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The Plancherel Theorem for Biinvariant Hilbert Spaces

By

Bernhard Krotz*

Introduction

Let g be a finite dimensional Lie algebra over the real numbers. An element
X ^ g is called elliptic if ad X operates semisimply with purely imaginary
spectrum. We assume that g admits an open Inn (g) -invariant convex cone W
with non-empty elliptic interior W°. This assumption is satisfied whenever g is
hermitian or compact non~ semisimple, but also for a large class of non-
reductive Lie algebras, for instance the Jacobi algebras i)w X $>£ (n, M) , n ^ BJ,
where §n denotes the 2n + l dimensional Heisenberg algebra.

If G is a connected Lie group with Lie algebra g, we build the complex
Ol'shanskil semigroup FG (W) = GExp (iW) , which may be understood as a
quotient by TI\ (G) of the universal covering semigroup of (expc^ (g + i W) ) ,
where Gcc denotes a simply connected complex group with Lie algebra gc. A
non- empty connected G X G-invariant open subset D £ /G (W°) is called a
biinvariant domain. Then D = GExp (Dh) , where Dh^iW° is a connected open
subset. We note that D is a complex submanifold of /G (W°) and write Hoi (D)
for the space of holomorphic functions on D equipped with the topology of
compact convergence.

A biinvariant Hilbert space is a Hilbert space 3£ sitting continuously in
Hoi (D) on which G X G acts unitarily via

for gi, g2 ^ G, / ^ X, z e D. As the inclusion mapping X C— > Hoi (D) is
continuous, all point evaluations Kz : ffi -* (C, / ^ / (z) are continuous.
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Therefore $? is a reproducing kernel Hilbert space with kernel K(Z,W) —
(KW, Kz), also denoted by #£&. It is easy to see that K is biinvariant, i.e., K (g\zg2,

w) =K(z,gT1wg2l) holds for all gi, g2^G, z,w^D, and that the prescription K
*-* $K defines a correspondence between holomorphic biinvariant positive

definite
kernels and biinvariant Hilbert spaces.

Now the natural question arises how U ® p, $K) decomposes into
irreducible representations, i.e., we ask for a Plancherel Theorem for Biinvariant
Hilbert Spaces. Using the considerations from above one can show that this
problem is more or less equivalent to the problem of decomposing a biinvariant
kernel K into its extremal constituents.

One may consider a complex Ol'shanski! semigroup as a complexification of
the symmetric space (G X G) /A (G) = G, where A (G) = { (g , g} ^ G x G: g e G) is
the diagonal, and every biinvariant domain as a (G X G) -invariant domain of
this complexification. Thus biinvariant Hilbert spaces are a special class of
invariant Hilbert spaces of holomorphic functions on certain complexifications of
symmetric spaces (cf. [KN097] for more details). Such invariant Hilbert spaces
have already been studied in [H0091], where a Plancherel Formula for the
Hardy space corresponding to an affine symmetric space is proved. But it seems
to be too early for a discussion of invariant Hilbert spaces in general, because a
detailed knowledge of spherical highest weight representations and their
associated characters is needed; a theory which is still in development (see
[KrNe96], [KN097.98], [Kr98b, d] for the latest results).

The most powerful method in dealing with invariant Hilbert spaces is to
embed the invariant Hilbert space into a biinvariant one and then using the
results of the biinvariant setting. Thus it is inevitable to understand biinvariant
Hilbert spaces first Since we kept large parts of this paper general, it provides
many tools to deal with invariant Hilbert spaces as soon as the theory of
spherical highest weight representations is sufficiently far developed.

Plancherel Theorems have already been proved for special classes of
biinvariant Hilbert spaces, namely for the Hardy spaces corresponding to linear
hermitian (cf. [0182], [0191], [0195]) and solvable Lie groups (cf. [H10192])
as well as for a Bergman space associated to Sp (w,M) (cf. [Pe96]). The
Plancherel Theorem for Hardy spaces for arbitrary G was suggested in [Ne95].
But in all cases established so far one has needed very special assumptions on
the group, for example compactness of the center if the group is reductive to
guarantee discrete decomposability. This is because in this special case the
"abstract" desintegration theory of C*-algebras (cf. [Ne94], [Kr98c]) really
gives "concrete" realizations. But in general the C*-theory fails for giving
explicit answers. In this paper we give a sufficiently concrete description of the
Plancherel theorem for all applications. It will serve as a foundation for a
general treatment of Hardy and Bergman spaces (cf. [Kr98a]).
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The paper is organised as follows:
I . Conuclear spaces and integral representations
II . Positive definite kernels on complex manifolds
M. Biinvariant domains in complex Ol'shanskii semigroups
IV. The Plancherel Theorem for Biinvariant Hilbert Spaces.

One main ingredient in the proof of the Plancherel Theorem is Thomas'
Integral Representation Theorem for Conuclear Cones (cf . [Th94] ) . Section I is
devoted to a brief discussion of conuclear spaces and explains the Integral
Representation Theorem.

Let M be a separable complex manifold and M the same manifold equipped
with the opposite complex structure. Let S be an involutive semigroup acting on
M by holomorphic mappings from the left, V a finite dimensional Hilbert space,
B (V) the space of linear operators on V and 9 (M2, V) the convex cone of
holomorphic positive definite B (V) -valued kernels. For each K^9 (M2, V) we
write $?#— Hol(M, V) for the corresponding reproducing kernel Hilbert space of
holomorphic functions. A kernel K^3)(M2, V) is called S-invariant if K(s.ztw)

—K(z,s*.w) holds for all s^S, z,w^M, and we denote by 2P(M2,V) t the convex
subcone of 9 (M2, V) of all ^-invariant elements. We call K e 9 (M2, V)t

exponentially bounded if for each s^S there exists a positive number a* (s) such
that

(K (s.z, s.z) .v,v)< aK (s) (K Oar, z) .v, v)

holds for all z^M and v^V. In this case the prescription

KK: S - B (%K) , (KK (s) ./) (z) =f(s*. z)

gives rise to a representation of S.
In Section II we show that the Integral Representation Theorem applies to

the closed convex subcones of 9 (M2, V) « in the conuclear space Hoi (M X M, V") .
It turns out that each exponentially bounded kernel K^9 (M2, V)i with (TTX,
$K) multiplicity-free has an integral representation

= f Qdp(Q),
J Ext^CATWi)

K

where // is a uniquely determined Radon measure supported on a suitable
section on the subcone of extreme generators Ext (9 (M2, V] «•) of 9 (M2, V) /.

Moreover we show that there is a unitary equivalence of ^-modules

Section III summarizes the main facts concerning the convex and complex
geometry of biinvariant domains mainly due to K.-H. Neeb (cf. [Ne98] , [Ne99] ) .

In Section IV we finally prove the Plancherel Theorem for Biinvariant
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Hilbert Spaces (cf. Theorem IV.12). It says that each K^S>(D2}i can uniquely
be written as

K=j ^K*dp(A).

Here // denotes a Radon measure on the Borel subset of highest weights HW(G,
A+) ^tt* of G, where t denotes a compactly embedded Cartan subalgebra of g

and A+ a certain positive system determined by D. Further K*^Ext(&>(D2),-) is
defined by K* (s, t} = 0* (st*) for 5, t ^ D, where 9* is the character of the
unitarizable highest weight module L U) considered as a holomorphic function
on FG(WQ). On the level of GX£-modules we have a unitary equivalence

HW(G, d+) HW(G, /

where (TTX fflx) is a unitary highest weight representation of G with highest
weight A.

I. Conuelear Spaces and Integral Representations

The objective of this section is to explain all the concepts needed for
Thomas' Integral Representation Theorem and eventually to state it.

Definition I.I. Let £ be a topological vector space.
(a) We call a system @ of subsets of E saturated

Vf > 0)

We denote the saturated system of all bounded convex closed balanced subsets
of E by @&c.
(b) Let A ^@&c and £^: = U t>otA. Further we set

pA: EA -* [0, oo [ x ^ { n f { t >Q:xZE tA}.

Then PA is a norm on EA- We consider E^ as a topological vector space with the
topology induced from PA.
(c) Let y be the topology of E and yc <= 2T the subsystem of all convex
balanced open sets. For each U^tTc we define the seminorm

and put JVV = ^t/1 ({0}). Then qu gives rise to a norm on EC/: =E/Nu, also
denoted by <?#.

(d) We write E' for the topological dual of E and El, Ef
a, resp. £r, for E'

equipped with the strong topology, weak-*-topology, resp. Mackey topology.
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(e) The completion of a topological vector space E is denoted by £.
(f) A topological vector space E is called quasicomplete if every bounded closed
subset of E is complete. •

Remark 1.2. (a) For all A$ ^ <&>bc, A ^ B, one has continuous inclusions
EA-+EB-+ E. Moreover, EA is complete if A ^ E is complete (cf. [Tr67, Lemma
36,1]).
(b) If U,V^STC, U^V, then one has continuous maps E -* Eu -* £7. •

Definition 1.3. (a) A locally convex space E is called nuclear if for each

£/ e yc there exists F^^, F" ^ [/, such that E^ -*> £^ is nuclear.
(b) Let @ be a saturated subsystem of @&c. A locally convex space E is called

&-conuclear, if for each A ^@ there exists B^@, A £1J3, such that £4 ~~* £5 is
nuclear. We call E conuclear if £ is @&c-conuclear. •

The next proposition describes the interplay between nuclear and conuclear
spaces.

Proposition 1.4. (0 Let E be a quasicomplete locally convex space. Then E is

conuclear if and only if its strong dual El is nuclear.
(ii) The strong dual of a nuclear Frechet space is nuclear.
(iii) Every nuclear Frechet space is conuclear.

Proof, (i) [Sch 73, Ch. F, Th. 1].
(ii) [Tr67, Prop. 50.6].

(iii) Let £ be a nuclear Frechet space. According to (ii), El is nuclear. Thus (i)
implies that E is conuclear. •

Example 1.5. (a) Let M be a finite dimensional separable complex
manifold and Hoi (M) the space of holomorphic functions on M equipped with
the topology of compact convergence. Then Hoi (M) is a nuclear Frechet space
(cf. [Gr55, p. 56] ) hence conuclear by Proposition 1.4 (iii).
(b) More generally, let £ be a complete locally convex space over the complex
numbers and Hoi (M, £) the space of £~valued holomorphic functions on M
endowed with the topology of compact convergence. Then Hoi (M, £) is complete

and Hoi (M, £) = Hoi (M) §>6 £ by [Gr55, Th. 13] . Thus Hoi (M, £) is nuclear
since Hoi (M) is nuclear (cf. [Tr67, Prop. 50.1 (9)]) . If in addition £ is a
Frechet space, then Hoi (M, £) is a nuclear Frechet space and so conuclear by
Proposition 1.4 (iii). •
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Definition I. 6. Let £ be a topological vector space and C^E a cone.
(a) The edge of C is defined by H(C) : =cn (~C) . We call C pointed if ff (C) =
{0}. Note that H(C) is a vector space if C is convex.
(b) If C is convex, then we define an ordering on C by y ^ x : <=># —y ^ C.
The cone C is called a lattice if any two members of C have a supremum with
respect to this order relation. For each x ̂  C we define the order interval IX'.—C
H (x-C) = {y^C:y<x}.
(c) Let M+ := [0, oo [. A subset S£C\{0} is called a s0c£ton if S meets each ray
in C in exactly one point, i.e., \S fl IE+#| = 1 for each #^C\{0}. To each section S1

we associate the function ps: C-*H+ defined by x ^ps ( x ) . S . Note that ps is
positively homogeneous and S= {x^C: ps (x) =1} .
(d) A Radon measure on a Hausdorff space T is a locally finite inner regular
Borel measure on T. We write $ (T) for the cone of Radon measures on T.
(e) A section S of C is called admissible if ps: C — > M+ is universally
measurable (cf. [Sch73, Ch. I] for the notion of universally measurable maps) .
An admissible parametrization of C is an injective Borel map 7: T -* C such that

^C is an admissible section, 7"1 : im?" -> T is universally measurable and

(f) For each x €= C we define the /ace generated by x Fx'-
= U *>ohx. A point x

is called an extreme generator if F^ = M+#. The set of extreme generators of C is
denoted by Ext (C) . Note that Ext (C) is a not necessarily convex subcone of C.

Remark 1. 7. Our definition of an admissible parametrization is more
general than the one given in [Th94] . There an admissible parametrization is
defined to be an injective continuous map 7: T — * C such that j is an admissible

section and j~l\ imj1 — * T is universally measurable. We are lead to this
generalization, since the parametrizations we have in mind are not continuous.
However, as we will see below, the Integral Representation Theorem in [Th94,
p. 226] remains valid with our notion of an admissible parametrization.

Note that there always exists an admissible parametrization of C if E is
locally convex (cf. [Th94, Cor. 1.17]). m

Now we have all notation to state Thomas' Integral Representation
Theorem.

Theorem L8, Let E be a quasicomplete conuclear space and C^E a closed
convex cone such that all order intervals Ix, x^C, are bounded. Let j\ T-*Ext (C) be
an admissible parametrization of the cone of extremal generators.

( i ) For each x ^ C there exists a Radon measure [ton T such that x — frj (t) djJ. (t)
holds.

(ii) The measure {J. is uniquely determined by x if and only if Fx is a lattice. In



BlINVARIANT HlLBERT SPACES 97

particular, jj. is uniquely determined for all x^C if and only if C is a lattice.
(iii) Let ft (T) c

 : = (fJL e $ (T) : JY 7 (0 d0 (f ) e C> . T/wn $t(T)cisa convex subcone
of $ (T) and tfte orrf^r preserving map

0: (!»(T)c, <) - (C, <), A* ̂  Jr rto^to

is onto; it is bijective if and only if C is a lattice.
(iv) Let gi e $ (T) c and x = fT T (i) dfi (t) ^ C. Let Fu be the face generated by p. in

3? (T) . Then F^fft (T) c and 0 induces an order preserving map 0^: (F#, <) — * (F#,
<) . Moreover, 0U is an order isomorphism if and only if Fx is a lattice.

Proof. (0,(ii) Fix x €= C. By the definition of an admissible parametrization
S'- = imr is an admissible section, so that [Th94, Th.1.18, Th.5.2] imply that
there exists a Radon measure v on 5 such that x= fs y dv (y) , and, moreover, v
is unique if and only if F^ is a lattice.

Again by the definition of an admissible parametrization fji-= (f"1) *. v is a
Radon measure on T. Thus we obtain that x = /r 7 (0 d^ (f) , and ^ is unique if
and only if Fx is a lattice.
(iii) This is a direct consequence of (0 and (ii).
(iv) It is clear that F^5?(T)C and hence 0^ is a well define order preserving
map.

It follows from the Radon-Nikodym Theorem (cf. [Sch73, Ch.I, §6, Th. 14] )
that (Fu, <) is a lattice. Thus Fx is a lattice whenever 0U is an order
isomorphism.

To prove the converse, let ^ be uniquely determined by x. In view of (ii),
this means that F^ is a lattice. We claim Fy is a lattice for every jy^F^. In fact,
let a,b^Fy. Since Fx is a lattice, aVb and a/\b exists in Fx. Now aVb, a/\b^Fy,
proving the claim.

According to (ii), our claim implies that every element of Fx has a unique
measure representing it. In particular, 0^ is injective. Next we show that 0^ is
onto. Fix y ^ Fx and let u ^ ft (T) c be a corresponding measure. W.l.o.g. we
may assume that y < x. Then x — y ^ C and we find a Radon measure a
representing x~y. But then jl=v + a is a Radon measure representing x, hence
equal to ^ by the uniqueness of fi. Thus v < JJL, and so i^F^. This shows that

0ui is onto and also that 0^ is order preserving, concluding the proof of (iv). ®

II. Positive Definite Kernels on Complex Manifolds

In this section M denotes always a complex manifold and we write M for M
equipped with the opposite complex structure. It is our aim to apply the Integral

Representation Theorem to the conuclear space Hoi (M X M, V) and closed
convex subcones of the cone 9 (M2, V) of positive definite holomorphic B(V)~
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valued kernels.

Definition ILL (a) Let X be a set, V a Hilbert space and B (V) the space
of bounded operators on V. A function K: X X X-+B (V) is called B (V) -valued
positive definite kernel if for every sequence (x\, vi) , ..., (*«, vn} in XXV we have

;,*=!

We write ^(Z2,!/") for the set of all B (V) -valued positive definite kernels.
If V = (C is one-dimentional, then the elements K e 9>(X2)'- = S>(X2

1 V) are
simply called positive definite kernels on X.

(b) If X=M is a complex manifold, then we call K<E$> (M2, F) a 5 (V) -vaJwed

holomorphic positive definite kernel if IT is positive definite and K €= Hoi (M X M,

Proposition IL2. Let X be a set and V a Hilbert space.
( i ) If K^9 (X2, V) , then K (x, x) is a positive semidefinite operator and K (x,y) *

=K(y,x) holds for all x^y^X.
(ii) A function K: XX X—*B (V) is a B (V) -valued positive definite kernel if and

only if there exists a Hilbert space #£^VX with continuous point evaluations Kx: $£

-»VJ *~»f(x) such that K (xy) =KxKf holds for all (x,y) ^X X X. In this case we
write $CK for ffl.

(iii) IfK^^>(X2,V), then

X%: =spantKx,v: x^X,v^ V} £XK,

where Kx,v (y}'-—K(y,x). v, is a dense sub space of $?#.
(iv) If X = M is a complex manifold and K e 9 (M2, V) , then MK c Hoi (M, V)

consists of holomorphic functions.

Proof, (i) [Ne99, Lemma I. 2] .
(ii), (iii) [Ne99, Th. I. 4] .
(iv) [Ne99, Prop. IV. 1.9]. m

We refer to MR as a reproducing kernel Hilbert space corresponding to the
positive definite B(V) -valued kernel K.

From now on V always denotes a Hilbert space and 5" an involutive
semigroup.

Proposition II.3. Let M be a complex manifold and Hoi (M X M , V) be
equipped with the topology of compact convergence. Then the following assertions hold:

The cone ^(M2, V) is closed and convex in Hol(MXM, V) .i
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(ii) All order intervals IK,K^$P (M2, V) , are closed and bounded.
(iii) If M is separable and V is finite dimensional, then all order intervals IK, K^

9 (M2, V) , are compact.

Proof, (0 This is clear.
(ii) That order intervals are closed is obvious. To show that they are bounded

we note that the topology on Hol(MXM, V) is induced from the seminorms

where A runs over all compact subsets of M. We show that

(2.1) ( V K €= 9 (M2, V) ) qA (K) = sup^ll/f (x, x) ||.

The inequality "^" is clear. Using Proposition II.2(ii), we obtain that

(2.2) \\K(x,y}\\ < Kx\\ * \\Ky\\=</K(x,x) </K(y,y)

for all x,y ^ M, proving the converse.
Now we can show that IK is bounded. Let Q ^ IK. Then Q < K implies that

K(X,X} — Q(x,x) is positive definite for all x^M, and so

(2.3)

Equations (2.1) and (2.3) imply for all Q^!K and all the seminorms qA that

qA (Q) = sup^MllQ (*, x) || < sup^ll/f (x, x) \\=qA (fiT) ,

i.e., IK is bounded.

(iii) Note that Hol(MXM, V) is a nuclear Frechet space, provided M is separable

and V is finite dimensional (cf . Example 1 . 5 (b) ) . Therefore Hoi (M X M, V) is a
Montel space (cf. [Tr67, Prop. 50. 2]). In particular, closed and bounded sets
are compact. In view of (ii), this proves the assertion. •

Proposition IL4. Let M be a separable complex manifold and V a finite
dimensional Hilbert space. Let C be a closed convex subcone of £P (M2, V} and 7: T
—+ Ext C be an admissible parametrization. Set K* '• — ?($ for all t^-T.

(i) For each K^C there exists a Radon measure ft <m T such that K= IT K*dfJ.(t)

(ii) The measure p, is unique if and only if FK is a lattice.

Proof. According to Example 1.5 (b), the topological vector space Hoi (MX

M, V) is quasicomplete and conuclear. Moreover Proposition II. 3 implies that

^(M2, V) is a closed convex cone in Hol(MXM, V) such that all order intervals
IK are compact. As C is a closed convex subcone of 9 (M2, V) , the same holds
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for C. Thus all assumptions of Theorem 1.8 are satisfied and the assertion
follows. H

For each Hilbert space $? we write Herm ($?) + for the convex cone of
positive operators in B (&} , Let K e $£ (M2, V) and XK be the corresponding
Hilbert space (cf. Proposition II. 2 (iv)). To each A ^ Herm (Xx) + we associate an

element KA^9>(M2, V) by the prescription KA (x,y)'=Kx AK* for all x, y e M
(cf. [Ne99, Lemma I.7(ii)]). If C is a closed convex subcone in ^(M2, V) we, set

4+ (K, C) := (A ^Herm (#*) +: KA^C}.

Lemma II.5. Suppose that V is finite dimensional and let C^ZP (M2, V) be
a closed convex subcone. Let K^C, K= fx K* dfi(f) be an integral representation of
K with respect to C and FK the face generated by K in C.

(0 The mapping WK : (st+(K, C), <) -* (FK, <),A *-+ KA is an order isomor-
phism.

(ii) Let $»: (Fu, <) -> (FK, <) be the map of Theorem I.8(iv). Then WKI°®U-
(FP, ^) — + (sd+(K, C) , ^) is aw- order isomorphism if and only if /I is uniquely

determined by K.
(iii) Let % be the Borel (J-algebra of T and set KB'= JB Kld{Ji (t) for each B e ».

Then KB ^ C, KB < K and #£KB £ ^. Moreover, if fj, is unique, then the inclusion
mapping IB: $KB —* $€K is isometric for all B ^ $.

Proof. (0 This follows from [Ne99, Th.1.20].
(ii) This is a consequence of Theorem 1.8 and ( i ) .
(iii) Since KB = 0u(lBd^} and Isdfi e F», it follows from Theorem I.8(iv) that KB

< K and KB^C for all B^ %. As ^</T? [Ne99, Th. I. 20] implies that MKB is
continuously included in $K.

To prove the second assertion we first note that is is isometric if and only

if XKB^^KBC = ^K is an orthogonal direct sum. Write AB'-= (2f l o<
for B^SS. If ^ is unique, then (ii) and inf{l^^, lBcdfjt} =0 imply that i

i.e., ^K^^^K^ — ̂ K for all B^SS, as was to be shown. B

Remark 11.6. The converse of Lemma II. 5 (iii) is false, i.e., IB isometric for
all B e $ does not imply that ^ is unique. In fact let M = W , V be a finite
dimensional Hilbert space of dimension n > 2 and K ^ ^ (M2, V) defined by
#(#,*) =id7. For each f^F we write Py: F-^C.t; for the orthogonal projection
onto \v\ '. = C.v and denote by IP (V)- = {\v\\v ^ F\{0}} the projective space of
V. Then Ext (9 (M2, V) } = (PV: [v] €= IP (v] )} and

7: IP(y) -Ext(^)(M2, V)) , M ^ P,
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is a continuous bijection of IP (V) onto a section of Ext (9 (M2, V)) , hence an
admissible parametrization.

Every othornormal basis {v\, ...,vn} of V gives via K — 2jLi-Pw rise to a

measure fJLVi,...,vn: ~ 2/=i5[W] representing K. In particular, we see that ^ is not
unique.

Now fix a measure p.Vi,-,vn representing K corresponding to the orthonormal
basis {vi,...,vn}. Then

Therefore, if KB = 2/e/ JPw, one has $?#* — span {u/: / ^/} and the inclusion
mapping tj?: $#* -* #EK = V is isometric. •

Definition II.7. (cf. [Fo96, p.220]) Let (T, @) be a measure space, i.e.,
T is a set and @ in a a-algebra on T. A measurable field of Hilbert spaces is a
family of Hilbert spaces (fflt) *er together with a countable set {&„: n eM} £
Uterfft of sections such that the following axioms are satisfied:
(3fl) The mappings £ |-» (xj (t) , *ft (t) ) t are measurable for all /,
($2) The linear span of {*„(*): n^N} is dense in #, for all

If, in addition, /* is a measure on (T, @) , then we denote the
corresponding direct integral of Hilbert spaces by fffflt d[i(£) . ®

Proposition II.8. Let M be a separable complex manifold, V a finite
dimensional Hilbert space, C a closed convex subcone of 9 (M2, V) and j\ T-*Ext C,
t •-* K*, an admissible parametrization. Let x ^ C and li a Radon measure on T
representing x. We set $Ct '- = $& for all £ €E T.

(0 Let {(xn. Vn) ^MX V: n^-N} be a dense subset in M X V and set xn(t) '• —

K*xn,vn for all n eN, t^T. Then {xn: n ^N} induces on (fflt) t^r the structure of a
Borel measurable field of Hilbert spaces. We write IT $t dfi (t) for the direct
integral corresponding to the Radon measure IJL.

(n) The mapping QT : f f X t d(i (t) -+XK given by (QT (f) (x) , v ) : = < f , (JK*X.9) M)
yields an isometry of (kerfir) ± -+ #£K. Moreover, if {L is unique, then QT is an
isomorphism.

Proof, (i) To prove (̂ 1) it suffices to check that the mapping (py,x,w,v'* T -+

(C, t *-> <#U K'w)t are Borel measurable for x, y<^M, v.w^V. As j\ T-*Ext(C)
is an admissible parametrization, it is Borel measurable by definition. Moreover,
for all x, y^M, v,w^V, the evaluation mapping

*€,/•-» <f(y,x).w,v>

is continuous. Thus (py^,Wtv — evy,x,w,v ° 7 is the composition of two Borel
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measurable mappings, hence Borel measurable. This proves (3F1).
Since (2F2) is obviously satisfied, the assertion follows.

(ii) For every x^M and B^S we define a linear map

T}Bb):V^ J* Xtdn(i),v *-* O^W
' B

We have

=fB(K'(y,x).v,w) dfi(t)

= ( Kt(y,x)d(JL(t).v,w}
J B

= (KB(y,X).v,w}<\KB(y,X)\\' \\v\\ -\\w\\

for all x, y ^ M, v, w^V. This shows in particular that all J]B (x) are bounded
operators and hence the well-definedness of the mapping

Moreover, the computation also shows that KB(x, y) = r]B (x)*r}s (y) so that the
Realization Theorem (cf. [Ne99,Th.I.ll]) implies that the mapping

QB: Xt dfi(t) -* XKB, QB(f) (x) =
J B

defines an isometry of (kerJ35) -
1 onto 3fKB. This shows the first assertion.

Finally we have to show that Q is an isometry if ^ is uniquely determined
by K. To each B e ® we associate the projection PB: IT Xt d(i (t) -+ // Xt d[i (f) ,

(ft)t*T *-* (ft) ten. It follows from r]B = PB°r] that iB ° QB = @T ° PB , i.e., the
diagram

is commutative. Taking adjoints we obtain that

(2.4) PBoQ* = Q*oi*

Assume now that ft is uniquely determined by K. Then Lemma II.5(iii)
implies that is is isometric for all 5^®. Thus it follows from (2.4) and the

isometry of QB and Q* that PB\O%(XKB) is isometric and PB $}.(#**«) = 0 for all B

^ St. Since $£K — $KB © ̂ f^c for all B ^ ®, this implies that imfi* is invariant

under (PB: B^3!>}, i.e., imJO* is a decomposable subspace of f-^XtdfJL(t). In
view of [Fo96, 7.29] this shows that QT is onto, proving the second assertion. •
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Application to Representation Theory

Definition II.9. (a) An involutive semigroup is a semigroup 5 together
with an involutive anti automorphism *: S1 -» S, s >-» 5*.
(b) Let X be a set and S an involutive semigroup acting on X from the left. An
element K^9 (X2, V) is called S~invariant, or simply invariant, if K (s. x, y) =
K(x, s*. y) holds for x, y^X, s GS. We write 9 (X2, V) i for the subcone of all
invariant elements of 9 (X2, V) .
(c) LetK^3)2(X2, V)i. Then

Tfi: S - End («) , (;ri (5) . /) (*) -/(s*. *)

defines a semigroup homomorphism. Note that all operators TrjKs), 5 ^ S, are

closable on 20* (cf. [Ne99, Prop. II. 4. 10]) and that 7rl(s*) = 7TJKs)*kj holds for

all 5 €= S. We call (TT*, #?i) a hermitian representation of S1.

Further, TTJT (5) is bounded if and only if

a, (») Hk£ GO II2 -

(j£(s.x,s.x).v,v)
v \ ^ ^X

, X).V,V/

(cf. [Ne99, Th.II.4.4]). If ax(s) is finite for all s^S, then (T& «) extends to
a representation (KK, $K) of 5 given by

TTK: S - B (#,) , (rr, (s) . /) («) =/(s*. *) ,

i.e., UK is a semigroup homomorphism and TF# (s*) — UK (s) * holds for all s ^ S
(cf. [Ne99, Th. III. 1. 3]).
(d) A mapping a: 5 -* ffi+ is called an absolute value of S if a (s) =a (s*) and
a(st) <a(s)a(t) holds for all 5, I ^ S. To each absolute value a we associate a
subset of 3^ U2, V) ,- by

(e) A representation (TT, 3^) of S is called multiplicity -free if its commutant
Tt (S) is abelian. •

Lemma 11.10. The set 9 (X2, V, a)t is a convex subcone of 9 (X2, V} ,-.

Proof. As 9 (X2, V, a) i is invariant under multiplication with non-negative
scalars, 9 (X2, V, a) i is a cone.

We show that 9 (X2, V, a)i is an additive semigroup. According to the
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Realization Theorem (cf. [Ne99, Th. 1. 11, Rem. 1. 12]), there exists an isometric
S-equivariant embedding

We conclude that a#1+#2<max (a#ls aK2) ^a, proving the lemma. •

In general it is far from being true that FK for K^9 (X2, V, a),- is a lattice.
But, as we will see below, in the important case where (TT#, XK) is
multiplicity -free this is true.

Proposition 11.11. Let K^9(X2, V, a) ,. Then FK is a lattice if and only if
(TLK, &CK) is multiplicity -free.

Proof. Recall from Lemma II. 5(0 that the mapping

is an isomorphism of ordered spaces. Let d (K, 9 (X2, V, a) f-) £ B (#*) be the
von Neumann algebra generated by si* (K, 9 (X2, V, a) ,-) . In view of [Ne99,
Prop. II. 4. 29] , we have

s$+ (K, 9 (X2,V, a) i) = (A e Herm (XK) +: KA^9 (X2, V, a) J = (A e nK (S) ':

and hence si (K, 9 (X2, V, a) /) = ^ (S) '.
According to Sherman's Theorem (cf. [Th78, Lemma 8] ) , the positive cone

of a von Neumann algebra is a lattice if and only if the algebra is abelian. In
view of this fact, the proposition follows. H

Theorem 11.12. Let M be a separable complex manifold, V a finite
dimensional Hilbert space, S an involutive semigroup acting on M by holomorphic
mappings from the left, a: S -* ffi+ an absolute value and j: T -+ Ext (9 (M2, V, a) /) ,
t *-* K* an admissible parametrization. Let K ^ 9 (M2, V, a) i and assume that
(TT#, $K) is multiplicity -free.

( i ) The set 9 (M2, V, a) ,- is a closed convex subcone of 9 (M2, V) / and the face FK

is a lattice.
(ii) For each Q&FK there exists a unique Radon measure JJL on T such that Q =

fTK'diJL(i) holds.

(iii) All representations (itf, #?):= (UK*, $&), t^T, are a~bounded, i.e., at(s)' =

||TT? (5) \\<a (s) holds for all s ^ S. In particular, each (TT?, XT) extends to an
involutive representation (nt, $t) of S.

(iv) For all t^T the representation (lit, Xt) is irreducible.

(v) The prescription KXfV '->• (Kx,v) teT defines a unitary equivalence

0): (f*
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of S -modules.

Proof, (i) The first assertion follows from Lemma 11.10, the second one
from Proposition 11.11.

(ii) This follows from (i) and Proposition II.4(ii).
(iii) As all K*, t^T, are contained in £P(M2, V, a) i, the assertion is clear.
(iv) Since each K* ̂  Ext (9 (M2, V, a) /) , t e T, is an extreme generator, the

assertion follows from [Ne99, Cor. II. 4. 23] .

(v) Using the notation from Proposition II.8(ii) we see that a) = Q* and thus a)
is well defined.
In view of Proposition II.8(ii) and ( i ) , a) is in fact an isometric isomorphism. It
remains to show that a) is S-equivariant. But this is a direct consequence of the
S-equivarianee of the mapping r? r, which follows from

r]T(s.x) (v) = (KLr.,),6r= (itt
K(s).K^)teT=t(s)dfi(t). flrto (v)

for alUeM, v e lands es. •

Extension to the Envelope of Holomorphy

We conclude this paragraph with a remark on the extension of a positive
definite holomorphic kernel on a complex manifold M to a positive definite
holomorphic kernel on the envelope of holomorphy of M.

Definition 11.13. (a) Let M be a complex manifold. We write

5 (Hoi (M) ) : = Home (Hoi (M) , C )

for the set of all continuous (C -algebra homomorphisms of Hoi (M) to C
endowed with the corresponding weak-* -topology. Then we have a continuous
map

Note that J] is in fact a homeomorphism if M is a Stein manifold (cf. [Ro63, Th.
2.6]).
(b) Assume now that M is a Stein manifold and let D £ M be a domain.

According to [Re63, Th. 4. 6] , the space D'< = S (Hoi (D)) carries the structure of
a Stein manifold such that the canonical map

D-*S(Hol(Af))=M, <p ^ (/ •-> «P(/ |D))

defines on D the structure of a Riemann domain, i.e., q is locally biholomorphic.

The space D is called the envelope of holomorphy of D. ®
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Proposition 11.14. Let M be a Stein manifold, D ^ M a domain, D its
envelope of holomorphy and V a Hilbert space.

(i) The action of S extends to an action SXD —* D by holomorphic maps.

(ii) Each K^3>(D2, V), extends to an element K e 9(D2, V) ,.

Proof, (i) For each 5 ^ S let as ^ Hoi (D, D) given by as (m) '- = s.m. Then
as induces a continuous algebra homomorphism as: S (Hoi (D)) -* S (Hoi (D)) by
0S (<p) (/) = <p(f°0s). This shows in particular that as lifts to a holomorphic map

0-5: D-+D. The action of S on D is now given by S X 6 -+ D, (s, m) *-+ a's. m.

(ii) As Hoi (D) and Hoi (5) are Frechet spaces, the Open Mapping Theorem

implies that the restriction mapping r. Hoi (D) —*Hol (D} is an isomorphism. In

view of Hoi (D, V) = Hoi (D) ®£V and Hoi (D, V) =Hol (5) §>£F (cf. Example

1.5), the same holds for the restriction mapping Hol(Z), V) —^ Hoi (D, V) (cf.

[Tr67, Prop.43.7]). Thus we obtain a realization of XK in Hoi (D, F), i.e., K

extends to a holomorphic positive definite B (V)-valued kernel # on £>. Using

the Identity Theorem for Holomorphic Functions, we see that K is S-invariant,

i.e., K^ 3>(D2, V)i proving the assertion. •

III. Biinvariant Domains in Complex Ol'shanskii Semigroups

In this chapter we specialize to an important class of complex manifolds,
namely biinvariant domains in complex Ol'shanskii semigroups.

Definition III.l. Let g be a finite dimentional Lie algebra over M.
(a) An element X^Q is called elliptic if ad X operates semisimply with purely
imaginary spectrum. A convex cone W ^ g is said to be elliptic if W° ̂  0 and
allZ^W0 are elliptic.

(b) For a subalgebra a £ g we write Inn (a) := (0ada> £ Aut(g) for the
corresponding group of inner automorphisms. A subalgebra a £1 g is said to be
compactly embedded if Inn (a) is relatively compact in Aut(g). H

Remark 111.2. (a) If a Lie algebra g admits an elliptic cone W, then there
exists a compactly embedded Cartan subalgebra t £ g (cf. [Ne99, Th. VII.1.8]).
(b) Suppose that g admits a compactly embedded Cartan subalgebra t and let E
£ g be a Inn (g) -invariant subset consisting of elliptic elements. Then E can be
reconstructed from its trace in t, i.e., E = Inn (g). (E fl t). This follows for
instance from the fact that each elliptic element is contained in a compactly
embedded Cartan subalgebra and the fact that all compactly Cartan subalgebras
of g are conjugate under Inn (g) (cf. [Ne.99, Th. VII. 1.4]). •
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From now on we assume that g contains a compactly embedded Cartan
subalgebra t and that there exists an elliptic cone W ^ g.

Definition IIL3. (a) Let W £ g be a closed elliptic cone. Let G, resp. Gc,
be the simply connected Lie groups associated to g, resp. gc, and set Gi"- = (exp g)

£ Gc. Then Lawson's Theorem (cf. [HiNe93, Th. 7.34, 35] ) says that the subset
FGl(W)' = Gi exp(iW) is a closed subsemigroup of Gc and the polar map

is a homeomorphism.

Now the universal covering semigroup FG(W) '- = FGl (W) has a similar
structure. We can lift the exponential function exp: Q + iW -+ FGi (W) to an
exponential mapping Exp: Q + iW~* FG(W) with Exp (0) =1 and thus obtain a
polar map

G X W-+FG(W), ( g , X ) ^gE*v(iX}

which is a homeomorphism.
If G is a connected Lie group associated to g, then it\ (G) is a discrete

central subgroup of FG(W) and we obtain a covering homomorphism FG(W) — *•
FG(W)' = Fs'(W)/Ti:i(G) (cf. [HiNe93, Ch. 3]). It is easy to see that there is also
a polar map G X W —* FG (W) , (g, X) *-» #Exp (iX) which is a homeomorphism.
The semigroups of the type FG (W) are called complex Ol'shanskil semigroups.

The subset FG(WQ) ^ FG (W) is an open semigroup carrying a complex
manifold structure such that semigroup multiplication is holomorphic. Moreover
there is an involution on FG (W) given by

*: FG (W) -+rG(W),s= gExp (iX} •-> s* = Exp (iX)g~l

which is antiholomorphic on FG (W°) (cf. [HiNe93,Th. 9.15] for a proof of all,
that) . Thus FG (W) is an involutive semigroup.
(b) A biinvariant domain D £ FG (W°) is an open connected G X G biin variant
subset of FG ( W°) . Note that

D^GExp (Dh) ^GExp (©) G,

where D^ c iw° and ® =D* H it (cf. Remark III . 2 (b) ) . •

Theorem III.4. (K.-H. Neeb) All complex OVshanskii semigroups FG (W°)
are Stein manifolds. Further if D £ FG (W°) is a biinvariant domain, then its

envelope of holomorphy (cf. Definition II . 13) D of D is given by

5=GExp(conv(D*)).

Proof. [Ne98, Th. 5.18, Th. 7.9] . •
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Definition III.5. A Hilbert space $? which is a subspace of Hoi (D) is
called a biinvariant Hilbert space if the following conditions are satisfied:
(BH1) The inclusion X C__» Hoi (D) is continuous.
(BH2) The group G X G acts unitarily on #£ via

for g^ g2 e G, * e D. B

Lemma III.6. L#£ G x G act on D by (gi, #2) . 2 = g\zg2l and consider G

K G as an involutive semigroup with involution (gi, gz) *: — (gT1, gT1)- Write

r the G XG~invariant holomorphic positive definite kernels.
7T&0 prescription K >-* (TTJT, $?#) defines a surjective correspondence between

9 (D2) / and £fo# s#£ o/ biinvariant Hilbert spaces.
(ii) For every K €= ̂  (D2) ,- , £/i£ corresponding representation (UK, $K) of G ^G is

multiplici ty -free .

Proof. (0 Let K^$>(D2)i. Then [Ne99, Th. II.4.4] together with the

invariance of K implies that \\ KK (gi, 82) II — 1 for all (gi.gz) ^G X G and thus

(KK, $£K) extends to an involutive representation of (KK, $K) of G X G. Since

Kx((gi, gz)~1} — KK ((gi, ^2)*) — n* (gi, g2)*, this representation is by unitary
operators. Finally the continuity of the action of G X G on D implies that (ftK,
XK) is weakly continuous, hence unitary. Thus K »-» (TT^, #£K) is well defined.

It remains to show that the correspondence is onto. Let X be a biinvariant
Hilbert space. This means in particular that all point evaluations ^?-*C,/ •-*
f(z) are continuous for z^D. Then/(z) = </, Kz) for some KZ^X and ^C = ^CK,
where K(z, w) = (Kw, Kz) for ^, w^D. Moreover the invariance of 3C under G X

G implies that K(gizgzl,w) =K(z, g!1wg2) for all z, w^D, gi, g2 ^ G, i.e., K ^

W),-.
(ii) [Ne97, Ex. II.4] . •

In view of Proposition 11.14 and Theorem IIL4, it follows from Lemma
III.6(i) that the discussion of biinvariant Hilbert spaces X £ Hol(D) is reduced
to the case where Dh is convex. From now on we will make this assumption.

Proposition III. 7. Let XK £ Hoi (Z>) be a biinvariant Hilbert space and let

j: T — * Ext (9 (D2) j) , t *~* K* be an admissible parametrization. (cf. Definition 1.6
(e) ) . Then there exists a unique Radon measure jj. on T such that

K= f Kfd[J,(t)
J T

and a unitary equivalence
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= (JJ* TTi <*0(t), f* Xtdfi(t))

ofGXG-modules.

Proof. In view of Lemma III.6(ii), this is a direct consequence of Theorem
11.12. m

IV. The Planeherel Theorem for Biinvariant Hilbert Spaces

In this chapter we finally derive the Plancherel Theorem. In view of
Proposition III. 7, the main task hereby is to clarify which kind of
representations (nt, $t) occur in the integral decomposition of (TCK, $K) and
what the parameter space T could be. It turns out that the occuring
representations (nt, fflt) in the integral decomposition of (KK, $K) are highest
weight representations and that there is an admissible parametrization of
Ext(^(D2)z) by highest weights.

Highest Weight Representations

To step further we first need some terminology concerning Lie algebras
with compactly embedded Cartan subalgebras.

Definition IV.l. Let g be a real algebra admitting a compactly embedded
Cartan subalgebra t.
(a) Associated to the Cartan subalgebra t<c in the complexification gc is a root

decomposition as follows. For a linear functional a ^ t| we set

gj:= {*egc: (V Y e tc) [7, X\ = a(

and write A'-= {a^tf\{0}: gj^{0}} for the set of roots. Then g(D=t

a(t) ^iMfor all a^A and Q^=^a, where X -+ X denotes complex conjugation
on gc with respect to g.
(b) Let f be a maximal compactly embedded subalgebra of g containing t. Note

that f is unique (cf. [KrNe96, Cor. III. 8]) . A root a is said to be compact if g|
^ !c and non-compact otherwise. We write Ak for the set of compact roots and
An for the non-compact ones. If g = r xi § is a f-invariant Levi decomposition,
then we set

Ar- = ta^A\ g| e rc} and As'={a e A: g£ e gc}

and recall that A = A r V A s ( c f . [Ne99, Ch. VII]). Further we write An,s-=An^As

for the set of all non-compact semisimple roots.
(c) A positive system A+ of roots is a subset of A for which there exists a
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regular element XQ ^ it* with A+'- = [a ^ A: a (X0) > 0} . A positive system is

said to be l-adapted if the set An: = An fi A+ is invariant under the Weyl group
W:=#inn<J) (O/ZinnC) (0 acting on t. We recall from [Ne99, Ch. VII] that there
exists a !~adapted positive system if and only if gg(§ (I)) =f. In this case we call
g quasihermitian. In this case it is easy to see that § is quasihermitian too, and
so all simple ideals of § are either compact or hermitian.
(d) We associate to a positive system A+ the convex cones

Cmm: = cone { i [X, Xa] : Xa e g«, a e A £} ,

Cmin,r = Cmin H g (g) = cone { i [Xa, Xa] : Xa e gg, a^A?}

and Cmax:= (*4n)* = (X ^ t: (V« e 4£)ta(*) > 0}. Note that both Cmin and
Cmax are closed convex cones in t.
(e) Write pt. g —* t for the orthogonal projection along [t, g] and set 6x '• —
Inn(g). Jf for the adjoint orbit through X ^ g. We define the maximal cone
associated to A+ by

WW= (X ^ g: />, (

and note that Wmax is a closed convex Inn (g) -invariant cone in g.

Definition IV.2. Let A+ be a positive system.
(a) For a g^-module V" and 0e (t£) * we write V0 :={v^V: (V X
j8(X)v} for the im#fcf s^ace of weight j8 and ^F= (jS: F^ ^ {0}} for the set of
weights of V.
(b) Let F be a g^rmodule and t; ^ Vx a tec-weight vector. We say that f is a

primitive element of F(with respect to A+) if gj£. i;={0} holds for all a^A+.
(c) A g^-module V is called a highest weight module with highest weight X
(with respect to ^d+) if it is generated by a primitive element of weight X.

(d) Let ^ ^ it* be dominant integral with respect to At and F(/0 the
corresponding highest weight module for fc. Assume that A+ is f- adapted and

set P±==©ae4jgc- We define the generalized Verma module by

Note that AT U) is a highest weight module for ^ (g&) with highest weight /L We
denote by L U) the unique irreducible quotient of N(X] .
(e) Let G be a connected Lie group with Lie algebra g. We write K for the
analytic subgroup of G corresponding to !. Let (TT, $?) be a unitary
representation of G. A vector v ^ 3C is called K-finite if it is contained in a

finite dimensional ^-invariant subspace. We write $CKta} for the space of
analytic ^-finite vectors.
(f) An irreducible unitary representation (TT, $?) of G is called highest weight



BlINVARIANT HlLBERT SPACES 111

representation with respect to A+ with highest weight /l^it* if $£K>0) is a highest
weight module for g^ with respect to A+ and highest weight X. We say that the
irreducible highest weight module L (/O is unitarizable if there exists a unitary

highest weight representation (n^, #£*) of G with $?f t0) = L U) as gc-modules.
We write HW(G,A+) dit* for the set of highest weight corresponding to highest

weight representations of G with respect to A+ and set HW(A+) '=HW(G, A+)
for the set of all unitarizable highest weights with respect to A+.
(g) Let X e HW(A+) . We call A singular if the natural map AT(/0 -*L U) has a
non-trivial kernel and non-singular otherwise. •

Let W c g be a closed elliptic cone. Recall from [KrNe96, Th. IV .6] that
there exists a f-adapted positive system A+ such that

cmin<= wntcc m ax
holds. From now on we fix a positive system A+ having this property. Then
Wmax is an elliptic cone and we have Cmax=Wmax fit (cf. [KrNe96, Cor. IX.10]).

For each unitary representation (TZ, ffl) of G we write (TT*, J^f*) for the
corresponding dual representation. Let BZ (#£} be the space of Hilbert Schmidt
operators on #£ . We define a representation of G X G on B2 (ffl) by

Note that there is canonical isomorphism between (TT* ® TT, ^if* §> J^f) and (TTC,
52 (^) ) . We write || - ||2 for the Hilbert-Schmidt norm on B2 (tf) and | • ||i for
the norm on the trace class operators BI ($} .

Recall from [Ne99, Th. XL 4. 5] that each highest weight representation
(TT^, tfCj) of G extends to an holomorphic representation of FG (Wmax) denoted by

the same symbol. Moreover all operators Tti (s) , s ^ FG (WSiax) , are of trace
class (cf. [Ne94, Th. III.8]), so that the notion 0t(s)- = tr n*(s) makes sense for

all s e rG (WSiax) . We call Ox the character of (n^ $i) and note that @A is

holomorphic on rG(W°max) (cf. [Ne94, Th. IV.ll]).

Proposition IV.3. Let D £ FG (WSiax) be a biinvariant domain and K

(i) There exists a unitary highest weight representation (TT^, ̂ ) of G and a
constant c > 0 such that the mapping

( i f i , B 2 ( t f J ) - (TTjr.^jr), A ^ (s » ctr(AKt(s})}

is an unitary equivalence of G X G~modules.
(ii) The face FK is uniquely determined by 2.
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Proof. (0 [Ne99, Th. XIII.8.11] .

(ii) Suppose the assertion is false. Then there exists KI, KZ e Ext (9 (D2) /) with

FKl * FK2, but (xKv XKl) = (itt B2 (X,) ) = (nK2, X*J . Set L'= K,+K2. Then L

^^(D2)i and %L = XXl + WKz (cf. [Ne99, Rem. 1. 12]). Moreover, [Ne99, Th. I.
16] shows that XKl =£ XKz and thus XKl D XKz = (0) by the irreducibility of
the representations (it^, XK^) and (TT^, $€K) . Now [Ne99, Rem. 1. 12] implies
that XK^^K^XL is an orthogonal direct sum. Thus

i.e., (nL, XL) is not multiplicity-free, contradicting Lemma III.6(ii).

In the sequel we realize (zrf, B2(^)) in Hoi (FG (WSiax)) via the map in

Proposition IV. 3(0 for D — FG (WSiax) and c — 1. Note that the corresponding

reproducing kernel is given by Kx (5, 0 : = 9x (st*) for all s,t e FG (V^ax) (cf.
[Ne94, Th.IV.ll]).

We also write K*> = Kx \DxD for the restriction of K* to D X D. Proposition
IV .3 implies in particular that the map

is injective and that im7 is a section of Ext (9 (D2) i) . In the remaining part of
this section we will be concerned with the prove that 7 is in fact an admissible
parametrization. From that the Plancherel Theorem will follow.

Remark IV.4. We call g admissible if the direct sum g © M admits pointed
invariant elliptic cones. If D is a biinvariant domain associated to g, then there
exists an admissible quotient gi of g, a biinvariant domain D\ associated to gi
and an equivariant holomorphic quotient map q: D -> D\. Further every K ^

9 (D2} i factors to a holomorphic positive definite biinvariant kernel K\ on D\ via
KI (q (z) , q (w) ) : — K (z, w) for all z, w & D. In particular, we have $K — ^JTI, and
thus XK can be realized as a biinvariant Hilbert space in Hoi (Di) (cf. [Ne99, Ch.
XIII] for all that) . For what this restriction procedure means in the more
concrete setting of Hardy and Bergman spaces we refer to [Kr98a, Rem. III.6,
Lemma II.9] . B

Our objective is to obtain an integral representation for kernels K ^

9 ( j f } i . To achieve this, Remark IV.4 tells us that it is no restriction to assume
from the beginning that g is admissible. From now on we will make this
assumption.

The Set of Highest Weights

This subsection is devoted to an explicit description of the set of all
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unitary highest weights HW (A+) £ it*. For subsets A,B £ it* we define their
minimal distance by

<5min (A,B). = mfxeA,yeB\\ X —y\\,

where || • || denotes a norm it*.

Lemma IV.5. (0 If Qis simple hermitian and C e ^ ft) * such that £ (/3) =
1, where $ is the maximal root in A+, then

HW(A+)=DU U Rm,
meN

where D is a countable discrete closed subset of it* and Rm
 = /lm~~Kii+C ?n^N, is a

ray. The singular elements HW(A+) are given by D U {Xm: m G=N}. Moreover, there
exists a constant C>0 such that dmm(D, Rn) , dmin(Rn, Rm) >C holds for all m,
N, m=^n.

(ii) If Qis a compact semisimple, then

/w particular, HW(A+) is a countable discrete closed subset of it*.

Proof. (0 This follows from [EHW83, Prop. 3.1, Cor. 3.16] .
(ii) This is part of the Theorem of Highest Weight for reductive Lie algebras. •

Let g = r XI § be a f-mvariant Levi decomposition. Let u £ g be the
nilradical and t0 be a complement to 3 (g) in t Pi r. Then i: = to ® 3 is a reductive

subalgebra of g and g — u xi I is a f-invariant semidirect decomposition. Let G =

U XI L be the associated semidirect product on the level of simply connected
groups. Further we set ti- = t fl I and note that t = 5(9) © ti.

Let 3= ©f=i§/ be the decomposition in simple ideals w^ith §/, 1 <y <r,
compact and £./, r+1 <j < n, hermitian (cf. Definition IV. 1 (e)). Associated to

the direct sum decomposition I = t0 ® 0?=i^y there is a splitting L = T0 X II;=i S/

of L into simply connected factors. For each 1 < / < n we set t/

Lemma IV.6. // g = l is reductive, then

HW(A+)=U U C^
meN/£{r+l,».,n}

is a countable disjoint unim of convex a/fine cones. Moreover.
( i ) The occuring cones Cm,i have the form

CmJ = tt0* + Stf + 2 Xf+'L Uf -] 0, oo [
/=! /e{r+l,...,n}\7 /el
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where /If ^ itf for all I < j < n. Further, all /If,/ ^ {r+l,aea,n}\I, are singular

for Sj , and /If ~~]0, °° [G, J ^ I> consists of non-singular elements for Sj .
(ii) 77i0 closure of Cm,i is given by

Cm.I = \jCmJ-
/G/

(iii) Set Cm'-= U/c{r+i ..... n}Cm,i- Then there exists a constant C > 0 such that the
minimal distances satisfy <5mm (Cm, Cn) > C for all m, n & M, m^n.

Proof. This is a direct consequence of Lemma IV. 5. n

Note that a necessary condition for L U) to be unitarizable is A ^ iC&n (cf.
[Ne96, Lemma I.4(iii)]). Thus HW(A+] c ;c&n and tf^U+) U(9)^Cmm,*. Let

m+-' = ® ae^i+ gS and note that [m+, m+] Q 5 (g^) as g was assumed to be
admissible (cf. [HiNe93, Th. 7.15] ) .

Each ^ e iC3Sm,2 induces a positive semidefinite hermitian form on m+ by

fe m+xm
+-»(C, (Z, y)

(cf. [Ne.96, Sect III]). For each a e 2!?, we set

Oregj: (vye8j)^0r fy)=o},

p^: =-sje4r ^« W « and m+: = ®

Note that {(ma(0))aejt
 e ^^ ^e^in,z} is a finite set, say {/i, ••-,/*}. For

1 < ; < k we set prj = -^ Sae^t (/;) a «, where

associate a not necessarily convex subcone of iCmin.* by

each 1 < ; < k we set prj = - Sae^t (/;) a «, where // = ( (//) fl) ae4+ , and

Note that iCmin.z11^ Uy=iC;- is a disjoint union.
For each /l^iCifen we set ^: = ^U(0).
Now we have all notation to describe jFfW"^"1") for an arbitrary admissible

Lie algebra g. The main tool is the method of metaplectic factorization: Each

highest weight representation (7^, ̂ ) of G is a tensor product (v^ ® 7r^t, ^" (mi)

® TT^I) , where (y^, ^ (m^) ) is a so called extended metaplectic representation
modelled on the Fock space

: f
«/ m

which is a highest weight representation of G with highest weight Az — pr,t
 e

- Further, (TT^, ̂ ^ is a highest weight representation of L with highest
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weight Ai- — A\itt + prj which is considered to be trivial on U (cf. [Ne96, Sect.

in]).
Lemma IV. 7. Let g be an admissible Lie algebra and A+ be a t-adapted

positive system. Then:
(0 The set HW(A+) is a countable union of a/fine cones

HW(A+) = \J U U CMJJ,
m

where

cmj,i= -pr,

with Cm,i ̂  it* is as in Lemma IV. 6 defined with respect to the positive system A£.
(ii) Each Cmj,i is a Borel subset of it*.
(iii) Let Cm = U jjCm,jj. Then there exists a constant C > 0 such that the minimal

distances satisfy dmm(Cm, Cn) >C for all m,n^l$, m^n.

Proof. (0 Let /ieiqfen. According to [Ne96, Th. III.9] , L(X) is unitarizable
if and only if the Icr module L ( A i ) , where h = /f|it,+p^ is unitarizable. Thus the
assertion follows from Lemma IV. 6.
(ii) According to (i) and Lemma IV.6(i), we only have to show that the cones Q,
l < i < f e , l < y < 5 are Borel subsets of i§ (g) *. This will follow if we can
show that the mappings

<pa: iCmin,z -*N0f VL •-* ma (fi) ,

a ^ Ar, are Borel measurable. As all <pa, a ^ AT , are lower semicontinuous, the
assertion follows.
(iii) This follows from Lemma IV. 6. •

Corollary IV.8. All C£f/f/: = Cmjll H HW (G, A+) , m epj, 1 ^ / < k, I ^
{r+l,...,n}, are Borel subsets of it*. In particular, HW(G, A+) is a Borel subset of
it*.

Proof. According to Lemma IV.7(ii), it suffices to show that HW(A+, G) is
a Borel subset of it*.

Let Xi,..., Xn ^ t be generators of the lattice

Then
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= n U U £HW (A+) : A (X» e 2mm}

shows that #VP (G, 4+) is a Borel subset of HW (A+) . But #W Cd+) being a
countable union of Borel subsets is Borel (cf. Lemma IV.7(ii)). Thus HW(G, A+}
is a Borel subset of it*, proving the corollary. n

The Planeherel Theorem

Now we are going to prove the admissibility of our parametrization 7:

HW(G,A+) -> Ext (#> (D2) ,) , ^ ^ ^ and finally derive the Plancherel Theorem
for Biinvariant Hilbert Spaces from it. We begin with a description of the
character associated to a unitary highest weight representation.

Lemma IV.9. Let X^HW(A+) and (n^ $*) an associated highest weight

representation of G. Let &* be the character of F(X) and rna'- — dimcg J for all
Then:

(i) If X is non-singular, then

A fFvn y} - n i ne^Expx;- 11+,- ^n^ n _-
a^A r \1 e ) a^A\s 1 C

for all Z^iCSiax.

(ii) If (TT^, ^) — (y^z, ^(mj)) 15 t^ extended metaplectic representation
associated to the parameter Az^iCmm,z, then

= n
aeA r \1

/or

Proo/. (i) (cf. the proof of [Ne94, Th. II.9]) As X is non-singular, we have
L(/l) =N(A) by definition. Thus L(X) is fc-isomorphic to ^(p") ®F(/0, where
the ?c- action on °U (p") ®FU) is given by

^. (7 ® v) = [^ 7] ®v

for all ̂ T e Ic, 7 e% (p~) , v e FU) . By the theorem of Poincare-Birkhoff-Witt,
°U (p~) = ^ (p~) as tc~modules, and so L U) is tc-isomorphic to j^3 (p~) ®FU) .

For each a ^ tj we write €a for the one dimensional tc-module of weight a.

Then dimc g| = 1 for all a e An,s (cf. [Ne99, Lemma VII. 2. 3]) implies that

as tc-modules. Thus we obtain for all ^^Cmax that
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n

proving the assertion.
(ii) It follows from the discussion in [Ne96, Sect. Ill] that L U) is tcrisomorphic
to

d( ©
X aej

where F (Xz — pr,i) —&xz-pr,* is the one dimensional fc-module associated to the
weight Xz — pr,x e t j (f)*. Now the computation of 0^ ° Exp|^c

0
max is analogous to

the one in ( i ). •

Lemma IV. 10. For all m e M, 1 < / < k, I £ {r+l,...f n} f^ mapping

ts continuous.

Proof. First we reduce to the case, where G is simply connected. Let D

: = GExp (Dh) be the simply connected covering of D and Hoi (D*D) -* Hoi (5 X

D) the embedding induced from the covering D -+ D. We obtain a commutative
diagram

TmJ,I
CG

m>j>I Hol(DXD)

and all vertical arrows in this diagram are embeddings. Thus w.l.o.g. we may
assume that G and D are simply connected.

As K* (s, t) = @; (st*) for all s,t ^ D, it suffices to show that the mapping

ffmjj: Cm,j,i -* Hoi ( D ) , A •-> @A|D

is continuous.
We write C(Exp(®)) for the Weyl-group invariant continuous functions

on ® equipped with the topology of compact convergence. First we show the
continuity of the mapping
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Let X e Cm,/,/. By metaplectic factorization we have (fa, ̂ ) = (y^ ® TT^,

^ (mi) §> ̂ ,) and accordingly 0,? = ft, e ft,. For each 1 < / < n we set ^/ =
Ai\nQ and /lo:=/li|iv Then

0&(, #*) = feo, <&•) ® <§ Or*, #*) ,
y=i

where (ic^ (C;u>) is one-dimensional representation of T0 with weight /10 and

(TT^-, ^J , ! < / < % , is a highest weight representation of S/ with highest

weight >?/. Accordingly we have ft^fto • Il7=i ©^ and so

ft=ft,' @^o 8 ftft,.
;=1

Now Lemma IV .7 and Lemma IV ,9 imply that there exists an analytic function
fm,j,i on ® such that

(4 . 1) 0, (Exp (X) ) =fmJJ (X} • 0f (Exp (X) )

holds for all Z e ®, ̂  e CmJJ. By Weyl's Character Formula 0f |ExP ® depends

continuously on X. Therefore (4.1) implies the continuity of ffmj,i-
We write C(Exp(DA))G for the Ad (G) -invariant continuous function on

Exp (Dk) equipped with the topology of compact convergence. Recall from [Ne99,
Th. X 1.2.2] that the restriction mapping C (Exp (D)) G -> C (Exp (®))^ is a
continuous bijection, thus an isomorphism by the Open Mapping Theorem.

Therefore the continuity of Gmj,i implies the continuity of

Now we can prove the continuity of ffmj,i> Let An -+ A m Cmj,i. We claim
that {@*n: n e BJ} is locally bounded. Let A £ D be a compact subset. Then A
£ GExp (2A'), where A' ^ Z)^ is a compact subset. We obtain for all g\Exp (X)
e A that

1 0, QrExp Of) ) | = |t

(4.2)

As (7^j,/ is continuous, { f tExpuv : w e M is locally bounded, and the claim
now follows from (4.2).

Now Montel's Theorem applies and yields a subsequence of UWft)*eN of
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U«) nem such that &• = lim^oo Onk exists in Hoi (D) . As 0^3,1 is continuous we
must have 0=0* on Exp (Dh) , thus 0 = ©*, as Exp (Dh) is a domain of
identity in D. This proves the continuity of crwj,/ and hence the lemma. •

Recall that a topological space X is called Suslin if it is continuous image of
a polish space.

Theorem IV.ll. The mapping

T'.HW(G, 4+)-+Ext(^(£>2),-), X * K*

is an admissible parametrization.

Proof. We know from Proposition IV. 4 that 7 is injective and that im/ is a
section. We note that Tmj,i = T\cm^i and consider in the following jm^i also as a

function on HW(G, A+} with support C»j,/. Then 7 — *Z,m,j,iTmj,i- Thus Lemma
IV . 10 shows that 7 is a countable sum of Borel maps, hence Borel.

We claim that imj is an admissible section. Note that all Cmj.i are Borel
subsets of *t* (cf. Corollary IV. 8) and hence Suslin (cf. [Sch73, Ch. H , §1, Th.

3]). Thus by the continuity of jm,j,i the space Ymjj(Cm,j,i) is Suslin and

= U Tm,ij(Cm,j,i)

being a countable union of Suslin spaces is Suslin. In view of [Th94, Th. 1 . 19] ,
this shows that imf is an admissible section.

Next we show that j~\ imy-+HW(G, A+] is universally measurable. We
have already seen that 7: HW(G, ZJ+)-*im7 is an injective Borel map between
two Suslin spaces. Thus the assertion follows from von Neumann's Selection
Theorem (cf . [Sch73, Ch. II , §3, Th. 13] ) .

It remains to show that (r"1) * (# (11117)) £ ft (HW (G, A+)) . Let v be a

Radon measure on 11117 and set fjL'-= (7"1)*. i>. We have to show that ^ is a Radon
measure on HW(G,A+).

For all tupels (m,jj) the prescription fjLm,j,r= (Tmj,i)*.u defines a Radon
measure on HW (G, A+) , because 7 is universally measurable and fmj.i is
continuous (cf . Lemma IV . 10) . Thus vm'- — 2/,/u^/ being a finite sum of Radon
measures is Radon for all m ^ M. Recall that there exists a constant C>0 such
that 5min(Cm, C») >C holds for all m, n^N, m=£n, (cf. Lemma IV.7(iii)). As v =
SweN^m and supp (ym) ^Cm, m G N, this shows in particular, that v is locally
finite and inner regular, hence Radon. This proves the theorem. •

Theorem IV.12. (Plancherel Theorem for Biinvariant Hilbert Spaces)
Let D ^ FG (Wmax) be a biinvariant domain, $CK — Hoi (D) be a biinvariant Hilbert
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space associated to K ^ 9 (l>2) ,- and A+ be a positive system associated to WmaK. For

each X e HW(G, A+) define Kx e 9 (D2} / by K* (s, f) = 0; (sf*) /or s,£€ED. Tto
tf&ere exists a unique Radon measure {Ji an the Borel subset HW (G, A+) <^it* such
that the following assertions hold:

( i ) The kernel K decomposes as

= f
J

K

The right hand side is to be understood as an Hoi (DXD) -valued integral.
(ii) There is a unitary equivalence of G X G modules

HW(G,A+)

where the measurable structure on the family

(82 \$X) ) teHW(G, A+) — ($Kx)

is the one from Proposition II . 8.

Proof. We only have to put together Proposition III. 7, Proposition IV. 3(0
and Theorem IV. 11, and the assertions follow. H

The Case of Complex Ol'shanski! Semigroups

We conclude this section with a discussion of a special case of Theorem
IV. 12 which is of particular interest, namely where D = JG (W) is a complex
Ol'shanskii semigroup.

Let a be an absolute value on FG(W). Then the prescription

a0: i ( W n t) -^ffi+, a0 (X) = log a (Exp (X) )

defines a subadditive function, i.e., a0(X+Y} <aQ(X) +aQ(Y) holds for all X, Y

Lemma IVol30 Let (TT^, ̂ ) be an highest weight representation of rG-(W)

and a an absolute value on FG ( W) . Then (it*, X*) is a-bounded if and only if A ^

HW(G, ^+, a), where

Proof. Let X ^ HW(G, A+, a) and note that this is equivalent to

(4.3) (VZe ; (wn t) )*"*>= (^(ExpCf)). v*, v>) <a(ExpW),

where vi ^ fflx is a normalized highest weight vector. Let t+'- = (X ^ t: ( V a ^
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A+}ia(X) >0}. Now we have the inclusion 9* LVD — /f~cone(^l+) for the weights
occuring in L (/O so that (4 . 3) is equivalent to

(4.4) ( V Z e ; O n t + ) ) ( V t , €E^)<7T,(Exp(X»).i;,i;> < a (Exp CO) <v, v>.

Since all operators Tfr (Exp 00 ) , J^iW, are selfadjoint, we have

Ik, (Exp Of) ) \\ =

Now i (W 0 t) -+(C,X i-> \\K2 (Exp (X)) || is invariant under the big Weyl
group H/'=NK(i)/ZK(t) so that H/.t+ = t implies that (4.4) is equivalent to

(4.5) ( V * e ; ( w n t)) I

Note that we can reconstruct W° from W° D t, i.e., W° = Ad (G) . (W° fl t)
(cf. [KrNe96, Th. X.3]). This together with the G-biinvariance of a shows that
(4.5) is equivalent to

i.e., (TT^, 2^) is a-bounded. This proves the lemma. •

Theorem IV. 14. Let K^3>(FG(W} 2, a) < and (TT*, ^) ^ representation of
G X G on £/£0 corresponding Hilbert space #£K. Then there exists a unique Radon
measure X on the Borel subset HW ' (G, A+, a) such that the following assertions
hold:

( i ) The kernel K can be written as

K= f
J HW(G, A+,a)

with convergence of the right hand side in Hoi (FG (W) X FG ( W) ) .
(ii) There is a unitary equivalence

+ , .
HW(G,A+,a) JHW(G,A+,a)

,
JH

ofrG(W) * FG(W)-modules.

Proof. This follows Theorem 11.12, Lemma III.6(ii), Proposition IV.3(0,
Theorem IV. 11 and Lemma IV. 13. H
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