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The Plancherel Theorem for Biinvariant Hilbert Spaces
By

Bernhard Krotz™*

Introduction

Let g be a finite dimensional Lie algebra over the real numbers. An element
X € g is called elliptic if ad X operates semisimply with purely imaginary
spectrum. We assume that g admits an open Inn (g) -invariant convex cone W
with non-empty elliptic interior W°. This assumption is satisfied whenever g is
hermitian or compact non- semisimple, but also for a large class of non-
reductive Lie algebras, for instance the Jacobi algebras §, X 8p in, R), n €N,
where 9, denotes the Zn+1 dimensional Heisenberg algebra.

If G is a connected Lie group with Lie algebra g, we build the complex
OVshanskii semigroup I'c (W) = GExp (iW), which may be understood as a
quotient by 71 (G) of the universal covering semigroup of {expsc(g+iW)),
where Gc¢ denotes a simply connected complex group with Lie algebra gc. A
non- empty connected G X G-invariant open subset D & I (W9 is called a
bisnvariant domain. Then D = GExp (Di), where D, SiW® is a connected open
subset. We note that D is a complex submanifold of I'c (W°) and write Hol (D)
for the space of holomorphic functions on D equipped with the topology of
compact convergence.

A bitmvariant Hilbert space is a Hilbert space # sitting continuously in
Hol (D) on which G X G acts unitarily via

((2®0) (g1, 22). 1) (2) =f (g1 '2g5)

for g1, 82 € G, f € #, z € D. As the inclusion mapping # < Hol (D) is
continuous, all point evaluations K,:# —C, f = f (z) are continuous.
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Therefore # is a reproducing kernel Hilbert space with kernel K (z,w) =

(Kw, K2, also denoted by #x. It is easy to see that K is biinvariant, ie., K (glzgz,

w) =K (z, g7'wgz?) holds for all g1, £2€G, z, w € D, and that the prescription K

— #r defines a correspondence between holomorphic biinvariant positive
definite

kernels and biinvariant Hilbert spaces.

Now the natural question arises how (1 ® p, #x) decomposes into
irreducible representations, i.e., we ask for a Plancherel Theovem for Biinvariant
Hilbert Spaces. Using the considerations from above one can show that this
problem is more or less equivalent to the problem of decomposing a biinvariant
kernel K into its extremal constituents.

One may consider a complex Ol'shanskil semigroup as a complexification of
the symmetric space (G XG)/A(G) =G, where 4(G) ={(g,g) EGXG: gEG} is
the diagonal, and every biinvariant domain as a (G X G) -invariant domain of
this complexification. Thus biinvariant Hilbert spaces are a special class of
invariant Hilbert spaces of holomorphic functions on certain complexifications of
symmetric spaces (cf. [KNO97] for more details). Such invariant Hilbert spaces
have already been studied in [HOQ)QI], where a Plancherel Formula for the
Hardy space corresponding to an affine symmetric space is proved. But it seems
to be too early for a discussion of invariant Hilbert spaces in general, because a
detailed knowledge of spherical highest weight representations and their
associated characters is needed; a theory which is still in development (see
[KrNe96], [KNO97.98], [Kr98b, d] for the latest results).

The most powerful method in dealing with invariant Hilbert spaces is to
embed the invariant Hilbert space into a biinvariant one and then using the
results of the biinvariant setting. Thus it is inevitable to understand biinvariant
Hilbert spaces first. Since we kept large parts of this paper general, it provides
many tools to deal with invariant Hilbert spaces as soon as the theory of
spherical highest weight representations is sufficiently far developed.

Plancherel Theorems have already been proved for special classes of
biinvariant Hilbert spaces, namely for the Hardy spaces corresponding to linear
hermitian (cf. [0182], [0191], [0195]) and solvable Lie groups (cf. [Hi0192])
as well as for a Bergman space associated to Sp (,IR) (cf. [Pe96]). The
Plancherel Theorem for Hardy spaces for arbitrary G was suggested in [Ne95].
But in all cases established so far one has needed very special assumptions on
the group, for example compactness of the center if the group is reductive to
guarantee discrete decomposability. This is because in this special case the
“abstract” desintegration theory of C*-algebras (cf. [Ne94], [Kr98c]) really
gives “concrete” realizations. But in general the C*-theory fails for giving
explicit answers. In this paper we give a sufficiently concrete description of the
Plancherel theorem for all applications. It will serve as a foundation for a
general treatment of Hardy and Bergman spaces (cf. [Kr98a]).
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The paper is organised as follows:
. Conuclear spaces and integral representations
Positive definite kernels on complex manifolds
. Biinvariant domains in complex Ol’shanskil semigroups
. The Plancherel Theorem for Biinvariant Hilbert Spaces.

One main ingredient in the proof of the Plancherel Theorem is Thomas’
Integral Representation Theorem for Conuclear Cones (cf. [Th94]). Section I is
devoted to a brief discussion of conuclear spaces and explains the Integral
Representation Theorem.

===

Let M be a separable complex manifold and M the same manifold equipped
with the opposite complex structure. Let S be an involutive semigroup acting on
M by holomorphic mappings from the left, V' a finite dimensional Hilbert space,
B (V) the space of linear operators on V and % (M? V) the convex cone of
holomorphic positive definite B (V) -valued kernels. For each K €% (M2, V) we
write #xSHol (M, V) for the corresponding reproducing kernel Hilbert space of
holomorphic functions. A kernel K€% (M?, V) is called S-invariant if K (s.z, w)
=K (z,s*w) holds for all s€S, zwEM, and we denote by ¥ (M2V); the convex
subcone of # (M? V) of all S-invariant elements. We call K € # (M2 V);
exponentially bounded if for each sES there exists a positive number ag (s) such
that

K (sz,52)v,0) < agls) Kz 2)v.0)
holds for all z&M and vE€ V. In this case the prescription

Tg: S = B(#x), (mx(s).f) (&) =f(s* 2)

gives rise to a representation of S.
In Section II we show that the Integral Representation Theorem applies to
the closed convex subcones of ? (M?, V) ; in the conuclear space Hol (M X M, V).

It turns out that each exponentially bounded kernel K € # (M? V); with (7x,
#x) multiplicity-free has an integral representation

K= »].Ext(g’(Mz,V);)Q au(Q),

where g is a uniquely determined Radon measure supported on a suitable
section on the subcone of extreme generators Ext (P (M2, V):) of P (M2, V).
Moreover we show that there is a unitary equivalence of S-modules

(x k) _’(-/;:t(g’(MZ,V),)n-Q u(Q), . Ha du @ )

Ext(P(M2,V))

Section III summarizes the main facts concerning the convex and complex
geometry of biinvariant domains mainly due to K.-H. Neeb (cf. [Ne98], [Ne99]).
In Section IV we finally prove the Plancherel Theorem for Biinvariant
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Hilbert Spaces (cf. Theorem IV.12). It says that'each K €% (D?); can uniquely

be written as
K= f Kdu(R).
HW(G, 4%)

Here p denotes a Radon measure on the Borel subset of highest weights HW (G,
A*) Cit* of G, where t denotes a compactly embedded Cartan subalgebra of g
and A" a certain positive system determined by D. Further K*€Ext (®? (D?) ) is
defined by K? (s,t) = 6 (st*) for s,t € D, where ©; is the character of the
unitarizable highest weight module L (1) considered as a holomorphic function
on I'c (W°. On the level of G X G-modules we have a unitary equivalence

v @’p,?a‘tf’x)—*’<fe ¥ ®m; dpe(/i),fe

HW(G, 4%) HW(G, 4+)

ﬁémwmﬁ

where (7, #3) is a unitary highest weight representation of G with highest
weight A.

I. Conuclear Spaces and Integral Representations

The objective of this section is to explain all the concepts needed for
Thomas’ Integral Representation Theorem and eventually to state it.

Definition I.1. Let E be a topological vector space.
(a) We call a system & of subsets of E saturated

(&) (VAE®) (Vt>0) (IBES) tACSB,
(Gm) (VA,BE®) (3CcE6) AUBCC.

We denote the saturated system of all bounded convex closed balanced subsets
Of E by @bc.
(b) Let A€E®y; and E4: = U5otA. Further we set

pa:Esa— [0,0[, x—inflt > 0:x € tA}.

Then ps is a norm on E4. We consider E4 as a topological vector space with the
topology induced from pa.

(¢) Let I be the topology of E and I, S 7 the subsystem of all convex
balanced open sets. For each UE7 . we define the seminorm

qu: E— [0,0[; ¢qy(x):=inf{t > 0:x € tU}

and put Ny: = ¢qg* ({0}). Then gy gives rise to a norm on Ey:=E /Ny, also
denoted by qu.

(d) We write E* for the topological dual of E and Ej E,, resp. E;, for E
equipped with the strong topology, weak—-*-topology, resp. Mackey topology.
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(e) The completion of a topological vector space E is denoted by E.
(f) A topological vector space E is called quasicomplete if every bounded closed
subset of E is complete. ]

Remark 1.2. (a) For all AB € &, A € B, one has continuous inclusions
E4 — Eg — E. Moreover, E, is complete if A € E is complete (cf. [Tr67, Lemma
36,11).
(b) If UVET,, USV, then one has continuous maps E = Ey — Ey. L]

Definition 1.3. (a) A locally convex space E is called nuclear if for each
U € 7, there exists VET,, V € U, such that }/3; — E; is nuclear.
(b) Let © be a saturated subsystem of &;. A locally convex space E is called
&-conuclear, if for each A €S there exists BES, A ©B, such that a — E‘; is
nuclear. We call E conuclear if E is ©,.~conuclear. |

The next proposition describes the interplay between nuclear and conuclear
spaces.

Proposition 1.4. (1) Let E be a quasicomplete locally convex space. Then E is
conuclear if and only if its strong dual Ej is nuclear.
(ii) The strong dual of a nuclear Fréchet space is nuclear.
(i) Every nuclear Fréchet space is conuclear.

Proof. (1) [Sch 73, Ch. IV, Th. 1].
(ii) [Tr67, Prop. 50.6].
(i) Let E be a nuclear Fréchet space. According to (i), Ej is nuclear. Thus (i)
implies that E is conuclear. ]

Example 1.5. (a) Let M be a finite dimensional separable complex
manifold and Hol (M) the space of holomorphic functions on M equipped with
the topology of compact convergence. Then Hol (M) is a nuclear Fréchet space
(cf. [Gr55, p. 56]) hence conuclear by Proposition 1.4 (ii).

(b) More generally, let E be a complete locally convex space over the complex
numbers and Hol (M, E) the space of E-valued holomorphic functions on M
endowed with the topology of compact convergence. Then Hol (M, E) is complete
and Hol (M, E) = Hol (M) ®; E by [Gr55, Th. 13]. Thus Hol (M, E) is nuclear
since Hol (M) is nuclear (cf. [Tr67, Prop. 50.1 (9)]) . If in addition E is a
Fréchet space, then Hol (M, E) is a nuclear Fréchet space and so conuclear by
Proposition 1.4 (iii). L}
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Definition I. 6. Let E be a topological vector space and C&E a cone.
(a) The edge of C is defined by H(C): =CN (—C). We call C pointed if H(C) =
{0}. Note that H(C) is a vector space if C is convex.
(b) If C is convex, then we define an ordering on C by y < x: &=>x—yEC(.
The cone C is called a lattice if any two members of C have a supremum with
respect to this order relation. For each x €C we define the order interval I:=C
Nx—C)=eC: y<al.
(¢) Let R*:=1[0, oo [. A subset SSC\{0} is called a section if S meets each ray
in C in exactly one point, i.e., ISNR*x|=1 for each +€C\{0}. To each section S
we associate the function ps: C—IR* defined by x € ps (x). S. Note that ps is
positively homogeneous and S={&EC: ps (x) =1}.
(d) A Radon measure on a Hausdorff space T is a locally finite inner regular
Borel measure on T. We write R(T) for the cone of Radon measures on 7.
(e) A section S of C is called admissible if ps: C — R* is universally
measurable (cf. [Sch73, Ch.I] for the notion of universally measurable maps).
An adwmissible parametrization of C is an injective Borel map y: T — C such that

imy € C is an admissible section, 77!: imy — T is universally measurable and
(r)* (@ (imy)) SR(T).

(f) For each x € C we define the face generated by x Fz:= U ;50l2. A point x EC
is called an extreme gemerator if Fz=1IR*x. The set of extreme generators of C is

denoted by Ext(C). Note that Ext(C) is a not necessarily convex subcone of C.
&

Remark 1.7. Our definition of an admissible parametrization is more
general than the one given in [Th94]. There an admissible parametrization is
defined to be an injective continuous map y: T — C such that 7 is an admissible

section and 77': imy — T is universally measurable. We are lead to this
generalization, since the parametrizations we have in mind are not continuous.
However, as we will see below, the Integral Representation Theorem in [Th94,
p. 226] remains valid with our notion of an admissible parametrization.

Note that there always exists an admissible parametrization of C if E is
locally convex (cf. [Th94, Cor. 1.17]).

Now we have all notation to state Thomas’ Integral Representation
Theorem.

Theorem 1.8. Let E be a quasicomplete conuclear space and CSE a closed
convex cone such that all order intervals I, x €C, are bounded. Let 7: T—Ext (©) be
an adwmissible parvametrization of the cone of extremal genevators.

(i) Foreach x € C there exists a Radon measure pon T such that x= [ (t) dp (£)
holds.
(ii) The measure u is uniquely determined by x if and only if Fr is a lattice. In
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particular, p is uniquely determined for all x €C if and only if C is a lattice.
@) Let R(T) ¢ :={u€R(T): Jr r(0)du(t) EC}. Then R(T)c is a convex subcone
of R(T) and the order presevving map

0: @), <) ~ €9 [ 10an®

1is onto; it is bijective if and only if C is a lattice.

(iv) Let uER(T) c and x= [r7(t)du(t) EC. Let F,, be the face generated by (1 in
R(T). Then FuSR(T) ¢ and D induces an order preserving map D, (Fu, <) — (Fy,
<) . Moreover, @, is an order isomorphism if and only if Fz is a lattice.

Proof. (i), (it) Fix # € C. By the definition of an admissible parametrization
S:=imy is an admissible section, so that [Th94, Th.1.18, Th.5.2] imply that
there exists a Radon measure v on S such that x= [s y dv(y), and, moreover, v
is unique if and only if F; is a lattice.

Again by the definition of an admissible parametrization g:= (™) *.v is a
Radon measure on 7. Thus we obtain that x= f7 7 ()du (), and g is unique if
and only if F; is a lattice.

(i) This is a direct consequence of (1) and (ii).
(iv) It is clear that F, S R (T)c and hence @, is a well define order preserving
map.

It follows from the Radon-Nikodym Theorem (cf.[Sch73, Ch., §6, Th. 14])
that (Fﬂ, <) is a lattice. Thus F; is a lattice whenever d, is an order
isomorphism.

To prove the converse, let u be uniquely determined by x. In view of (ii),
this means that F; is a lattice. We claim Fy is a lattice for every y €F;. In fact,
let a,b €F,. Since F; is a lattice, a Vb and a A b exists in Fz. Now aVb, a AbEF,,
proving the claim.

According to (i), our claim implies that every element of Fy; has a unique
measure representing it. In particular, @, is injective. Next we show that @, is
onto. Fix y € F; and let v € R (T) ¢ be a corresponding measure. W.l.o.g. we
may assume that ¥y <x. Then x —y € C and we find a Radon measure ¢
representing x —y. But then Z=v+ 0 is a Radon measure representing x, hence
equal to ¢ by the uniqueness of ¢. Thus v < y, and so vEF,. This shows that

@, is onto and also that @, is order preserving, concluding the proof of (iv). ®

I1. Positive Definite Kernels on Complex Manifolds

In this section M denotes always a complex manifold and we write M for M
equipped with the opposite complex structure. It is our aim to apply the Integral
Representation Theorem to the conuclear space Hol (M X M, V) and closed
convex subcones of the cone P (M?, V) of positive definite holomorphic B (V)-
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Definition II.1. (a) Let X be a set, V a Hilbert space and B(V) the space
of bounded operators on V. A function K: X X X—B (V) is called B (V) -valued
positive definite kernel if for every sequence (x1,v1), ..., (n, vn) in X XV we have

n
2 (K (xj, xe) vi, vj) 20.
k=1
We write P (X2 V) for the set of all B(V)-valued positive definite kernels.
If V = C is one-dimentional, then the elements K € # (X?):=% (X?, V) are
simply called positive definite kernels on X.
(b) If X=M is a complex manifold, then we call KEP M?, V) a B (V) -valued

holomorphic positive definite kemel if K is positive definite and K € Hol (M X M,
B(V)).

Proposition I1.2. Let X be a set and V a Hilbert space.

(1) f KEP (X2 V), then K (x, %) is a positive semidefinite operator and K (x, y) *
=K (y, %) holds for all x,yE€EX.

(i) A function K: X X X—B (V) is a B(V) -valued positive definite kemel if and
only if there exists a Hilbert space # S VX with continuous point evaluations Ky: #
=V, ff(x) such that K (xy) =KK holds for all (xy) EX X X. In this case we
write Hx for K.

() If KEP (X2, V), then

% =spanik.,: rEX, vEV} S H,

where Kzu () =K (y,x). v, is a dense subspace of #x.
(i) If X=M is a complex manifold and KE P (M? V), then #x < Hol M, V)
consists of holomovphic functions.

}sroof. (i) [Ne99, Lemma L. 2].
(i1), (i) [Ne99, Th.I. 4].
(iv) [Ne99, Prop. IV. 1. 9]. @

We refer to #x as a reproducing kernel Hilbert space corresponding to the
positive definite B(V) -valued kernel K.

From now on V always denotes a Hilbert space and S an involutive
semigroup.

Proposition IL.3. Let M be a complex manifold and Hol (M X M, V) be
equipped with the topology of compact convergence. Then the following assertions hold:

(i) The cone P (M2, V) is closed and convex in Hol (MXM, V).



BUNVARIANT HILBERT SPACES 99

(i) All order intervals Ix, K € P (M2, V), are closed and bounded.
(i) If M is separable and V is finite dimensional, then all order intervals Ix, K €

P (M2, V), are compact.

Proof. (i) This is clear.
(i) That order intervals are closed is obvious. To show that they are bounded

we note that the topology on Hol (M XM, V) is induced from the seminorms
g4 (f) :=supzyeallf (5. 9) |,

where A runs over all compact subsets of M. We show that

(2.1) (VEEP W, V) qa(K) =supzeallK (x, 2)|.

The inequality “=" is clear. Using Proposition II.2 (ii), we obtain that

(2.2) 1K G| < Kol - 1K= VE &, %) VE &, 5)

for all x,y € M, proving the converse.
Now we can show that Ix is bounded. Let @ € Ix. Then Q < K implies that
K (x,x) —Q (x, x) is positive definite for all €M, and so

(2.3) (VQEI) (V2EM) [ Qx, 0) || < | K (x, x) .
Equations (2.1) and (2.3) imply for all Q €Ik and all the seminorms g4 that
74 (@) =supzenlQ (x, 1) | < supzealK (x, x) =44 (&),

i.e., Ix is bounded.
(i) Note that Hol (M X M, V) is a nuclear Fréchet space, provided M is separable

and V is finite dimensional (cf. Example 1.5 (b)). Therefore Hol (M X M, V) is a
Montel space (cf. [Tr67, Prop.50.2]). In particular, closed and bounded sets
are compact. In view of (ii), this proves the assertion. ]

Proposition I1.4. Let M be a separable complex manifold and V a finite
dimensional Hilbert space. Let C be a closed convex subcone of P M2 V) and r: T
— Ext C be an admissible parametrization. Set K*:=7(t) for all tET.

(i) For each K €C theve exists a Radon measure tt on T such that K= [7 K'dp(t)

(i) The measure p is unique if and only if Fx is a lattice.

Proof. According to Example 1.5 (b), the topological vector space Hol (M X
Z\—J, V) is quasicomplete and conuclear. Moreover Proposition II.3 implies that

P (M2, V) is a closed convex cone in Hol (M XM, V) such that all order intervals
Ix are compact. As C is a closed convex subcone of & (M2, V), the same holds
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for C. Thus all assumptions of Theorem I.8 are satisfied and the assertion
follows.

For each Hilbert space # we write Herm (3¢) * for the convex cone of
positive operators in B (?). Let K € # (M?, V) and #x be the corresponding
Hilbert space (cf. Proposition II.2 (iv)). To each A €EHerm (#x)* we associate an
element K4, €% (M?, V) by the prescription K4 (x,y): =K, AK¥ for all x, y € M
(cf. [Ne99, Lemma 1.7 (ii)] ). If C is a closed convex subcone in ® (M2, V) we, set

A+ (K,C):={A EHerm (#x)*: K4 C}.

Lemma IL.5. Suppose that V is finite dimensional and let CTP (M?, V) be
a closed convex subcone. Let KEC, K= [; K* du(t) be an integral representation of
K with vespect to C and Fg the face genevated by K in C.

(i) The mapping Uy : (A (K,C), <) = (Fg, <), A — K4 is an order isomor-
phism.

(ii) Let @,: (Fy, <) = (Fx, <) be the map of Theorem 1.8(v). Then Tx'o @,
(Fu, ) = (AT (K, C), <) is an order isomorphism if and only if g is uniquely
determined by K.

(i) Let B be the Borel o-algebra of T and set K5:= [ K'du (t) for each B € 3.
Then K2 € C, KB < K and #xs S #Hx. Moreover, if i is umique, then the inclusion
mapping ig: #Hxks — Kk is isometric for all B € B.

Proof. (1) This follows from [Ne99, Th.1.20].
(ii) This is a consequence of Theorem 1.8 and (i).
(i) Since K2=®, (Ipdy) and lzdy € F,, it follows from Theorem I.8(iv) that K
< K and KBE€C for all BE®B. As KE<K, [Ne99, Th.I. 20] implies that #x» is
continuously included in #k.

To prove the second assertion we first note that ip is isometric if and only
if #xs® Hxpe= Hx is an orthogonal direct sum. Write Ap:= (¥glo ®,) (Apdpu)
for BE %B. If ¢ is unique, then (i) and inf{lzdy, 1pedy} =0 imply that imAdz L
imAsge, ie., HxB® Hxpe=Hx for all BEB, as was to be shown. B

Remark 11.6. The converse of Lemma I1.50) is false, i.e., ig isometric for
all BE€ B does not imply that g is unique. In fact let M= {x}, V be a finite
dimensional Hilbert space of dimension #=>2 and K € #? (M% V) defined by
K (x,x) =idy. For each vEV we write P,: V — Cu for the orthogonal projection
onto [v]:=C. and denote by P (V):={[v]: v & V\{0}} the projective space of
V. Then Ext(® (M?% V) ={P,: [v] €P(V)} and

7 P(V) > Ext(@ 0L V), o] ~ <T,11,>“Pv
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is a continuous bijection of IP (V) onto a section of Ext (? (M? V)), hence an
admissible parametrization.

Every othornormal basis {vy, ..., v, of V gives via K= 27 _;P,, rise to a

unique.

Now fix a measure Uy, .. representing K corresponding to the orthonormal
basis {v1..vs}. Then

{K%: BEB(S(V))}={ZP,: JEA1, ..., n}}.
iel
Therefore, if K2 = 2;e; Py, one has #xs = span {v;: 1 €J} and the inclusion
mapping ip: Hxs — #Hx = V is isometric. L

Definition I1.7. (cf. [Fo96, p.220]) Let (T, &) be a measure space, ie.,
T is a set and © in a o-algebra on T. A measurable field of Hilbert spaces is a
family of Hilbert spaces (#:) ;er together with a countable set {x,: n EN} <
[l:cr#: of sections such that the following axioms are satisfied:
(F1) The mappings t = (x;(t), x, () ) are measurable for all j, kEN.
(§2) The linear span of {x,(t): n €N} is dense in #; for all tET.

If, in addition, g is a measure on (T, ®) , then we denote the

corresponding direct integral of Hilbert spaces by [ rH, du@). B

Proposition II.8. Let M be a separable complex manifold, V a finite
dimensional Hilbert space, C a closed convex subcone of P (M?, V) and v: T—Ext C,
t = K' an admissible parametrization. Let x € C and i a Radon measure on T
representing x. We set #;:=Hgt for all tET.

(1) Let {(xn. va) EMXV:nEN} be a dense subset in M X V and set xn (t) 1=
Ktzwom for all n €N, t ET. Then {x, n €EN}Yinduces on (#,) ,er the structure of a
Bovel measurable field of Hilbert spaces. We write [ r du(t) for the direct
integral corresponding to the Radon measuve L.

(i) The mapping Qr: 1 #: dp(t) > Hx given by (Qr () (x), v):=, (K'z.0) te1)
yields an isometry of (ker§r) * — #Hx. Moreover, if pt is unique, then Q7 is an
1somorphism.

Proof. (i) To prove (#1) it suffices to check that the mapping @yzws: T —

C,t = (K%y, Kbw)+ are Borel measurable for x, yEM, v, wE V. As 7: T—Ext (C)
is an admissible parametrization, it is Borel measurable by definition. Moreover,
for all x, y€M, v, wE V, the evaluation mapping

eVyswe: Hol (M, XM, B(V)) — C,fre b x)wv

is continuous. Thus @yzws = €Vyzwe © v is the composition of two Borel
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measurable mappings, hence Borel measurable. This proves (#1).
Since (#2) is obviously satisfied, the assertion follows.
(i) For every €M and BE® we define a linear map

ws): V= [ Hean®.v = K

We have
W50 0, 156) @) = [ WaoKbw)an© = [ &6, 2).v,0) du®)

= ([ K (5.0,

=<K (y,2).v,w) <[|KE (9, 0) [ - vl - [wl

for all x, y € M, v, wE V. This shows in particular that all 7z (x) are bounded
operators and hence the well-definedness of the mapping

e M—B(V, J5" #:du®)), x> 15x).

Moreover, the computation also shows that K% (x, y) =n5 (x) *n5(y) so that the
Realization Theorem (cf. [Ne99,Th.I.11]) implies that the mapping

o fB A du(D) — s, %) () =ns(0)* f

defines an isometry of (kerf2s)* onto #xs. This shows the first assertion.

Finally we have to show that 2 is an isometry if g is uniquely determined
by K. To each B € B we associate the projection Pg: /7 #:dp(t) — [5 #rdp (),
(f)ter P (f1)ten. It follows from 1z = Pz©n that ig° Q5= Qr° Pf, ie., the
diagram

Q8
T2#: dp(t) HB
sk .
lPB Q; l'LB
fT@%t au (t) Hx

is commutative. Taking adjoints we obtain that
(2.4) Pgo QF = Qf o i

Assume now that g is uniquely determined by K. Then Lemma II.5 (i)
implies that ip is isometric for all B € B. Thus it follows from (2.4) and the
isometry of 2 and QF that Pglgi.mxs) is isometric and Pglga;(yfxsc) =0 for all B
€ B. Since Hx= Hxs ® #Hgae for all BE B, this implies that im2F is invariant

under {Pz: B € B}, ie., imRf¥ is a decomposable subspace of [r #:dy (). In
view of [F096, 7.29] this shows that 27 is onto, proving the second assertion.
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Application to Representation Theory

Definition I1.9. (a) An involutive semigroup is a semigroup S together
with an involutive antiautomorphism * S — S, s > s*.
(b) Let X be a set and S an involutive semigroup acting on X from the left. An
element K € P (X?, V) is called S-invariant, or simply invariant, if K (s. x, y) =
K (x, s*. y) holds for x, yEX, sE€S. We write # (X%, V); for the subcone of all
invariant elements of # (X2, V).
(¢) Let KEP?(X?, V). Then

% S — End (#Y), (7% (s).f) () =f(s* x)

defines a semigroup homomorphism. Note that all operators mk(s), s €S, are
closable on #x (cf. [Ne99, Prop. II. 4.10]) and that 7% (s*) =z% (s) *|x? holds for
all s € S. We call (ng, #Y) a hermitian representation of S.

Further, 7% (s) is bounded if and only if

|0 2 <7TI%(S) Kz, ﬂ]%(s)-Kz,v>
(244 (S) [|7Z'K (S)l SquIE(f,’,foV <Kw’ K,,,)

<stv Ks.rv) <K(s‘x s.x).v ‘U>
— X,V X, — 3 ] < oo
Supz}e{:—{,'ffov <K.t.u, Kz,u> Supz;f{;bfov <K (x , x) ., 11>

(cf. [Ne99, Th.11.4.4]). If ak(s) is finite for all sES, then (7%, #%) extends to
a representation (7x, #x) of S given by

mx: S = B(#x), (nx(s).f) &) =f(s*. %),

ie, mg is a semigroup homomorphism and 7g (s*) = 7x (s) * holds for all s€ES
(cf. [Ne99, Th.1IL 1. 3]).

(d) A mapping a: S — R* is called an absolute value of S if a(s) =a (s*) and
a(st) <a(s)a(t) holds for all s, 1 € S. To each absolute value & we associate a
subset of ? (X2, V); by

PXLV,a), ={KEPX:V)i: ax < a.
(e) A representation (m, #) of S is called multiplicity-free if its commutant
7(S)" is abelian. =

Lemma I1.10. The set ? (X2 V, )i is a convex subcone of P (X2 V).

Proof. As &P (X% V,a); is invariant under multiplication with non-negative
scalars, # (X%, V,@); is a cone.
We show that # (X2, V,a); is an additive semigroup. According to the
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Realization Theorem (cf.[Ne99, Th.L 11, Rem. 1. 12]), there exists an isometric
S-equivariant embedding

(Tryrky Hriiky) — (Tr, ® TRy, Kk, @ Hry) .
We conclude that ax,+x, <max (ax,, ax,) <a, proving the lemma. B

In general it is far from being true that Fx for KEP (X2, V, a); is a lattice.
But, as we will see below, in the important case where (mx, #x) is
multiplicity~free this is true.

Proposition I1.11. Let KEP (X2 V, @) i. Then Fx is a lattice if and only if
(7x, #x) is multiplicity-free.

Proof. Recall from Lemma II.5(i) that the mapping
(d*(K,PXV,a)), <)—=Fxr <), A Ky

is an isomorphism of ordered spaces. Let & (K, ? (X% V,a) ;) S B (#x) be the
von Neumann algebra generated by &% (K,%? (X2, V,a) ;). In view of [Ne99,
Prop. II. 4. 29], we have

A (K PXV,0);) ={A€Herm (#x)*: Ka€P X2V, ) $ ={A €7k (S): A=0},

and hence o (K, P (X%, V,a);) =mx(S)".

According to Sherman’s Theorem (cf. [Th78, Lemma 8]), the positive cone
of a von Neumann algebra is a lattice if and only if the algebra is abelian. In
view of this fact, the proposition follows.

Theorem II.12. Let M be a sepavable complex manifold, V a finile
dimensional Hilbert space, S an itnvolutive semigroup acting on M by holomorphic
mappings from the left, a: S — R* an absolute value and 7: T — Ext (P (M% V, @) 1),
t » K' an admissible pavametrization. Let K € P (M2%V,a) ; and assume that
(mx, #x) is multiplicity~free.

(i) The set P M2, V, ) is a closed convex subcone of P (M?, V) ; and the face Fx
15 a lattice.

(i) For each Q € Fx there exists a unique Radon measure p on T such that Q=
frKtau(t) holds.

(i) All representations (w2, #9):= (e, #%:), tET, are a-bounded, ie., a;(s):=
Iz () I<a (s) holds for all s €S. In particular, each (P, #?) extends to an
involutive representation (i, #;) of S.

(iv) For all tET the representation (1, #:) is irreducible.

(v) The prescription Kzn = (K%u) ter defines a unitary equivalence

w: (e te) = ([* map®, [*#.dp@)



BuNVARIANT HILBERT SPACES 105

of S-modules.

Proof. (i) The first assertion follows from Lemma I1.10, the second one
from Proposition II.11.
(ii) This follows from (i) and Proposition II.4(i1).
(i) As all K*, tET, are contained in # (M?, V, a) ;, the assertion is clear.
(iv) Since each K€ Ext (P (M2 V, a) i), t €T, is an extreme generator, the
assertion follows from [Ne99, Cor. IL. 4. 23].

(v) Using the notation from Proposition II.8(ii) we see that @ =£2% and thus w
is well defined.
In view of Proposition II.8(ii) and (i), w is in fact an isometric isomorphism. It
remains to show that w is S-equivariant. But this is a direct consequence of the
S-equivariance of the mapping 7, which follows from

12(5.2) 0) = (Khea) ser= (25 6). K2 er=( [ m (©an®). 07 () ©)

for all k€M, vEV and sES. -]
Extension to the Envelope of Holomorphy

We conclude this paragraph with a remark on the extension of a positive
definite holomorphic kernel on a complex manifold M to a positive definite
holomorphic kernel on the envelope of holomorphy of M.

Definition I1.13. (a) Let M be a complex manifold. We write
S (Hol (M) ) :=Homc¢ (Hol (M), C)

for the set of all continuous C-algebra homomorphisms of Hol (M) to C
endowed with the corresponding weak-*-topology. Then we have a continuous
map

n: M—SHol(M)), 7(x) (f) =f(x).
Note that 7 is in fact a homeomorphism if M is a Stein manifold (cf.[Ro63, Th.
2.6]).
(b) Assume now that M is a Stein manifold and let D S M be a domain.

According to [Re63, Th. 4. 6], the space D:=S (Hol (D)) carries the structure of
a Stein manifold such that the canonical map

D—SEolM)=M, ¢+ (f = o(fln)

defines on D the structure of a Riemann domain, i.e., q is locally biholomorphic.
The space D is called the envelope of holomorphy of D. a
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Proposition I1.14. Let M be a Stein manifold, D S M a domain, D its
envelope of holomorphy and V a Hilbert space.
(i) The action of S extends to an action S XD = D by holomorphic maps.
(i) Each KEP (D% V) extends to an element K € P (D% V).

Proof. (i) For each s € S let s €Hol (D, D) given by 0s m) :=sm. Then
os induces a continuous algebra homomorphism &5 S (Hol (D)) — S (Hol (D)) by
s (@) (f) = (foos). This shows in particular that os lifts to a holomorphic map
0s: D — D. The action of S on D is now given by SXD — D, (s, m) — os. m.

(i) As Hol (D) and Hol (D) are Fréchet spaces, the Open Mapping Theorem
implies that the restriction mapping 7. Hol (D) —Hol (D) is an isomorphism. In
view of Hol (D, V) = Hol (D) &V and Hol (D, V) =Hol (D) &V (cf. Example
1.5), the same holds for the restriction mapping Hol (D, V) — Hol (D, V) (cf.
[Tr67, Prop.43.7]). Thus we obtain a realization of #x in Hol (D, V), ie., K
extends to a holomorphic positive definite B (V)-valued kernel KonD. Using
the Identity Theorem for Holomorphic Functions, we see that K is S-invariant,
ie., Ke (ﬁz, V) proving the assertion. =

III. Biinvariant Domains in Complex OP’'shanskii Semigroups

In this chapter we specialize to an important class of complex manifolds,
namely biinvariant domains in complex Ol’shanskii semigroups.

Definition ITI.1. Let g be a finite dimentional Lie algebra over R.
(a) An element X € g is called elliptic if ad X operates semisimply with purely
imaginary spectrum. A convex cone W & g is said to be elliptic if W°# @ and
all X € W? are elliptic.

(b) For a subalgebra a S g we write Inn(a) := {*% < Aut(g) for the
corresponding group of inner automorphisms. A subalgebra a& g is said to be
compactly embedded if Inn (a) is relatively compact in Aut(g).

Remark 111.2. (a) If a Lie algebra g admits an elliptic cone W, then there
exists a compactly embedded Cartan subalgebra t S g (cf. [Ne99, Th. VIL.1.8]).
(b) Suppose that g admits a compactly embedded Cartan subalgebra t and let E
Cg be a Inn (g) -invariant subset consisting of elliptic elements. Then E can be
reconstructed from its trace in t, i.e, E=1Inn (g). (E N t). This follows for
instance from the fact that each elliptic element is contained in a compactly
embedded Cartan subalgebra and the fact that all compactly Cartan subalgebras
of g are conjugate under Inn(g) (cf.[Ne.99, Th. VII.1.4]). B
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From now on we assume that g contains a compactly embedded Cartan
subalgebra t and that there exists an elliptic cone W < g.

Definition II1.3. (a) Let W S g be a closed elliptic cone. Let G, resp. 5«:,
be the simply connected Lie groups associated to g, resp. g¢, and set G1:= {exp g
S Gc. Then Lawson’s Theorem (cf. [HiNe93, Th. 7.34, 35]) says that the subset
I, (W):=G1exp(iW) is a closed subsemigroup of G¢ and the polar map

GiXW — T, (W), (g, X) = gexp(iX)
is a homeomorphism.
Now the universal covering semigroup I'g (W) :=TI¢, (W) has a similar
structure. We can lift the exponential function exp: g +iW — I'z;, (W) to an

exponential mapping Exp: g+iW — I'e (W) with Exp (0) =1 and thus obtain a
polar map

Gx WwW—Tgw), (g X) — gExpGXx)

which is a homeomorphism.

If G is a connected Lie group associated to g, then m; (G) is a discrete
central subgroup of I'z(W) and we obtain a covering homomorphism I'g(W) —
I'c (W):=I's(W) /z, (G) (cf. [HiNe93, Ch. 3]). It is easy to see that there is also
a polar map G X W— I (W), (g, X) +~ gExp (iX) which is a homeomorphism.
The semigroups of the type I'c (W) are called complex Ol'shanskii semigroups.

The subset I'¢(W°) S I'c; (W) is an open semigroup carrying a complex
manifold structure such that semigroup multiplication is holomorphic. Moreover
there is an involution on I'g (W) given by

* Te(W) = Ts(W),s = gBxp(iX) = s*=Exp(X)g™*

which is antiholomorphic on I'g (W?) (cf. [HiNe93,Th.9.15] for a proof of all.
that). Thus ¢ (W) is an involutive semigroup.

(b) A bitmvariant domain D S I'c (W°) is an open connected G X G biinvariant
subset of I'; (W°). Note that

D=GExp (D)) =GExp (2)G,
where D S iW° and D=D, Nif (cf. Remark I11.2(b)). u

Theorem II1.4. (K.-H. Neeb) All complex Ol'shanskii semigroups I'c (W°)
are Stein manifolds. Further if D S I (W°) is a biinvariant domain, them its

envelope of holomorphy (cf. Definition 11.13) D of D is given by

D=GExp (conv (Dy)).
Proof. [Ne98, Th.5.18, Th.7.9]. =
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Definition II1.5. A Hilbert space # which is a subspace of Hol (D) is
called a biinvariant Hilbert space if the following conditions are satisfied:
(BH1) The inclusion # < Hol (D) is continuous.
(BH2) The group G X G acts unitarily on # via

((g1 &2). f) (&) = f(g1'282)

for g1, 8. € G, z € D. B

Lemma II1.6. Let GXG act on D by (g1, g2). 2 = g1282" and consider G
X G as an involutive semigroup with involution (g1, g2) ¥ = (g7, gz'). Write
P (D?); for the G X G-invariant holomorphic positive definite kernels.
(i) The prescription K v (mx, #x) defines a surjective correspondence between
P (D?); and the set of biinvariant Hilbert spaces.
(ii) For every K € %P (D?);, the corresponding representation (mx, #x) of G X G is
multiplicity—free.

Proof. (1) Let K € #(D?),. Then [Ne99, Th.I1.4.4] together with the
invariance of K implies that || 7% (g1, g2) [=1 for all (g1,22) €G X G and thus
(7%, #%) extends to an involutive representation of (7x, #x) of G X G. Since
g ((g1, g2)7Y) =g ((g1, £2)*) = 7x (g1, g2)*, this representation is by unitary
operators. Finally the continuity of the action of G X G on D implies that (mg,
#x) is weakly continuous, hence unitary. Thus K — (mg, #x) is well defined.

It remains to show that the correspondence is onto. Let # be a biinvariant
Hilbert space. This means in particular that all point evaluations # —C, f =
f(z) are continuous for zE€ D. Then f(z) = {f, K,) for some K,E#X and #=Hx,
where K (z, w) = ( Ky, K,y for z, wED. Moreover the invariance of # under G X
G implies that K (g1zg7*, w) =K (2, gT'wgs) for all z, wED, g1, g2 € G, ie, K €
P (DY),

(i) [Ne97, Ex.11.4].

In view of Proposition II.14 and Theorem III.4, it follows from Lemma
II1.6(i) that the discussion of biinvariant Hilbert spaces # < Hol (D) is reduced
to the case where D, is convex. From now on we will make this assumption.

Proposition II1.7. Let #x < Hol (D) be a biinvariant Hilbert space and let
7: T—Ext(®P[D?,),t — K* be an admissible parametrization. (cf. Definition 1.6
(e)). Then there exists a unique Radon measure pt on T such that

K= fT Ktdp (t)

and a unitary equivalence
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(o ) = ([ man®, [ #ia00)

of G XG-modules.

Proof. In view of Lemma III.6(ii), this is a direct consequence of Theorem
II.12. [

IV. The Plancherel Theorem for Biinvariant Hilbert Spaces

In this chapter we finally derive the Plancherel Theorem. In view of
Proposition III.7, the main task hereby 1is to clarify which kind of
representations (7, #;) occur in the integral decomposition of (mx, #x) and
what the parameter space T could be. It turns out that the occuring
representations (m;, #;) in the integral decomposition of (7mx, #x) are highest
weight representations and that there is an admissible parametrization of
Ext(® (D?),) by highest weights.

Highest Weight Representations

To step further we first need some terminology concerning Lie algebras
with compactly embedded Cartan subalgebras.

Definition IV.1. Let g be a real algebra admitting a compactly embedded
Cartan subalgebra t.

(a) Associated to the Cartan subalgebra tc in the complexification gc is a root
decomposition as follows. For a linear functional a € t& we set

gi:={X €Egc (VY EtJ [V, X]=a(¥) X}

and write 4:={aetE\{0}: g&#{0}} for the set of roots. Then gc=tc® Dyeagl,
a(t) €iR for all ®E 4 and g&=gag? where X — X denotes complex conjugation
on g¢ with respect to g.

(b) Let £ be a maximal compactly embedded subalgebra of g containing t. Note
that £ is unique (cf. [KrNe96, Cor. III.8]). A root a is said to be compact if g&
C fc¢ and non-compact otherwise. We write 4, for the set of compact roots and

A, for the non-compact ones. If g=t X 8 is a f-invariant Levi decomposition,
then we set

A, ={a<A: g?é (S I‘(c} and As::{a € A g% € 3¢}

and recall that A=A,U As (cf. [Ne99, Ch. VII]). Further we write A,s=A4,N As
for the set of all non-compact semisimple roots.
(c) A positive system A* of roots is a subset of 4 for which there exists a
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regular element X, € it* with A*:={a € 4: a (X,) >0}. A positive system is
said to be E-adapted if the set 4;5:=A4, N A* is invariant under the Weyl group
We=Niao (t) /Zmno (t) acting on t. We recall from [Ne99, Ch. VII] that there
exists a f-adapted positive system if and only if 33(3 (£)) =E. In this case we call
g quasthermitian. In this case it is easy to see that 8 is quasihermitian too, and
so all simple ideals of 8 are either compact or hermitian.

(d) We associate to a positive system A* the convex cones

Crnin:=cone{i [Xa, Xol: XaSg% a €43},
Cminz =Cmin N3 (g) =coneli [Xa, Xol: Xoa € g& a€ 4]}

and Cmax' = ((47)*={X € t: (V4 € 47)ia(X) = 0}. Note that both Cmn and
Cmax are closed convex cones in {.

(e) Write pr g —t for the orthogonal projection along [t, g] and set Ox :=
Inn(g). X for the adjoint orbit through X € g. We define the maximal cone
associated to 4" by

Whax' = {x e a: pr (@X) gCmax}

and note that Whax is a closed convex Inn (g) -invariant cone in g. ]

Definition IV.2. Let A" be a positive system.
(a) For a gc-module V and BE (tc) * we write V2:={wE€V: (VX Etc)X.v=
B(X) v} for the weight space of weight B and Py ={B: V& # {0}} for the set of
weights of V.
(b) Let V be a g¢-module and v € V* a tc-weight vector. We say that v is a
primitive element of V (with respect to 4%) if g& v=1{0} holds for all a€EA™.
(¢) A gg-module V is called a highest weight module with highest weight 2
(with respect to 4*) if it is generated by a primitive element of weight A.
(d) Let A €it* be dominant integral with respect to AF and F(1) the
corresponding highest weight module for fc. Assume that A* is f-adapted and
set pi=@asaggg. We define the generalized Verma module by

N(2) Z=%<g©) Rucrrt F(4).

Note that N (1) is a highest weight module for U (g¢) with highest weight 1. We
denote by L (1) the unique irreducible quotient of N (2).

(e) Let G be a connected Lie group with Lie algebra g. We write K for the
analytic subgroup of G corresponding to f. Let (m, #) be a unitary
representation of G. A vector v € # is called K-finite if it is contained in a
finite dimensional K-invariant subspace. We write #%® for the space of

analytic K-finite vectors.
(f) An irreducible unitary representation (w, #) of G is called highest weight
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representation with respect to A* with highest weight 1 €it* if #% is a highest
weight module for g¢ with respect to 4* and highest weight 4. We say that the
irreducible highest weight module L (1) is unitarizable if there exists a unitary
highest weight representation (m;, #,;) of G with #%® = L (1) as gc-modules.
We write HW (G,A%) Cit* for the set of highest weight corresponding to highest
weight representations of G with respect to 4* and set HW (4*) :=HW (G, A*)
for the set of all unitarizable highest weights with respect to 4*.

(g) Let 2 € HW(A*). We call A singular if the natural map N (1) =L (A) has a
non-trivial kernel and non-singular otherwise. |

Let W S g be a closed elliptic cone. Recall from [KrNe96, Th. IV .6] that
there exists a f-adapted positive system A* such that

Cmin & WNt C Cpax

holds. From now on we fix a positive system 4% having this property. Then
Wax is an elliptic cone and we have Cmax= Wmax Nt (cf. [KrNe96, Cor.1X.10]).

For each unitary representation (z, #) of G we write (z*, #*) for the
corresponding dual representation. Let By (#) be the space of Hilbert Schmidt
operators on #. We define a representation of G XG on B, (#) by

7% GXG = U(B:(#)), 7°(g1,80). A=m(g) Am(g)*.

Note that there is canonical isomorphism between (z* ® 7, #* ® #) and (7°,
B, (#)). We write || + |, for the Hilbert-Schmidt norm on B, (#) and || - |l for
the norm on the trace class operators By (#).

Recall from [Ne99, Th. XI.4.5] that each highest weight representation
(75, #,) of G extends to an holomorphic representation of I'c (Wmax) denoted by
the same symbol. Moreover all operators m; (s), s € I'e(Whax), are of trace
class (cf. [Ne94, Th.1I1.8]), so that the notion ©;(s):=tr m;(s) makes sense for
all s € I'e (Whay). We call ©; the character of (m:, #;) and note that O, is
holomorphic on I'g (Way) (cf. [Ne94, Th.IV.11]).

Proposition IV.3. Let D S I'c (Whax) be a bitnvariant domain and K €
Ext(®(D?),).
(i) There exists a unitary highest weight representation (i, #2) of G and a
constant ¢ >0 such that the mapping

(75, Bs (#2)) — (g, #x), A = (s = ctr(dm(s)))

1s an unitary equivalence of G X G-modules.
(ii) The face Fx is uniquely determined by A.
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Proof. (i) [Ne99, Th. XII1.8.11].
(i) Suppose the assertion is false. Then there exists K1, K, € Ext (® (D?);) with
Fx, # Fx,, but (nx,, #x,) = (nf, By(#1)) = (nx, #x,). Set L:= K;1+K,. Then L
E€P(D?); and #; = #Hx, + #Hx, (cf. [Ne99, Rem.I.12]). Moreover, [Ne99, Th. L.
16] shows that #x, # #x, and thus #x, N #x, = {0} by the irreducibility of
the representations (7x,, #x,) and (wx, #x,) . Now [Ne99, Rem.I. 12] implies
that #x, ® Xx,=H is an orthogonal direct sum. Thus

(mr, #1) = (nf ® 7§, Bo(H,) ®B, (),

ie, (m, #) is not multiplicity-free, contradicting Lemma III.6(ii).

In the sequel we realize (7§, B2 (#;)) in Hol (I'g (Whax)) via the map in
Proposition IV.3(i) for D= I (W) and ¢ =1. Note that the corresponding
reproducing kernel is given by K? (s,1) := 0, (st*) for all st € [¢ (Wlay) (cf.
[Ne94, Th.IV.11]).

We also write K* = K?*|p«p for the restriction of K* to D X D. Proposition
IV.3 implies in particular that the map

1 HW (G, A*) = Ext(®(D?);), 1 — K

is injective and that im7 is a section of Ext (# (D?) ;). In the remaining part of
this section we will be concerned with the prove that 7 is in fact an admissible
parametrization. From that the Plancherel Theorem will follow.

Remark IV.4. We call g admissible if the direct sum g ® IR admits pointed
invariant elliptic cones. If D is a biinvariant domain associated to g, then there
exists an admissible quotient g; of g, a biinvariant domain D; associated to gi
and an equivariant holomorphic quotient map ¢: D — D;. Further every K €
P (D?); factors to a holomorphic positive definite biinvariant kernel Ky on D, via
Ki(q(z), qw)): =K (z,w) for all z, w € D. In particular, we have #x = #x,, and
thus #x can be realized as a biinvariant Hilbert space in Hol (D;) (cf.[Ne99, Ch.
XIII] for all that) . For what this restriction procedure means in the more
concrete setting of Hardy and Bergman spaces we refer to [Kr98a, Rem. IIL6,
Lemma IL9]. =

Our objective is to obtain an integral representation for kernels K €

@ (D?) ;. To achieve this, Remark IV .4 tells us that it is no restriction to assume
from the beginning that g is admissible. From now on we will make this
assumption.

The Set of Highest Weights

This subsection is devoted to an explicit description of the set of all
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unitary highest weights HW (4%) < it*. For subsets 4, B € it* we define their
minimal distance by

Omin (A, B) = inszA,yEB“ x —y”,

where II . || denotes a norm it*.

Lemma IV.5. (1) If g is simple hermitian and { € i3 (€)* such that {(B) =
1, wheve B is the maximal root in A*, then

HW(A*)=DU U R,

meN

where D is a countable discrete closed subset of it* and Ry = An—R*{ mEN, is a
ray. The singular elements HW (AT) are given by D U {An: m EN}. Moreover, there
exists a constant C>0 such that Omin (D, Ru), Omin Rn, Rm) >C holds for all m, n €
N, m #n.

(ii) If g is a compact semisimple, then

HW(AY) ={a€it™ (Vi€4t) %ENO}.

In particular, HW (A%) is a countable discrete closed subset of it*.

Proof. (i) This follows from [EHW83, Prop. 3.1, Cor. 3.16].
(ii) This is part of the Theorem of Highest Weight for reductive Lie algebras. ®

Let g =1t X8 be a f-invariant Levi decomposition. Let u & g be the
nilradical and to be a complement to 3(g) in tNr. Then :=t, ® 8 is a reductive

subalgebra of g and g=u X [ is a f-invariant semidirect decomposition. Let G =

U X L be the associated semidirect product on the level of simply connected
groups. Further we set t¢=t N [ and note that t = 3(g) ® t.

Let 8 = ®7.,8; be the decomposition in simple ideals with &;, 1 <j <,
compact and &;, »+1 <j < u, hermitian (cf. Definition IV.1(e)). Associated to
the direct sum decomposition [ = t, ® %18, there is a splitting L="T, X | § P S‘;
of L into simply connected factors. For each 1 <7 < n we set t;=tN3;.

Lemma IV.6. If g=I1s reductive, then
HV (AN =U U  Cu:

meNIS{r+1,..,n}

is a countable disjoint union of convex affine cones. Moreover:
(i) The occuring cones Cm,r have the form

Cor=itf+ X+ 3 ar+ X (=10 [g),
jeI

j=1 jefr+1,..m\I
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where A € it¥ for all 1 < j < n. Further, all 2%, j € {r+1,..,n}\I, are singular
for S;, and AT —10,0[L, j €I, consists of non-singular elements for S; .
(ii) The closure of Cp,r 1S given by

a,l = UCmJ

eI
minimal distances satisfy Omin (Cm, Cn) > C for all m, n €N, m#n.

Proof. This is a direct consequence of Lemma IV.5.

Note that a necessary condition for L (1) to be unitarizable is 2 € iC&i (cf.
[Ne96, Lemma 1.4 (iii) ]). Thus HW (4*) € iChin and HW (4%) |13 SiCoin,z. Let

m*: = D gest g% and note that [m*, m*] < 3(g) as g was assumed to be
admissible (cf. [HiNe93, Th. 7.15]).
Each g € iCX,. induces a positive semidefinite hermitian form on m* by

¢ﬂ:m+><m+_‘>@! (Xv ) Hﬂ([?,X])
(cf. [Ne.96, Sect. IIT]). For each a € Af, we set

W () :=1{Xx € g& (VY € g?) ¢ (X, ) =0},

. 1 . .

Ma (ﬂ) ‘=dimg (g(ﬂé/Wa (ﬂ) ) , pr,u::EZ;eAr Ma (ﬂ) « and mZ‘= @aedt gq:/Wa (ﬂ) .
Note that {(mq (1)) acst € NI* 4 €iCkin,} is a finite set, say {fi,---, fi}. For

each 1 <j <k we set p,; = % Zgest (fi)a @, where f; = ((f})a) acat, and

associate a not necessarily convex subcone of iC¥i,, by
Cj= {ﬂeicﬁin,z: (ma (ﬂ) ) acat=f; }.

Note that iC&i,,= U%,C; is a disjoint union.

For each A€iCk, we set 1;:=1i;.

Now we have all notation to describe HW (4*) for an arbitrary admissible
Lie algebra g. The main tool is the method of metaplectic factorization: Each

highest weight representation (7, #;) of G is a tensor product (v;, ® 7, F (mj,)

® m), where (vi,, ¥ (mf,)) is a so called extended metaplectic representation
modelied on the Fock space

F (mf,):={f€Hol (mf,): f NG Pe @ () <oo},
mxz

which is a highest weight representation of G with highest weight A, — 0,, €
i(3(6))* Further, (1, #;,) is a highest weight representation of L with highest
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weight A¢ =Z|,~:,+pr,x which is considered to be trivial on U (cf. [Ne96, Sect.
mil).

Lemma IV.7. Let g be an admissible Lie algebra and A* be a ¥-adapted
positive system. Then:
(1) The set HW(A*) is a countable union of affine cones

where
Cmj1 = _pr,j+ci+ (icﬁin n cm,I) ,

with Cpyy S it is as in Lemma IV.6 defined with respect fo the positive system A%,
(ii) Each Cu,jy is a Bovel subset of it*.
(i) Let Cp=U;;Cm.j1. Then there exists a constant C > 0 such that the minimal
distances satisfy Omin (Cm, Cn) >C for all m, n€N, m#n.

Proof. (1) Let A€iCX. According to [Ne96, Th.II1.9], L () is unitarizable
if and only if the [c-module L (A, where Ai=2A|u+ 0,1 is unitarizable. Thus the
assertion follows from Lemma IV .6.

(ii) According to (i) and Lemma IV .6(i), we only have to show that the cones C;,
1<i<k 1<j<s are Borel subsets of i3 (g)* This will follow if we can
show that the mappings

QDa: ic;l:lin,z g NO, u e omg (.u) ,

a € A}, are Borel measurable. As all @q, @ € AF, are lower semicontinuous, the
assertion follows.
(ii) This follows from Lemma IV .6. ]

Corollary IV.8. Al C§;r=Cunjs N HW (G, A"), mEN, 1 <; <k I C
{r+1,...,n}, are Borel subsets of it*. In particular, HW (G, A*) is a Borel subset of
it*,

Proof. According to Lemma IV .7(), it suffices to show that HW (4*, G) is
a Borel subset of it*.
Let Xi,..., X, € t be generators of the lattice

Ag={X€Et expz(X) €Em(G)}.
Then

HW (G, A") ={A€HW(G): (VXEA;) =1}
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=N U QeawA*): A(X,) €2mmi)

i=1 mel

shows that HW (G, 4*) is a Borel subset of HW (4*). But HW (4*) being a
countable union of Borel subsets is Borel (cf. Lemma IV.7(ii)). Thus HW (G, A")
is a Borel subset of it*, proving the corollary. =

The Plancherel Theorem

Now we are going to prove the admissibility of our parametrization 7:

HW (G, A*) = Ext(® (D?),), 2 — K* and finally derive the Plancherel Theorem
for Biinvariant Hilbert Spaces from it. We begin with a description of the
character associated to a unitary highest weight representation.

Lemma IV.9. Let ASHW (4%) and (m;, #,) an associated Wighest weight

representation of G. Let OF be the character of F () and mq=dimgg% for all a€ A.
Then:
(1) If A is non-singular, then

1 OFExp (X))
6, (Exp X) =
X< P ) agt (l—e_”m) maaeIA]i,',s l—e"“m
for all X €EiChax.
(@) If (m, #1) = (V2 F(mY)) is the extended metaplectic representation
associated to the parameter A, €iClin,z, then

o Wz=rdz) X

0,(Exp X) = H+(1——ém

aeldr

for all X E€iChax.

Proof. (i) (cf. the proof of [Ne94, Th.I1.9]) As A is non-singular, we have
L(A) =N(A) by definition. Thus L (1) is fc-isomorphic to U (p~) ®F (1), where
the fc-action on U (p~) ®F (A) is given by

X(Y®v)=[X,Y]® +Y®X.v

forall X € fc, Y €U (p™), v € F(A). By the theorem of Poincaré-Birkhoff-Witt,
U(p~) = S(p7) as te-modules, and so L (1) is tc-isomorphic to S (p~) ®F (1).
For each a € t§& we write C, for the one dimensional tc-module of weight a.
Then dimg g§ = 1 for all & € A, (cf. [Ne99, Lemma VII.2.3]) implies that

Sp) = @ SC)™® Q JS(Cy)

acdr acl ns

as te-modules. Thus we obtain for all X €C%ax that
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0, (Exp (X)) =trm; (Exp (X)) =6f (Exp (X)) Z+( z e'"““‘X’e‘”ﬂB‘X’)m"

Bedns aedr namnpeNp

1 1
ag"r' (1_e-—a(X))ma T l_e—a(X)’

acldns

=0 (Exp (X))

proving the assertion.

(i) It follows from the discussion in [Ne96, Sect. IIT] that L (1) is tc-isomorphic
to

3 @ (@we () or (e,

where F (A, — 0,1) =Ci,_prs is the one dimensional fc-module associated to the
weight A, — 0, € i3 (£) *. Now the computation of @; © Exp|;c%. is analogous to
the one in (i). =

Lemma IV.10. Foralim €N, 1< <k IE {r+1,...,n} the mapping

Tmir: CSir — Hol(DXD), A = K*

1S continuous.

Proof. First we reduce to the case, where G is simply connected. Let D
:=GExp (D;) be the simply connected covering of D and Hol (D XD) — Hol (D X
5) the embedding induced from the covering D — D. We obtain a commutative
diagram

Tm.jx ~ =
Cmjs —— Hol(DXD)

Ym,j1 {

Hol (D X D)

G
cm,i,I

and all vertical arrows in this diagram are embeddings. Thus w.l.o.g. we may
assume that G and D are simply connected.
As K* (s, t) = 0, (st*) for all st € D, it suffices to show that the mapping

Omit: Cmjs — Hol(D), 2 = 6lp

is continuous.

We write C(Exp (@))WE for the Weyl-group invariant continuous functions
on 9 equipped with the topology of compact convergence. First we show the
continuity of the mapping

Omir: Cmir — C(Exp (D) W‘), A= Oilexwe.
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Let A € Cm,js. By metaplectic factorization we have (m, #:) = (vi, ®

F (m}) ® #,) and accordingly ;= 6, * 0. For each 1 <j < we set A=
:l,t,, and A¢=2 I,to, Then

(2, #2) = (T2, C) ®(§ (72, #21),

where (7, Ci) is one-dimensional representation of T, with weight A, and
(7, #,), 1 <j <, is a highest weight representation of S; with highest
weight A;. Accordingly we have €;,=6);, * [17-1 ©;, and so

6,=6;,* 6 - _Hl@z,.
j=

Now Lemma IV.7 and Lemma IV.9 imply that there exists an analytic function
fmiz on D such that

4.1) 0; (Exp (X)) =fms.t X) + OF (Exp (X))

holds for all X € @, A € Cpjs. By Weyl’s Character Formula Of|gxp o depends

continuously on A. Therefore (4.1) implies the continuity of gy,,r.

We write C (Exp(D,))¢ for the Ad(G)-invariant continuous function on
Exp (D;) equipped with the topology of compact convergence. Recall from [Ne99,
Th. X 1.2.2] that the restriction mapping C (Exp (D)) ¢ — C (Exp (9))"t is a
continuous bijection, thus an isomorphism by the Open Mapping Theorem.

Therefore the continuity of 6, implies the continuity of

Omir: Cmsr — C(ExpDr))¢ 2 = Oilsxpw,.

Now we can prove the continuity of Om,js. Let 4» — A in Cuj1. We claim
that {@y,; » € N} is locally bounded. Let A € D be a compact subset. Then A4
C GExp (24"), where A’ S D, is a compact subset. We obtain for all gExp (X)
€ A that

l@z(gExp(X))l=|tr(7rx(gEXP(X)))l=|tr(m(gExp%X))ﬂz(Exp(%X))>|
=l (epx0(3%))., m(Exo(3) |
<l gBxp(3) o - b (Exp(3) e

4.2) <|z; (Exp( ))“1— (@; (Exp <-12‘X)>)2 < supzeexoun (02(2))) 2

As Omjs is continuous, {Oylexpw,: # € N} is locally bounded, and the claim
now follows from (4.2).
Now Montel’'s Theorem applies and yields a subsequence of (An.)ren of
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(A4) nen such that @ =limy—. O,, exists in Hol (D). As o, ; is continuous we
must have © = ©; on Exp(D,), thus ©@ = 0,, as Exp(D,) is a domain of
identity in D. This proves the continuity of 0y, and hence the lemma. =

Recall that a topological space X is called Suslin if it is continuous image of
a polish space.

Theorem IV.11. The mapping

1 HW (G, AY) —=Ext (P (DY), A — K*

15 an admissible parametrization.

Proof. We know from Proposition IV.4 that 7 is injective and that im7 is a
section. We note that Tm,,-,1=7|c,§,,,, and consider in the following 7m.jr also as a
function on HW (G, 4*) with support Cg.r. Then 7= 2, isTmis. Thus Lemma
IV .10 shows that 7 is a countable sum of Borel maps, hence Borel.

We claim that im7 is an admissible section. Note that all C$;; are Borel
subsets of it* (cf. Corollary IV.8) and hence Suslin (cf. [Sch73, Ch. I, 81, Th.

3]). Thus by the continuity of 7mj.r the space ¥m.js(Ca.i1) is Suslin and
imy = U 1mis(C0.0)
m,j, 1

being a countable union of Suslin spaces is Suslin. In view of [Th94, Th.1.19],
this shows that imy is an admissible section.

Next we show that 7% imy — HW (G, 4*) is universally measurable. We
have already seen that 72 HW (G, A*) —imy is an injective Borel map between
two Suslin spaces. Thus the assertion follows from von Neumann's Selection
Theorem (cf. [Sch73, Ch. 1T, §3, Th. 13]).

It remains to show that (y71) * (R (imy)) S R HW (G, 4%)). Let v be a

Radon measure on im7y and set g:= (y~1)*. v. We have to show that ¢ is a Radon
measure on HW (G,A4%).

For all tupels (m,7,I) the prescription tmjr = (ymbr) *.v defines a Radon
measure on HW (G, A%), because 7 is universally measurable and 7m;s is
continuous (cf. Lemma IV.10). Thus Vm = 2j1Vims being a finite sum of Radon
measures is Radon for all m € N. Recall that there exists a constant C>0 such
that Omin (Cm, Cy) >C holds for all m, n €N, m#*n, (cf. Lemma IV.7G). As y=
>menVm and supp (Um) S Cm, m € N, this shows in particular, that v is locally
finite and inner regular, hence Radon. This proves the theorem. L]

Theorem IV.12. (Plancherel Theorem for Biinvariant Hilbert Spaces)
Let D C© I'c (Wmax) be a bitnvariant domain, #x S Hol (D) be a biinvariant Hilbert
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space associated to K € P (D?) ; and A* be a positive system associated to Wax. For

cach A € HW (G, A") define K* € P (D?) ; by K* (s,t) = 0, (st*) for st €ED. Then
there exists a unique Radon measure it on the Bovel subset HW (G, A*) Sit* such
that the following assertions hold:

(i) The kemnel K decomposes as

— 2
K HWGAY) K dp @).

The right hand side is to be understood as an Hol (D Xﬁ) ~valued integral.
(ii) There is a unitary equivalence of G X G modules

(o 0~ e, [ B)an),

HWG, 41
where the measurable structure on the family
(B2(#2)) aerwie, s+ = () acrwie, 4+
1s the one from Proposition II.8.
Proof. We only have to put together Proposition III.7, Proposition IV.3(i)
and Theorem IV .11, and the assertions follow.

The Case of Complex Ol’'shanskii Semigroups

We conclude this section with a discussion of a special case of Theorem
IV.12 which is of particular interest, namely where D =Ig (W) is a complex
Ol'shanskii semigroup.

Let a be an absolute value on I (W). Then the prescription

ag i (W N H—=RY  ay(X) =log a(Exp (X))
defines a subadditive function, i.e., a0 (X+Y) <ao (X) +ao(Y) holds for all X, ¥
€i(wnt).

Lemma IV.13. Let (my, #3) be an highest weight representation of I'e.(W)
and o an absolute value on I'c (W) . Then (13, #3) is a-bounded if and only if A€
HW (G, A, @), where

HW (G, A*, a):={2€HW (G, AN (VXei(WN1))AX) <ao(X)}

Proof. Let 2 € HW(G, A*, a) and note that this is equivalent to
(4.3) (vxei(w N 1) = (z; (Exp(X)). v, v) < a(BxpX)),

where v; € #; is a normalized highest weight vector. Let th'={X€t: (Va €
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AY)ia(X) >0}. Now we have the inclusion Pray S A—cone (4*) for the weights
occuring in L (1) so that (4.3) is equivalent to

(4.4) (Vxeiwnth))(Vve #)) mExpX)).v,v) <aExpX)) v, v).

Since all operators m (Exp (X)), X€iW, are selfadjoint, we have
(m (Exp (X)) w,v)

v, v
Now i (WNt) =C, X — | (Exp (X)) | is invariant under the big Weyl
group W:=Nx(t)/Zx(t) so that W.t* =t implies that (4.4) is equivalent to

(4.5) (vxei(wnt))lmExpX)I|<a®ExpX)).

Note that we can reconstruct W° from W° N t, i.e, W= Ad(G).(W° N t)
(cf. [KrNe96, Th. X.3]). This together with the G-biinvariance of a shows that
(4.5) is equivalent to

72 (Exp (X)) [|=supsespior

(Vse€le (W) m () <als),

ie., (my, #) is a-bounded. This proves the lemma. =

Theorem IV.14. Let KEP (Tc(W)? )i and (mx, #x) the representation of
G X G on the corresponding Hilbert space #x. Then there exists a unique Radon
measure A on the Bovel subset HW (G, A*, ) such that the following assertions
hold:

(i) The kernel K can be written as

— 2
K fHW(G, A+,a)K du (/Z)

with comvergence of the right hand side in Hol (I'g (W) X I'e(W)).
(it) There is a unitary equivalence

23] e
(EK7 %K) - (v/;IW(G at a)ni d‘LL (2) ’ LW(G At a)Bz (%I)d# (2)
of I'e(W) X I'g(W)-modules.

Proof. This follows Theorem I1.12, Lemma III.6(ii), Proposition IV.3(i),
Theorem IV.11 and Lemma IV.13. ]
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