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The Berezin Calculus

By

Paul L. ROBINSON*

Abstract

We present a canonical account of the Berezin integral and associated Berezin expectation over

Hilbert spaces of arbitrary dimension. Our account is illustrated by an extensive discussion of

Gaussians, by a Berezinian version of the kernel theorem for generalized functions, and by an

extension of the Shale-Stinespring theorem on spin transformations.

Introduction

The calculus presented in these notes originated with F. A. Berezin in
several papers and especially in the book [2]. One of its remarkable features is
the way in which it enables a description of fermionic systems that is
surprisingly close to a standard description of bosonic systems: thus, it
facilitates a representation of intertwining operators in the fermionic Fock
representation that is parallel to the integral kernel representation of
intertwining operators in the bosonic Fock representation on Bargmann-Segal
space; indeed, this appears to have been a primary reason for the initial
development of the calculus. From a less exalted standpoint, the Berezin
calculus may be regarded as a means of organizing and understanding the
structure of exterior algebras and their relatives.

Our motivation for this work was a desire to appreciate the presentation in
[2]. There, the author routinely identifies a Hilbert space with the space of
square-integrable functions on some measure space and employs ideal or
generalized elements as a matter of course. In these notes, we have attempted to
formulate the theory in canonical form throughout: we work over abstract
Hilbert spaces of arbitrary dimension, making no essential basis-dependent
choices. We feel that reducing structural assumptions to a minimum in this way
significantly clarifies the Berezin calculus. Of course, our debt to [2] is great; it
is instructive to compare that presentation with the one offered here, setting up
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a dictionary for translation between the approaches.
It is perhaps worth drawing attention to a couple of elementary yet

important points concerning our approach. Berezin refers to elements of a
"Grassmann algebra with inner product" as "functional of functions with
anticommuting values". We take this reference almost literally: for V a complex
Hilbert space, we set up alongside its exterior algebra AF the full antidual AF'
comprising all antilinear functionals AF—^C; it is within this antidual that
much of the formal calculus takes place. Our approach to an infinite-dimensional
V is naturally via its set 3> (V) of finite-dimensional subspaces. To each M^
3F (V) there corresponds the exterior algebra A M: the direct limit of the
algebras A M under inclusions is of course A V\ the inverse limit of the
algebras A M under projections is canonically A V'. These straightforward
attitudes also appear to clarify the theory considerably.

"Finite dimensions" develops the Berezin calculus when the complex Hilbert
space V is finite-dimensional. We study the Berezin integral and the Berezin
expectation as linear functionals on the exterior algebra AF^ of the
complexification. We also study the Berezin partial integral and the Berezin
conditional expectation relative to an orthogonal decomposition of V\ for
example, we include Berezinian versions of the Fubini theorem and
differentiation under the integral. We note that the Berezin expectation yields a
neat construction of the standard inner product on the exterior algebra over V.

"Infinite dimensions" passes to the case of an infinite-dimensional complex
Hilbert space V. It is here that the antidual A V' makes it formal debut and is
recognized as the inverse limit relative to projections of the exterior algebras
AM for M e 2F(V). We explicitly construct the complex Hilbert space
completion A [V] of A V within A Y\ we define the Berezin integral and
Berezin expectation on appropriate domains within A V. These notions are then
related by a formula for the inner product on A [V] in terms of the Berezin
expectation just as in the finite-dimensional case.

"Gaussian integrals" assembles the calculations of Berezin expectations for
a variety of Gaussians, these being the exponentials of quadratic elements in
either an exterior algebra or its antidual. In particular, we construct the
Pfaffian pairing or relative Pfaffian between a pair of Hilbert-Schmidt antiskew
operators on V in arbitrary dimension, for which see also [7] and [12]. These
calculations are performed by various techniques and serve to illustrate the
Berezin calculus developed in the preceding chapters.

"Integral kernels" centres upon a Berezinian version of the usual kernel
theorem for generalized functions. The Berezinian theorem establishes a
canonical isomorphism between A Vfc and the space of all linear maps from AF
to A V'. In addition to analyzing the properties of this canonical isomorphism,
we also calculate the Berezinian kernels of certain standard operators. For
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example, we study creators and annihilators, not only on A V but also on A \_V\
and indeed on A V '.

"Spin transformations" draws upon the preceding theory to discuss the
implementability of orthogonal transformations in the Fock representation.
Recall that if it is the standard Fock representation of V on A [V] then the
orthogonal transformation g of V admits a unitary operator U : A [V]~ * A [V]
such that

precisely when its antilinear part y (g + igi) is Hilbert-Schmidt: see [1] and

[14]; see also [10] and [11]. Here, when v ^ V we regard it (v) as acting not
just on A [V] but actually on the triple AFd A [V] c: AF'. In this generalized
setting, we obtain the interesting result that the orthogonal transformation g of
V admits a (nonzero) generalized operator U: AF— >AF' such that

precisely when its complex-linear part y (g— igi} has finite-dimensional kernel;

this extends the Shale-Stinespring theorem as far as one has a right to expect.
After completing this work, we discovered that [9] contains a symplectic
parallel to this discussion; of course, a closer symplectic parallel involves
replacing A V and A Vf by the symmetric algebra and its antidual, for which
see [13].

"Remarks" addresses a number of matters arising from the body of the text:
some of these pertain to alternative approaches or peripheral issues; others
pertain to future directions or open problems. Even so, we do not aim at
anything approaching completeness. In particular, the supersymmetric calculus
combining bosons and fermions receives no mention; for this, see [5] and [6] .
We refer to [3] and [15] for further discussion of the calculus in the context of
quantum field theory, but remark that such discussions typically relate
rigorously to finite dimensions only.

One final comment: the consistent conventions adopted in these notes were
chosen after much deliberation. Though sufficient, they are by no means
necessary; we encourage the reader to modify them if desired.

Finite Dimensions

Let V be a complex Hilbert space with / as its complex structure, with
{• •) as its complex inner product and with ( * | ' ) as the underlying real inner
product, so that if x, y^ V then
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The eomplexifieation Vic =(C®F possesses a canonical conjugation

a: V<c-»V<c: i>®z*-»v®z.

In addition, T/c carries a canonical complex inner product given by

and a canonical symmetric bilinear form given by

when /I, /^£=(C and #, jy^ V. These structures are related by the fact that if x, y&
F<c then (x\y) = (ox\y) and (*[y) = (ax\y) .

The complex-linear extension /c : Vic — » FC induces a direct sum
decomposition

in which

is the ±i eigenspace. Note that F+ and F~ are both (• °) "isotropic and ( ° | e )
orthogonal; note also that V+ and V~ are interchanged by cr. The map

=

is a unitary isomorphism:

The map

is an antiunitary antiisomorphism:

Of course, the canonical conjugation a interchanges these maps: 7~ = <707"i" and

Let A denote the functor associating to each complex vector space its
exterior algebra; recall that this exterior algebra is graded by degree and that
the vector 1 in its degree zero component C is called the vacuum. The canonical
conjugation a on Vic naturally extends to an antilinear antiautomorphism of
AFc for which we use the same symbol: thus, 01 = 1 and if VI,"',V»G F^ then

° /\vn} =avn/\

As cr: A Vc ~* A F<£ is an adjunction, when (f>& A V& we may write 0* in place
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of cr(0). By functoriality, the linear map 7+: V— *V+ induces an injective linear
homomorphism

r+ = Ar+: /\V->/\V+c:/\V€

and the antilinear map 7": V—* V~ induces an injective antilinear anti-
homomorphism

Matters are so arranged that the identities y~ = ff0T+ and Y+==^°T~ continue to
hold at the exterior algebra level.

Among the other items of structure associated to the exterior algebra over
a complex Hilbert space, we find it convenient to introduce annihilators at this
juncture. Explicitly, if v €= V then the annihilator a(v) : A V — » A V is the linear
antiderivation uniquely determined by the requirement that a (v ) 1 = 0 and that
a(v)w= (v\w) whenever w^V\ in particular, if vo,'",vn^ V then

where a circumflex signifies omission as usual. Of course, the exterior algebra
A Vjc is likewise acted upon by corresponding annihilators,

Now, let V be finite-dimensional: in fact, let V have complex dimension m
so that A V has complex dimension 2m. In this case, the exterior algebra A V
possesses a unique minimal ideal: namely, the complex line /\mV comprising its
degree m elements. For the complexification, the adjunction (7 furnishes more
structure; in particular, it distinguishes a specific element of the minimal ideal

A2mF<cCi AVic as a consequence of the following.

(l.l) Theorem. Each of the following conditions on £^ A2F^ is implied by
the remaining pair.

(o) C*=C

Moreover, there exists a unique Ce A2 Vic satisfying these conditions.

Proof. A direct calculation establishes that if x, y e V<z then (y* x*} = (x\y)

whence if v ̂  VE and £ £ A 2 Vc then

(a(i>K)*+«(i>*)C*=0.

From this, it follows that if C* = C then a (v) £~ ±v* exactly when a (v*) £= +v .
Thus, if (0) holds then (+) and (~) are equivalent. To complete the proof, let
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vi,mmm,vn be a unitary basis for V and decompose the arbitrary Ce A2F(c as

Applying (±) tot; = r±(^) for k = 1, — , w yields A =1 and A± = 0. Thus (+)
and (— ) force £ to be the self adjoint

D

The canonical element of /\2V& singled out by this theorem is of such

importance that we grant it a special symbol: we denote it by ?= jv or by j+j~
as convenient, this notation being suggested by the fact that if vi,m",Vm is a
unitary basis for V then

fc=l

By passage to the m-fold exterior power, jv yields a canonical element of
the minimal ideal in A F<c: explicitly, we define

Note that if vi'-,vm is a unitary basis for V then 7 (vi) ?+ (vi) ,°-j (vm) T+ (v
self annihilate and mutually commute, whence

r~ (vk) r+ (v
k=l

We are now prepared to define the Berezin integral and to investigate its
properties. Let

denote projection onto the (top) degree 2m homogeneous component. If 0^ A
then Ty(0) is a scalar multiple of a)v and we write

thus defining a complex linear functional
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which we call the Berezin integral. We also write

as standard alternative notation for the Berezin integral of 0^ AF<c.
For a variety of reasons, it is convenient to introduce a modification to the

Berezin integral. We define the Berezin expectation as the complex linear
functional

given by the rule that if <j>^ A Vic then

so that in the alternative notation

where exponentiation takes place in the exterior algebra according to the usual
power series expansion.

(1.2) Theorem.

Proof. The exponential e~rv^ AFc is defined by the usual expansion, thus

fel>0

and so

~

D

(1.3) Theorem. If T is a complex linear endomorphism of V& extended
fnnctorially to a complex linear endomorphism of A V<c then

$ e A V€ =»Iy [T0] = (Det T) H„ [0].

Proof. This property is simply the Berezin integral formulation of the

familiar fact that the complex linear map T acts on the complex line /\2mV^ as
scalar multiplication by Det T. EH
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The preceding properties are most simply expressed separately in terms of
the Berezin expectation and the Berezin integral respectively; the following
properties are shared in form by both.

(l«4) Theorem. The Berezin integral and the Berezin expectation are real in

the sense that if 0^ A Fc then B>[0*] =^[03 and Ey [0*] =Ev[<t>] .

Proof. Direct calculation reveals that TV commutes with adjunction: if 0 e
then zv(0*) = zv(0)*. For the Berezin integral, simply note that a)y is

selfadjoint; for the Berezin expectation, note that yv itself is selfadjoint. D

In particular, IF and EF take real values on selfadjoint elements of A Vfc.

(1.5) Theorem. Let V=X@Y be a < - | ° ) -orthogonal decomposition. If f e
and 7? ^ A 7C £/ien £/ie exterior product ^T] = ^/\r] satisfies

Proof. Decomposition into homogeneous components makes it clear that
TV(?T?) =rjf (|)rr(^). The asserted identities thus follow from the fact that ?v=

YX+TY which implies a)v=a)xO)Y and e~Tv=e~rxe~rY. D

The Berezin expectation has the further important property of being
coherent as regards subspaces, in the following sense.

(1.6) Theorem. // WC v is a subspace and if $ e A WQ then IF [0] =

Proof. An immediate consequence of (1 . 2) and (l . 5) upon considering the
orthogonal decomposition Vr=W0Wrl. D

Now, the Berezin expectation on A V& enables us to introduce a complex
inner product on A V. Explicitly, for £, TJ e A V we define

so that in the alternative notation

We shall verify shortly that this formula does indeed define a complex inner
product; before doing so, it is convenient to inspect a simple case and introduce
more standard notation.
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For the simple case, let v ̂  V be a unit vector and L d V its complex linear
span. From

and (1.6) it follows that

In like manner, it may be seen that

ffiir[r(t>)]=Ev[r+(i>)]==o.
For the sake of brevity, write m_ for the set comprising 0 together with all

integer multiindices C= (CI,-"A) such that I<c1<-"<ct <m. Let us agree that
if vi,-",vm^V then v 0 =1G A V and fc— fCl""^Cf

e A V whenever C= (CI,"*A) ^
w. In terms of this notation, if (vc : l<c<m) is a basis for F then (vc : C^m)
is a basis for A F.

(1.7) Theorem. A complex inner product is defined on A V by the rule that
if ?, V e A F

T/iis inner product has the property that if (vc : l<c<m) is a unitary basis for then
(vc : C^m) is a unitary basis for A V.

Proof. The form < • ] • ) is manifestly sesquilinear; it is further Hermitian, in
view of (1.4) and the fact that 7^ = ^07*. If C= (CI/--A) ^m_ then (1.5) and
the simple case handled prior to the theorem imply that

=!v Cr" (vcf) -~r~ (vcj r+ (vci) • • > r + CO ]

In order to complete the proof, it is enough to show that if A, B^m^ and (VA VB)
is nonzero then A —B. With the vacuous interpretation when appropriate, let A
= (ai,-",ar) with .4'= (ai,-~,ar-i) and 5= (^i,"-,55) with B'= (bi,-~,bs-i) . From
(1.5) and the simple case again, if ar<bs then

and if ar>bs then (v^lvjs) = 0; accordingly, ar
=bs and

<Wkg) =Ev[r~ W r" (^0 r+ W) r+

By reduction, it follows that A =B and that (v^ VB) =1 as required. D
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This result shows that (• |«) on A V concides with the standard inner
product, determined on decomposables by the rule that if xi, "* ,xr, y\,"°ys^ V
then

(xi~ -xr\yi" ys}
 = drsDet [ (xa\yb) ] .

The foregoing construction in terms of the Berezin expectation has certain
attractive features: for instance, (?|>?) is at once defined when the vectors f, 17
^ A V are arbitrary and not merely decomposable.

As A V<c is itself a complex Hilbert space of finite dimension, each of its
complex linear functional is given by evaluating its complex inner product
against one of its vectors. The following result identifies the vector
corresponding to the Berezin integral.

(1.8) Theorem. // $e A v<c then

Proof. Iivi,'",vm is a unitary basis for V then (j~(vk), 7+ '(vk)> l^k^m) is
a unitary basis for Fc so (1 . 7) implies in particular that

is a unit vector; consequently, if <p^ AF£ then

whereupon the theorem follows at once from the definition of the Berezin
integral. D

Henceforth, we fix a specific orthogonal decomposition V=X@Y.
The complex inner product on A Fc facilitates a significant generalization

of the Berezin integral. We define the Berezin partial integral

to be the linear map adjoint to

A7(c-*

so that if 0e A V& and r] e A 7c then

If we regard the Berezin integral EF itself as integrating over V then Ifo
integrates only over X to leave a quantity depending on Y=X± alone.

Similarly, the Berezin expectation admits a significant generalization. We
define the Berezin conditional expectation
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given by the rule that if 0E A V<c then

Our terminology is carefully chosen, for ffi^ is indeed a conditional expectation
in the technical algebraic sense, as will be seen in due course.

The next result exhibits and resolves the ambiguity inherent in our
notation: in the displayed equations, the original integral and expectation appear
on the right while their generalizations appear on the left.

(1.9) Theorem. // £ e A X€ and r\ e A Y€ then Hx [fy] =ZX [?] V and

Ejrtfi?] =!£*[?] 17.

Proof. Let F: A V® — * A V$ be the standard parity automorphism, fixing the
elements of even degree and acting as minus the identity on elements of odd
degree. If also 770 e Ay<c then from (1.5) it follows that if £ is even then

Evc[r~ 0?o) r (a*) r+ (?) r+

while if £ is odd then

Evc[r- (^) r+ (5)

whence if 5 is arbitrary then

<l7ol

and (1.8) applies. Finally, as fx is even so

D

Some special cases are worth recording. Setting r] = 1 we find that the
notations £*[£] and E*[?3 are unambiguous. Setting %=1 we find that Hz [57] =0
and !*[??] =77.

(1.10) Theorem. // <f> e A F£ and i/ 77', 77" e A rc
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Proof. By linearity, it is enough to consider <j)—^r] with £€= /\X<c and
;. From (1.9) it follows that if? is even then

while if | is odd then bothlxiV^r/'] and Jj'Ejrt?)?] J?" vanish. As e~r* is even
we deduce that

D

It is now clear that Ex : A Vc— »A7c is indeed a conditional expectation: it
is a linear map from the algebra A V<£ to its subalgebra A 7c restricting to A 7C

as the identity and satisfying IEz[j?'05?"] =r?'ffix[0] J?* whenever 0^ A Fc and

The Fubini theorem has a rather straightforward Berezinian analogue.

(1.11) Theorem. // 0e A Vs then

Proof. By (1.8) and the factorization u>v—a)x(t>v we have

whence (1.9) yields

Symmetry concludes the argument. CH
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There is also an elementary Berezinian version of differentiation under the
integral. Before we state it, observe that trilinearity and a routine check on
basis vectors (for instance) show that if v ̂  V& and 0, 0^ A FCC then

(1.12) Theorem. // 0e A Fc and y e yc then

Proof. On account of the fact that a)x is even, if also r] ̂  A Y& then

a (y) 0)

[a(y)0]>.

As X and 7 are orthogonal so a(y)e~7x=Q whence from above it follows that

a
Our next result calls for the introduction of some notation. Let S :

be any linear map and define a linear automorphism Ts : V^-^V^ by

having adjoint T* : F(c~ *V(g given by

so that Ts I yc = J and T| |^c = 7. By functoriality, Ts and T* extend to
automorphisms of A 1/c which we denote by the same symbols.

(1.13) Theorem. If S : X^—^Y^is a linear map and if 0 e A V& then

Proof. Note that T* acts identically on /\X$ and that Ts acts identically on
A Fc. Note also that if Py : ^c^^^c ^s orthogonal projection and if r? G A y^
then a>xTsr] = a)xPYT*r] since co^ annihilates A^ under exterior multiplication.
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Consequently, if r) e A Y® then

D

We remark that this result implies a translation invariance of the Berezin
integral.

The Berezin expectation furnishes an elegant proof for the following
property of the canonical inner product.

(1.14) Theorem. // ?', £"e A*c and r/, r/'e A r€

Proo/. Upon application of (1.10) and (1.11) we find that

~ (r) r+ (r) r+ (^01
(90 r- (r) r + (r) r + to') ] ]

a

Infinite Dimensions

Now let the complex Hilbert space V be of arbitrary dimension. We shall
approach the Berezin calculus on V by way of its finite dimensional subspaces.
Thus, let 3F (V) denote the set comprising all finite dimensional complex
subspaces of V directed by inclusion; also, let S?M(V) denote the set comprising
all elements of 9 (V} containing M^& (V) .

To each M^ J^(F).we associate the orthogonal projection PM'. V—»M of V
on M along the orthocomplement M1. Note that this is well defined whether or
not V is complete: in fact, if v\,"\vm is a unitary basis for M then
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k=l

The exterior algebra AF over V carries a canonical complex inner
product. Indeed, if £, r] ̂  A V then of course ?, r? e AM for some M^2P (V) and
we define

as for (1.7). The choice of M is immaterial, for if also f , 17 ^ A N with AT
9 (V) then both EM LT~ (?) 7+ fa) ] and 1* [T~ (?) r+ fa) 1 equal 1M+* tr" (?) 7+

on account of (1.6). This inner product on A V continues to be determined by
the rule that if xi,-",xr, yi,"*,ys^V then

(xi~ -xr\yi" ys) =

(2.1) Theorem. // M<^ff(V} then the functorial extension PM : A F-» AM
is precisely orthogonal projection of A V on AM along the orthocomplement (AM) x.

Proof. By linearity, we need only consider decomposable vectors. If vi,~',vk

^ V and if wi,~',Wk^M then

-vk) =Det[(wa\vb)]

= Det[(wa\PMvb)]

whence Vi~-Vk~PM(vi'"Vk) is orthogonal to AM as required. [D

Fundamental to our approach is the full algebraic dual A V comprising all
antilinear functional AF— »(C. Of course, the complex inner product < - | * ) on
AV engenders a canonical linear embedding of AF in AV" which we shall
usually view as an inclusion: namely, the map

Let Me ^(F). If 0e A V then the restriction $ |AM is an antilinear
functional on AM and so arises from a unique @M^ AM according to the rule

As our choice of notation suggests, the resulting linear map

PM' AF'--»AM: @^@M

extends the orthogonal projection from AFC AF' onto AM.

(2.2) Theorem. If M & 5F(V] then the restriction of the linear map PM-
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A V*—> AM to A V is precisely orthogonal projection of A V on AM.

Proof. Direct calculation. Let 0^ A V and write <D'-= < • |0) e A I/. If
AM then

so that @M=PM<f> as required. - D

Observe that if N^&M(V) and if CP^ A V then PM$N=®M: indeed, if also
0 GAM then

<0|Pjf 0*> - (01 ®N) = 0 (0) = <0| Cf>M> -

The following converse to this observation provides a useful method for
constructing elements of A Vf.

(2.3) Theorem. // to each M^5F(V] is associated an element @M^ AM in
such a way that PM®N = @M whenever M, N^2F(V) satisfy M^-N then there exists
a unique ®^ A V with PM$= ^M for each M^2F(V) .

Proof. If 0 e A V then 0e AM for some M^3F(V) and we define 0(0) : =
<0|0M). The choice of M is immaterial, for if also N&3F(V) with 0e AjV then
each of <0|$M> and <0|<P*> equals <0|0M+jv> as PM$M+N=$M and PN®M+N =
0N- The uniqueness of 0 is plain. CU

A little more concisely: the vector spaces (AM: M^2F(V}} constitute an
inverse system when to each pair M, N^3^(V) with M^N is associated the
orthogonal projection AJV— »AM; the inverse limit of this system is precisely
AV". Similarly, (AM: M^^(V r)) is a direct system relative to the canonical
inclusions, whose direct limit is exactly A V.

As a consequence, the antidual /\V is more than just a vector space.

(2.4) Theorem. The antidual AF' is naturally an antic ommutative
associative complex algebra according to the rule that if 0, W^ A V' then

Proof. From (2.1) it follows that if also N^&M(V) then

whence the consistency condition in (2.3) is satisfied. Verification that this
product makes A V' into an anticommutative associative algebra is routine. CU

Thus, /\V' is the inverse limit for the inverse system (AM: M^2F(V)} of
algebras; if M e 3F (V) then the map PM: AF' — » AM is an algebra



THE BEREZIN CALCULUS 139

homomorphism. Of course, the canonical embedding /\V— »AF' is an algebra
homomorphism: otherwise said, A FC A V" is a subalgebra.

The foregoing considerations apply to the antidual of the exterior algebra
over any complex Hilbert space. In particular, they apply to the antidual
A F^ of A F<C. In this case, more can be said. Note the following elementary
modification of (2.3): an element @^ AF^is determined by a consistent
assignment of vectors $M<ne AMC as M runs over 3r(V). Note also that a check
on decomposable vectors reveals the formula

(2.5) Theorem. The algebra A F^ carries a canonical adjunction defined by
the rule that if @^ A FC then

so that if also M<^&v) then

Proof. The indicated rule plainly defines an adjunction on A F<E. A little
more explicitly, if 0^ AFc then

In particular, if 0e AMc then

in view of the formula noted prior to the theorem. D

When convenient, we may denote this canonical adjunction by cr; AFj;— »
AF^. Of course, the canonical embedding of AFc in AF@ respects adjunctions.

Note that the functorial extension ?+ : A V— > A V+ c: A F^ of the unitary

isomorphism 7+: F— ̂ F+ : v^—7(v—ijv} is itself a unitary isomorphism.

(2.6) Theorem. 7* extends further to an injective algebra hommnorphism

A F'-^ A Ffc de/in«d by the rule that if ®^ A V and if M^&(V} then r+ (

Proof. The indicated rule for defining 7+ (0) is consistent: if also N ^

&M(V) then PuvJ* ($>N) =T+(^M} on account of functoriality together with the
identity PM(C

O7+ — T+OPM valid on F by direct calculation. D
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Similarly, 7" extends to an injective antilinear antihomomorphism 7" : /\V

-»AFc such that if 0^ /\V and M^&(V) then T~ (®) MG = T~ (®M) • Naturally,
the identities G^J± = J^ continue to hold in this extended context.

Building upon this foundation, we proceed in a couple of directions when V
is infinite dimensional: in the one we recognize that A V is incomplete, locating
within A V' a model for its Hilbert space completion; in the other we develop
the Berezin calculus, properly formulating the Berezin integral and the Berezin
expectation.

We begin our discussion of the Hilbert space completion of AF by
assigning to each 0^ /\V the (possibly infinite) number

Note that the norms (||<PM|| : M^2F(V)) constitute an increasing net: indeed, if
with MCAT then

by the Pythagorean identity, because PM'- /\V~^/\N is orthogonal projection as
in (2.1) and PM$N=$M as for (2.3). Consequently, if M^% (V) is fixed then

(2o7) Theorem, // (pe AF' then \\0\\is exactly its operator norm as an
antilinear functional on /\V in the sense that

Proof. On the one hand, if 0M
=£® then 0=0 /̂11^11 is a unit vector and

On the other hand, if the unit vector 0G AF lies in AM then

0(<f>)\=\(</>\0M)\<l0Ml

D

This prompts us to define

which we claim is a specific model for the Hilbert space completion of A V as an
inner product space.

First of all, A [V] is plainly a complex vector space on which || e || is a
norm. Further, the norm || • || actually arises from a complex inner product < ° | 8 )
on A [V]. To see this, let 0,W^ A [V]: if M^^(V} then the parallelogram law
in AM yields

|| (0- f)M|2 + || (0+ ?P)MlN
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whence taking the supremum as M runs over 3F (F) yields

\\0~Wf + \\0+m2 = 2{\\0\\2 + \\W\\2}',

thus the parallelogram law holds in A [F] and so we may define

Note that the canonical embedding AF — » AF' maps A V into A [F]
isometrically. In fact, let 0e A V and 0= {• |0) e V': in light of (2.2) we see
that if Me^(y) then 0M = PM<I> and ||0M||^W with equality precisely when 0
e AM. For convenience, we shall usually regard the canonical embedding AF
"-^A [F] as an inclusion.

(2.8) Theorem. If M&3F(V) then PM: AF'-> AM restricts to A [V] as
orthogonal projection on AM; in particular, if 0^ A [F]

Proof. Let 0e AM. If JV<E#>(V) then PN<j) = (l> to which (<Z>-<PM) N=^N~
is orthogonal by (2 . 2) so

and the taking of suprema as N runs over ^M(F) yields

That this is so for arbitrary (p^ AM places 0— 0M in (AM) -1. That this is so
for the special case <f)=0M concludes the proof. D

As a consequence, A F is dense in A [F] : indeed, we have the following
approximation theorem.

(2.9) Theorem. // 0 e A [F] then the net (0M: Me^"(F)) in AF
converges to 0 in A [F] .

Proo/. Let £>0 and choose M£e^(F) so that ||0M£II
2^ ll^ll2- £2. If Me

^M£(F) then ||<M2^l|0||2-£2 so that \\0-0M\\<e on account of (2.8). D

Incidentally, we now have an alternative construction for the complex inner
product on A [F]. Explicitly, if 0,¥<E A [F] then the nets (0M: M
and (WM\ M^2?(V}} are Cauchy, whence so is the complex net ((0M\^M)'-

and we may define

= lim (0M\¥M).
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Not only is A \V\ an inner product space in which A V is densely and
isometrically embedded: A [v] is actually the Hilbert space completion of A V.

(2,10) Theorem. The complex inner product space A [V] is complete.

Proof. Let (0>: /eN) be a Cauchy sequence in A [V]. If M ^ f f ( V ) then

the sequence (<%• : /^M) is Cauchy, so we may define $M^ AM as its limit. If

N e 3FM (V) and if ; e N then PM$& = $it so that PM% = ®M since PM is
continuous. By (2.3) we deduce the existence of a unique @^ A V such that if
Me^(y) then QM^PM®. Now, let £>0 and choose /£^N" so that if p, q>j£

then ||0*-<H<£. If also M^&(V) then ||<P|f- $lr||<£ whence letting p-»°°

and g=/>/e yields ||(<P— ^;)M ^£. Taking the supremum as M runs over 2F(V)
shows that if j>j£ then ||(P — 0y||<£. This places 0 in A [V] as limit of the
sequence (@J:j^N).

It is convenient here to record some remarks on grading. Recall that the
exterior algebra is graded by degree: A V is the algebraic direct sum

in which the homogeneous components (/\nV: n^O) are orthogonal; when w^O
we shall write Pn: AF— » /\nV for orthogonal projection on the degree n
component. Some of this structure passes to the antidual: When n > 0 we define
Pn : A V* -* A V* by declaring that

Our notation is unambiguous, as these two meanings of Pn are respected by the
canonical embedding A V-+ A V: if 0 e A V and 0= (• |0) then
for if also 0^ A V then

(0) =

Let 0eAF' andM^^(F): if also 0e AM then Pw0e AM so

(PW<I>) (0) - 0 (PW0) = <PW0| fe) = (<})\Pn (0M) )

whence

Accordingly, Pn : AF '— *f\V" maps A [F] to itself in continuous fashion.

(2.11) Theoremo If n>0 then Pn : A [7]-* A [V] is orthogonal projection
on the closure An [V] c A [V] of /\nVd A V.
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Proof. As was noted prior to the theorem, Pn\ A V agrees with the orthogonal
projection A F— > /\HV. By continuity, P* : A [v] — »A [V] is thus a selfadjoint
idempotent operator. On the one hand, its range contains /\HV and hence

contains /\n [V] . On the other hand, if 0& A [V] and Pn0= 0 then Pn(0M) =

(Pn0)M=0M$o 0M^ A *F whenever Me ^(y) whence 0eAw[F] by (2.9).
D

Similar remarks apply to the parity automorphism F of A V which acts as
(— I)n on degree n elements: it extends to an automorphism jT of A [F] and
indeed to an automorphism F of A F' defined by

We now turn to the Berezin calculus on F.
We define the Berezin integral of 0^ A Ft by the formula

Hy[0]= lim In [fed

provided that this limit exists; the complex vector space comprising all 0 e
AFc for which UF[^] exists will be denoted by <f (V) . The Berezin integral is
thus a complex linear functional

and when 0G=J(V) we may alternatively write

We define the Berezin expectation of <Z>€= AV<i; by the formula

Ey[0]= lim EM[^ME]

provided that this limit exists; the complex vector space comprising all 0 €=
AFfc for which Ey[(Z>] exists will be denoted by S(V) . The Berezin expectation
is thus a complex linear functional

and when 0G=S(V) we may alternatively write

The alternative notation offered here is more than merely figurative. If M,
are such that M<^N then the explicit formula after (1.1) shows that

PM^N—JM whence (2.1) implies that PM<ce~7N = e~rM. Accordingly, the modified

version of (2.3) for A F^ guarantees the existence of a unique e~rv^ A F^ such

that PM<se~rv — e~7M whenever M ^ 2F(V). Via this element, the canonical
multiplication in A Ft relates the Berezin integral and the Berezin expectation
as follows.
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(2.12) Theorem,, If 0^ /\Vkthen the conditions ®(=$(V) and
J (V) are equivalent] when they are satisfied,

Proof. A straightforward consequence of the definitions: simply pass to the
limit as M runs over 2F(V) in

n
The Berezin integral and Berezin expectation share certain properties; for

example, both are real in the following sense.

(2,13) Theorem, $(V) and S(V) are closed under adjunction, with

\vand

Proof. A direct consequence of (1.4) and the limit definitions, along with

the fact that a(e~rv} =e~7v. D

The Berezin integral overwhelms the subspace A Fed A VQ.

(2.14) Theorem. A FcC/ (V) and Rv\ A Fc is identically zero.

Proof. Let M^2F(V). If NG&(V) strictly contains M then H^= (O)N •>
vanishes on A M^ because (DN is homogeneous of degree 2 dim N in which
degree AM^ is zero. Passing to the limit, Hy is defined and vanishes on AM<£. CH

The Berezin expectation is more sensitive in this regard. From (1 . 2) and
the limit definition, the vacuum 1 e A V& lies in S(V) and Ey[l] =1 so that in
alternative notation

More generally, the Berezin expectation is well defined on A Vc c A V$ and is
there given by collating the linear functionals EM for M in ̂ / T A

(2ol5) Theorem. The domain 8(V) of the Berezin expectation contains
A VQ and

Proof. Let 0e AM£ and 0= <- |0> e AVJ. If JVe^M(F) then (2.2) implies
that (PArc=Pjvc0 = 0 and (1.6) implies that ^[^jvj =l//[0] =IM[0]. Thus the
net (ffi^ [(P^J : N^^M(V)} has constant value 3E^[0] and so 0^8(V) with
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Ev[0] =EM[0] as required. D

The Berezin expectation enables us to extend (1 . 7) to arbitrary dimensions
as follows.

(2.16) Theorem. // 0, W^ A [V] then the product r~ ($) T+ (&) ties in
8(V) and

Proof. If M^&(V) then [r~ (0) T+ (BO!Uc=r~ (**) T+ (?if) by definition,
so (1.7) implies that

IM [ (r (*) T+ (SO ) MC] = (®M\ WM)

whence the discussion of (2.9) implies that passage to the limit as M runs
through P(V) establishes that IF l>~ (&)T+ (203 exists and equals <$|f). D

In fact, if 0>e A y and if r~ (<P) 7+ (<P) e<? (F) then $e A []/] : indeed, if M
then

as above, whence the increasing net (|l$Mih M^2F(V)) is convergent. Thus the
Berezin expectation on 8(V) yields an alternative description of the complex
Hilbert space A [V] .

Gaussian Integrals

In this section, we explicitly calculate Berezin expectations of various
Gaussians and their relatives.

Let us begin by supposing that V is finite-dimensional. We claim that the
second exterior power A2V may be canonically identified with the space A2V
comprising all (necessarily antilinear) maps Z: V~*V that are antiskew in the
sense

(3.1) Theorem. There is a canonical isomorphism /\2V*-*A2V under which
£e A2F and Z^A2V correspond when either of the following equivalent conditions
is satisfied:

Proof. In the one direction, if Ce A2F then the map

Z: V-^
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has the property that if x, y^ V then

and hence lies in A2V. In the other direction, if Z^A2V then the map

V*V-^€: (x,y)>->(Zx\y)

is alternating bilinear, inducing a linear functional on /\2V given by inner
product against some element £ of A2F. Verification that the assignments L^Z
and Z*-»£ are mutually inverse is straightforward. D

We remark that if (vi,'~,Vm) is a unitary basis for V then (v&j\ l<i<j
<m) is a unitary basis for A2F relative to which if C e A2F and Z^A 2 F
correspond as in the theorem then

or

The following property of this canonical correspondence between A2F and
A2V will be important.

(3.2) Theorem, Let the complex linear map S : V—* V act functorially on
AV. // Ce A2^ and Z ^ A2V correspond then S(Q e A2y and SZS* ^ A2V
correspond.

Proof. Direct calculation based on the definition of the correspondence. If xy
e V then

D

Now, if Z^A2V then Z2 is self-adjoint and indeed negative, for if v ^ V

then (v\Z?v) = — \\Zv\\2. Accordingly, Z2 induces an orthogonal eigen-
decomposition

where Fo— ker Z and where if /l>0 then
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is of even complex dimension since Z is antilinear. This leads almost at once to
the following useful decomposition theorem.

(3.3) Theorem. // £e A2F corresponds to Z^A2V as usual, then there
exist positive numbers Ai, '",2i together with a unitary basis (#1, yi, • • • , # / , yi) for
(ker Z) L such that

k = Akyk, Zyk= —

and such that

Proof. Little remains to be done. In terms of the discussion prior to the
theorem, for each nonzero V* with /l>0 we choose a unitary basis consisting of

pairs \x = v, y = ~j Zvj and invoke the decomposition displayed after

(3.1). n
In the notation established for the theorem, we record for later reference

the formula
t

Det(/-Z2)=f](l+/lf)2

k=l
, 2TWe now regard an element of A2F as a quadratic and form its exponential

in A y according to the usual power series expansion; this series is a finite sum
in the present situation, having no terms in degree greater than dim V. Thus,
for Ce A2F we introduce the Gaussian

The first Berezin expectation calculated in this section yields the norm of
such a Gaussian.

(3.4) Theorem. // Ce A2F and Z^A2V correspond as usual then

i
Proof. Diagonalize Z as in (3.3) so that C~ 2G where if l<k<l then £* =

k=i
Akxkyk. As the even decomposables d, ••• , Q mutually commute and self
annihilate, so
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Similarly, if for 1 <k <l we denote by Vk the complex plane with (%k, yn) as
unitary basis then

where #* = 7*6^) and y* — J± (y/t) for convenience. Consequently, (1.5) implies
by definition of (8 •) on A V that

where if 1 <k <l then the k~th factor may be calculated as follows: either
indirectly via (1.7) as the inner product (1 +/tkXkyk\l + Akxkyk) or directly as
the Berezin integral over Vk of

either way, the k~th factor is 1 + ^1. Finally, invocation of the formula recorded
after (3.3) concludes the proof. D

Our next Berezin expectation calculates the inner product between a pair of
Gaussians. As a preliminary, it is convenient to observe that the exponential

exp:

is holomorphic and indeed polynomial, whence

is antiholomorphic-holomorphic, as is

~*C: (X, Y)

(3.5) Theorem, // ?, r] e A2F correspond to X, Y^A2V respectively, then

Proof. Both sides of the putative equality are antiholomorphic-holomorphic
on A2F<-»A2F and (3.4) asserts that they agree on the diagonal. All that
remains is to apply the principle of analytic continuation. D

The fact that this construction singles out a preferred square root of a
determinant prompts us to define the Pfaffian pairing

by the rule that if X,Y^A2V correspond to £, r]^ /\2V respectively then

Pf(X, y) = <*V>
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whence

Pf(X, Y)2 = Det(l-YX).

(3.6) Theorem. Let U : V~*V be a unitary operator. If X, Y^A2V then

Pi(UXU*, UYU*) = Pf(X, Y).

Proof. As the functorial extension of U to A V is unitary, so if X,
correspond to £, Jj^ /\2V respectively then by (3.2) we deduce that

Pt(UXU*, UYU*) = (ev^\evw}

= <£/(««

= PfOf, 7).

D

In addition to being unitarily invariant in this manner, the Pfaffian pairing
is also plainly Hermitian in the sense that

X, Y<EA2V=*Pf(X, Y)=Pi(Y,X).

We now introduce some convenient notation for dealing with quadratics.
When £^ /\2V corresponds to Z^A2V as usual, let us agree to write

whence the relation ao^+ = j~ implies

(3.7) Theorem. If Z^ A2 V and if (vi,"-,vm) is a unitary basis for V then

Proof. If Zy= (vi\Zvj) when l<i,j<m then from the remark after (3.1) it
follows that
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m m

k=l

This establishes the first formula; the second > follows either similarly or by
adjunction. D

As will shortly become clear, this result justifies the alternative notations

together with the identities

= - r tr "^] = r \~rz*\
where if W : V— *V is antilinear then its adjoint W*: V~ *V is defined by

Let 5" : V— *V be a1 complex linear map and define a complex linear map S:
+VQ by the rule that if x, y e V then

By routine calculation, if xit x2, yi, y^V then

as a consequence of which S^A2V& Let us agree to denote by
its standard correspondent, so that if x, y ^ Vjc then

The following result shows that our choice of notation for this correspondent is
sensible.

(3.8) Theorem,, I f S : V~ » V is complex linear and if (vi,aoa,Vm) is a
unitary basis for V then
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Proof. Note that (T~VI, r~vi,'", 7~vm, r+Vm) is a unitary basis for Vc. Note

also that if i, / ^ {!,••• ,w) then both (Sr+Vi \7+Vj) and CsY'fJT'""^ vanish.
Decomposing [7+S] 7" along the lines of the formula after (3.1) therefore
yields

(r+WvA tr

= L ̂ "v'l^+v^

^r"v/l r~ (s*v

so on the one hand

[r
+s] r-=r+

and on the other hand

D

This result also shows that it is sensible and valid to write

Of course, it is also justifiable to write

r[r+s] = -[r+s]r.

(3.9) Theorem. If S :V~*V is a complex linear map then

Hv[exp(r[r+S])3=DetS.
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Proof. A direct proof in terms of a unitary basis for V and the associated
matrix for 5 is of course possible, but an indirect proof is more elegant As a
special case, suppose that S is selfadjoint and diagonalize it by choosing for V a
unitary basis of eigenvectors (vi,~a,vm} with (real) eigenvalues si,~a,sm. If for

we let Vk be the complex line spanned by Vk then from

exp (7 [r+S]) = 11 exp (5
k=l

it follows by (1.5) that

k=l
m

s* = DetS.
k=l

The dependence of both IF [exp (7" [j+S1])] and Det S on S being holomorphic
and indeed polynomial, the principle of analytic continuation applies to conclude
the proof. EH

Incidentally, it follows either by differentiation relative to t of the resulting
formula

or by expectation of the defining formula

that

Certain transformation laws for quadratics are important. For example, let
correspond to Ce A2F as usual: if the complex linear map 5 : V~*V is

extended functorially to A V as a linear homomorphism, then (3.2) informs us
that SZS* corresponds to 5 • C" in our notation for quadratics, this becomes

(r+s)z(r+s)=r
+(szs*)r+.

(3.10) Theorem, // Z^A2V and if W : V-*V is an antilinear map then
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Proof. Extend W functorially to A V as an antilinear antihomomorphism. An
argument akin to that offered for (3.2) shows that if £ corresponds to Z as
usual then W • £ corresponds to ~WZW*. Now, if (t>i,"°,t>m) is a unitary basis
for V then the remark after (3.1) yields

HI>*(

whence

m

W • C=^J] (WZvJ (Wvk)
k=l

and therefore

-zr(w* 0

D

We now wish to perform more general Gaussian calculations, for which
further preparation is required. Although a double direct sum would suffice, for
aesthetic reasons we introduce the triple direct sum Vc©Vc©Vc in which we
distinguish the subspaces

Va= Fc© 0 © 0 Ve = Q © 0 ©F£

to which V is mapped by the pair

T±: V— Vr:v^~
yZ

together with a± and /?* defined likewise. We equip Fc© Fen© F(c with the
standard inner product so that 7+, a+ and $+ are isometric while 7", a~ and $~
are antiisometric. Further, we equip the exterior algebra A (V&® Vic ©Vic) with
the adjunction a interchanging the pairs 7±, a± and j8± extended as usual.

For convenience, we shall denote the Berezin conditional expectation over
the middle space in the triple direct sum Vc©Vc©Fc by

Analogous to r+T~ = Tv^^2V^ is a quadratic a+£~^ A2 (Fa©Fj) having
the property that if (vi,~m,vm) is a unitary basis for V then
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(3.11) Theorem* Er[exp(a+7>- + r+j8")] = exp(a+£~).

Proo/. We could argue by direct calculation, expanding in terms of a unitary
basis. Instead, we shall offer an instructive illustration of (1.13) in action.
Define a linear endomorphism T of V<c@V<c@V<cby

and extend it to A (Vc0V<c0Vc) functorially. From

it follows by (1.9) and (1.13) that

a
Before embarking upon the next Gaussian calculation, it is convenient to

make certain remarks about our notation for the algebra of quadratics. Thus, let
Z^A2V as usual, let 5: V—+V be complex linear and let W: V~*V be antilinear.
The discussion of (3.10) informs us that (a+S) Z (a+S) = a+ (SZS*) a+ and
($-W)Z($~W) =p-(WZW*)!3-. Adjunction or similar arguments yield (a+W)
Z(a+W] =a+(WZW*}a+ and (j8'S)Z(jS"S) =p-(SZS*)P~. The discussion of
(3.8) implies that [a+S]/3~ = a+ [p'S*]} similarly, [a+W]^+ = a+ [@+W*] and

[a~V7] j8~ = a~ [$~W*] . Further identities of this sort are readily derived and
will be used freely in the sequel.

(3.12) Theorem. // Z&A2V then
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Proof. -We could proceed by a calculation broadly similar to but more
elaborate than that for (3.4); in its place, we effectively complete the square in
the exponent as another application of (1 . 13) . Define a linear automorphism T
of the sum Vc0F(c©F(D by

Of course, T (a+ ?~ + r+ P~ ~ 7+7~) equals

a+ (

The discussion prior to the theorem justifies the calculation of T(j+Z^+) as

[(r++a+s+p-w)z] (r++a+s+i3-w)
= r+Zr++a+ (SZS*} a+ +0- ( WZ W*) 0-

together with a similar formula for T(7~Z7~). Accordingly, when the
expression

is expanded, the term independent of 7" and linear in 7+ is

7+ [a+ (SZ- W) +0- [WZ+I-S) ] .

This term vanishes when S and W are chosen to satisfy S=I+WZ and W=SZ
which forces 5= (/-Z2)-1 and W= (/~Z2) -1Z = Z(/-Z2)"1. With this choice,
routine calculations establish

=\$~ [Z (I-Z2) -1] /3- ~a+ [ (/-Z2)

Invocation of (1 . 13) ends the proof. D

Note that if Z^A2V corresponds to £<= A2V as usual then the theorem has
calculated the Berezin conditional expectation
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(0 +r+ (0 +a+r +r+r) ]
= fr~ (^ T+ (e^ea+r~er+^r+r~dr+dr~.J r

(3.13) Theorem. The subset of A2VXA2V comprising all (X, Y) for which
the operator I— YX is invertible is a connected open neighbourhood of the diagonal.

Proof. That the indicated subset U of A2V*A2V is an open neighbourhood
of the diagonal is clear. Let (X Y) ^U and let YX have spectrum UI, 'O Q ,^ /} not

containing unity. Choose a>0 so that none of Aieid,°", Xield is unity when Q<6

<a and none of X\eia,"* ,Xieia is real whence if 1>£>0 then teiaYX does not
have unity as an eigenvalue. Now (X, Y) is connected to (X, 0) in U by

following the arc {(X, ei6Y): 0<6<a} and the line i(X, teiaY}: l>t>0}. Of
course, (X, 0) is connected to (0, 0) in U along the line {(tX, 0): 1>£>0}. D

Notice that the indicated subset of A2V X A2V is also symmetric about the
diagonal, for if X, Y^A2V then YX and XY are mutual adjoints.

(3.14) Theorem. // X, Y^A2V are such that I— YX is invertible, then

xp(^rxr--^Yr++
= Pf(X y) exp {[«+(/-

Proof. Regarding the purported identity, each side is antiholomorphic
(indeed, antipolynomial) in X and holomorphic (indeed, polynomial) in Y while
both sides agree when X = Y according to (3.12). The principle of analytic
continuation from the diagonal applies thanks to (3.13). CD

Note that if X, Y e A2V correspond to £,17 e /\2V respectively then the
theorem has calculated the Berezin conditional expectation

" G?1) r+ (ev)ea rV 0~e~r r~dr+dr~\K J J \t/ / K & C Us I U/ $ .

Note further that the result may be reformulated: thus, [a+ (l — YX) ~l] $~ =

a+ [j8- (I-XY) -1] as /- YX and I-XY are mutual adjoints; also, X(l- YX) ~l

= (I-XY) ~1X and (/- YX) ~1Y= Y(l~XY) -1.
From these Gaussian integrals, others may be conveniently derived by

differentiation under the expectation; for the derivation, the following facts will
be useful.
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(3.15) Theorem. If Z^A2V and ifv<=V then

- a (a+v) exp(-|-a+Za+) = a+ (Zv) exp(— |a+Za+)

a (j8-v) exp(|£-Z£-) = -0- (Zv) exp(|j8-Z0-).

Proof. Let Z^A2V correspond to C e A 2V. From (3.1) and the fact that

a(v) is an antiderivation, if n ^ N then a(v) C,n = n(Zv) ^n~l so that upon
summation

a(v)exp C= (Zv)exp C

As a+: /\V~* /\Va is an isometric isomorphism, so

a (a+v} exp a+ (Q =a+ (Zv} exp a+ (0 .

Applying the antiisometric antiisomorphism /3~ : AF— ^AV"^" more explicitly, if
and 0^ A F is odd then

<a (/S-v) j8-0|^3-0> = <j

thus parity considerations imply

and so

a (P~v) exp/T (0 = -£- (Zv) exp£- (0.

D

Of course, other identities follow similarly: for example, if v ̂ V then

a (a+v) exp (a+fi~) = ($~v] exp (a+/2~)

a 03~t>) exp (a+$~) — — (a+t;) exp (a+$~).

(3.16) Theorem. // Z^A2V and ifv^V then
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Proof. The first formula is a special case of (3.14) or may be established
along the lines of (3.4). The second follows from the first by (1.12) in which
the annihilator a ($~v) is applied. D

We remark that parallel arguments yield the identities

= (a+(Zv}

For passage to infinite dimensions, we must modify (3.1) appropriately. By
a quadratic we shall mean an element £ ̂  A V that is homogeneous of degree
two in the sense that C~^2C with the notation introduced prior to (2.11). We
shall say that the (necessarily antilinear) map Z: V— *Y is antiskew when it
satisfies the condition

x, y^ V=$Zx (y) +Zy (x) = 0.

(3.17) Theorem. A canonical isomorphism between the space of quadratics
A Y and the space of antiskew maps Z : V— *Y is determined by the rule

Proof. If C is given then the indicated rule plainly defines a map Z : V—*Y
-which is antiskew because multiplication in A Y is anticommutative. If Z is
given then the map

is alternating biantilinear, inducing an antilinear functional A2V— > (C which
when precomposed with P2: /\V— > /\2V yields C The correspondence £«-»Z is
evidently an isomorphism. D

We remark that if Me^(y) then {sM = PM(Q corresponds to ZM =
under the isomorphism of (3.1): indeed, if x, y ^M then

M) = C 000 =Z* (y) =

Of course, an antiskew map Z: V— * V induces an antiskew map Z : V
according to the rule
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Plainly the antiskew maps V—*V induce precisely those antiskew maps V~*V
whose values are bounded antilinear functionals on V. Those antiskew maps
V~*V of Hilbert-Schmidt class are important and constitute the space A2[F].

(3.18) Theorem. The canonical isomorphism between the quadratics in A V*
and the antiskew maps V—*V induces an isomorphism A2 [V] <~*A2 [V].

Proof. Let the quadratic C^ A F' and the antiskew Z: V—*V correspond. If
(fi,"',fw) is a unitary basis for M^??(V) then the remarks after (3.1) and
(3.17) imply that

K _r

whence

ij

-||ZM||S

and therefore passage to the supremum as M runs over 3F (V) yields

where || B \\HS signifies (complex) Hilbert-Schmidt norm. EH

Now, if C ̂  A Y is a quadratic then the associated Gaussian is its
exponential

M>0

where convergence is weak: in fact, if 0^ A F then PW0 = 0 for all.w sufficiently
large, so the sum arising from the application of exp£ to 0 is actually finite.
Alternatively and equivalently, if M^2F(V) then exp (C,M) e AM is defined and
if also N<^2FM(V) then PM(^N) — CM so that PM(CXP CN) =exp CM; accordingly,
(2.3) furnishes a unique expCe AF' such that PM(exp 0 ~expCM whenever M

(3.19) Theorem. // Ce A2[F] corresponds to Z^A2[V] as usual, then
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Proof. As M runs through ^(V) so ZM~~*Z in Hilbert-Schmidt norm and

Z2
M— »Z2 in trace norm, whence Det(/~ ZM)— >Det(/— Z2) by continuity (or very

definition) of the Fredholm determinant. As a consequence, it follows from

(3.4) that the increasing net (IK^Mll4: M^3F(V)) has limit

-Zi) = Det(/-Z2).

Conversely, if the quadratic £e A Y corresponds to the antiskew Z: V—*

Y then / <E A [V] forces Z^A2[V]: if M<E & (V) and if ~Z2
M:M->M has

eigenvalues /if, • • ° , / t m repeated according to multiplicity, then the formula
recorded after (3.3) yields

SO

(3.20) Theorem0 // f, 7^e A2[F] correspond to X, Y^A2[V] respectively,
then

. From (3.5) it follows that if Me ^(F) then

Pass to the limit as M runs over 2F(V): the left member converges to (e^e*}2 on
account of the remark after (2.9); the right member converges to Det(j—YX)
on account of trace norm continuity of the Fredholm determinant CH

Once again, we are justified in defining a Pfaffian pairing

Pi:A2[V] XA2[V]-*€

by declaring that if X, Y^A2[V] correspond to £, 77 ^ A [V] as usual then

Integral Kernels

Here we investigate an important canonical correspondence between the
space AFfcand the space of all linear maps /\V~ »AV" . By its nature, this
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correspondence constitutes a kernel theorem; accordingly, when U: AF — >A V"
is linear we shall call the corresponding u ̂  A F<c its kernel.

Before proceeding, it is convenient to make a notational remark. To each u

e A V<c we shall canonically associate u (7+, 7") e A Fr and w (a+, /J~) e A (VJ

©F0) in the natural manner, handling elements of A Vic in similar fashion.
Once again, we begin by supposing that the complex Hilbert space V is

finite dimensional.
To establish the kernel theorem in this context, let (vi,m",vm) be a unitary

basis for V and (vc'> C G= m_ ) the corresponding unitary basis for A V as in
(1.7). Let U: AF— » A F b e a linear map: if 0^ A F then

whence (1 . 10) implies that

where

(4.1) Theorem. There exists a canonical linear isomorphism

associating to each u ^ A Vc the linear map U : A V— » A V defined by the rule that
t/0e AV then

Proo/. The assignment w1-^ 17 is well defined, for ffii3[w(a+, ^8")j8
+(0)] lies in

j^a"*" (A F) and therefore equals a+ (0) for a unique 0=: C70 e AF.
Linearity of the assignment is plain; surjectivity is evident from the explicit
formula displayed prior to the theorem, whence injectivity follows on account of
the fact that A V<c and End A V are equidimensional. D

An alternative explicit formula may be obtained by noting
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thus

c

=EB [JV (vc} 0- (U*vc)
c

and so

Although we shall not employ it, the convention that if 0 G AF then
) :~7+ (0) has its virtues: it enables us to cast the formula expressing u^
as the kernel of [/^EndAF in the more familiar Gaussian form

The canonical correspondence between A Fc and End A V has a number of
important properties. Thus, it respects the appropriate adjunctions: that defined
by a in AFc and that defined by the Hilbert space adjoint in End A V.

(4.2) Theorem,, // C/e End A V has kernel u e A F€ tfww IT* /ias

Proo/. The explicit formula after (4 . 1) tells us that the kernel of U is

c

whence application of (7 yields

c

which is the kernel of C7* by the explicit formula before (4.1). D

The kernel of a composite linear map is given by the standard formula.

(4.3) Theorem. // U\, U2
 e End A V have kernels MI, u2

 e A V® respectively
then U=UiU2 has kernel u given by

u(a\ £-) =ffir[Ml(a+, T--)U,(T+, r)]-

Proo/. Direct computation using (1.10) and (1.11): if 0e A V then

a+ (l/it/a0) =Er [Ml (a
+, 7") 7+
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so

D

Recalling that the exterior algebra is graded by parity, the supertrace of a
linear endomorphism of A V equals the Berezin expectation of its kernel in
AVC.

(4.4) Theorenio // [/e End A V has kernel u e A Vc

Proo/. Of course, F is the parity automorphism of A V. Let C^m: if t>c is
even then

and

r + (c/vc) r" fee) = r~ fee) r+ (^c)
while t;c is odd then

r+ (uvc) r fee) = r fee) r + (TUvc) .
Consequently, if + / — indicates summation over even/odd then the explicit
formula recorded before (4.1) yields

v tr • fee) r+ (i/vc) ] + Lr ' fee) r
c+

D

The kernel corresponding to the identity operator is fundamental.

(4.5) Theorem. The kernel of /^End A V is precisely er+r~ =e7v& A Fee.

Proof. We offer two. For the first proof, denote the kernel corresponding to
/ by u ^ A V<c and let fec: C ̂  m) be a standard unitary basis for A F. The
formula displayed before (4.1) yields
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=LT+ ̂  '"r+ W r~ W -

(O 7~ (fcj "T+ W 7

For the second proof, functorially extend to A (Va 0 Vg) the linear

endomorphism T of 7a0Vfi defined by T\Va®Vj=I and T(j8+) =J8
+ + a+.

Expansion shows that if 0e AT/ then T(j8+0) — a+0 lies in the ideal of A (Va

®Vg) generated by /\Vg and so vanishes upon application of IEg. Consequently,
(1.13) yields

D

Let v €= K We have already introduced the annihilator a (v) G End A F as
the linear antiderivation determined by a (v ) 1 = 0 and the rule that if w ̂  V then
a (v) w = (v \w) . We also introduce the creator c (v) €= End A V as the linear
operator of left multiplication by v so that if <p ^ A V then c(v) <f> = v<f>. Recall
that a (v) and c (v) are mutually adjoint: if 0, 0^ A V then

(4.6) Theorem. // v e F f/ien the creator c (v) e End A F fcas
+ (f )er+r and f/ig annihilator a (v) ^End A F has kernel er+r 7" (v) .

Proof. For the creator, if 0e AF then (1.10) and (4.5) yield
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For the annihilator, if 0 £ A V then (1.10) and (4.5) along with the remark
after (3.15) yield

a+(a(v)<t>}=a(a+v)a+((j>)

D

Notice that the mutually adjoint nature of creators and annihilators is
evident from their kernels in light of (4.2).

(4.7) Theorem. If S: V— »V is complex linear then its functorial extension S:
/\V-*AVhas kernel exp ( [r+S] T ~) •

Proof. Again let (vc- C^w) be a standard unitary basis for A V. Note that
if C= (ci,-", Ct) ̂ rn_ then

Consequently, the formula prior to (4.1) reveals the kernel of S : /\V— +/\V as

c

=r+ (svCl) -~r+ (Svc) r~ (vc)

d) 7" W) -7+ (SvC|) 7" W

n
Of course, the identity operator / has kernel exp (7+7~) as a special case.

As another special case, the parity automorphism Fhas kernel exp( — 7+7").
At this juncture, we pass on to a consideration of the case in which the

complex Hilbert space V is infinite dimensional.
Naturally, our approach to the kernel theorem in case V is infinite

dimensional proceeds via its finite dimensional subspaces. Before stating the
theorem, it is convenient to introduce two more pieces of notation pertaining to
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a finite dimensional subspace M^2F(V). When u ^ A V& we simplify earlier
notation, writing UM<C as UM so that

UM=PM€(U) ^ AMC.

When U: AF— »AF' is complex linear we denote its compression to AM by

(4.8) Theorem. There exists a canonical linear isomorphism

uniquely determined by the requiremmt that if M^2F(V} then UM^- A Men is the
kernel of

Proof. Let^e AVJ. When Me ^(y) let UM
:=PM€(U) act as kernel for UM

End AM according to (4.1). Define U: A V— > A V by the rule that if 0, 0
A F then

for any M^^(F) such that AM^0, 0. Once this definition is sound, it is plain

that U: AF-»AF' is linear and that if Me^(F) then PMU\/\M=UM has WM

as its kernel. To establish soundness, let N^^M(V). By linearity, we may
assume that UN(<%+, j8~) =a+ (?) jS~ (77) for ?, 17 e AJV. Under this assumption, as
0, 0^AMso (1.10) yields

+ (0)]

Let [/eHom(AF, AT). WhenM^^(F) let UM' = PMU\ AM have kernel
UM^ AM(c according to (4.1). We claim that if NG2FM(V) then PM<C(UN) =UM.
Once this is verified, the modification of (2.3) furnishes a w^ AFc such that if
M^^(F) then PM€(U) —UM is the kernel of UM. For the verification, let (vc: 1
<c<w) be a unitary basis for M engendering (vc'. C^m) for AM; extend to a
unitary basis (1;̂ : l<d<n) for A/" engendering (I;D: D^n) for AJV. Of course, m
dn and if D ̂ n then
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As PMUN\ /\M=UM so the formula displayed before (4.1) yields

(UN) =PMT+ (UNVD) T~
D

D

As before, the correspondence between linear operators and their kernels
respects the appropriate adjunctions. The adjunction on AF<£ is denned by a as
in (2.5) so that if u^- AF<£ and M^3F(V) then in simplified notation

If [/eHom(AF, AF') then its adjoint J7*eHom (A "K, AV) is defined by the
rule that if <p, <p<^ A V then

so that if M^& (V) and 0, 0e AM then

= (uM<P\<i>}
whence

(4.9) Theorem. // U^Eom (A F, A V) to &>m0/ u e A F'£ ̂ n t/*
kernel u*.

Proof. If Me^(y) then ([/*)* has kernel W) * by (4.2) whence (£7*)*

has kernel (w*) M by the remarks preceding the theorem. The kernel theorem
(4 . 8) itself completes the proof. D

Of course, elements of /\V$c: A V^ act as kernels for linear operators AF
in a rather special class.

(4,10) Theorem. Let M ^ 2F(V). The linear operator U: AF— » AF'
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satisfies the conditions Ran [/c: AM and (AM) ^CKer U precisely when its kernel
u lies in A Me.

Proof. Assume the stated conditions on U. As for the kernel theorem, let N
(V) and choose a standard unitary basis (VD: D^n) for /\N so that (vc' C
is standard for AM. Note that if D^-n_— m then UNVD-® since (AM)1^:

Ker U and that if C^w then Utfuc — Uvc since Ran t/c: AM. Accordingly, the
formula preceding (4.1) yields the kernel of UN as

This forces

(Uv°) r~ ̂  ^ AM(C'

Assume u e AM^. Linearity entitles us to assume further that u = T+ (?)
7" (77) for f , ?? e AM. As for the kernel theorem, if 0e A V and if N^&M (V) is
such that AAT30 then

Thus

0e A V =>[/0= <^|0> f e AM

and so

D

Further to the proof, we remark that if fl>^, 0" e A F' then u = r+ (^+) r"
A FC is the kernel of U : A V— * A V given by

Again, exp (TV) is the kernel corresponding to the identity operator on A V
or more precisely the canonical inclusion AF—>/\V.

(4.11) Theorem. The identity operator /^End A FCHom (A V, A V'} has
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kernel exp (jy) e A F£.

Proof. Let u — exp (?v) correspond to U^Eom(/\V, AF'). If M<^2F(V) then
[/M^EndAM has kernel PM<C(U) =PMc(exp 77) = exp TM as before (2.12) so that
UM is the identity by (4.5). This forces U—L EH

Let v ^ V. We have already defined the creator c (v) ^ End A V and the
annihilator a (v) ^End A V. We have also noted that these are mutually adjoint:
if 0, 0e A F then

We may reformulate these operators, defining the creator c(v) €= Horn (A F,
AF') by

0, 0 e A J*=> [c (v) 0] (0) - <0k (v) 0>

and the annihilator a (v) ^Hom ( A F, A F') by

0, 0 €E A F=> [a (v) 0] (0) = <0|a (v) 0) .

Naturally, the operators c(v) and a(v) are mutually adjoint in the sense
appropriate to Hom(AF, AF').

(4.12) Theorem. // v e F f^w c(v) e Horn (A F, A F') has kernel

T+ (v}er+r and a (v) ^Hom ( A F, A F') has kernel er+r~r~ (v) .

Proof. If Afe^(F) then c (v} M = PMc (v} I /\M = c(vM} & End AM has kernel

r+(vM}erM = PM<z(r+ (v)e7v) according to (4.6) whence c (v) has kernel y+(v}erv

as claimed. The proof may be completed either by a parallel argument or by
adjunction. D

In fact, these operators may be extended further in canonical fashion: c (v)
eEndAF' is defined by

(peAr, 0eAF=>[c(t;)(P] (0) = 0 (a (v) 0) ;

a(v) ^EndAF' is defined by

$€E A F', 0e A F=> [a (v} 0] (0) =$(c (v) 0) .

These extensions are continuous when A Y has the weak topology according to
which the net ( Q j - . j ^ J ) in A F' converges to zero precisely when the complex
net (0j (0) : / ^ <$) converges to zero for all 0 ^ A F: indeed, if $/— »0 in A V
then

0€E A F=> [c (v) fy] (0) = 0j(a (v}

so c (v) 0y— *0 in A Y while a (v) (Py— >0 in like manner. These extensions to A Y
are uniquely determined by their effect on AF: indeed, it is plain that each
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A V is the weak limit of the net (0M: M^^(V) ) .

(4.13) Theorem. If v^V and 0^ /\Vf then

where Mv is the complex linear span of v and the arbitrary

Proof. Observe that if 0^ AM then of course c(v}(p^ /\MV so

= <0|a (v) 0Mv)

= ((I)\PM(a(v)0Mv))

as required for the annihilator. The creator succumbs to similar treatment,
simplified by the fact that if 0e AM then a (v) 0^ AM. D

Recall that the anticommutator {S, T} between linear operators S1 and T on
any vector space is defined by

(S, T}=ST+TS.

In these terms, creators and annihilators satisfy the canonical anticommutation
relations in End A Y as follows.

(4,14) Theorem. Ifx,y^V then

{ a ( x ) , a ( y } } = 0

{ a ( x ) , c ( y ) } = ( x \ y ) l

{ c ( x ) , c ( y ) } = 0 .

Proof. These familiar identities hold automatically in End A V once they
hold in End /\V\ here, the last holds by anticommutativity of exterior
multiplication whence the first holds by adjunction; for the central identity, if 0
e A V then

a(x)c(y)<p=a(x)

= [a(x}y](f)—y[a(x)(t)]

D

Incidentally, the scalar multiples of the vacuum 1 ^ A V c: A V are
precisely the vectors annihilated by every annihilator: if 0& /\V' and if v^ V
implies a(v}0=0 then
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thus 0 vanishes on all elements of A V having positive homogeneous degree and
so 0 is a scalar multiple of ( "U) -

(4.15) Theorem. If v ^ V then c(v) and a(v) define mutually adjoint
bounded linear operators on A [V] such that if 0^ A [V] then

Proof. By virtue of the canonical anticommutation relations, if 0G AF then

(v) <f>\\2 + \\ a (v) 0||2 = <c («) <f>\c (v) <f>) + (a (v) <f>\a (v} 0>c

since c(v) and a(v) are mutually adjoint on A V. Now, if $ e A [V] and if
M^2?(V) is chosen to contain v then (4.13) yields (c (v) 0) M~C(V) @M and
(a (v) 0)if=a (v} @M so that

whence passage to the supremum over M establishes the claimed equality. In
particular, c (v) e End A V and a (v) ^ End A Y restrict to A [V] as bounded
linear operators; their mutually adjoint nature on A V extends to A [v] by
continuity. D

Spin Transformations

As an extended illustration of the various concepts introduced thus far, we
now consider in some detail the implementation of orthogonal transformations in
the Fock representation. Throughout, the underlying complex Hilbert space V
has arbitrary dimension, unless otherwise specified.

The orthogonal group 0(V) comprises all real-linear automorphisms g of
V that are orthogonal transformations in the sense

x,y^V=*(gx\gy) = (x\y).

It contains as subgroups both the group U(V) comprising all unitary
transformations of V and the larger group containing also the antiunitaries.

Each g^O(V) decomposes uniquely as a sum g = Cg+Ag in which Cg is
complex-linear and Ag antilinear: explicitly,

Cg=~(g-Jgj)
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(5Bl) Theorem. If g^O(V) then C* = Cg-i and Af=Ag-i where adjunction
is relative to the real inner product (° *)•

Proof. As / is skew-adjoint, this is a direct consequence of the explicit
formulae for Cg and Ag. Note that for complex-linear endomorphisms, adjunction
relative to (* •) and ( ° ! ° ) have the same effect. D

Taking into account complex-linearity and antilinearity as appropriate, it
follows that if also x, y ̂  V then

(Agx\y) =

(5.2) Theorem. If g^O(V) then

Proof. This applies to any real-linear automorphism g of V and follows
upon taking complex-linear and antilinear parts in the expansion of

I=g~lg= (Cg-i+Ag-j (Cg+Ag).

n
We remark that a particular consequence of (5.1) and (5.2) is the fact

and if v e V then

(5.3) Theorem. If g^O(V) then Ag restricts to an antiunitary isomorphism
Ker Cg-^Ker Cg-i.

Proof. The second identity in (5.2) implies that Ag maps Ker Cg to Ker (V1

and the first identity in (5.2) implies that Ag-^Ag\Ker Cg = I\ apply (5.1) and
symmetry. EH

The following factorization of orthogonal transformations is useful.

(5.4) Theorem. If g^O(V) then there exists h^O(V) such that gh~l is
unitary and Ch is self adjoint.

Proof. We offer a sketch. Let fg be the partially isometric factor in the polar
decomposition Cg=fg\Cg\ and invoke (5.3) to choose a partial isometry e on V
having Ker Cg as initial space and Ker C*-1 as final space. Now k- = e+fg: V~ »V
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is unitary and k\Cg\ = Cg since if v^V then |cjv^ (KerCg)1 and so k\Cg\v=fg\Cg\v

— CgV. Further, the complex-linear part of h = k~1g=\Cg\+k~lAg is C/z = |CJ which
is actually positive. CU

Alternatively and in the notation of the proof, g = gk~lk where k: V—> V is

unitary and gk~l^O(V) has self-adjoint complex linear part felc^lfe"1.
We define the Fock representation of V in terms of creators and

annihilators as usual. The prescription

v^V '=^Tt (v) —c (v) +a (v)

defines a real-linear map from V to both End (A!/) and End(AF'); extending
the traditional terminology, we shall refer to each of these maps as the Fock
representation of V. By (4.15) we see that the same prescription defines a
real-linear map it from V to the algebra #(A[V]) comprising all bounded
linear operators on A [V]; this is the traditional Fock representation of V. Note
that the creators and annihilators may be recovered from the Fock
representation: indeed, if v €= V then

I

]_
a(v) —-^{^(v) +in(jv)}.

(5.5) Theorem. The Fock representation n of V is irreducible in the sense
that T^Hom (A V, A V') is a scalar operator if it satisfies

Proof. Let T map le A V to <f>e A V. If v^V then

whence the remark after (4.14) yields a scalar /!^(C such that Tl = $ = /il. It
follows that if 0^ AT/ then T(f)=A<p: indeed, T is linear and if vi,'",vn^V then

T(VI" fVn) =

D

Of course, our proof of this result is modelled on a standard proof that the
traditional Fock representation is irreducible.

Now, we shall refer to the nonzero [/^Hom (A V, A Vf) as a generalized
Fock implementer for the orthogonal transformation g^O(V] precisely when

where it: V—*End A V on the left and n\ V—»End A V' on the right. This
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generalizes the usual notion of a unitary Fock implementer, in which U:
A[F]-»A[F] is unitary and TT : V^ B(/\ [V]} is the traditional Fock
representation. Recall that in this familiar context, g ^ 0 (V) admits a unitary '
Fock implementer if and only if its antilinear part Ag is of Hilbert-Schmidt
class. As we shall see, Fock implementers in our generalized sense exist almost
universally: in fact, g^O(V) admits a generalized Fock implementer if and only
if Ker Cg is finite-dimensional.

Our analysis is facilitated by the introduction of a little more notation:
when gdO(V) and v ̂  V we define

cg (v) =c (Cgv) +a (Agv)

dg (v) =a (Cgv) +c (Agv) .

(5.6) Theorem. If g^O (V) and if x, y e y then

{ag(x), ag(y)}=Q

Proof. These versions of the canonical anticommutation relations follow
easily from (4.14) together with (5.1) and (5.2): taking the central identity
for example,

W W , cg (y) } = (CgX\Cgy) + (Agy\Agx)

= (x\y).

n
Note further from (5.2) with g^O (V) replaced by g'1 that ifv^V then

cg (Cg-ty) +ag (Ag-iv) —c (v)
ag (Cg-^v) +cg (
cg

ag (Cg-^v) +cg (Ag-*v) =a (v) .

These transformed creators and annihilators are significant in several
respects. Thus, it is obvious from the definitions that if g^O(V) then

v) =cg(v) +ag(v).

Also, the nonzero L / r^Hom(AF, A F') is a generalized Fock implementer for g
G=0(V) precisely when

Ua(v)=ag(v)U.

(5.7) Theorem. If U^ Horn ( A V, A V) is a generalized Fock implementer
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for g^O (V) then U* is a generalized Fock implementer for g-1.

Proof. liv^-V then the note after (5.6) implies that

a (v) U= [ag (Cg-w) +ce (Ag-w) ] U
= U[a(Cg-iv)+c(Ag-iv}]

= Udg-i (v)

whence if also $, (p^ A V then

([/*c(i;)0)(0)=I/0(c(t;)0)

g(t;)t70(0)

I/a,-i («) 0(0)

and therefore

A parallel argument ends the proof. D

We shall refer to the nonzero 0^ A V' as a displaced Fock vacuum for the
orthogonal transformation g^O(V) precisely when

(5.8) Theorem. // g e 0 (F) tfww ^ m/e fl> = LT. s^te M^? a bijective
correspondence between its displaced Fock vacua 0 G A V' and its generalized Fock
implemented

Proo/. If £7 is a generalized Fock implementer and if v &V then

so that Ul is a displaced Fock vacuum. Conversely, if 0 £=. A V' is a displaced
Fock vacuum then the canonical anticommutation relations of (5.6) permit us to
define a generalized Fock implementer [/^HomCAF, A V*) by [71 = 0 and the
requirement that if Vo,'",vn^ V then

The bijective nature of the correspondence 0+-+U is plain. [U

Our advertised necessary condition for generalized Fock implementability
is rather easily established. We make use of the following observation: let
/\V be nonzero and let ̂ c V be a complex subspace; if
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then X is finite-dimensional. For a contradiction, let X be infinite-dimensional: if
the vectors v\smm pn He in V then we may choose a unit vector x&X orthogonal
to each so that

= 0(a(x)

while of course it is also true that

0=c(x)0(x)=0(a(x)x)=0(l).

(5-9) Theorem,, If g ^ 0 (V) admits a generalized Fock implemented then
Ker Cg is finite dimensional.

Proof. Let U: AV—*AV' be a generalized Fock implementer with 0—Ul
the corresponding displaced Fock vacuum. The note following (5.6) shows that
if *eKerC*-i then

c U) 0= [cg (Cg-v) +ag (Ar1*) ] C/l
= Ua(Ag-ix)l = Q

whence the observation made prior to the proof reveals that Ker Cg-1 is finite-
dimensional. All that remains is to call upon (5.3). CH

We approach the valid converse to this theorem by a combination of special
cases.

(5.10) Theorem8 Each unitary g^O(V) has its functorial extension /\g:
A V— * A V as generalized Fock implementer.

Proof. That Ag is a generalized Fock implementer is readily verified: if v ^
Fand 0e A V then

Ag (c (v) <p) = Ag (t;0) = Ag (v) Ag (0)
=gv Ag (0) =c (gv) Ag (0)

whence if also 0^ A V then

= (c(gv)(p\A(g)<t>)

= (<]>a (gv} A (g) 0) .

D

Note that in this case, the indicated implementer is actually a unitary
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operator on A V and so extends to A [V] as a unitary Fock implementer in the
traditional sense.

(5.11) Theorem. Let V be finite dimensional with (vi, •- ,vm) as unitary
basis. Each antiunitary g^O(V) has a generalized Fock implementer U with kernel

Proof. We merely indicate how u may be determined; verification that u
serves as the kernel of a generalized Fock implementer is routine. First, the
displaced Fock vacuum [71 ^ A V has the property that if 1 <k<m then c (vk) Ul

— Ua(g~lVk) 1 = 0 and is therefore in /\mV\ by scaling, suppose Ul — w i • • • wm

where if !<&<m then Wk—gVk. Now, if C= (ci,'",Ct) ^m_ then

—a (wCl) • ' -a (wc) (wi- - -wm)

whence if Z± = T± (z) when z^-V then

T+ (Uvc) T~ M = [a (wct) "'a (we) (wi'-'Wm^Vct'-'Vc,

= (-I)t(^vct"'v71[a(w^-a(w^ (ttf-u>S)]

since the bracketed term has degree m — t. Here, if l<i,j<m then the canonical

anticommutation relations of (4.14) imply that c (vT) a (wf) and c (vj) commute.
Consequently,

7 + (Uvc) r~M = (- 1) mt+'c (vc) a «) • • -c (v£ a «) (wt • • -u&)
= Zi'"Zm

where if !<^<m then

Substitution into the formula preceding (4 . 1) completes the argument. D

Note that in this case too, the indicated implementer is unitary. Note also
that finite dimensionality of V is essential here: an orthogonal transformation is
antiunitary precisely when its complex-linear part is identically zero.

(5.12) Theorem. Each g & 0(V) for which Cg is invertible has a
generalized Fock implementer U whose kernel is the Gaussian
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where S = Cg\ X=Cg1Ag and Y= -AgCg1.

Proof. The indicated kernel u^- AF<£ certainly defines a linear operator
Hom(AF, A V) according to (4.8). What must be established is that if v ^ V
then Ua (v} =ag (v) U and Uc (v) =cg (v) U. Let us show in detail that if also 0, 0
e A V then

When M&3F(V) we shall indicate compression to M by a subscript, so that
=PMS\M and

Choose M to contain, v, Cgv and Agt> in such a way that 0, 0 ^ A M. By
definition, if MMG AMcc corresponds to t/M^End AM as in (4.1) then

and

(a,(t;)t70)(0)
= (cg(v}(p\UM<j))

Accordingly, it is enough to see that the endomorphisms UM(I(V) and a^(v) [/M
of AM coincide. For convenience, suppress the subscripts g and M: (4.3) and
(4.6) along with (3.16) tell us that UMO,(V) has kernel given at (a+, $~) by

Er[uM(a\ rv+/rrwj =r Wexp c
while (c (At;) +a (Cv) ) [/M has kernel given at (a+, ^8~) by

= (a+ (At;) +a+ (YCv) +$~ (SCv) ) exp

where

Reinstating the subscripts, it is now enough to see that SMCgv=v and YMCgv
—AgV. These identities hold because M contains v, Cgv and A#t;: explicitly,

SMCgv=PMSCgv=PMCg1Cgv =v

and

YMCgv =PMYCgv = -PMAgv = ~Agv.
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In summary, we have established that Ua (v) — ag (v) U as required. The
argument for creators is similar and will be omitted; we merely remark that it
involves the identities X=SAg and S* = Cg+YAg. D

In all cases considered thus far, the generalized Fock implementers are
unique up to scalar multiples; equivalently, the displaced Fock vacua are
similarly unique by (5.8). Let g^O(V) have displaced Fock vacuum <f>e AV"
with decomposition

into homogeneous components, where if n>0 then @n
=Pn@ as in the discussion

leading to (2.11); here, if 0^ AF then Pn(/> = 0 when n is large, whence the
sum 2 $n (0) is actually finite. Taking homogeneous components in the

n^O

displaced vacuum condition

v<=V=$ag(v}®=Q

reveals that if v & V then

n = 0: a(Cgv)Qi = Q

n>0: a (Cgv) ®n-ri+c (Agv) 0n-i=0.

Now let Cg be invertible as in (5.12): it follows that if w^V then

n = Q: a (w) 0i = 0

n>Q: a(w}0n+i+c(AgCg
1w)0n-i = Q.

The n = 0 equation forces 0\ to vanish while the n = 1 equation forces the
canonical correspondent of the quadratic <f>2/$oe A Y to be the antiskew map

— A g C g
l f . V—*V\ the remaining equations then force 0 to be a scalar multiple of

exp (<Z>2/(Po) • The situation of (5.10) is a special case, while (5.11) may be
handled similarly.

(5.13) Theorem. Each g^O(V) for which Ker Cg is finite dimensional and
the restriction Cg\ (Ker C^1'—* (Ker CV1)1 is invertible has a generalized Fock
implementer.

Proof. As following (5.4) we may factorize g as g — hk with Ch — Ch~l self-

adjoint and k unitary. The factorization Ch~Cgk~l implies that the restriction Ch'
(Ker C*)1 "~* (Ker C*)1 is invertible, whence the orthogonal transformation
/i| (Ker Ch)L of (Ker Ch)L admits a generalized Fock implementer by (5.12).
The antiunitary transformation h Ker Ch of Ker Ch admits a generalized Fock
implementer by (5.11). It follows that h^O(V) admits a generalized Fock
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implementer UH : /\V—*/\V: as corresponding displaced Fock vacuum, take the
obvious product of the respective vacua for h \ (Ker C*) x and h |Ker C*. The
unitary transformation k of V admits Uk — A k: A V— * A V as generalized Fock
implementer by (5.10). Finally, Uh°Uk is plainly a generalized Fock
implementer for g. tZI

We remark that these slightly elaborate hypotheses on" g ^ 0(V) are
automatically satisfied under the more convenient assumption that its antilinear
part A8 be compact. Of course, the antiunitary nature of Ag: Ker C*— »Ker Cg-1 in
(5 . 3) forces finite dimensionality upon Ker Cg. The restriction Cg: (Ker Cg) 1 — *
(Ker CV1) •"• is certainly injective with dense range, so the open mapping theorem
completes the proof once it is seen that Cg\ (Ker C*) x is bounded below. For a
contradiction, let (vn' n^-Q) be a sequence of unit vectors in (Ker Cg) 1 such
that CgVn-^Q. Passing to a subsequence, we may suppose that (Agvn: n> 0)
converges, say to w ̂  V. The remark after (5 . 2; yields

whence passage to the limit reveals w as a unit vector. On the one hand (5.2)
implies that

whence w^Ker C*-1. On the other hand, (5.1) and (5.2) imply that

Ag • (Ker Cg)
JL=Ag • Ran Cr1 c RanC*= (Ker Cr1)1

whence w^ (Ker (VO1. The unit vector w therefore vanishes, a contradiction.
We are now prepared to consider the converse of (5.9) in general. Suppose

first that h ^ 0 (V) has complex-linear part Ch that is both self-adjoint and

injective, so that Ch has dense range since Ran CH— (Ker C*) L always. Let
V be any complex subspace with the property that V= W©Ran C*. The linear
map Z: V—>Vr defined by the rule that if v,v0^V and w,wQ^W then

) + (wQ\Ahv) — (

is readily verified to be antiskew and to satisfy the condition

Accordingly, the corresponding quadratic £ €= A V' has exponential 0 = exp
satisfying the displaced Fock vacuum condition

Thus the Gaussian 0 is a displaced Fock vacuum for h and so h admits a
generalized Fock implementer by (5.8).
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(5.14) Theorem. Each g ^ 0 (V) for which Ker Cg is finite dimensional
admits a generalized Fock implementer.

Proof. Essentially as for (5 . 13) : having factorized g as the product hk with
Ch self-adjoint and k unitary, the only modification required is to observe that
the orthogonal transformation h \ (Ker C*) 1 of (Ker Ch) x admits a generalized
Fock implementer as in the discussion prior to the statement of the theorem. D

It is interesting to note that we encounter a new phenomenon here. In the
more restricted context of (5 = 13) the generalized Fock implementers of an
orthogonal transformation are unique up to scalar multiples; see the remarks
immediately preceding (5.13). In the present quite general context, such need
no longer be the case.

(5.15) Theorem. Each g&0(V) for which Ker Cg is finite dimensional and
Cg\ (Ker Cg) ^ —* (Ker Cg~

l) ^ is not invertible admits independent generalized Fock
implementers.

Proof. After factorization and reduction, we may suppose that h=g has the
property that Ch is self-adjoint and injective but not surjective. Choose any
complement W to Ran Ch in V and define an antiskew map Z \ V—»V" by
declaring that if v, t>oe V and w,w^W then

) =z(wQ) (w) + (ChVo\Ahv) + (wQ\Ahv) — (w\AhVo)

where z : W— »W" is any antiskew map. It is readily verified that the quadratic £
^ A T / ' corresponding to Z exponentiates to a (Gaussian) displaced Fock
vacuum for h. EH

It is perhaps worth pointing out that this theorem is not vacuous. Let V be
the Hilbert space direct sum

where if n>0 then Vn has a preferred quaternionic structure K so that K{

0(Vn) is antiunitary and K2= —I. Let

where if n>0 then hn = CnI+SnK with cn = cos(6n) and sn
==sm(6n) for some 6n

. Plainly, h^O(V) and Ch— @cnl is self-adjoint. If each cn is nonzero then

of course Ch is injective; if also cn— *0 then Ch is not surjective, for its spectrum
contains 0.

A discussion of unitary Fock implementation in the traditional sense is
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appropriate. As recalled earlier, g^O(V) admits a unitary Fock implementer if
and only if Ag is of Hilbert-Schmidt class. We are content to discuss here only
the harder direction of this equivalence.

(5el6) Theorem. Each g^O(V) for which Ag is Hilbert-Schmidt admits a
unitary Fock implementer.

Proof. As Ag is compact, so (5.13) and the subsequent remark furnish a
generalized Fock implementer unique up to scalar multiples. The proof of
(5 . 13) makes it plain that by factorization and reduction we may suppose Cg to
be invertible. Direct computation shows that the generalized Fock implementer
U of (5.12) has as displaced Fock vacuum the Gaussian 1/1 = exp T] where the
quadratic r] ̂  /\2[V] corresponds canonically to the Hilbert-Schmidt antiskew

map -A8CglGA2\y] so that (3.19) places C71 in A [V]. Normalize U so that
0=Ul is a unit vector: recall from (5.8) that if vi,--,vn^V then

U(vi°"Vn) = Cg(v1)'~Cg(vn)0

and note from (4.15) that U actually maps A V to A [V] . The canonical
anticommutation relations of (5.6) show that if X i , ~ ' , x r , yi,°°°,ys^V then

= (cg (*i) • • 'Cg (xr) 0\cg (yi) • • -cg (ys} 0)
= (0\ag (xr) ' ' °ag (*i) cg (yi) • - °cg (ys) 0)

= (xi'"Xr\yi""ys)

since 0 is a unit displaced Fock vacuum. Thus U: /\V~ *A [V] is an isometry
and so it extends to an isometric Fock implementer U : A [V] — » A [V] . The

(Hilbert space) adjoint [/*: A [7]— >A [v] implements g~l so that UU* is a
scalar operator by irreducibility of the Fock representation as after (5.5). Now
U*0=U*U1 = 1 as U is isometric, whence [7C7*(P=C/1 = (P; thus UU*=I and so
U is unitary. EH

As a matter of definition, the restricted orthogonal group Ores(vO
comprises precisely all g^O(V) for which Ag (equivalently, the commutator
Lg,j] — gJ~Jg} is Hilbert-Schmidt. Thus, unitary Fock implementers constitute
a central circle extension of the restricted orthogonal group. We remark that
placing the operator topology on complex-linear parts and the Hilbert-Schmidt
topology on antilinear parts makes Ores (7) a topological group; its identity
component SOres(VO comprises precisely all g ^ Ores(vO for which Cg has
even-dimensional kernel.

Remarks

We close by offering a variety of remarks, many related to alternative
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approaches and future directions; for convenience they are grouped by section,
though there is some overlap.

Finite dimensions
Our account of the Berezin calculus is based upon the complexification of an

m~ dimensional complex Hilbert space V. This context is natural, because the
complexification Fc admits a canonical quadratic TV from which to fashion a

canonical volume form 0)v ~ (~~ 7v)w/w! e A2wF(c for the calculus. More
generally, we may erect a Berezin calculus on V itself: for example, we may
define a Berezin integral on A V by evaluating the inner product against a unit
vector in l\mV to mimic (1.8). The subsequent development may be left to the
imagination.

Certain natural Berezinian counterparts to results in the standard integral
calculus have been omitted from our account. Thus, a version of the rule for
integration by parts is valid. When v^ Vg, it is convenient to write a(v) — Fa(v}
= —a(v)F where /"is the parity automorphism as usual. With this notation, the
rule asserts that if also 0, 0^ AFc then

lv[(a(v)<f>)(l>]=M<j> (a (v} <{))].

In fact, as a)V^ /\2mV^ so v 0)v—Q and therefore

0- (va)y\ (/» 0) = (a>v\a (v} ( OT0) 0) >

whence rearrangement yields the rule. Also, our change of variables formula
(1.2) applies only to linear transformations; nonlinear transformations have
their own change of variables formulae involving Jacobians.

Incidentally, it is perhaps worth recording the counterpart to (1.8) for the
Berezin expectation: if 0e AFc then

Infinite dimensions
It is worth remarking that if V is infinite dimensional then the special

Gaussian e~rv^ A V& introduced for (2.12) does not lie in A [Vp]. In fact, the
quadratic TV corresponds to the antiskew map Zy : V<£—*V<£ defined by ZV(T+}

= r~ and Zv (r~) =—j+ so that Zy= — /. Now, if e~rv^ A [yc] then from the
remark after (3.19) it follows that Zv is Hilbert-Schmidt which forces V to be
finite dimensional. We can be a little more precise than this: (3.4) implies that
if M^3^(V) has complex dimension m then \\ e~7M\\ = </2m .

Our account of the Berezin calculus in infinite dimensions has not
mentioned the notions of Berezin partial integral and Berezin conditional
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expectation: on the one hand, we have not required the development of such
notions; on the other hand, such notions are a little complicated in their details.
To indicate what is involved, let V=X@Y be an orthogonal decomposition into
closed complex subspaces. Notice that an arbitrary finite dimensional subspace
of V need not decompose as the direct sum of subspaces in X and Y.
Accordingly, it is natural to replace 3F (V) by its subset 2F(X, Y) comprising all
L = M@N with M e 3F(x) and N e ^(y). In special cases, it might be
appropriate to consider an alternative replacement: for example, we may replace
^(Vc) by its subset comprising all MC as M runs through 3F (V). With this
understanding, several versions of the Berezin conditional expectation may be
considered: we may consider the space comprising those CP^ A F<£ for which the
net (!M[^LC]: L = M@N^^(X1 Y}) converges in A 7^ relative to its weak
topology; more specially, we may consider the space comprising those 0 £=
AVjj for which the same net converges in A [Vc]. For example, if %€=8(X) and
0=^r] then the indicated net converges to ffi* [$] r? in A Yj when rj ̂  A YJ and
to IE* [£] rj in A [Y€] when 7? e A [7C]. Moreover, if f e /\X'€ and 7? e A y£ are
such that the indicated net converges in either sense, then % & S(X) and
convergence is to !£*[£] 77.

Gaussian integrals
The basic Gaussian expectation (3.4) was calculated by diagonalization.

Instead, it may be calculated by the application of (1.13) and (1.3) to (1.2).
We omit the details of the argument, mentioning only the following points: when
W^A2V we consider the functorial extension to A FCC of T^End FC defined by
T (r+) = r+ - T~W and T (7") = 7" - j+W; from Ta=aT there follows the
equality Det T=Det(/~- W2) between complex determinants.

When V is finite dimensional, it is possible to consider still more general
Gaussian expectations than those considered here. For example, we may

consider ffiy [exp £] where C ^ - A 2 ( V < c ) is arbitrary; equivalently, we may
consider

)]

when, X, Y^A2V are such that /— YX^End V is a singular operator. Further
cases. For another example, we may consider

when, X, Y^A2V are such that /— F^^End V is a singular operator. Further
examples may be derived by repeated differentiation under the expectation as
for (3.16).

We remark that formulae of a different nature may be derived from those
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of Gaussian type. For instance, if £, r] ^ A2V correspond to X, Y ^ A2V
respectively then

Explicitly, if s, *e IE then

from which the asserted formula follows upon differentiation by s and t at zero.
Alternatively, the asserted formula may be established by diagonalization and
analytic continuation.

Integral kernels
The isomorphism in (4.1) is actually isometric when End A V has the

Hilbert-Schmidt norm. In fact, if [/^EndAF has kernel u^ /\V€ and if (vc ' C
^m) is a standard unitary basis for A V then the formula displayed prior to
(4.1) yields

A,B

so that

A,B

Certain natural questions present themselves in connexion with the kernel
theorem (4.8). Thus, we may ask how various properties of an operator U^
Hom(AF, A V) are reflected in its kernel u^- Al/J. One result in this direction
is (4.10): if M^2P(V) then U maps to AM and vanishes on (AM)1 precisely
when u^ AMC. It is not difficult to establish that U maps to A \V\ and extends
to a Hilbert-Schmidt operator A [V] — * A [V\ precisely when u ^ A [V<c] :
indeed, if M^&(V) then UM = PMU\f\M and UM^PM^U] satisfy 11̂ 11̂  = 1̂ 11
as noted above; now pass to the supremum as M runs over 2F (V) . In a similar
vein, (4.4) suggests a relationship between trace class operators on A [V] and
kernels in 8 (V) .

The kernel theorem admits a reformulation in terms of sesquilinear forms
on AF rather than linear operators /\V—*/\V. Thus, a canonical isomorphism
between Hom(AF, AF') and the space of sesquilinear forms on AF is set up
by the rule U+->u according to which

In these terms, (4.8) asserts the existence of a canonical isomorphism between



186 PAUL L. ROBINSON

A FC and the space of sesquilinear forms on A V in which u*-+u when

0, 0eAV=»w(0 f 0)=w(0+0-)

where the application of 7* is indicated by a superscript ± for convenience.
For example, if g^O(V) then its generalized Fock implementers U : AF — *

A V correspond to sesquilinear forms u on A V having the property that if v e

Fand if 0, 0^ A F then

£(0, TT (f ) 0) =iT(7r (gv) 0, 0) .

Spin transformations
The triple A V c A [F] c A F' actually carries another canonical Fock

representation TL. Let f ^ F: the (right) creator ctt>): A F— *AF: 0'-»0t> is right
multiplication by t> ; the (right) annihilator a(v) ^ End A F is determined by
a(v) 1 = 0 together with the requirements that ifw^V then a (v)t0 = (v\w) and if
0, ^e A F then

a(v) (00) - 0 (a(v) 0) + (a (v) 0) T0.

In fact, it is readily verified that £(v) —c(v)F and a(v) =Fa(v) = —a(v)F. As
for the original creators and annihilators, these right versions extend not only
to A [F] but also to A V' and satisfy the canonical anticommutation relations: if
x, y e F then

frC*), F(y)}=0.

It may be checked that if x, y €= F then cU) commutes with c'(y) and a W
commutes with a(y) while

In terms of these operators, the alternative Fock representation TT of F is
defined by the prescription

Our approach to generalized Fock implementers was essentially just to
exhibit them. It is perhaps more instructive to derive equations for their
corresponding kernels; such may be formulated in terms of creators and
annihilators on left and right. In fact, let g €= 0 (V) have generalized Fock
implementer U^ Horn (A F, A F') with kernel u ̂  A V£. It transpires that if v ^
F then Ua (v) =ag (v) U corresponds to

a(r~v}u=a (r+Agv) u+c (?+Cgv}u
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while Uc (v) =cg (v) U corresponds to

These may be combined into the single condition

~v) u = TT (j+gv) u

which expresses the kernel u corresponding to the generalized Fock imple-
menter U for g as a pure spinor.

For example, suppose we seek a generalized Fock implementer for g with
kernel in the standard Gaussian form

In this case, the a equations force

SCg=I, YCg+Ag = 0

while the "c equations force

SAg=X, YAg+Cg=S*.

In particular, if Cg is invertible then $ = C'g
l, X=Cg1Ag and Y=— AgCg1 as in

(5.12).
It is of interest to note that if V is infinite dimensional then the elements of

0(V) admitting generalized Fock implementer s do not constitute a subgroup.
That this might perhaps be the case is suggested by the general lack of a
composition in Hom(AF, A V'}\ that it is actually so may be seen by the follow-
ing simple example. Let K be a quaternionic structure on V and note by direct
calculation that the map

is a group homomorphism. If 26 is not an odd multiple of TC then go admits
generalized Fock implementers: indeed, Cge = (cos0)/ is invertible and (5.12) is
applicable. If 26 is an odd multiple of it then Cge = 0 so that Ker Cge= V and
(5.9) precludes the existence of generalized Fock implementers.

Coherent states
Thus far, coherent states have been conspicuous by their absence; here we

partially repair this omission in finite dimensions.
To begin, on A (Va @Vr@ VB) we define a A (Va © VB) -valued inner

product < • ! • > by the rule that if <P, W^ A (Va@Vr@V^ then
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Straightforward arguments establish that if $, W^ A (Va@V7@V0) then

(®\¥)*=(W\®)

and that if also @e A (Va@V0) then

Note in particular that (1 . 7) yields

Now, we claim that the vectors er*a"e A (F*0Fr) and er+r e A (Fr0F0)
play the r6le of coherent states.

First of all, from (4.5) it follows that if 0e AF then

(er+a~\ r+0> = Ir [ea +r~T +0] = a + (0) .

The vector er*a is an "eigenvector" for annihilators, but with coefficients in the
algebra A (Fa0Fr): the remark after (3.15) shows that if x, y^V then

A resolution of the identity for coherent states follows from (1.7): if 0, 0e AF
then

A coherent state formula for the integral kernel u ^ A FC of a complex-linear
map U: AF— » AF may be derived as follows. Let T+(U) be the induced

endomorphism of A (Va@V7@V&) acting canonically on A (Fj"). Let ( f i , o o o , fm)
be a unitary basis for F and (t> c: C ̂  w) the corresponding unitary basis for

AF. The formula displayed prior to (4.1) tells us that u (a+, 0~) e A (Vj ©

Fj) is given by
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or

In particular, we remark that the overlap between the coherent states er a

and er a is given by

Further information on fermionic coherent states, especially as they relate
to fermionic path integrals, may be found in [8] .

Number operator
Along with creators and annihilators, the number operator in fermionic

Fock space is of fundamental importance. Define a linear operator M : A V—* A V
by the rule

so that M multiplies each homogeneous summand by its degree. Extend M to the
antidual A V by antiduality, so that if <pe A F' and 0e A V then

The number operator in fermionic Fock space A [V] is the restriction of this M
to the natural domain

m[N]={®^ A [V]:M0& A

It is readily verified that the number operator N in A [V] is selfadjoint and has
( / \ n [ V ] : w^Kf) as spectral subspaces.

In order to express the number operator in terms of creators and
annihilators, we proceed as follows. LetM^^(F) have unitary basis (vi,*",Vn)
and independently define NM (in EndAF or EndAF' and as a positive bounded
linear operator on A [V] ) by

k=l

so that if 0^ A [V] then

Thus, if 0^ A [V] then the real net «d>|^M0> : M^3?(V)} is increasing;
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without much difficulty, it may be shown that if <p€=ID)[.y] then

M M

As an application, let us calculate the expected value of the number
operator in the state @=U1 corresponding to the Fock vacuum displaced by a
unitary Fock implementer U for the restricted orthogonal transformation g ^
Ores(V} . Note first that if v ^ V is a unit vector then as a (v) U— Uag-i (v) and
c (v) U= Ucg-i (v) so

(0\c (v}a(v) 0) = (Ul\Ucg-i (v)a,-i (v) 1)

Summation as v runs over a unitary basis for M^2f(V) now yields

where the subscript M indicates compression to M. Lastly, passage to the
supremum as M runs over 3F (V) establishes the formula

Of course, this result lends further meaning to the Hilbert-Schmidt
condition on Ag for g €= 0Tes(V): the expected number of particles in the
corresponding displaced vacuum state is finite.

Spin cocycle
As was discussed earlier, the Fock representation of V on A [V] engenders

a central circle extension of the restricted orthogonal group Ores(V).
Equivalently, it engenders a projective unitary representation of Ores(^): if g, h
eOres(F) then

U(g)U(h)=A(g, h)U(gh)

where U associates to each restricted orthogonal transformation a unitary Fock
implementer and where A: 0Tes(V) X 0Tes(V)—^lf is the corresponding cocycle.
By defining U appropriately it is possible to make the spin cocycle A quite
explicit, at least over a substantial portion of Ores(V) .

To be precise, let ^res(l/) denote the set comprising all g ^ Ores(Vr) for
which Cg is invertible. Recall that Ores(^) has the topology determined by
operator norm on complex-linear parts and Hilbert-Schmidt norm on antilinear
parts; its identity component SOres(V) comprises those g^Ores(V) for which
ker Cg is even-dimensional. Of course, 0res(V} is an open subset of 0Tes(V); in



THE BEREZIN CALCULUS 191

fact, 0res(V} is dense in SOKS(V) . To see this last point, note by (5.4) that we
may assume Cg self -adjoint, in which case g, Cg and Ag all preserve both Ker Cg

and its orthocomplement, so we may restrict attention to Ker Cg where Ag is
antiunitary by (5.3). Accordingly, let W=Ker C* be of even complex dimension
and let A ^ 0 (W) be antiunitary: if K ^ 0(W) is a quaternionic (that is,
antilinear complex) structure then

defines a continuous curve in SO(W) such that Cgt is invertible when 0<£<1
and gi=A.

Now, if g e ^reS(F) then the proof of (5.16) shows that its Fock
implementers send the Fock vacuum 1 to scalar multiples of the Gaussian
exp(Q) where £* e A2[F] corresponds to Zg = — AgCg1 e A2 [V]. Choose the
implementer U8: AF~+ /\V for which Ugl = exp (Q so that (I \Ugl) = 1

and write Ug : A [V] — ̂ A [V] for its continuous extension. Of course, ||C/^l||2 —

Deti (1—Zg) so that Deti (I— Z2g)~lUg is unitary.
With this normalization, the spin cocycle may be computed over 0res (V) as

follows: if g, h^0ies(V) then

UgUh = 5(g,h}Ugh

where

Indeed, routine calculations show that UgUh satisfies

- UgUhd (v) =dgh (v) UgUh

so that UgUh — d(g, h) Ugh where d(g, h) ^(C is given by

= (l\UgUhl)

= (Ug-il\Uhl)
= <exp(CrO|exp(C*)>

= Deti(/-Z*Zg-i).

Pure spinors
In the spin representation of a finite-dimensional complex vector space with

a nonsingular symmetric bilinear form, a special place is occupied by the
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spinors annihilated by a maximal isotropic subspace, such spinors being called
pure for the subspace. Here we offer a tantalisingly partial account of the
infinite- dimensional version: thus, when FCF<o is maximally isotropic relative
to the complex-bilinear extension of ( e | ° ) to FC we shall consider the space

First, let FC: FC be a maximal isotropic subspace: if x, y^F then (x\y) = 0
and if z^ FC satisfies (z\F) =0 then z&F. Asv^V implies that (iv iv) = —\\v |2

^O. Thus

for some real subspace W^-V and some real linear L: W—*V. As FC FCC is a
complex subspace, so L leaves W invariant and satisfies LL=~L The isotropic
nature of F implies that if x, y^ W then (Lx\Ly) = (x\ y) and (Lx\y) + (x\Ly) = 0.
Maximality of F forces W to be closed. Thus, We: V is a closed real subspace
on which L^O(W) is a complex structure. Finally, if dim WL>1 then we may
enlarge F by adding to (W, L) a complex plane, so dim WL<\.

In summary, maximally isotropic subspaces of FC come in two varieties:
those of the (Lagrangian) form FK~ (v +iKv: v ^ F} for K^O(V) a complex
structure; those of the (non~Lagrangian) form Fw,L=iw+iLw: w^W} for W^-V
a closed real hyperplane and L^O(W) a complex structure.

Pure spinors for the Lagrangian F^c^F^ are readily determined. In fact, we

may choose g^O(V) so that K = gjg~1 and then F#= {gv+igjv: v^V} whence
(5.8), (5.9) and (5.14) together with the formula

igjv ) —ag (v)

establish that (A F') F is nonzero if and only if Ker Cg is finite-dimensional if
and only if Ker(j + K) is finite-dimensional. Moreover, if (say) J + K is an
isomorphism then the discussion after (5.12) shows that (AF')F is a complex
line.

Pure spinors for the non~Lagrangian maximal isotropic subspace FUM^FC
are somewhat mysterious. Here we offer only a couple of remarks. On the one
hand, (AF')F is invariant under both the parity operator jT: AF'— »AF' and
the operator ir(u) when u& WL is a unit vector; from {F, it(u)}=Q, F2 = I and
ft(u)2 = I it follows in particular that (AF')F cannot be odd-dimensional. On
the other hand, as W has real codimension one so the complex structure L ^
0(W) can have little to do with the original complex structure/ on F. Further
investigation of these pure spinors is postponed to a future publication.

Spine transformations
For some purposes, considering only (real) orthogonal transformations of V
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itself is too restrictive: (complex) orthogonal transformations of V^ should also
be considered. [4] addresses the implementation in fermionic Fock space A [V]
of those transformations that lie in a certain subgroup of O (V&) . Here we offer
some remarks along similar lines for more general transformations in the
generalized sense.

It is convenient to express a complex orthogonal transformation
relative to the decomposition V^=V+®V~ in block form

G=

Here, if v^V then

where CG+, GG~ are complex-linear and AG~, AG+ are antilinear. For example, if

G=#c for g^O (V) then C%+ = CG~ = Cg and A%~=AG+=Ag.
Now, when G^O(V^} we ask for a linear operator U: Ay— »A V such that

y-
' Ua(v)=aG(v)U

or equivalently

'Uc(v)=cG(v)U

where

r(v) — O,(CG V)+C(AG v).

Again, such (nonzero) generalized Fock implementers U correspond to
(nonzero) displaced Fock vacua @^ Ay' satisfying

according to Ul = @ and the rule that if vi,-~,vn^V then

U (vr • mvn) —CG (v\) ' ' 'CG (vn) $.

In the one direction, suppose that G ^ 0 (V^) has a generalized Fock
implementer U : Ay-^Ay' and hence a displaced Fock vacuum 0=U1^ Ay'.

If v ^Ker CG~ then the displaced vacuum condition reads C(AG~V) 0 = 0 whence
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the remark prior to (5.9) implies that A£~(Ker CG~) is finite-dimensional;
orthogonality of G on V& entails (among other things) that

(r*++\ */^ — I ( A -+\ * A +- — rvCG ; CG i V/IG ) AG —1

whence AG~ is injective on Ker CG~. Thus: if G^O(V^) admits a generalized
Fock implementer then Ker CG~ is finite-dimensional.

In the opposite direction, we are content to state here a simple case: each G
eO(Vic) for which Ker CG~ is even-dimensional and Ran CG" is closed admits
a generalized Fock implementer; a proof of this proceeds by first reducing to the

case in which CG~ is invertible and then arguing along lines similar to those for
(5.12). A fuller account of these and related matters will be presented in due
course.
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