel [AJS]. It is an intriguing question as to whether or
not an easier proof might be found of their result, better fitting the "generic"
context of this paper.

§ 9fl A Morita Equivalence for GLn(q)

Recall that k is a fixed algebraically closed field of positive characteristic p.
Let (ff, K, k) be a ^-modular system (i. e., 6 is a discrete valuation ring with
quotient field K and residue field k). The following simple lemma is key to our
approach.

Lemma 9.1. Let R be an 6-algebra which is free of finite rank over € and
has the property that RK is a semisimple algebra over K. Consider an exact sequence
0—»JV — * p — » M — » 0 of right R-modules which are free of finite rank over 6.
Suppose that the R-modules NK and MK have no composition factors in common and
that P is a projective R-module. Then M is a projective R//-module, where J is the
annihilator of M in R.

Proof. Because RK is semisimple, and NK and MK have no common
composition factors, we have that NKJK = NK. Thus, N/NJ is a torsion ^-module.
The surjective map P—»M yields a surjective map 7c:P/PJ—»M. The right
exactness of the functor—®RR/J implies that Ker (TT) is a homomorphic image of
N®RR/J = N/N], so Ker(Tr) is also a torsion ^-module. But R/J is evidently
^-torsion-free, so, because P is a projective ^-module, P/PJ is also
^-torsion-free. Since Ker (TT) is a submodule of P/PJ, it is also 0-torsion-free,
so finally Ker (TT) =0. Thus, M=P/PJ is a projective R/J-module, as required, d

Now we can immediately obtain:

Theorem 9.2. Assume the hypotheses of (9.1). If, in addition, every
irreducible R/J-module lies in the head of the right R-module M, then the functor
F(—) =HomJR//(M, •—) defines a Morita equivalence

(9.2.1) F:mod-£// -^ mod-End*(M)
Morita

of right module categories.

Proof. We regard M as a left End#(M)-module, so that in (9.2.1)
Horn/?// (M, X) is a right End#(M)-module for any #//-module X. The hypoth-
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eses imply that every irreducible R/J-module is a homomorphic image of M.
Thus, by (9.1), M is a projective generator for the algebra R/J and the
conclusion follows. D

For the rest of this section, we consider the group G (q) = GLn(q). It has
order given by

(9.3) \GLn(q}\=q (q~l)n • 9~:1=2 <i L

Recall that q=rd is a power of a fixed prime r. In what follows, we assume that
the quotient field K of 0 has been taken large enough so that it is a splitting
field for G(q). We will verify that the hypotheses of (9.2) above can be
achieved for R = 0G(q).

Fix a set $ of representatives from the G (q) -conjugacy classes. If b is a
non-negative integer, let #&' be the subset of x^^ having order relatively prime
to b. If Gss denotes the set of semisimple elements in the algebraic group G, put
G (q) SS = GSS 0 G (q) and <8ss = G(q) ss fl #. Let <gss# be the set of /-elements in
%)SS. Any s^G (q)ss has centralizer ZGW (s) in G (q) of the form:

m(s) Fl
(9.4) Zew (s) = II GLw (q"'(s>), where ) a,- (s)n, (s) =n.

= ^**

}}. Put

A+(n(s))=A+(ZG(q}(s))

for the set of multi-partitions X of 11(5), i. e., A= (2(l\ — , A(m(s)}), where ^(1)»-
wiG), • • • , >?(m(s))h-nm(S) (s). For a fixed s^G(q) ss, we will make constant use of
the following configuration of subgroups of G (q) :

G(q) =GLn(q]

Hs (q) =EGLai
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In this set-up, N(m) = N X ••• X N (m times) for a subgroup N of G(q). The
inclusions are the natural ones; in particular, Ts(q) is a maximal torus of

If L is a Levi subgroup of GLn denned over IF?, let RL$ be the
Deligne-Lusztig induction functor from the (complex) character group X(L(q))
of L(q) to the character group X(G(q)} of G(q). In case L(q) is the Levi
subgroup of a parabolic subgroup P(q) of G(q), then Rt$ agrees with
Harish-Chandra induction from mod-CL(g) to mod-(CG(<?), and so takes
modules to modules. (More generally, for any commutative ring Z, define
Harish-Chandra induction Ruq] : mod-ZL (q) — * mod-ZG(#) as follows: let
P(q) = Ls(q) IX V(q) be the standard parabolic subgroup associated to Ls(q),
and, for an RL(q) -module Q, let Qr be the J?P(^) -module obtained from Q by
inflating the action of Ls(q) on Q through the natural homomorphism P(q)—*
Ls(q\ Then R%&Q = md%&Q'.)

The irreducible ordinary characters of G (q) were first parameterized and
determined by Green [Gr], while a recasting of those results in terms of
Deligne-Lusztig theory7 is presented in [FS] : The distinct irreducible
characters {%$,??} are indexed by pairs (5, r?), where s^^ss and f] ranges over
the irreducible unipotent characters of the centralizer ZGW (s) described in
(9.4). In turn the set A+ (n(s}} indexes the irreducible unipotent characters of
ZGW(S). For X &A+(n(s)\ let r)* denote the corresponding unipotent character.
For simplicity, write x*,* (or XS,A,G(«) in case G (q) needs mentioning) in place of
Xs,yf In the next paragraph, we elaborate on the construction of Xsj-

As in [FS; (1.16)], 5 ^ $S5 can be associated with a linear K- valued
character <T on ZGW(S). For X ^ A+ (n (5) ) , £]&(*!(S)STJ*:=XSJL,L,W is an irreducible
character of Ls(q) for some choice £ = + 1. Further, RL$XS,*,L,W ~ Xs,t- If 5 ^
^sstf and t^ZG(9)(s) is a ^-element, then Zc(q)(st) ^ZGW(S), while Lst(q) is a
subgroup of Ls(q). Therefore, the transitivity of Harish-Chandra induction and
the above description of XS.A imply that

(9.5a) Xst,*=RL&\Xst,*,Ls(q), s^(8ss,p',te=ZGw(s') ap-element.

Since the unipotent characters of ZG(«) (5) are just the constituents of the trivial
character induced from a Borel subgroup, the characters S^ are precisely the
irreducible constituents of R^w (s), where we have written Ffor s1r5(g). Thus,
by transitivity of Deligne-Lusztig induction, the characters Xsj are just the
characters appearing with nonzero coefficient (positive or negative) in RT%) (s),
i.e., in terms of the inner product on group characters, we have, for any
irreducible character f on G (q).

(9 . 5b) (6, RGT% (S) ) =^0 » e=x»,A, some l*-n (s).

7It would be possible to avoid Deligne-Lusztig theory, and just use Green's results, by taking
the approach in [DJ2; § 7] to the results in [FS]. However, some aspects of the Deligne-Lusztig
formalism are conceptually simplifying.
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Letf(X) ^IFgM be an irreducible monic polynomial of positive degree d

and distinct from X. For any root C e IF« of /CO =0, [DJ2; p.29] defines an
irreducible cuspidal representation Ci(0 of KGLd(q).s The representation
Ciz(Q depends on a choice of an embedding FJ* C_»(CX. They also define an
6GLd (q) -lattice Ce(Q of Cjr(0- By [DF;(4.4)]f the character of the GLd(q)~
module CK(Q equals ± Rffiff (0 where C is a (regular) linear (/IT- valued)
character on a torus T'(q) =F^ of GLd(q}.

Now fix s^^ss. We can assume that

i, ° ° ° , Si, •" ,5m, '", 5m),

where the semisimple matrices si, • • • , sm have distinct irreducible characteristic
polynomials fl (X), —,fm(X) ^Wq[X]. For each i, let C<eB?« be a fixed root of
//Cxr) =0 and form the representation

m(s) _
(9.6) CX(S) = ®C*(G)®"'(S)

« = 1

of the Levi subgroup Hs(q) of Ls(g). It has an @Hs(q) -lattice

m(s) ^
(9.7) Q(s) = ®Cfi(G)®B'(s).

1 = 1

Since Deligne-Lusztig induction behaves well with respect to group products,

the Hs (q) -module CK(s) has- character ±R%$(IJL), where ^ = 0f=
(f)C?;2|(5).

As already mentioned above, [FS; (1.16)] associates a linear character ^
of Ts(q) to 5. Tracing through the construction used in [FS; (1.16)], we find
that Fcan be defined as a product of characters jM=®?L(i)5?|Cs). Each character Ji
is linear and regular on IF*«, obtained as follows: All finite fields in sight are
identified in a fixed way with a subfield of F f f> and a generator is chosen for the
multiplicative group of each such subfield. Thus, all finite fields under
consideration may be regarded as having a fixed generator. The linear character
S/ is obtained by sending the generator of ff*«, to Si^IFJ and following this map
by a chosen fixed injection ]Fgc :(^/»1 = Cx (for some prime pi, denoted £ in
pPS]). We now redefine CK(S) to be compatible with [FS] 's choice of £ That is,
^i=s'i for each i, and thus we take {i = s* above. None of the properties quoted
from [DJ2] depend on their specific indexing of the cuspidal representations

Recall again that Harish-Chandra induction Rfyfy agrees with the
Deligne-Lusztig induction functor on characters.

8In the notation of [DJ2], the root £ is denoted s.
Also, the meaning of the original C#(0 is changed in this new notation only by a new

embedding IF J* c_>cx, which is a matter of choice in any case.
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Lemma 9.8. For s e f SSt let Ms,Ls(q),R=RL
H

s^)CR (s) , where R=Kor6. Then

m(s)

(9.8.1) Endju.w (Ms>Ls(q}>R) =
«=i

Furthermore, Ms,Ls(q),K has character of the form

(9.8.2)

^h-n(s)
all multiplicities

Proof. Letw=ro(s). In case w = l, (9.8.1) is noted below [DJ2; (2.17)].
The case m> 1 follows formally from that fact. The second assertion (9.8.2)
follows from (9.5b). CH

For a partition fo—m and a commutative 3f-algebra jR(with t*-*q), let

as in (H.2) in the Preamble to Part I. Any ^^n(s) defines an element

If JV is a submodule of an ^-module M, let V^V be the smallest ^-submodule of
M containing N such that M/JN is ^-torsion-free. With the notation of (8.4),
let mx = Il^(" (w« (5) , w,- (s) ) and form the 0LS (q) -module

(9.9) Ms,Ls(q}>0= 0 Jy*Ms,Ls(
^Kn(s)

For 7e-^ or k, put MS,^)^-MS(L5(,),^^. If ^=

1, so Jy*Msj,s(qM ~Ms,Ls(q),&. Hence,

(9 . 10) ch Ms^J(<r)^= ^j c^x^.Ls(fl), where all o=^0
/lh-n(s)

by (9.8.2).

Lemma 9.11. For s^^ss and MSjLs(q),@ as in (9.9), we have an isomorphism:

_ m(s)
^> (nt (s), m (s) ) e.

1=1

Proof. Use (8.4) and the proof of [DJ2; (2 . 24vi) ] for each factor. D

The main goal of [FS] is to classify the ^-blocks of G (q). These are
indexed by pairs (5, /I), with 5 e ^SStpr = ^ D ^" and 2 an 0-core of a
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multi-partition in A+ (ZG(q) (5)). (Here e= (ei, • • • , em(S)\ where 0,- is defined in
terms of the order of 5,-. We do not require the precise definition.) We have the
following result, which follows immediately from remarks above and [FS; (7 A) ]
(see also [DJ2;§7]):

Lemma 90128 For distinct elements s, s' ^ ftss.p', the characters %sj, Xtfj'
belong to distinct blocks of KG (q) for any choice of multi -partitions X^~n(s) and

/TI— n($0. Thus, the characters in RLs^Ms>Ls(q),0 and RL$q)MS'tLs,(q) belong to distinct
blocks.

For s ^ ^SS.P', define BS,GW (resp., BSlLs(q)) to be the sum of the blocks of
0G(q) (resp., 0Ls(q}} which contain a character of the form %stj (resp.,
Xst,A,Ls(q)} , where t^ZG(q)(s) is ap-element.

Lemma 9.13. Harish- Chandra induction defines a full embedding

(Q 1Q 1^ nG(q) . - _ _ . _ ! _ptorsion- free r m^-D*03"8*011-*1"66
(£ . Id . l; RLs(q} . mod BSjLs(q) C_» mod BSfG(q)

from the category of 0- torsion -free Bs,Ls(q)~modules to the category of 0- torsion- free
Bs,G(q) 'modules. The functor induces a character isometry, takes projective
indecomposable modules to projective indecomposable modules, preserving distinct
isomorphism types.

Proof. The fact that Harish-Chandra induction ^(f«) ^rom characters in
Bs,Ls(q) to characters in BS,GW is an isometry follows from (9.5a). Now let M, N
be ^-torsion-free BS,!̂ ) -modules. The Mackey decomposition theorem implies
that

Horn,™ (ff^&M, RG
L%}N) =Hom^(,) (M, N) ®X,

where X is a torsion-free ^"-module. Since RG(fq) is an isometry, we have X = Q.
Thus,

s(?) (M, N\

so that the functor in (9.13.1) is a full embedding. Obviously, this functor
takes indecomposable modules to indecomposable modules, and it preserves
distinct isomorphism types. It remains to check that if Q is a projective 0Ls(q)-

module, then R^Q is a projective 6G(q) -module. Let P(q) =Ls(q) K V(q) be
the standard parabolic subgroup associated to Ls(q), and let Q' be the 0P(q)~
module obtained from Q by inflating the action of Ls(q) on Q through the
natural homomorphism P(q)-+Ls(q). Since V(q) has order prime to p, \V(q)\ is
a unit in 0, and a standard argument shows that Q' is a projective 0P(q)-

module. Thus, R™}Q = md%$Q' is a projective 0G (q) -module, as required. D
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Corollary 9.14. For s e f M^f dg/ws

<8> -V*' (n< (s), n* (s) ) $.
i

Proof. This follows from (9.11) and (9.13). D

Lemma 9.15. For s^^ss.y, the &G (q) -module MStG(g)i0 satisfies the hypothesis
of (9.1).

Proof, By [DJ2; (3.7)], the 6LS (q) -modules MSiLs(q)t& satisfies the hypothesis
of (9.1), so there is an exact sequence

(9.15.1) 0 — > Ns>Ls(q},6 — » Ps,Ls(q).o — * MSlLs(q),e — * 0

in which the irreducible characters in Ns>Ls(g),@ all have the form JCst,*,Ls(q), where

l^=tezG(fl)(s) is a/>-element. But i?is
((2)Xsu^s(«) = Xsu and ^(S,X^.£,(ff) = X^ by

(9.5a). Thus, we can apply Harish-Chandra induction to (9.15.1) to obtain the
desired conclusion. [H

For each s^^ss.p', let Js(q) be the annihilator in Bs,G(q) of MS,GW,0. Define
j(q) =lLse<$ssJs(q). Since CG(q) =®s^ss,p,Bs,G(q), we have:

(9.16) 6G(q)/j(q)~ 0

Now we can establish the following fundamental result.

Theorem 9.17. Let k be an algebraically closed field of characteristic pX)
and let G(q) — GLn(q), where p does not divide q. The algebras 0G(q) and
@G(q)/j(q) (defined in (9.16)) have the same irreducible modules over k. There is
a Morita equivalence

(9.17.1) F: mod-0G (q) /] (q) ^ mod- © ® Sq* « (m (s) ,m (5) ) 0,
Morita segssj>, i=l

defined by F(~ ) = Ho I%G (<?)//(<?) (® se<@ss,pM s,G(q),@, ~). The functor F induces a
Morita equivalence

_ m(s)
(9.17.2) F: mod-kG (q) /j(q) k ̂  mod- © <8> Sq^ (m (s), n, (s) ) *

Morita SG$a,p, *=1

by putting F(-) ==EomkG(q)/J(q)ll(®s^ss,l>, M SlG(q),k,

Proof. For s^VHssj', Ms,n(q)tc is a projective jBs,G(9)//5(<3r)~module by (9.15)
and (9.1). Hence, it is a projective 0G(q)/j(q)~ module. It follows that

M= © Ms,G(q),G
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is a projective 8G(q)/j(q) -module.
By [DJ2; p. 356], the irreducible kLs(q) -modules appearing in the head of

Ms,Ls(q),0 are indexed by the set of multi-partitions /ti— n(s). Hence, using (9.13),
we see that the head of M s,G(q),@ — R^^M s,Ls(q),0 has as many non-isomorphic
irreducible modules as there are multi-partitions /t*~ n(s). On the other hand,

(9.12) implies that for distinct s, s' ^ ^ss,/>'> the modules Ms,G(q),@ and MS',G<q),0
belong to distinct blocks. Since the number of irreducible kG (q) -modules equals
the number of p'-conjugacy classes in G(q), namely, the cardinality of the set

{(s, /O \s^%!ss,p', ^h~ 11(5)}, we see that MS.GW,® has all the irreducible kG(q)~
modules of Bs,G(q) in its head. Thus, 0G(q) /j(q) and 0G(q) have the same
irreducible modules over k.

We can apply (9.2) and (9.14) to conclude that the ^-algebras Bs,G(q)/Js(q)
and

EndBsG(9)

m(s)

are Morita equivalent by the functor F s(— ) = Honi0G(<?) (MSjG(q),0, ~). Therefore,
F(-~) = Hoi%G(0) (M, — ) defines a Morita equivalence as required in (9.17.1).
Finally, base change defines the Morita equivalence F in (9.17.2). C]

As explained in § 8, the irreducible modules for Sq (n, m) = St (n, m) k are
naturally indexed by the poset A+ (n, m} of partitions of m into at most n parts.
For X ^ A+ (n, m), we let Lq(X) or sometimes Lk (2.} denote the corresponding
irreducible Sq(n, m) -module. Thus, we can use (9.17) to obtain a natural
indexing of the irreducible kG (q) -modules. Explicitly, given s ^ ^ss,p

f and A I—
E (5), let D (s, 2) eirr (kG (q} ) correspond, under the Morita equivalence F to the
irreducible module 0fJi%^ (J<») eirr (® JL(f ̂  (m (5), nt (s) ) ) .

Remarks 9.18. (a) The category mod-S^n, m) k can be regarded as fully
embedded in the module category for various versions of the quantum general
linear group or of a quantum enveloping algebra (see (e) below). For example,
let GLn,q(k) be the Manin quantum general linear group over k.w As explained
in [PW; §10], mod-Sq(n,m)k (or Sq (n, m) ^~mod) identifies with the full
subcategory of rational GLn>q (k) -modules which are homogeneous of degree m.
We can assume that Lq(X), when regarded as a GLn,q (k) -module, is the
irreducible module of highest weight X (in the usual Lie-theoretic sense).

(b) The algebra Sq(n, n) k has a unique one-dimensional representation

10Alternatively, one could use the quantum general linear group GL'n,q (k) studied in [DD].
Both quantum general linear groups lead to the same #-Schur algebra [DPW]. The action of H on
V m used in [PW; (11.3c)] can be replaced by the equivalent action described in (8.1) above, so
that the quantum group GLn,q(k) can be used, rather than GLnjt*(k).
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Lq(A), obtained by taking X = (lw). This fact follows immediately from the
connection described above with the representation theory of GLn,q(k) and the
fact that the weights in any irreducible GLn,q (k) -module are stable under the
Weyl group ©„ [PW; (8.8.2)]. In fact, Lq((l

n)) corresponds precisely to the
one-dimensional module on GLn,q (k) defined by the quantum determinant detg.
For this reason, we denote the Sq(n, n) k~ module Lq((l

n}) by simply det9. The
quantum determinant is defined for the algebra St(nt n) over 2f and is the
unique group-like element del* in the coalgebra At(n, n} = Rom%(St(n, n), (£],

We give another description of detf. If 0 ^A^S, then Hom# Gt^, SGN) =0.
Let V be a free 2f -module of rank w(with fixed ordered basis). It follows from
(8.4) with m=n that there is an isomorphism

", SGN) =EomH(x^, SGN) =%

of 2f -modules because in the decomposition (8.4) H = x$H appears with
multiplicity 1. Thus,

(9.18.1) dett = RomH(V®m, SGN).

(c) Consider the trivial module k for kG (q). In the notation above, it has
the form D(l, A) for some partition A*~n. We claim that A = (ln). To see this, it
suffices from (b) to show, in the language of (9.17.2), that

dim F(k) =dim HomfeG(<z) (Mi,G(q),k, k)

is equal to 1. This is easily done by reducing to a corresponding problem over
K. Here are the details. We have, taking 5 = 1 in (9.9),

Af l.GC€).*

where Ml>G(qW = md%%}0. Since (^MliG(qW ® m>) k = indgffik for A = (!»), the
equality dim Hom*c(«) (indiljjfe, k) =1 shows that it suffices to check that

(9.18.2) HomfeG(9)((y^indi((?^)fe, k)=0 for A=t (ln}.

Let M= indi(|)^. Because VjV^M is a projective 6G(q) lj(q) -module (as a
direct summand of the projective 6G (q) /j(q) -module Mi,G(q),@) and because 0 is
an @G (q)/j(q) -module, we have

Therefore, it suffices to show that Hom^G(9) (JyM , 6} = 0 for A =£ (1M), or
equivalently, we must prove that

Homing) ((v5^M)js:, K) =RomKG(q) (y^indi^jfT, If) =0

for A=£ (ln). Upn(q)=EweeHq'(m\ then (2«,e@w Tw)2=pn(q) 2we(Bn Tw. Thus,
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e=Pn(q) -1 r.^Endjrew (indgg^T) =H (<£>„, q) K,

is the idempotent projection from ind^f^ onto its unique constituent isomorphic
to the trivial module. Obviously ey* = Q for 2^ (1*0 . This proves our claim.

It also follows that the trivial 0G (q) -module 6 (which is annihilated by
/(<?)) corresponds under the Morita equivalence (9.17 = 1) to the quantum
determinant representation detg for Sq(n, n)0.

(d) The Grothendieck group of the algebra on the right hand side of
(9.17.2) has a Z-basis consisting of the reductions "mod p" (i.e., tensoring
with fe) of (lattices of) irreducible modules over K of the algebra on the right
hand side of (9.17.1). Therefore, the same result holds (with the same
formulas) for the algebras on the left hand side of (9.17.2) and (9.17.1). In
this way, one obtains formulas in terms of ordinary characters for all the
irreducible Brauer characters for kG(q). We regard the problem of determining
these Brauer character formulas as more important than the dual problem of
determining the decomposition numbers of ordinary characters. Theoretically,
the latter problem can be solved from the former through character values and
linear algebra. In this way, the statement of Theorem 9.17 generalizes the
original decomposition number results of Dipper-James [DJ2] (though we use
their results in deriving (9.17)). Finally, it follows from the results in [DJ2]
and [Dl], comparing decomposition numbers for kG(q) with those for #fl-Schur
algebras, that the indexing above for Irr (kG (q) ) is compatible with that taken
by Dipper and James. However, we will not need to use this result in the sequel.

(e) Let Uq(Qin) be the divided power Z[q, q"1] -form of the quantized
enveloping algebra of the Lie algebra gl»((C) of n*n matrices over (C. For any

field k and any specialization Z[q, #~1]~~>&, the corresponding g-Schur algebra

Sq(n, m}k is a homomorphic image of t/ t f(gl»((C)) [Du], Therefore, we could also
index the irreducible kG (q) -modules by using the quantum enveloping algebra

Uq(Q\n(@))k- This would lead to the same indexing by highest weights as above.
More importantly, it provides, through the results of §2, together with the work
[KL2] a connection between the representation theory of G (q) and that of the

^^ ,
affine Lie algebra glw ((C).

§ 10. H^Cohomology in Non-Describing Characteristic

In this section, we show how the Morita equivalence (9.17) can be

effectively applied to study H1(GLn(q), V), when V is an irreducible kGLn(q)~
module and k is an algebraically closed field of characteristic p not dividing q.
Such jf^-cohomology is important for the theory of maximal subgroups of finite
groups. As explained in [AS], the two basic ingredients needed to understand
all maximal subgroups of a given finite group G, modulo easier or smaller
problems, are:

(l) knowledge of the maximal subgroups of quasi-simple groups; and
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(2) determination of the cohomology groups H1 (G, V) for quasi-simple
groups G and irreducible G-modules V.

We will show immediately below, that when p is prime to q(q — 1), the
answer to (2) above for G = GLn(q) is given completely in terms of a
corresponding Ext^calculation for <?-Schur algebras Sq (n, n) *. Using the generic
results of §§ 2, 8, together with [KL2], one can expect, if p is large, that the
structure of these Ext^-groups can be understood eventually in terms of the
Kazhdan-Lusztig polynomials related to the theory of affine Lie algebras. Here
we allow q to vary subject to our hypothesis on p.

We will use the description of the irreducible kG (q) -modules D (s, A} given
above (9.18). Recall that s belongs to the set ^ss,p

f of representatives of the set
of semisimple ^'-conjugacy classes of GLn(q), for a prime p not dividing q, while
X is a certain multipartition. We now prove the following result, which includes
the /^-calculations alluded to above.

Theorem 10.1. Let G(q) = GLn(q). Assume that the characteristic p of the
field k is relatively prime to q(q — l). For any kG (q) /j(q) k~module V, we have

(10.1.1) H1(G(q)9 F)-Ext|g(^det,,F(F)),

where F(F) is the image of V under the Morita equivalence F defined in (9.17.2).
Also, there is an injection

(W.I, 2) ExtJ.0,,,,), (det,, F (F)) e_» Extg(?) (k, F) =H2 (G (q), V).

In particular, for any s^^ss.p' and any multi-partition X^~n(s), we have

(10.1.3) I

Proof. Let k denote the trivial kG (q) -module and form the short exact
sequence

(10.1.4) 0-»t/->ind^^-*fe-^0

of kG(q) -modules (where k denotes the trivial module). Since fcl^Jj is a kG(q)~

direct summand of the module MI.G^),* defined in (9.9), the definition of j ( q ) k
implies that (10.1.4) is actually an exact sequence of kG (q) //(#)&-modules in
which ind^Jfe is a projective kG (q)/j(q)k-module. By hypothesis, p is relatively
prime to q(q — l), so that k is a projective kB(q) -module, and hence ind^fe is
also a projective kG (q) -module. Hence, writing M = k \%fy, the long exact
sequence of cohomology gives a commutative diagram

RomkG(q)/J(q)k(M, V) —* EomkG(q)/J(q)k(U, V] —* ExtkG(q)/J(q)k(k, V) ~* 0

I I I
HomG((?) (M, F) -> HomG(<7) (U, F) -* Ext^(ff) (k, V) -» 0
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in which the rows are exact and the two left vertical arrows are isomorphisms.
This gives

H1(G(q), F)=Ext|G(,)(&, V] =Ex$G(q)/mk(k, V}.

Now (9 . 17) implies that

fe, V) S

using the fact proved in (9 . 18 (c) ) that F(k) =F(D (1, (1*) ) ) =detg. This proves
(10.1.1).

Next, by general elementary principles, we have

ExtlG(q)/J(q)k(U, F)e

By dimension shifting,

ExtiG<«>//«,)A (£/, V)=Ex$GW/jwk(k, V).

Another application of (9.17) yields (10.1.3).
Finally, (10.1.3) is a special case of (10.1.1), taking V = D(s, 2} and

observing that if s=£l, then D(S, X) and D(l, (ln)) belong to different blocks. D

Now we prove the following stability result for Hl mentioned in the
introduction.

Theorem 10.2. (H1- stability} Let n be a fixed positive integer and k an
algebraically closed field of characteristic p. Let q be a prime power not divisible by p,
and consider the group GLn(q). For s^^ssj' and /!•— e(s), let D(S, /O denote the
associated irreducible kGLn (q) -module. Then:

(a) Ifl*s*=<igSStr, then Hl(GLn(q), D(s, X)) =0.
(b) There exists an integer N(n), depending on n, such that if p>N(n), then

dim H1 (GLn (q}, D (1, /O ) depends only on X and the order £ of q modulo p.

Proof. First, (a) is clear, since the modules D(S, X) with s=£l are not even
in the principal £~block.

To prove (b), we may fix the order £ of q modulo p to a fixed value ^n,
since these are the only cases for which p divides \GLn(q) \. Also, we can assume
that AT (n) >n.

Case 1. £> 1. In other words, p does not divide q — 1, so that (10. 1)
implies that

(10.2.1) dimffHG (q\D(l, ^)) =di

Consider the ring %($) of algebraic integers in # = (Q)(yT) as in (8.6). By
(8.6), there exists a non-empty open subset Q of Spec 2? (£) such that if peQ,
then (l) each Lk(X), X e A+ (n, m), is obtained by "reduction mod p" from a
lattice for L fe(/0, and (2) there is an equality
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(10.2.2) dim Ext^^) (det,, LkW Q)) =dim ExtU.^det,, L'U)).

Thus,

(10 . 2 . 3) dim ExtJ9(K>M)i (det,, Lk U) ) - dim Ext^,^ (det,, LkW

= dim

provided that k($) ^k, which means precisely that p lies over (p), where now p
is the characteristic of k.

Since % (£} as move is finite over Z, for any prime integer p^TL, there exist
only finitely many prime ideals p^Spec *%(£) satisfying p DZ= (p). Thus, we
can assume that N(n) is sufficiently large that if p>N(m) and p ^ Spec 7L(£)
lies over (p), then p^Q. The theorem is proved in this case.

Case 2. £=l. For any subset X^S, let Pi(q) the parabolic subgroup of
G(q) whose Levi factor L*(q) has simple roots X. Since p>n, the dimension of
Hl(P*(q), k) = Horn (ft (0) /ft (?) ', k} equals the rank of the center of the Levi
factor LZ, and so depends only on X.

Now let 6, K, k be as in § 9. In particular, K is a splitting field for G (q), so
that KG (q) / J (q) K is a split semisimple algebra. Since kG (q) /j(q)k is also a split
semisimple algebra, we conclude that any D(l, X) lifts to an irreducible
ordinary unipotent representation. Also, [CR; (68.24)] implies that the
ordinary irreducible characters are ^.-linear combinations of the characters of
the transitive permutation modules (D p^), X ^ 5. Hence, in the Grothendieck
group of kG(q) /j(q)k, any D(l, /O is a Srlinear combination of various &!?,(«)•
So, by the Shapiro-Eckmann lemma, it suffices to prove that the dimensions of
the Hl(G(q), k\G

P
(&} =Hl(P*(q), k} for A^S stabilize if p is a sufficiently large

prime (and p still divides q — I). But for p>n, this is clear from the previous
paragraph. D

Remarks 10.3. (a) The cohomology of the g-Schur algebras Sq(n, m) k can
be expressed in terms of the cohomology of the quantum enveloping algebra
Uq(Qin(k)) because of the natural surjection Uq(Qln(k))—*Sq(n, m) k of algebras.
Then we have:

(10.3.1) Ext^*), (K W) SExt&^oo) (V, W),

for any Sq(n, m) ̂ -modules V, W. In (10.3.1), on the right hand side, V, W are
regarded as Ug (gin (k) ) -modules by inflation, and the Exte-group is computed in
the category of integrable modules. For a proof of this fact, see [DS] . Variations
on (10.3.1), involving the various quantum general linear groups, are also
established in [Do2] and [PW] .

(b) Using the generic result (8.6) as in Case 1 of the proof of (10.2),
the dimension of ExtJ^n,^ (deta, Lk (JJL) ) can be equated, when p is sufficiently
large, with Ext59(Win)x(det5, LK(fjt)) over a field K of characteristic 0 in which q is
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regarded as a suitable root of unity. In turn, using the category equivalence
given in [KL2], this latter dimension can be expressed as the dimension of an
Exf-group for the affine algebra gl«((C). It seems likely, as with the case of the
category 6 for a complex semisimple Lie algebra (see [CPS4; (3.8.1)]), that
these dimensions can be given in terms of values of certain Kazhdan-Lusztig
polynomials.

We next briefly consider the relationship between the ^-cohomology of
GLn(q) and that of SLn(q). By Clifford theory, the restriction from GLn(q) to
SLn (q) of an irreducible module is always completely reducible, isomorphic to a
sum of conjugates of a single irreducible SLH(q) -module. In fact, all unipotent
ordinary characters #u restrict irreducibly to SLn(q). The %u are precisely the
irreducible constituents of the permutation module #|i<$(e). If B'(q) ==B(q) r\SLn(q),
then the isomorphism K B(q)9 \sin(q) — K\Br?q) induces an isomorphism

of endomorphism algebras. There are two ways to see this. One may observe
that both sides have dimension equal to

\B (q) \GLn (q) /B (q) \ = \B' (q) \SLn (q) /B'n (q) \.

Alternatively, both endomorphism algebras have identical descriptions in terms
of double cosets. Using this isomorphism, it is immediate that each %u restricts
irreducibly to SLn(q),

It is false, in general, that the modular irreducible unipotent modules
D(l, X) restrict irreducibly to SLn(q). However, the exceptions occur for only
relatively small primes. We claim that, if p does not divide (n, q~l), then any
D(l, 2) SLn(q) is irreducible. To see this, let Z = ff $ be the center of GLn(q).
Because the elements of Z act by scalar multiplication on D(l, >?), it suffices to
check that each restriction D (1, /O \zsLnw is irreducible.

Suppose that %i is an ordinary irreducible character of GLn(q) which has a
common SLn(q) -constituent with X2 = Xu. An easy argument shows that %i —
?%2 for a linear character <T on GLn(q). This character F corresponds to a
semisimple element s&Z as in [FS; p. 116].

We may assume s*is trivial on ZSLn(q), hence that f, as a linear character
on GLn(q) /ZSLn(q), has order dividing (n, q — l). Now, by our hypothesis on
p, f has order prime to p. Since the correspondence of [FS; (1.16)] is an
isomorphism of abelian groups, s also has order prime to p. It follows that %i =
%S,A. Thus, by [FS; (7 A)], %i and %2 are in distinct p-blocks unless s = l.

Now let (ff, K, k) be the ^-modular system used in (9.1). Because we have
shown above that the %u restrict irreducibly SLn(q), we have

Ln(q) (Mi,G(q),0

since both sides become isomorphic over K. This isomorphism implies that any
indecomposable GLn (q) -summand X of Mi,Gw,0 remains indecomposable upon
restriction to SLn(q). By the previous paragraph, the hypothesis of (9.1) is
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satisfied for M = Mi,G(q),@\sLn(g) and P the protective cover of M for @GLn(q), but
viewed as an 6SLn (q) -module. Thus, X is projective for a suitable quotient
algebra A of @SLn(q). The results of [CPS6; (1.5.6)] imply that Xk is
indecomposable for A/-,; thus, a standard argument shows that X has a simple
head. Since the restrictions of irreducible GLn(q)-modules to SLn(q) are com-
pletely reducible, the GLw(g)-head of X must remain irreducible upon restric-
tion of SLn(q). But every D (!,/(} appears in the head of some indecomposable

summand X of Mi&w,®. This completes the proof of our claim.
Clearly, if p does not divide (n, q~l), (*) implies that the D(l, /0|sLw<?) are

distinct for distinct X. We will denote the restriction D(l, X) |SLM(<?) again by
D(l, X). As is well-known, the restriction of a jb-block for a finite group G to a
normal subgroup N is a union of conjugate blocks. The following definition,
which agrees with more general terminology for unipotent blocks for reductive
groups [GeH], is justified by this fact.

Definition 10.4. Assume that/? does not divide both n and q~l, and, also
does not divide q. The modular representations of SLn(q) having only
composition factors of the form D(l, X) will be called the unipotent modular
representations of SLn(q). They are the irreducible modular representations in a
union of ^-blocks for SLn (q) —these blocks will be called the unipotent blocks
for SLn(q).

One corollary of our discussion above is that, for such unipotent j?~blocks
for SLn(q), there is a Morita equivalence like that given in (9.17) for SLn(q). In
fact, the corresponding factor algebras for the group algebras over GLn(q) and
SLn(q) are even isomorphic. Moreover, the previous two theorems essentially
hold in the SLn case. In more detail, we have

Theorem 10.5. Assume that p does not divide both n and q — 1, and, also,
does not divide q. Let L be an irreducible module for SLn(q) over the algebraically
closed field k of characteristic p. If L is not unipotent, then H@(SLn(q), L) — 0. If
L=D(l, /O is unipotent, then:

H1 (SLn(q), L) =Hl(GLn(q), D (I, fi).

Finally, if p divides q — 1, dim H1 (SLn (q), L) depends only on 2 when p>n.

The proof is very similar to the GLw-proofs of the previous two theorems,
with minor adjustments in the case where p divides q~~~l. Further details are
left to the reader. We note that, as a corollary, the stability Theorem 10.2 also
holds for SLn.

Remark 10.6. Let G (q) = GLn(q), as above, but assume that q = l mod p, so
that the hypotheses of (10.1) fail. If p>n, then/? does not divide the order of
the Weyl group GLn. In this case, if V is an arbitrary £G(g)-module, it is
possible to use the methods of [CPS1; §6] to obtain information concerning
H*(G(q), V}, in general, and H1(G(q),V)}, in particular, for any fcG (<?)"" module



74 EDWARD CLINE, BRIAN PARSHALL AND LEONARD SCOTT

V. Namely, let T (resp., B) be the maximal torus (resp., Borel subgroup) of GLn

consisting of diagonal (resp., upper triangular) matrices. By (9.3), £ does not
divide [G(q) : B ( q ) ] . As shown in [CPS1; §6], there is a right action of the
Hecke algebra Hk=H(®ni k, 1) on Hn(B(q), V) given by

(10.6.1) ^r^^U,).nB(,)l5(?),^e@w,^e^(B(^), V).

Here \B(q} is corestriction. But observe that Hk = k&n, the group algebra of @n.
Since T(q) contains a Sylow ^-subgroup of G(q), the restriction map HQ(G(q),
V)—*H*(B(q), V) is injective, and the main result in [CPS1; §6] establishes that
the image of H*(G(q), V) in H*(B(q), V) identifies with the space of fixed
points, i. e.,

(10.6.2) H«(G(q), V}=H«(B(q\ V}®\

The equality (10.6.2) provides a more conceptual reformulation of the classical
Cartan-Eilenberg stability theorem for cohomology, cf. [CE; p. 258] . Since B (q)
— T(q)^ U(q), where U is the unipotent radical of B, and p does not divide
\U(q) |, an elementary spectral sequence argument shows that there is a natural
identification H*(B(q\ V] = H * ( T ( q ) , Vu(q}}. Thus, if we transfer the action of
®n from H*(B(q\ V) to an action on H*(T(q}, Vu(q}\ (10.6.2) can be rewritten
in the form

(10.6.3) H*(G(q}, V)=H*(T(q},

Because the set S1 of simple reflections (i, i + l) generates @», an element
[JL^ Hm(T(q), Vu(q}} is @w-fixed if it is fixed by every simple reflection s= (i,i + l).
This holds if the image of fi in H*(T(q), Vu(q^u(qY] is fixed by the usual action
of s. This condition, for all s, is necessary as well as sufficient for fi to
correspond to an element of H*(G(q\ V). See [CPS1; (6.1)] for further
discussion.

§ lie Resolutions

In the previous section, we used the Morita equivalence proved in (9 . 17)
to relate the Hl- cohomology of GLn(q) at modules in non-describing charac-
teristic to Ex^-calculations for g-Schur algebras. By using results from Part I,
we were led to the ^-stability Theorem 10.2. We wish to extend this work to
include the higher cohomology groups Hl(GLn(q), V), t> 1. Section 12 below
presents our results in that direction. The present section lays the foundation
for that work. Our first main result, given in Theorem 11.10, develops an
interesting complex of "tilting modules" for endomorphism algebras A associated
to general finite Coxeter systems (W, S1).11 The complex itself comes about by
"dualizing" the Deodhar complex [De] for generic Hecke algebras. The proof of

11A study of the homological properties of such endomorphism algebras A forms a central
theme in previous papers [CPS6], [DPSl], [DPS2], [DPS3],
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(11.10) makes essential use of certain aspects of the theory of Kazhdan-Lusztig
cells; these facts are reviewed below. Next, we specialize to the case in which
W=(&m is a symmetric group. Our final result, Theorem 11.15, gives a very
specific projective resolution of the quantum determinant representation detf for
the t-Schur algebra St(m, m) over 2? — 7L\t, r1], discussed in (9.18b). In order
to pass from the complex in (11.10) to that in (11.15), we must use the theory
of tilting modules for St (m, m) developed in [DPS3].

We will use the notation introduced in the preamble to Part II . Thus, let
(W, S) be a finite Coxeter system, and let H be the Hecke algebra over the ring

<% = Z[t, t~l~\ of Laurent polynomials with basis {TW}WGW satisfying the relations
(II .1). Write m = \S\ for the rank of W. For X^S, let x^H be the element
defined in display (II .2).

For an integer i>0, form the left ^/-module

(11.1) Ni= 0 Hx,.
A^S,\*\ = i

Observe that No — H, while Nm = 3f with H acting through the index map IND :

ff-^23, rw*-*t*(w\ If /i^^S, there is a unique ^-module mapping Hx^Hxu

satisfying 0^ (x*) =xu.
Fix a linear ordering < on the set S. If X<^fi and fJi\A = {s'} for some s'^S,

define

(11.2) e(p, ;0 = (-l)l{^<*'>l.

Then define the ^-module homomorphism d, : N,-—»N,-+i by setting for any X^S
satisfying |/l|=t:

(11.3) dt\Hx=

Suppose that h^H satisfies dQ(h) =0. Then (l + rs)h = 0 for all s^S. By a
direct calculation, any h&H satisfying Tsh= ~h for all s^S is a scalar multiple

of ys=^w(— t)~£(w}Tw. Hence, Ker(^0) identifies with the sign character SGN :
H—*% defined in (11.3). This suggests part of the following basic result.

Lemma 11.4. (Deodhar [De]) The above definitions define a complex

(11.4.1) (N.,d.) lO^ATo-^JVi-^-'-^^-^O

of left H-modules which has cohomology groups satisfying

•/ x fSGN, i = 0
11.4.2) jtf l(JV.)=|

lO, i>0.

Actually, [De] proves this lemma for the complex Nf
9=N.^^Z[tl/2, r172] of

left modules for the Hecke algebra H0 — H ® %7L [t1/2, r172]. However, since
TL [ti/2, r~1/2] is a free S'-module, the validity of the lemma for AT9 implies its
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truth for JV0.
12

There is a 2f- automorphism 0:H—*H given on generators by <P(r«,) =
(-t)£(w}r~-\. If M is a (right or left) ^-module, let M0 denote the ^-module
obtained by twisting the action of H on M by 0. For example, (Hxx) 0=Hyx for
all ^cs[DPS2; (1.4c)]. Since SGN* = IND, the complex AT? has terms JV? =
® Acs,\A\=iHyx and cohomology which vanishes except in degree 0, where it
identifies with IND.

Recall the Z [t1/2, r 1/2] -bases

\CwJwew and iCwfwew

for #0 defined in [KL1] . Explicitly,

y<w y^w

where P^ ^ S7 is the Kazhdan-Lusztig polynomial corresponding to the pair
(y, w) ^ W X W and P^ denotes the image of Py>w under the automorphism of 3f
satisfying t^-^f"1.

We put C+
w = t£(w"2C'w and C^= (~t1/2) ~£(W}CW forw^W.12 Then {CS,}W6^

e= ±, forms a ^-basis for H which satisfies the following multiplicative rules.
For w& W, s^S, we have :

C~z, sw>w.

^ U, w) t 2 Ct

In both cases, z<w indicates that Pz,w has degree (£(w) ~ £(z) — 1) /2. When
2 <M>, ^(^, w) denotes the coefficient of ^)-^)~1)/2 in pZtWm There are

completely analogous formulas to both (11.4.3a,b) for computing C^s and
CljTs. The following lemma was essentially observed in [M2] .

Lemma 11.5. For X^S, let wi be the long word in the parabolic subgroup
Wji. Let *W be the set of distinguished left coset representatives of W* in W, i.e.,
*W if and only if ws >w for all s^X. Then:

(a) x* = C£, and y* = C~r

1 The paper [Ml] by Mathas takes note of Deodhar's paper, but could be read as suggesting
that Deodhar obtains an exact complex, namely one resolving SGN, only for infinite Coxeter groups.
That is not the case. We wish to make it clear that the exact complex is due to Deodhar for both
the finite and infinite Coxeter groups.

13Here we follow [DPSl], except that C» may differ by a sign from the definition given in
[DPS1].
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(b) For 2^S, write CH = C~Wi and Ct = Cir The set {C~XC^ K^^w forms a

-basis for Hxx and the set (CtCl) x&w forms a ^ -basis for Hy^.
(c} Ifx&W, then C*C} = 0 =

Proof, (a) follows from the definition of CWx and C^ given earlier, together
with the fact that Pv^ — \ for any y <w* [KL1; (2.6vi)]. Next, we prove (c).
Suppose that x$*W, so that there exists s&A with xs<x. By (11.4.3a,b) (and
their right-hand versions), we obtain

so C^Ct — 0, as required. This proves the first equality in (c), while the second
is similar. Now since {C~£xew is a 3?-basis for H and Hxx is 2f-free of rank *Wl,
the first assertion in (b) follows. The second assertion in (b) is similar. EH

Given a S'-module M, write M* = Hom2(M, 3f) for the corresponding
3f-linear dual. Then 3?- duality interchanges left and right //-modules, e. g., if M
is a left //-module M* is a right //-module. It is well-known that HxA = (x*H) *
and Hyx = (y*H) * for any X^S. Also, SGN* = SGN and IND* - IND, if we let
SGN and IND denote the left/right //-modules defined by the sign and index

homomorphisms. Since the 3f-modules A/,- and iV? are 3?-free, we can dualize the
complexes (AT., d.) and (A/t d«) to obtain complexes (AT* dS and (A/5*f d*)
which have sole non-vanishing homology groups SGN and IND, respectively, in
degree 0.

For each 2 £ S, let TI be some fixed non-negative integer, and define

(11.6) T = @ xjf*'1, and A = End* (T) .

We will assume that, given any /j, ^ S, the parabolic subgroup W^ is
W-conjugate to some Wx in which r^>0.14 We view T as a (A, //)-bimodule.
Let (— ) ° denote either of the two contravariant functors

(-f T) :

( - ) ° = Hom^ ( - , T) : A -mod-»mod-#.

We will consider the complex

(11.8) (X., 8D = (A/!**. dT).

Thus, its term in degree i is given as

(11.9) Xi = EomH( @ yJI.T),

14Recall that, given subsets X, y.£=S, the right H-modules xjM and xuH are isomorphic provided
that the parabolic subgroups W* and Wu are W-conjugate. See [DJ1; (4.3)]. Thus, our
assumption guarantees that the algebra A defined in (11.6) is Morita equivalent to the algebra
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while the differential Xt-^XM is the map /*-»/ ° dl /e Hom#(ATf*, T). Then
(Xm, dm) is a complex of left A -modules.

The next theorem determines the cohomology of the complex (11.8) of left
A -modules.

Theorem 11.10. Let (W, S) be an arbitrary finite Coxeter system, and
consider the corresponding complex (X9, dm) defined in (11.8) - (11.9) above. It has
cohomology groups as follows:

(11.10.1)
10, t>0.

Proof. If M, N are right H- modules which are 3?-free, we have Hom# (M, N)
= RomH(N*, M*). Also, M**=M. Thus, we can rewrite (11.9) as:

QVf* T) =EomH (T*0, N{)

It is enough to show that, for a fixed fi^S, the cohomology of the complex

0 -* Horn* (HyM, N0) -> EomH (Hyu, NI) -> ---- > Horn* (Hy», Nm) -» 0,

obtained by applying the functor Hom# (Hyu, — ) to the complex N0, vanishes in
positive degree, and equals Hom# (Hy^, SGN) in degree 0. The assertion about
its cohomology in degree 0 follows from the left exactness of Hom# (#);#, — ),
together with (11.4). So fix i>0 and let ^ = Ker dt. By the long exact sequence
of cohomology, it suffices to check that the natural map

(11.10.2) ExtiCffyn, ff^Ext £(/&/«, 0 HxJ =Ext1
H(Hy», Nt)

is an injection. Since H®G$(t) is a semisimple algebra, the 3f~module Exi^ (Hyu,
Ki) is torsion. Let 0 =£ TC ̂ *£ be in the annihilator of ExtM^, Kt). If M is a
3f-mo~dule, we will denote M/nM by M below. Since the JV,- are ^-torsion free,

T _

and since Ki is a submodule of N,-, we have exact sequences 0 —*Ki—*Kr~*Kr^Q
n _

and Q—*Ni-+Ni—*Ni—*Q. It follows from (11.4) and the isomorphisms Nf/Ki =
Ki+i that multiplication by re defines an injection Ni/Kr~*Ni/Ki. Hence, by the
snake lemma, KI is a submodule of Ni. Also, we obtain a commutative diagram

(11.10.3)
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with exact rows. In particular, the top row of (11.10.3) is exact because the
element it annihilates the torsion module Extjy (Hyu, Ki).

Now any //-module morphism %:Hyfl—*Ni:==@jHxi. is completely determined
by the image £(y#). In turn, ?(y#) can be any vector d^Ni = @AHxA which
satisfies the condition

(11.10.4) Tsd=-dfor alls^.

By (11.5b), Ni has a basis consisting of the products C^Cl, Ul=i , x^*W.
We claim that (11.10.4) holds if and only if d is a ^-linear combination of terms
C~xC\Jor \X\ = i,x&*W, and fi contained in the left-set £(x) = {s^S|s*<*} of x.
In fact, such a linear combination d does satisfy (11.10.4) by (11.4.3a).
Conversely, suppose d satisfies (11.10.4). We can assume that, when expressed
as a linear combination d — ̂ ax^ClcC^ where UJ — i and x^*W, the coefficient
&x,2 — 0 if ^ ^ £ (x). Among the x, X with ax,i =£ 0, choose x', 2 so that x' has
maximal length. For s ^ {J. and s^£(x\ (11.4.3a) and (11.5) imply, using
Tsd=— d, that tax',x=~ax

f,z, a contradiction. This establishes our claim.
Let ^:Hy^-^Ni be the image of £ under the map e : Homjf (Hy^ N^ —»

Hom# (/ify^ Ni) above. The previous paragraph establishes that £(yj lies in the
f£-span of the images under the maps Nr^Nf of the C~XC\ for \A\-i and ^^
£(x). Assume that f(yj &Kim For a given x<E*W, let Kt(x) be the f£-submodule
of K, consisting of all terms which are expressible as a ^-linear combination of
terms C*Cl, Ul = i. Then Ki = @xKi(x) by (11.5) and the definition of the

complex N». Also, Ki = @xKi(x). Again using (11.5), together with the above
discussion of ?(y#), this implies that £(3^) ^ Ki lifts to an element a> ^ Ki
satisfying rsco = — a) for all s €E //. Therefore, a) —/(y^) for an //-module
morphism f'.Hyir^Ki, and we note that c (/") and £ have the same image in
Hom# (#y#, JVf). Next, observe that the map b above is an injection. Finally, an
elementary application of the snake lemma to (11.10.3), or a direct diagram
chase, shows that the map a is an injection, i.e., the map (11.10.2) is an
injection, as required. d

For the remainder of this section, we assume that (W, S) = (@m, S), where
S={(1, 2), • • • , (m — 1, m)}. In particular, this means, contrary to the notation
above, that W has rank m — I. We choose the integers rx so that T= V®m in
(8.4) with n = m. Thus, in the notation of (11.6), the endomorphism algebra A
identifies with the f-Schur algebra St(m, m) defined in (8.2).

Define

(11.11) Y=RomH(®y*H®n, T), and E = End^(7).
A£S

View Y as a left £-module and consider the contravariant functor

(11.12) G = Honu(-, 7) : A-mod-* E-mod
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We want to apply the functors G to the complex (11.8) of left .4 -modules. In
order to establish the next result concerning the behavior of the complex G (X9),
we need to make use of the theory of tilting modules for the quasi-hereditary
algebras Ak for fields k. The original reference for tilting module theory for
quasi-hereditary algebras is [Ri] . Donkin [Dol] has obtained many further
results in the context of algebraic groups, especially for the groups of type GLn.
However, [DPS3; §4] contains a brief summary of everything that is required.
In addition, our proofs use some of the main results in [DPS3] which deal with
tilting module theory for #~Schur algebras over (X.

Lemma 11.13. The following sequence of left A-modules is exact:

(11.13.1) O-MND0-^-* ---- 'Xm-t-^Q.

The functor G carries this sequence to an exact sequence

(11.13.2) 0 -> G (Xm-i) -» ---- » G (Xo) -» G (IND°) -» 0

of left E -modules.

Proof. The exactness of (11.13.1) is the conclusion of Theorem 11.10. Let
k be a field which is a S'-algebra. By [DPS3; (7.4a)], the Afe~module (y*H)k =
Hom# (y*H, T) k is a tilting module in the highest weight category A* -mod for
any subset X £ S.15 This means that (y^H) k has two filtrations, one having
sections which are standard modules A* (r) and the other having sections which
are costandard modules Vk(r). By [CPS2], we therefore have:

(11.13.3) Extj[4(foff)?, y,)=0, Vi>0, VJc

Suppose B is an arbitrary 2f~algebra which is finitely generated and
projective as a f£-module, and let M, N be B-modules which are finitely
generated and projective over j£. In a proof which comes down to an elementary
commutative algebra argument, [DPS3; (4.4)] shows that if Exts(M, N) =£0 for
some positive integer i, then there exists a field k which is a 2?~algebra such
that Extjft(Mfe, Nk) =£0. By (11.13.3), taking B=A, we conclude that16

(11.13.4) Exti((y^)°f 10=0 Vi>0.

For any/ = 0, • • • , w — 1, X/ is a direct sum of various Hom^(y^, T) = (y^H)^,
so (11.13.4) implies that ExtiU/, 7) = 0 for all i>0. Thus, working from
right to left in (11.13.1), we obtain that Extj(#, 7) =0, i>0, for any kernel K
of a differential 9/ in (11.8). The exactness of (11.13.2) is immediate from this

15The argument in [DPS3] applies to subsets /I determined by partitions of m, but [DPS3;
(l.4d)] establishes that the same assertion holds when the subset A is determined by a composition
of m, as explained above.

16It is well-known that A is a finitely generated projective fSf-module; in fact, the projectivity of
endomorphism algebras Endst/T) for algebras B over regular rings of Krull dim. at most 2 holds
quite generally under mild hypotheses—see [DPS2; § 1].
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fact. n
Since each Xi is a direct sum of various (yiH)^ which are, in turn, direct

summands of Y, it follows that G (Xi) is a projective left E-module. In the
following result, we identify G (X",-) in another way.

Lemma 11.14. There is an isomorphism E—*AOP such that the protective left
E-module G(Xi), when viewed as a right A-module by means of this isomorphism,
becomes isomorphic to Hom#(T, © \^\=iXxH®^). Also, the left E-module G(IND°)
identifies with the q-determinant representation det* of A over 2£.

Proof. The isomorphism E = A O P is proved in [DPS3; (2.5)]. In [DPS3;
(2.6.1)], it proved that, under this isomorphism, G(Xj) identifies with the left

Aop-module

Homir(T*f 0 yjP") = Horn* (T, 0*^).
1*1 = ' \A\ = t

The identification of G(Xi) as the right A-module described in the statement of
the theorem then follows immediately. Next, we can apply [DPS3; (2.6.1)],

taking N there to be IND in the present notation, to obtain that G (IND°)
identifies with Romff(T0, IND) as a right A-module. The functor ( — ) 0 is
defined below (11.4.2). But using (9.18.1),

Horn* (T*, IND) =Hom# (T, SGN) =det,.

Therefore, G (IND°) = det, as A -modules. D

Putting everything together, we obtain the following important result:

Theorem 11.15. For the finite Coxeter system (©„,, S), let A = End#(T),
where T = @zcsXzH and the positive integers r\ are chosen so that A ~St(m, m).
There exists a finite resolution

(11.15.1) 0-+Q(m-l) -> ---- >Q(0) -^det,-^0

of dett by projective right A -modules Q(i), where

(11.15.2)

For any commutative %£- algebra 6 in which t*-+q, the complex 0(*)^ defines a
projective A^-resolution of det? over 0.

Proof. This is immediate from (11.12) and (11.13). Observe that, because
all modules in (11.15.1) are 2f- projective, it remains exact after tensoring with
0. D

Remarks 11.16. (a) The above Theorem (11.15) has been proved only
when W=@ m . It would be interesting to extend (11.15) to include all finite
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Coxeter systems. However, at present, the proof of the essential (11.13) uses
highest weight category theory.

(b) Let V be a vector space of dimension m over a field k. For an integer
j, let A3 (V) (resp., Sj (V)) be the /th exterior (resp., symmetric) power of V.
For W^&m, consider the Schur algebra S(m, m) =End®r(V®m}. One can obtain
a Koszul resolution of the S(m, w)-module det with terms in degree n given by
Am~j~l(V)®Si+l(V}. Applying the standard duality, we obtain a resolution P0 of
det. Over QKO, PO identifies with the adjoint representation of GLm. In general,
Po, or, more precisely, its ^-version, is distinct from our resolution (11.15.1).
We have not seriously investigated the connection of (11.15 = 1) with other
commonly used complexes for GLm, e.g., the so-called Akin-Buchbaum reso-
lution [AB].

(c) In the next section, we will see the utility of using the resolution
(11.15) in precisely the form given. Thus, in (12.1), we will apply the Morita
equivalence (9.17) to (11.15) to obtain yet another resolution involving the
finite groups GLn(q) in non-describing characteristic. This resolution looks
very much like the Solomon-Tits complex associated to the building of type

§ 12. Higher Cohomology In Non-Describing Characteristic

In this section, we apply (9. 17) and (11.15) to obtain results on the higher
cohomology of G (q) = GLn (q) in non-describing characteristic. To begin, we
must interpret the projective Sq(n, n)fe-modules given in (10.13.1) as GLn(q)~
modules. Let 0 be a commutative fT-algebra which is a discrete valuation ring
and such that its quotient field K is a splitting field for G(q). Assume the
residue field k of 6 has characteristic p which is relatively prime to q. As in
(11.15), for each A^S= {(1,2), • • • , (n — l, n)} , we fix a positive integer r^ so
that, with H=H(&n, Z\ we have End^(0^cS^^0r") =St(n, n). Now we can
state:

Lemma 12.1. There is a resolution of 0G (q) -modules

(12.1.1) 0-»M(n-l) -*

where

(12.1.2) M(i)= 0

is a projective GG (q)/j(q) -module.

Proof. We will use the complex of right St(m, m)~modules given in
(11.15.1). Tensoring with 6, gives a complex of Sq(m, m) ̂ -modules which
provide a projective resolution of det?. It suffices to show that this complex
corresponds under the Morita equivalence (9.17) to a complex of the form
indicated in (12.1.1).
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First, by (9.18a), the ^-determinant module det? for Sq(n, n) @ corresponds,
under the Morita equivalence (9.17.1), to the trivial module 0. Next, we need
to identify Q(i) =Hom#(T, ®\^ixtff) with an 0G(q) /j(q) -module under the
Morita equivalence (9.17.1). By (9.17), this Morita equivalence is obtained by

applying the functor Hom^c (<?)//(<?) (M , — ), where M = MI.GW,® as defined in
(9.14), and using the identification End^c(?)(M) = Sg(n, n) G given in (9.11)
(following [DJ2]). Letting M — 6\ §$, the identification arises through a natural
isomorphism

see [DJ2; (2.24)]. Thus, Eom0G(g)(M, JyM] identifies with Hom#(T, xjf), as
required. EH

For X ^ S, define f* (q) ^ 6 by the condition that y\ —fa (q) y*. Since Twy^ —

SGN(rw)^ = (~ lY(w)yx for w e= W*, it follows that fr(q) = ^wewf£(w\ When
identified with a set of simple roots in the root system of type Aw_i, the set X
has a disjoint decomposition X — Uf=i^f , where each Xi corresponds to a
connected subset of the set of simple roots. Then

a \xt\ _, -
(12 . 2) fr (q) = 0 /Ul| (q), where /Uil (^) = 0 1-r̂ .

t=i »=i q 1

Now we have

Lemma 12.3. Fix a non-negative integer m <n and assume that q — \ and
fx(q) is invertible in 6 for all A^S satisfying \A\ = m. Then the &G (q) -module

M(i) in (12. 1 .2) is projective. In particular, if p does not divide II f=\ (qj~l), then
M(j} is a projective GG (q) -module for all j<m.

Proof. Because p does not divide q — 1 (and is distinct from q), 6 is a
projective &B(q)~ module and so M=&\B(q) is a projective @G(q) -module. The
condition that /* (q) be invertible for all X satisfying U| = m implies that ex —

f / \ yi is an idempotent in Hc, so that

is also a projective GG(q) -module. By (12.1.2), this proves the first assertion
of the lemma. The final assertion follows immediately from formula (12.2). D

Now we are ready to prove the following important result which
generalizes (10. 1).

Theorem 12.4. Consider the group G(q) =GLn(q}. Assume that p does not

divide qllf^i1 (qj — l) for some integer m>0. Let V be an arbitrary kG(q) /j(q)k~
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module, e. g., any V—D(s, /!), s^^ss.p' and 2 1—11(5). Then we have an isomorphism

(12.4.1) Hi(G(q), V)=Exti,Mt(tetq,F(V}), 0<i<m + l

and an injection

(12.4.2) Ext,%),(det,,F(K)) ^Hm+2(G(q\ V).

Proof. By (12.3), the 0G (q) -modules M(0), • • - , M(m) are projective. (Of
course, they are automatically projective as GG (#)//(#) ̂ -modules.) Since the
acyclic complex (12.1.1) consists of projective ^-modules, it remains exact
after applying the functor — ®@k. Thus, we obtain an acyclic complex

(12.4.3) 0->M(m + l) -> ---- >Af(0) ->f r ->0

in which, for /^w, the modules M(j) —M(j}k are projective for both kG(q) and
kG(q) /J(q)k, while M(m + 1) = Im(M(w + l)*-*M(w)*). The theorem now
follows by a dimension shifting argument extending that given in the proof of
(10.1). More precisely, consider the double complex Ceo obtained by applying
the functor Hom# (— , V) to a Cartan-Eilenberg resolution of the complex M0 in
(12.4.3), where R=kG (q) or kG (q)/}(q}k. Filtering C.. by columns CSQ leads to
the well-known spectral sequence

(12.4.4) Ea=Exti(A?(s), V) =*Exts
R

+t(k, V).

For 5 <m and t>0, we have Efif= 0, so (12.4.1) follows from the equality
HomfeG(?) (— , — ) = HomfeG(?)/ / (g)fe(~ , ~) of bifunctors on mod~kG(q)/j(q)k,
together with (9.17).

Also, we have

V)

ExtlG(q} (k, V] =ExtrG
+(|) (k, V\

In the above diagram, the isomorphisms are provided by the shapes of the
spectral sequences E{ R. Now (12.4.2) follows from this, together with (9.17).

D

Remark 12.5. Although we have stated the above result for kG(q), the
argument also establishes a similar result comparing the cohomology of 6G (q)
with that of Sq(n, n) @. More precisely, let V be a 0G (q)/j(q) -module. Then,
under the arithmetic hypothesis of (12.4), we have

(12.5.1) H*(G(q), F)=Extjg(niK),(det,,F(F)), 0<i<m + l

and an injection

(12.5.2) Ext^M
2n),(det,,F(F)) <^Hm+2(G(q), V\

where F is the Morita equivalence in (9.17.1).
Combining (12.4) and (8.6), we obtain the following stability result,
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somewhat analogous to ^-stability proved in (10.2).

Corollary 12.6. Let £, n be fixed positive integers. There exists an integer
N=N(n, /) such that if k is an algebraically closed field of characteristic p>N, 2^~
n, and 0<i<£ and q has order ( modulo p, then Hl(GLn(q}, D(l, /()) depends only
on X and i.

Using (8.6), which is based on the results of Part I , and the remarks in
(10. 3b), the stable value of H{(GLn(q}, D(l, ^)) in (12.6) above can be
expressed in terms of the dimension of a certain Ext'-group for the affine Lie
algebra gt((C).

We conclude this section with the following result concerning SLn~
cohomology, extending (10.5). We leave the proof to the interested reader.

Theorem 12.7. Assume that p does not divide both n and q — \. Also, assume
that p does not divide q. Let L be an irreducible unipotent module for SLn (q) over k,
and let D(l, /i) be the unique irreducible module of GLn(q) which restricts to it.
Suppose p also does not divide FI/li (<?z~l) for some non-negative integer m. Then

Hm(SLn(q}, L) =Hm(GLn(q},D(l, X}).

§ 13. Appendix: The Constructible Topology

Consider a property P for algebras A over domains 6, or their module
morphisms Q. For example, in Part I , we defined P to be a generic property for
(^-finite and ^-torsion free algebras provided that: given an algebra A over 6
such that P holds for AK(K = k(Q)), then P holds for Ak^ for p belonging to a
nonempty open subset Q of X = Spec 0. In certain cases, it is possible to say
more about the set of those points p e X at which P holds for Ak(&. This
discussion makes use of the constructive topology on X. We introduce this
concept and give a brief exposition, though the results are not required
elsewhere in this paper.

To consider a specific example, let A be an ^-algebra, which is finitely
Q

generated and torsion-free as an 0-module. Consider a morphism M~~*N of
A -modules as in (1.5a). The set

7={pe^Sur(0*(p,) holds)

is not necessarily open in X, but instead satisfies — at least — the following
property (see also (13.6) below). If 7 is a subset of a topological space, we let
Y denote its closure.

Property GZ. If p ̂  Y, there is a Zariski open neighborhood W of p in

0 such that {0 0 W^ {ip} 0 Y. ,

This property follows easily from Nakayama's lemma, together with an
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elementary localization argument. If p $ 7, then g^) is not surjective, and in
order to track further information, it is useful to recast the surjectivity
property in terms of the dimension of the image of gk^. Thus, it makes sense to
consider, for each non-negative integer n, the set Yn of points p ̂  X such that
the image of g^ has fc(p) -dimension n. The sets Yn satisfy (GZ) as well.

Since similar considerations apply to other properties of A -modules and
maps, we define a new topology based on the property (GZ). In fact, we do this
for an arbitrary nonempty topological space.

Let y be a topology on a nonempty set X. Define STa to be the collection of
subsets V^X with the following property:

Property C. If x& V, then there is a W^ST containing x such that to fl

W£ to fl V. In other words, for each x£=V, to H V is a neighborhood of x in

{x} (given its subspace topology).

We verify directly that STC-ST" and that 2Td is a topology on X. We call 3rd

the y- constructive topology on X. As we note in (13.2) below, y° has a basis
consisting of the ^-locally closed sets. By analogy with the Zariski topology, we
say that a subset of X is ST-constructible if it is the union of a finite number of
^-locally closed subsets.

The proofs of the following elementary statements about the 2T- construe -
tible topology will be left to the reader.

Lemma 13.1. Let 3^ be a topology on a nonempty set X. The ^-constructive
topology y° contains both the ^-open and the ZT -closed subsets of ?T as members. In
particular, if Y^X is either ZT-open or closed, then Y is both STg-open and ST9-

closed. For example, if x^X, then {x} is both open and closed in the 3r~ constructive
topology.

Lemma 13.2. Each of the two sets

$f= {CO W\C is ^-closed and W is -J-

is a basis for the 3" -constructive topology on X.

We describe the effect of passing to the constructible topology in several
common situations. The proof is immediate from (13.2).

Lemma 13.3. The following statements hold:
(a) IfZT={X, 0} is the minimal topology on X, then J = y9.
(b) If (X, ST) is a TQ- space, then (X, 5^) is Hausdorff.
(c) // (X, ZT) is a Trspace, then yg is the discrete topology on X.

The Zariski topology on a scheme satisfies the T0~separation axiom, so that
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the following result holds:

Corollary 13.4. Let ?T be the Zariski topology on a scheme X. Then the
3T- constructive topology is Hausdorff, and (?T0)0 is the discrete topology on X.

Example 13.5. For the a/fine scheme X—SpecTL, the construe tible topology
coincides with the one-point compactification of the discrete topological space whose
elements are the positive prime integers.

In the context of Noetherian schemes, we next wish to indicate a technique
for parlaying the Property GZ, which is a kind of infinite constructibility, into
the finite version of constructibility.

Let X be a Noetherian scheme or, more generally, any Zariski space in the
sense of [H; Ex. (3 . 17) ] . Then the following property holds for its Zariski
topology:

Property Z. If Y is any nonempty closed subset of X, there is a point

y^Y whose closure {y} contains a nonempty open subset of Y.

Property Z, together with the usual descending chain condition on closed
sets, allows for iteration and the construction of many filtrations X=Xo^Xi^
•••i)Xm— 0 of X by closed subsets Xj, with points Xi^Xi(i = Q, •", m — l), such

that Xi\Xi+i^{xj}. For example, consider our original example above involving
the dimensions of images of maps g^) for p^Spec 0 and g:M—*N. By Property

Z, we can choose x ^ X whose closure {x} contains a nonempty Zariski open
subset. Now applying Property GZ to this point x, we find that there is a closed
subset Xi with x$Xi and with dim Im gk(^ constant on X\Xi. Continuing in this
way yields a filtration X=X^Xi'^>-~'^>Xm— 0 by closed subsets such that the
function pi-* dim lmgk(p) is constant on each stratum Xi\Xi+i. Since these strata
are all locally closed, we have proved the following prototypic result:

Corollary 13.6. Let A be an 6-algebra, which is finitely generated and
B

torsion-free as an 6 -module. Consider a morphism M—*N of A -modules as in
(1 . 5a), and fix any positive integer n. Then the set

is constructive (i.e., it is a finite union of locally closed subsets).

To conclude, it is worthwhile to review the classical constructibility result
of Chevalley. Although our proof is based on that given in [H; Ex (3.19)], our
present point of view makes it more conceptual.

Proposition 13.7. (Chevalley) Let f:X—>Y be a morphism of finite type of
Noetherian schemes. Then the image of f is construe tible.
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Proof. Induct on dim X + dim Y. Because/ has finite type, we can reduce,
as suggested in [H; Ex. (3.19 (a))], to the case/ \X = Spec B-> 7= Spec A in
which case / is induced by an inclusion A~*B of domains. In addition, B can be
taken to be a finitely generated A-algebra, so we can assume B=A [|],

Now we claim that Im/ is open in the constructible topology on Y. Let
y — q ̂  Im/. If § is transcendental over A, then X = Y X A1 and / is projection
onto 7, so Im / = Y. Otherwise, there exists a nonzero a ^ A such that the
localization B' — Ba is integral over Ar = Aa. If a 4 q, then y belongs to the
(Zariski) open subscheme Spec A'^Im/ of Y. Otherwise,/ induces a morphism
g: Spec B/ (a)—* Spec A /(a) in which 3; ^ Im g. By induction on dim A, Img is
open in the constructible topology on Spec A / ( a ) . Since Spec A /(a) is Zariski
closed in Spec A, our claim is established.

Finally, Property Z yields an x^-X so that {#} contains a nonempty Zariski
open subset of X. By (13.2) and the claim,/W ^F^Im/ for a Zariski locally
closed subset V of K Now x belongs to the Zariski locally closed subset fl(V),
so f ~ l ( V ) contains a nonempty Zariski open subset W of X. By induction,
f(X\W) is constructible in Y. Since Im/=FU/(Z\W), Im/is also constructible.

D
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