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Polynomial Weyl Representations

By

Paul L. ROBINSON*

Abstract

For the canonical commutation relations in infinite dimensions, we offer an explicit direct

construction of Weyl representations generated from the Fock representation by polynomial

transformations of arbitrary degree, solving a problem posed by Proksch, Reents and Summers. Our

solution employs new approaches to Hilbert-Schmidt polynomials and their Wick ordering.

Introduction

Representations of the canonical commutation relations (or CCR) provide a
standard mathematical framework in which to discuss bosonic systems. There
are two types of such representations associated to a real vector space V
equipped with a symplectic form Q. A Weyl representation of the CCR over (V,
Q) associates to each v^V a unitary (Weyl) operator W(v) on some complex
Hilbert space El satisfying the Weyl relations

d W(v2] =

and having the property that each one-parameter unitary group (W(tv}\
is strongly continuous. A Heisenberg representation of the CCR over (Vt Q}
associates to each v ^ V a self-adjoint (field) operator 0(v) in some complex
Hilbert space El satisfying the Heisenberg relations

together with conditions that cope with the unboundedness of the field
operators. Passage from Weyl form to Heisenberg from assigns to (W(tJWv): t
^ M) its self-adjoint infinitesimal generator 0(v) so that W(<fJT v) =
exp[t(P(t;)]; passage from Heisenberg form to Weyl form is via exponentiation
when possible. See [2] .
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The case most commonly considered is that in which V is the real vector
space underlying a complex Hilbert space and Q is the imaginary part of the
complex inner product In this case, there are several thoroughly studied classes
of representations of the CCR over (V, Q] . Most familiar of these is the Fock
representation, which comes in a number of equivalent versions and is suitable
for describing a free boson field. Less familiar but also well studied are the
coherent representations and the quasifree representations; both classes arise
when Fock representations are subjected to certain standard operations.
Recently, a new class of representations of the CCR over (V, JO) was introduced
and studied by Proksch, Reents and Summers [7]. These are called quadratic
representations of the CCR: as originally constructed, they arise when Fock field
operators are subjected to quadratic transformations; the resulting Heisenberg
representations actually exponentiate to yield Weyl representations. In [8] we
presented a direct construction of these quadratic Weyl representations,
entirely circumventing the Heisenberg representations and so obviating the need
to deal with unbounded operators.

Our primary aim in this paper is to present a uniform direct construction
of Weyl representations generated from the Fock representation by means of
polynomials of arbitrary degree; this solves a problem raised by Proksch,
Reents and Summers. We have two secondary aims related to the technical
machinery involved in our construction: the one is to offer a new approach to
Hilbert-Schmidt polynomials; the other is to offer a new approach to the
Wick-ordering of such polynomials. Our primary aim is likely to be of greatest
interest to quantum field theory; in particular, the nonlinearity inherent to
polynomial Weyl representations suggests that they might play a role in the
construction of interacting fields. Our secondary aims are likely to be of interest
more generally, for example in functional analysis and stochastic analysis.

The following brief outline of our construction may be helpful as
orientation. Considering first the finite-dimensional situation, let W™ have the

standard inner product and let M2w have the symplectic form given by

where xi, x2, yi, y2
 e Mm. The Schrodinger representation is the Weyl

representation W0 of M2m on the space L2 (ffim) of all complex functions on W71

squareintegrable relative to Lebesgue measure, determined by the rule that if/
e 3L2 (W1) and x, yt z^W1 then

W =zxp[(xl*~y}]f(z-y).

Let A: W1— *ff ibe a polynomial (or more generally measurable) function: define

a unitary operator UA on IL2 (ffim) by
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for/eL2(Em) and *effiw
; write Au(z) =A(u+z) ~A(z) for u and * in Em. The

rule

plainly defines a Weyl representation, equivalently given by the rule

For passage to infinite dimensions, the Schrodinger representation is
replaced by the version of the Fock representation called the renormalized
Schrodinger representation on Q-space, in which the Lebesgue measure is
replaced by a consistent family of Gaussian probability measures on
finite-dimensional subspaces. In order for the polynomial function A to define
(as a strong limit) a unitary operator UA on Q-space, it should be of
Hilbert-Schmidt class (as a growth condition) and Wick-ordered (relative to
the Gaussian measures) . Notice that if A is a degree d + 1 homogeneous
polynomial then Au is a polynomial of degree at most d for each vector u\
consequently, requiring that A be Hilbert-Schmidt is more stringent than
requiring that each Au be Hilbert-Schmidt. Accordingly, we assume of the
polynomial A that each ylM is Hilbert-Schmidt and define a polynomial Weyl
representation WA by the infinite-dimensional analogue of (*).

In Section I we offer an essentially self-contained account of Hilbert-
Schmidt polynomials. Our account differs from conventional ones: for example,
Hilbert-Schmidt polynomials and their norms are deliberately defined without
reference to orthonormal bases, thereby avoiding the need to check
independence of choices. The approach may be tailored to suit Hilbert-Schmidt
multilinear forms, Hilbert-Schmidt operators and so on. A more conventional
account (incorporating boundedness as a hypothesis) may be found in [6] . In
Section H we offer a largely self-contained account of Wick-ordering for
Hilbert-Schmidt polynomials. Our account here is also out of the ordinary: for
example, both the Wick transform and its inverse are defined without reference
to orthonormal bases. For accounts of Q-space and the renormalized
Schrodinger representation, we refer to [2] [5] [9] [10] [12]. In Section HI we
construct the polynomial Weyl representations of our title, illustrating the
construction by examples in which the polynomial has low degree. If the
polynomial A is (d + 1) -homogeneous, then when d <2 the representation WA
arises from the renormalized Schrodinger representation by an inhomogeneous
linear canonical transformation while when d = 2 the representation WA is
quadratic as in [7] and [8] ; when d > 2 the representation WA is new. Finally,
we discuss briefly certain issues stemming from our construction.
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The author is grateful to Martin Florig and Steve Summers for informative
conversations and would like to point out that Martin Florig has an independent
construction of polynomial representations of the canonical commutation
relations based on the infinitesimal approach developed by Proksch, Reents and
Summers.

I. Hilbert-Schmidt Polynomials

Let L be a real Hilbert space having (• e) as its inner product. By a
d -homogeneous (real) polynomial y l : L ~ ^ M we mean the composite of a
symmetric multilinear d-form A:L X ••• XL — »]£ with the diagonal map from L
into the product of d copies, so

The principle of polarization serves to recover A from A: explicitly, if 2i,'",2</e

L and summation extends over all 2d respective sign choices then

2dd\A(zl,-,zd)=^ ±-±A(±zl-±zd).
±»-±

Let 3F(L) denote the set comprising all finite-dimensional subspaces of L
and note that this set is naturally directed by inclusion. To each M^3F(L) we
associate the (orthogonal) projection PM :L—*L of L onto M along the
orthocomplement M1, When M^^(L) and when A :L— *ffi is a d -homogeneous
polynomial, the compression AM = A°PM is again a d -homogeneous polynomial.
We say that the ^-homogeneous polynomial A :L— »IE is tame when A = AM for
some M^3F(L) on which A is said to be based. Denote by PdL the vector space

comprising all tame d -homogeneous polynomials on L and by PmL its subspace
comprising all those elements that are based on M&3F(L).

To each u ^ L we associate the linear functional </)u : L— » M defined by the
rule that if z^L then <j)u (z) — (u\z) . Of course, if zi,-°£d^L then the product <l>Zl

'"</>zd lies in PdL: in fact, PdL is the linear span of all such products; indeed, PdL

is the linear span of (<f>d
z: z^L} by polarization.

Theorem 1.1. PdL carries a canonical inner product (9 °) uniquely
determined by the rule that if xi,"°jCd,yi,°°'yd^L then

where it runs over the group Sd comprising all permutations of {l,°~,d}. [U

In particular, note that the induced norm || ° || on PdL has the property that if
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then

Let Nm'd denote the set of all ^-tuples D= (di,"-,d«) ^Hw having total
degree |D|=dH ----- \~dm equal to d and write Dl^dil-'dml.

Theorem 1.2. If M^2F(V) has (ui,"m,um) as an arthonormal basis then

Pd
ML has (<X>D: D^m'd) as an orthanormal basis, where if D^Nm'd then

Proof. That the vectors ($D: DeNm-d) span P&L is at once clear; that they
are orthonormal follows upon direct calculation from the formula for the inner
product on PdL. D

With this notation, if A^-Pf^L then Fourier decomposition yields

D

and the Parseval equality yields

Now, let NdM^SFd) and note that Pd
NL^Pd

ML since PNPM=P^ Extend an
orthonormal basis (wi, '",w») for N to an orthonormal basis (wi ,"° ,Wm) for M.

Embed KP'd in Nm'd by appending zeros, so thatW'd is identified with

- • - — r = o}. With this understanding, if D^Nm'd then

0DOPN=
10

Accordingly, orthogonal projection of P&L onto P^rL is precisely the compression
map

Theorem 1.3. Let N c M e ^(l). // A : L - ^ I R w a d-homogeneous
polynomial then

\\AM-AN\\2+\\ANf=\\AMf.

Proof. Merely note that the orthogonal projection of AM in P&L is
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AN and apply the Pythagorean rule. D

Introducing the notion central to this , section, we declare the
d -homogeneous polynomial A:L—*1& to be Hilbert-Schmidt when the net (AM:

in PdL has bounded norms and define

M

Theorem 1.3 tells us that the net (\\AM\\ : M€=3F(L)) is increasing, whence also

M

We remark that our notation is consistent, for let N&2F(L) and let A=AN
be tame: if also M^^(l) then Theorem 1.3 implies that \\AM\\ <\\AM+N\\ = \\AN\\ so
that sup(||ylM |: M e 2F(L)} = \\AN\\. Denote by JPdL the set comprising all
Hilbert-Schmidt d -homogeneous polynomials on L. It is at once clear that FrfL is
a vector space on which || ° || is a norm.

In fact, the norm || • || on !PdL is defined by an inner product: if A', A"<^lPdL
and if M^$(L) then

|| (A'+A"}M\\2+\\ (Af-A"}M

whence passage to the limit as M— *L yields

Thus || • satisfies the parallelogram law and so arises from an inner product
given by

A', A"eTP<L=*(A'\A*) =(lAf+Affl2-\\A'-A"\\2}.

As remarked above, the inner product space PdL is included isometrically in the
inner product space IP*L.

As is almost obvious by construction, we claim that PdL is dense in JPdL. To
see this and more, note first that if A ^ IPdL and N ^ 2F(L) then multiple
applications of Theorem 1.3 imply

= \\A\\2-\\ANf

whence Theorem 1 . 3 extends to the assertion that
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Theorem 1.4. If A^JPdL then the net (AM: M^&(l}) converges to A in
WdL.

Proof. Given £>0 choose MB<^& (L) so that |i/lMJ2>W|E-£2. Now, if M£dM
e^(L) then lA/J^llAa/ll by Theorem 1.3 and therefore l/l-^Ke by the
extended version just established. [H

It is convenient that the functional values of polynomials in IP*L may be
recovered by taking inner products.

Theorem 1.5. // A^PdL and z^L then

Proof. If A ^ PdL then the asserted equality holds by linearity and the
formula for the inner product on PdL. If A^IP*L and if M^3F(L) contains z
then

whence an application of Theorem 1.4 shows that passage to the limit as M—+L
yields the asserted equality in general. D

The principle of polarization extends this to the result that if A^]PdL and
then

From this, it follows at once that the symmetric rf-form A is bounded: in fact,

Not only does JPdL contain PdL as a dense subspace: I?*L is actually the
completion of PdL.

Theorem 1.6. JPdL is a Hilbert space.

Proof. Let (A"", n ^ N) be a Cauchy sequence in 3?^L. The inequality
established after Theorem 1.5 shows that if zi, ••• ,Zd e I then the sequence
(A?(zi,~',Zd): n^N) is Cauchy, so we may put

and thereby define a symmetric <2-form A on L. Let £>0 ami choose ne^N so
that if p, q>nE then H^-yl^l^s. If M&2F(L) then the discussion of Theorem
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1.2 enables us to infer from

4if(^°^)=^(p^^^

that

41,= £ (0>m,) ̂ -^ (®D\AM) ®D=AM
D D

whence ifn^n then

3

From this, it follows both that A^JPdL and that An-»A in JPdL. D

We may exhibit an orthonormal basis for the Hilbert space WdL as follows.
For si. any set, let W*4 denote the set comprising all maps D : s$—»N with total
degree

and write

where the sum and product are finite of course.

Theorem 1.7. If L has (ua: a^dl] as an orthonormal basis then !PdL has
(0D: DeN*'*) as an orthonormal basis, where if D^W*'d then

JD\0D =

Proof. Orthonormality of the displayed vectors in PdL follows by direct
calculation as for Theorem 1.2. To verify completeness of the system, let A^
WdL and assume that if D^N^'d then (0D\A) = 0. From this assumption, the
equality after Theorem 1.5 implies that A(zi,"\Zd) =0 when zi,'",Zd lie in the
linear span of (ua: a ^ s$} and then the inequality after Theorem 1.5 implies
that A(zi,"\Zd) ^O when zi,-°\Zd^L are arbitrary. D

In particular, each A^]PdL has a generalized Fourier decomposition
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for which the Parseval equality reads

Incidentally, we are now able to show that our notion of Hilbert-Schmidt
polynomial agrees with the standard one. Too each A = (ai, •••,ad) ^ sdd we
associate DA^N^4 by requiring that each a^d appears DA (a) times in the list
(ai,"', fld). The resulting map 4d-+N^4 is surjective, the preimage of DGN**
having dl/Dl as its cardinality.

Theorem 1.8. If A^WdL and if (ua: a^sd] is an orthonormal basis for L
then

A

Proof. lfA = (aif"-,ad) ^-dd then Theorem 1.5 yields

whence it follows that

A A D DA=D D

by summation over the fibres of sdd-^N^'d as an intermediate step. D

Thus far, we have considered only polynomials possessing a fixed
homogeneous degree. More generally, by a polynomial on L we mean a finite sum
of homogeneous polynomials on L. When A : L — * IB. is a polynomial we shall
denote by dA its degree d homogeneous component, whence A decomposes as the
finite sum

If A : L— *3Ris a polynomial and if M^2F(L) then the compression AM— A®PM is
again a polynomial, said to be tame and based on M. The space PL of tame polynomials
on L is thus the algebraic direct sum

PL=®PdL
d>Q

which we equip with the inner product that renders the decomposition
orthogonal and restricts to the original on each summand. We say that the
polynomial A:L-»1R is Hilbert-Schmidt when the net (AM\ M^SF(L)) in PL
has bounded norms and write
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The space UPL of all Hilbert-Schmidt polynomials on L is the algebraic direct
sum

IPL=©J!*I
d^O

which we provide with the inner product that renders the decomposition
orthogonal and restricts to the original on each summand.

We close this section by discussing briefly the effect of translations on
polynomials. Thus, to each u ^ L and each polynomial yt : L — » ffi we associate
polynomials TUA and Au on L defined by

and

AU=TUA-A.

We remark that if A is (d + l) -homogeneous then

where if 0 </ <d then JAU is the /-'homogeneous polynomial given by the rule
that if zi,-~, Zj^-L then

with d + l—j terms u on the right. We also remark that in this case, if dAu is

Hilbert-Schmidt then JAU is Hilbert-Schmidt whenever

Theorem 1.9. Let A be a (d + 1) -homogeneous polynomial on L with d >0. //
JPL whenever u^L then A is bounded.

Proof. We claim that the linear map

is continuous, by application of the closed graph theorem. Thus, let (un: n ^N)

be a null sequence in L and let dAUn— >A in JPdL. If zi,--°,zd^L then the equality
after Theorem 1 . 5 yields



POLYNOMIAL WEYL REPRESENTATIONS 205

whence the inequality after Theorem 1 . 5 yields

and passage to the limit as n— »°° yields

d\A(z,,-,zi)=(<pZl-

Now, let K>Q be such that ||<iylM|l<K'||M|| whenever u^L. If z0, zi,—, za^L then

so that A is bounded as claimed. CH

By way of definition, we shall say that the polynomial A : L — * ffi is
differentially Hilbert-Schmidt when the difference Au — TUA — A is Hilbert-
Schmidt for every u^L.

II. Wick-Ordered Polynomials

In principle, the Wick ordering of Hilbert-Schmidt polynomials amounts to
their orthogonalization relative to a Gaussian distribution on Hilbert space. To
explain this in detail, we begin by recalling basic facts pertaining to Hermite
polynomials and presenting a very brief account of Q-space.

Fix a positive number a and let {J. denote the Gaussian probability measure
on ffi. having density function

relative to normalized Lebesgue measure, so that /n is the law of a normal
random variable having variance a2 and mean zero. The Hermite polynomials
.£P(s) are the monic polynomials that arise when the powers sn are
orthogonalized relative to the weight p.. Explicitly, if n e N then the Hermite
polynomial If1 : ffi — »ffi has value at s^ ffi given by

H*(s) = (-V2)ne^^{e~^}\t=s.

For our purposes, the following equivalent definition and fundamental prop-
erties will be particularly important.

Theorem 2.1. // n e N and s e M then

and
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Jl&

while if p, q^-l^are distinct then

f HpHqdfj,=Q.

D

We should mention that the literature contains different conventions
regarding Hermite polynomials. Thus, Hermite polynomials are sometimes
normalized so as to have unit norm rather than to be monic. Also, the variance
a2 of the Gaussian is usually assigned a specific value: typically, either <72 = 1 or

To construct Q-space, we proceed as follows. Each finite-dimensional
subspace M&3F(L) of L is equipped with the Gaussian probability measure {i
having density function

relative to normalized Lebesgue measure. Let H(M) stand for the set comprising
all functions / : M — » (C based on M in the sense that / = fM ° PM for some
continuous function fM : M — *(C square-integrable relative to [JL. Elements of the
complex vector space

will be called tame functions on L. The Gaussian probability measures on the
elements of 2F(L) being consistent, an inner product (° |°) on H(L) is well
defined by the rule that if/ and g lie in H(L) then

= f fgdfi
vJ M

for any M&2F(L) on which both / and g are based. The resulting complex
Hilbert space completion of H(L) is precisely Q-space M(L) over L.

Plainly, if M&3F(L) then H(M) contains each function f=/M°PM for which
/M'.M—^C is a polynomial. Accordingly, the vector space PL of all tame
polynomials on L is contained in H(L) and thereby contained in M(L).

Note that each real polynomial A:L—»ffi naturally extends to a complex
polynomial A\LF—* C on the complexification L® of L: in case A is
d-homogeneous, the associated complex symmetric d-form A : L€x ••• XLC —^(C is
determined by complex multilinearity.

Now, if A ^ PL is a tame polynomial on L then we define JT(yl): L~*(C by
the rule that if z^L then
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so that if integration extends over M^-SF(L) on which A is based then

r(A)(z}= f A(z+iw)dn(w).
*J M

Theorem 2.2. // n e N and if u^L is a unit vector then

which has norm in ]SL(L) given by

Proof. Direct calculation. If M^2F(L) is the real line spanned by u and if z
then

)U)= f <!>u(
J> M

= f (J ffi

The expression for the norm of /X02) in M(l) conies straight from Theorem
2.1. n

We remark that as H** is a degree n monic real polynomial, so the difference

r(<pZ) — (pu is a (real) polynomial based on the line spanned by u and has
degree strictly less than n.

Theorem 2.3. If A^Pd
ML for some M^&(L) then F(A) &PL is based on M

and F(A) —A has degree strictly less than d.

Proof. By linearity, it is enough to let M have (HI, •" ,um) as orthonormal

basis, to let D= (di,~'4m) &Nm'd and to consider A=®D where

For this, Theorem 2.2 and orthogonality of the lines spanned by Ui,--,u
together imply that

Expansion on the remark after Theorem 2 . 2 concludes the proof. D
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Further to the proof, notice that Theorem 2.2 and orthogonality of the lines
spanned by u\,°°°, um also imply that the norm of F(@D) in M(L) is given by

Theorem 2.4* The map F: PL—+PL is a linear automorphism, its inverse
being given by the rule that if A^PL is based on M^-SF (L) and if z^L then

(z) =f A (z+w) ay (w).

Proof. Let F' temporarily denote the putative inverse for F defined by the
displayed formula. Let n^N, let u^L be a unit vector spanning the line Mo and
let z^L. From

it is plain that -T"(0j) is a degree n polynomial based on M0. From the readily
verified formula

J H"(s+t)dfji(t}=sn

it is evident that

rr(«) w = f̂

Now, if Afe^ (L) has orthonormal basis (ui, --,««) and if D e PJm>rf then
factorization shows that F'(@D} is a degree d polynomial based on M and that
FT(0D) = 0D. By linearity, it follows that F' maps PL to itself and has the
property that F'oFis the identity. Finally, we claim that F'o/^FoF': if A^
PL is based onMe^(L) and t/z^L then

(TTA) (z)=

= f f A(z+iy+x)dfi(x)dfi(y')
J M*s M

=fMr'A(z+i

= (rrrA)(z).
a

We are more interested in F as a linear map from PL to IHI (L) . As such, its
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role is to orthogonalize relative to the Gaussian distribution ^.

Theorem 2.5. The linear map F: PL — *W(L) has the following properties.
(t) If A, A"^PdLthen

(r(A}\r(A"}}=a2d(A\Af}.
(ii) If A^Pd'L and A"^-Pd"L where df and d" are distinct then

Proof. If A, A'^PL are based on M', M"^%(L) then both A and A" are

based onM^M' + M". Let M have (wi, — ,O as orthonormal basis. If
then

as noticed after Theorem 2. 3. It follows similarly from Theorem 2.1 and

orthogonality of the lines spanned by tiif — fww that if D'eNm'*' and
are distinct then

whether or not d' and d" are distinct. All that remains is to invoke bilinearity.
n

In particular, each restriction jT: PdL~ ̂ H(L) is isometric up to a scalar
factor:

where the norms on right and left are calculated in PdL c: PL and IBI(L)
respectively. It is perhaps worth remarking that the scalar factor ad may be
absorbed by rescaling the inner product on PdL.

Of course, extension by continuity yields a linear map F: PL— *W(L)
having properties analogous to those of the original: if A , A"^lPdL then

(r(A}\r(Af}}=a*d(A\A'}

while if yl'elP^L and A"^d"L where d' and d" are distinct then

<TUOIr(/n>=o.
Indeed, if A e ffL then the net (AM: M^^(L)) in PL converges to A in ffL
thanks to Theorem 1.4 applied to homogeneous components; accordingly,
Theorem 2.5 then implies that net (r(AM): Me^(L» in PLCM(L) is Cauchy
and hence converges, its limit in Iffi(L) being F(A) by definition. Thus, if
has homogeneous decomposition
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then F(A) ^M(L) has orthogonal decomposition

and

Let (wfl: a^sA) be an orthonormal basis for L and let (fl^:
be the resulting orthonormal basis for PL as before. For each d G N and each D
^N^d let us define F^epLdHd) by

where if a^^ then

^
In terms of this notation, we have the following expression for F.

Theorem 2.6. // yl^IPL has the generalized Fourier decomposition

then F(A) GM(L) has the orthogonal decomposition

d>0 \D\=d

Proof. Theorem 2.2 and orthogonality of the lines spanned by the vectors
(ua\ ae^) imply that if d ^N and D^N^d then F(®D} = WD. From this, the
asserted equality follows at once by linearity and continuity of F. D

In the literature, F(A) is traditionally written as : A: and is obtained from
A by the process of Wick ordering. Accordingly, we refer to F as the Wick
transform; the symbol F is for Gauss, after whom the transform is also named.

We now show how the Wick transform leads to a Hildert-Schmidt-strong
continuous representation on Q-spaee IBI(L) of the additive group underlying
PL.

First, if A^PL is a tame polynomial on L then of course the unitary scalar
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function exp{/"(yl) /2ia2} on L is tame, whence an isometric linear map UA'.
H(L)-^H(L) is defined by prescribing that if f^H(L) then UAf^H(l) is the
pointwise product

r(A}
2ia2

We shall continue to use the same symbol to denote the unique extension of UA
to an isometric linear map from IE (L) to itself.

Next, let A ^ IPL be a Hilbert-Schmidt polynomial on L. For convenience,
when M^2F(L) let us agree temporarily to write UM in place of UAM. Now, let/
^H(L) be a bounded tame function on L and put sup\f\=1K. The elementary
estimate

implies that if M', M"<E^(L) and M=M'+M" then

or

llt/M'/- I/ir/tl < -
^/(7

From this, we infer by Theorem 1.4 and Theorem 2.5 that the net
is Cauchy; let us write UA/ for its limit it IEI(L). Observe not only that

I / l l but also that if M^&(L) then

It is a familiar fact that if M^3^(L) then H(M) has its subset HQ(M) of
bounded elements as a dense subspace; consequently, the union

is a dense subspace of M(L). It follows that the linear isometry UA :F0(L)~*
IE(L) constructed above extends uniquely to a linear isometry UA : M(L)—*
JE(L). Observe that i f /eH(L) then the net (UAMf\ M^3F(L)) converges to
UAf: indeed, if e>0 is given and iff0^Ho(L) is chosen so that ||/—/o||^£ then

\\UAf-UAMf\\

and we need only recall that the net (UAMfv'. M^3F(L)) converges to UAfo.



212 PAUL L. ROBINSON

Theorem 2,7* The assignment

is a group homomorphism relative to addition in IPL and composition in AutH(L) .

Proof. Let A', A" e PL and let/ejf(l). On the one hand, UA'MUA»Mf-*
UA'UA"f because composition of isometries is continuous relative to the strong
operator topology: explicitly, if £>0 is given and if M£^-2F(L) is chosen so that
M£CMe^(L) implies both \\(UA»M-UA»)f\\<£ and \\(UA'M-UA') UA*J\\<e then
it follows that

\\UA'MUA»Mf-UA'UA"J\\

< \\UA>M (UA»M- UA»)f\\+\\ (UA-M-UA>) UA"J\\ < 2e.

On the other hand, UA'MUAfcf-* UA
r+A"f: indeed,

-P ,- exp

The equality C/A't/^ = ^+^- holds thus on #(l) and so on Iffl(L). It follows
that if .A^PL then L^ : M(L)— >M(L) is unitary with [7-̂  as inverse, since [70 =
/. D

The unitary representation U of IPL on M(L) is continuous in the following
sense.

Theorem 2.8e Equipping IPL with its Hilbert- Schmidt topology and
AutfflI(L) with its strong operator topology, the map U: IPL— ̂ AutfflKL) is continuous

on ©IPj ]L for each d^K
;=0

Proof. As usual, we need only check continuity at zero. For this, let A ^ IPL
and let/oeHo(L) with Xo— sup[/o . In the inequality

we let M^^(L) be the zero subspace, yielding

Now, let/^M(L) be arbitrary and let £>0: if/0^F0(L) satisfies ||/— /b||<e and
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if A^WL satisfies \\F(A)\\<^~-£ then

the continuity of F as expressed in the discussion following Theorem 2.5
concludes the proof. CH

Here, restriction to subspaces of bounded degree is occasioned by the fact

that if d eM then only a~dF: PdL-»M(L) is isometric. If for each d ^N the
factor od is absorbed in the inner product on PdL by rescaling, then the
corresponding map F\ IPL — -»IEI(L) is isometric and the resulting map U: IPL —*
AutM(L) is Hilbert-Schmidt-strong continuous under no restriction. In any
case, it is certainly true for instance that if A €= IPL is fixed then the
one-parameter unitary group (UtA- t^D&) onM(L) is strongly continuous.

We close this section by showing that on tame polynomials, the Wick
transform commutes with translations.

Theorem 2.9. If A^PL and ifu^L then

TUF(A]=FTU(A).

Proof. Direct calculation. Choose M&2F(L) so that A is based on M and M
contains u. If z^L then

TuF(A}(z}=F(A)(u+z)

= I A(u+z+iw)dfi(w)
J M

= f TuA(z+iw)d(i(w)

=FTu(A)(z}.

D

Of course, it follows as a direct consequence that if A^PL and if u ^L then

III. Polynomial Weyl Representations

Once again, L is a real Hilbert space with ( ' |e) as its inner product. We
equip the direct sum V = L0L with the real symplectic form Q defined by the
rule that if x\, x2, yi, y2^L then

and with the compatible complex structure
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so that V becomes a complex Hilbert space whose complex inner product
(° •> has Q as its imaginary part: thus, if v\, v2^V then

Note that each complex Hilbert space may be regarded as arising in this way: if
V is a complex Hilbert space, then the points fixed by a conjugation constitute
an appropriate real subspace L from which it may be recovered.

By a (regular) Weyl representation of the real symplectic vector space (V,
Q] we mean a unitary projective representation W: F~-*Aut!HIof the additive
group underlying V on a complex Hilbert space El having (Weyl) cocycle given
by the rule that if v\,vz^V then

WM W(v2) =

and having the (regularity) property that if v ^ V then the one-parameter
unitary group (W(tv) : t ^ffi) is strongly continuous. Here, ft — h/2rc is a
positive real number to be interpreted as the Planck constant. Regularity
ensures a corresponding Heisenberg representation: to each v ^ V is associated
the self-adjoint infinitesimal generator @(v) of (W(t<fWv): £^M) so that if t^
ffithen W(t<fWv) =exp{it0(v)}; these field operators {@(v): v^V} satisfy the
canonical commutation relations in Heisenberg form, so that if v\, V2*=V then

The complex structure / distinguishes a canonical irreducible Weyl
representation of (V, Q) : its Fock representation, which has several equivalent
versions. We find it convenient to work with the version known as the
renormalized Schrodinger (or real wave) representation, of which we offer a
brief account. Henceforth, the variance of the Gaussian distribution component

of Q-space will have the specific value a2=-^fi .

The renormalized Schrodinger representation of V is carried by Q-space
over L and will be denoted by WQ : V— *AutM(L). Explicitly, if x, y^L then
W0(x@y) is defined as follows. If f^H(L) is a tame function on L then Wo(#0

y } f ^ H ( L ) is defined by the rule that if z^L then

[W0(X®y)f] W-

Note that W0(x@y)f is indeed tame: if/ is based on M^2?(L) then WQ(x@y}f is
based on M+IR*+]% ^2F(L). The resulting map WQ(x@y): H(L)-*H(L} is
isometric; the term in the exponent compensates for the fact that the Gaussian
measures are only quasi-invariant under translation. A routine algebraic
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calculation shows that W0: V~~* End#(L) so defined has the Weyl cocycle,
whence each Wo(x@y): H(L)-+H(L) is actually an isometric isomorphism which
therefore extends to a unitary operator W0(x®y): M(L)~*M(L). Finally, the
resulting map WQ: F—>AutfflI(L) continues to have the Weyl cocycle and is
readily verified to be regular.

Starting from the renormalized Schrodinger representation, we fashion a
new Weyl representation of V on Q-space as follows. First, let A : L —> IE be a
differentially Hilbert-Schmidt polynomial: a polynomial on L such that if u&L
then Au e PL is Hilbert-Schmidt; recall that Au: L —> M is the polynomial with
value Au(z) = A(u+z)~A(z} at z e L. Let l^ e AutIHI(L) be the unitary
operator constructed for Theorem 2.7; in particular, if Au is tame then UA* acts

according to

Now, to each A;, .y^L let us associate the unitary operator WA (x@y) ^ Autffi (L)
defined by the formula

WA(x®y)=WQ(x®y}UA».

Theorem 3.1. WA: V—+AutlE[(L) is a Weyl representation^.

Proof. We must confirm that WA is regular and has the Weyl cocycle.
Regularity is straightforward: on the one hand, the renormalized Schrodinger
representation WQ itself regular; on the other, representation if u ^ L then the
map B&.~~*AutIEl(L): t*-*UAm is strongly continuous on account of Theorem 2.8

and the fact that ffi—»IPL : t^Atu is continuous. Before checking that WA has the

correct cocycle, it is convenient to note that iiu^-M^^(L) then (Au) M= (AM)U

and that in discussing net convergence we may confine our attention to such M
as contain u. Thus, if x, y^L then the unitary WAM(x@y) converges strongly to
WA(x®y) as M runs over the directed set {M^^(L): y&M}. Similarly, if x\, x2,
y\, y2^L then

WAM Ui©?i) WAM (te®yl)-+WA Ui©Ji) WA

in the strong operator topology as M runs over {M^SF(L): yi, y2^M}. Now,
direct calculation from the definitions shows that if yi, y2^M^3^(L) then on
H(L) there holds the equality

WAM (Xi®yi} WAa (X2®y2) = exp

where A : L — ̂ ffi is given by
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l-y2A^-T-yi-y2A^+l/2} = 0

thanks to Theorem 2.9; by continuity, the same equality holds on HE (L) .
Passage to the limit as M runs over (M^SF (L): yi, y2^M} now yields the fact
that WA has the Weyl cocycle. D

We shall refer to WA as a polynomial Weyl representation: specifically, as
the polynomial Weyl representation generated by A. Observe that our notation
is consistent: if A — 0 then WA is simply the renormalized Schrodinger
representation.

It is natural to ask for the extent to which the Weyl representation WA
varies as the polynomial A itself is varied. An almost immediate consequence of
our construction is that up to unitary equivalence, WA is unaffected by
Hilbert-Schmidt perturbations of. A

Theorem 3,2. // A:L— »ffi is a differentially Hilbert-Schmidt polynomial
and if A^^L then the Weyl representations WA and WA+A o,re unitarily equivalent:
indeed, if x, y^L then

Proof. Of course, the polynomial A+A is differentially Hilbert-Schmidt and
the unitary operator UA is defined according to Theorem 2.7. If y €= M ^ 3F (L)
then direct calculation using Theorem 2 . 9 shows that

on H(L) and therefore on M(L). Thanks to the strong operator continuity on
unitaries of multiplication and inversion, passage to the limit as M— » L
concludes the proof. D

Otherwise said, let A' and A" be differentially Hilbert-Schmidt polynomials
on L: if the difference A' — A is Hilbert-Schmidt, then the representations WA*
and WA" are unitarily equivalent. We conjecture the truth of the converse: that
if WA' and WA" are unitarily equivalent then A" — A is Hilbert-Schmidt. In
particular, let A : L —+ IE be a differentially Hilbert-Schmidt polynomial. We
conjecture that if WA is unitarily equivalent to the renormalized Schrodinger
representation WQ then A&1PL.

Evidence for this conjecture is provided by the following argument. First, if
o

v^V then let W A(U) denote the skew-adjoint infinitesimal generator of the
strongly continuous one-parameter unitary group (WA (tv) : t ^ HI) so that
WA(V) =expWryi (v) . By definition, a Fock vacuum for WA is a nonzero vector in
the domain of and annihilated by the operator WA (v} +iWA (jv) whenever v&V.
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In particular, the Fock vacua for the renormalized Schrodinger representation
W0 itself are precisely the nonzero constant functions L — > (C. Now, let U ^
AutIffi(L) intertwine W0 and WA so that

v <E V=*WA (v) = UWQ (v) IT1.

Application of £7 to a Fock vacuum for Wo yields a Fock vacuum f^M(L) for
W^. Informal solution of the differential equations

v&V=*[WA (v) +iWA (Jv) ]/= 0

shows that/ is a scalar multiple of the function exp [F(A) li fi ] and places A in
E?L. Unfortunately, the technical details involved in promoting this to a formal
argument are less than straightforward.

It is instructive to examine some low degree polynomial Weyl
representations. For simplicity, we shall let A : L — » IE be a differentially
Hilbert-Schmidt (d+l) -homogeneous polynomial and consider the cases d^{0,
1, 2} explicitly.

Example d — 0. In this case, A : L — »M is an arbitrary linear functional and

the differentially Hilbert-Schmidt condition is redundant, li u ^ M *= 2F (L) and if

then Au
M(z) =AM(u] =A(u) so that r(Au

M] (z) =A(u) and therefore

Accordingly, if x, y^L then

ifl
so that the Weyl representation WA belongs to the familiar class of coherent
Weyl representations. It is known that WA is unitarily equivalent to Wo if and
only if A is bounded if and only if A^ff1!. See [3]. D

Example d = l. In this case, Theorem 1.9 tells us that A is bounded and so
corresponds to a symmetric bounded linear operator Z : L —*L according to the
rule

When M^2F(L) we shall write ZM for the compression PrnZPu so that

and if z^L then
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(z) =Au
M(z) = (Z\

so that if alsof^H(L) then

Trr XI / \ _[UAlf] (z) -exp

Now, let #, jy^L and stipulate that M^^(L) contain both y and Zy whence
=Zy. If/<E#(L) and z^L then

from which it is plain upon passage to the limit as M—»L that

WA(X®y)=W0((X+Zy)®yl

It is readily confirmed that the map

g: V-»V:x®y*->

is an automorphism of (V, Q) as a real symplectic vector space. Accordingly,
WA

 = WQ°g is again one of a familiar class of Weyl representations: it arises
from the Fock representation WQ via precomposition by a symplectic
automorphism. In fact, WA = WQog is just a version of the Fock representation

of (V, Q} distinguished by the complex structure gjg~l. A celebrated result of
Shale implies that WQ o g is unitarily equivalent to Wo if and only if Z is
Hilbert-Schmidt, so that WA is unitarily equivalent to Wo if and only if A^W2L.
See [11]. D

In the next example, Wick-ordering makes its presence felt for the first
time; by way of preparation, we insert the following basic formula.

Theorem 3930 Let A^P^L and let Z\ L—+L be the symmetric linear operator
of finite rank satisfying

Ifz^L then

Proof. Direct calculation from the difinitions. The tame polynomial A is
based on the range M^2F(L) of Z and

r(A) (z)= f A (z+iw) djj, (w) = f { (z\Zz) +2i (z\Zw) - (w\Zw) }dy (w)
*J M *J M

= (z\Zz)-f (w\Zw)dfi(w).
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This last integral may be evaluated by diagonalization, for example: if Z on M
has eigenvalues Ai,m",Am repeated by multiplicity, then

I (w\Zw)djJi(w) = ) Xj I t2d[Ji(t)
J M LA JJJL

_ I
=^nTrZ

since ^ is the law of a random variable with AMO, ~^fi } distribution. EH
\ Lt /

Example d = 2. In this case, Theorem 1.9 again informs us that A is
bounded. Thus, the rule

x, y, z^L=>A(x, y, z) =^(x\Zzy)

defines a bounded linear map Z associating to each z ^ L a symmetric
Hilbert-Schmidt operator Zz\ L-* L and having the property that Zxy = Zyx
whenever x,y^L. Note that if M^SF(L) and x,y, z^L then

Consequently, if u&L and if M^^(L) is chosen to contain both u and Zuu then
for each z^L

AUM(Z} =|(u|Z"u) + felZ-Vi) +

and therefore

according to Theorem 3.3. It follows from this that if also/€=/f(L) then

Trr rl ( \ \ (u\ZUU) _, (z\2?u) , U|Zfer) , 1 .^ ^ 1 -/ x
[t//V/] U) =exp[-^F- +-^— + i ^ — +^TraJ f(z) .

For obvious reasons, we shall not insist on exhibiting a similarly explicit
formula for the resulting Weyl representation WA. As a matter of fact, this WA
belongs to an unfamiliar class of Weyl representations. In fact WA is precisely a
quadratic Weyl representation as presented in [8]. It is known that the
quadratic Weyl representation WA is unitarily equivalent to the renormalized
Schrodinger representation W0 if and only if A & IP3L is Hilbert-Schmidt. See
w. n
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A remark is in order here. In [8] we constructed a quadratic Weyl
representation in terms of the metaplectic representation engendered by the
renormalized Schrodinger representation. There, each quadratic Weyl operator
was expressed as the product of three unitaries: a renormalized Schrodinger
Weyl operator precomposed with a symplectic automorphism; the square of an
element of the metaplectic group implementing the same symplectic auto-
morphism; and a scalar factor (the exponential of a imaginary cubic) which had
to be inserted by hand in order to satisfy the Weyl cocycle. An important
aspect of the approach taken in the present paper is that the somewhat
mysterious unitary scalar factor is automatically incorporated in the
construction.

Discussion

Our account of polynomial Weyl representations raises a number of
questions, some of which we discuss briefly in this final section.

First of all, it is reasonable to ask for a simplification of the technical
details involved in establishing our conjecture that if the representations WA'
and WA" are unitarily equivalent then the difference between A' and A" is
actually Hilbert-Schmidt. A possible approach is to base polynomial Weyl
representations not on the real wave representation but rather on the complex
wave representation due to Segal. This alternative version of the Fock
representation acts on a space of antiholomorphic functions square-integrable
relative to a Gaussian distribution arid has the technical advantage that each
bounded linear operator on the carrier space is an integral operator, integration
being in the functional sense. This circumstance suggests the possiblity of
making intertwining operators between the complex wave representation and
derived polynomial Weyl representations very explicit in terms of integral
kernels. For the complex wave representation and its relation to the real wave
representation via the (renormalized) Bargmann transform, we refer to [2].

It is natural to ask for an abstract characterization of polynomial Weyl
representations, perhaps along the lines of known characterizations for Weyl
representations in other classes. For example, the Fock representation
associated to a complex structure may be characterized by the fact that its
carrier space contains the vacuum as a cyclic vector in the kernel of each
corresponding annihilator; it may also be characterized in terms of the number
operator N or the strongly continuous one-parameter unitary group (ettN: £€=IB.).
The coherent representations and quasifree representations also have familiar
characterizations: the former in terms of the vacuum as a common eigenvector
for annihilators; the latter in terms of the vanishing of higher order truncated
vacuum expectation values. For a variety of reasons, it would be helpful to have
a characterization (in similar terms or otherwise) of polynomial Weyl
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representations by which to recognize them abstractly.
As noted earlier, if g is a symplectic automorphism of (V, Q) then Wo°g is

a version of the Fock representation corresponding to the complex structure

gjg~l. A celebrated theorem of Shale [11] implies that WQ o g is unitarily
equivalent to WQ if and only if the commutator gj — Jg is a Hilbert-Schmidt
operator. This leads directly to the construction of the metaplectic group and its
metaplectic representation, of importance in numerous contexts. A natural
project is to consider the effect of symplectic automorphisms on polynomial
Weyl representations and in particular to determine precise necessary and
sufficient conditions on the symplectic automorphism g and the differentially
Hilbert-Schmidt polynomial A in order that the Weyl representations WA°g and
WA be unitarily equivalent. Of course, an abstract characterization of
polynomial Weyl representations is likely to be beneficial here.

The Weyl representations constructed in the present paper were generated
by differentially Hilbert-Schmidt polynomials. We could consider extending the
construction, replacing real polynomials by real analytic functions. For this

purpose, it is probably convenient to absorb the variance a2 = -yjh by

appropriately rescaling the inner products between tame homogeneous
polynomials, so that the Wick transform F: PL—»IHI(L) becomes an isometry

and extends to an isometry on the Hilbert space completion PL each of whose
elements may be regarded as a Hilbert-Schmidt analytic function on L. We may
then consider the process of generating Weyl representations from W0 by means
of differentially Hilbert-Schmidt analytic functions: needless to say, we can
expect that those generated by Hilbert-Schmidt analytic functions will be
unitarily equivalent to Wo; the others should again be new.

Another direction in which to extend the present paper is to vary the basic
representation. The Fock representation Wo was chosen primarily on account of
its technical convenience, it being relatively straightforward to handle rather
explicitly. We may consider replacing the Fock representation by another Weyl
representation and performing the same type of operation to generate further
Weyl representations. For convenience, a quasifree representation might be
chosen as basic: quasifree representations admit a standard description in terms
of Fock representations by means of a doubling procedure; see [1] and [4].
When comparing Weyl representations in such a case, it would be sensible to
replace the notion of unitary equivalence by the more general notion of quasi-
equivalence.
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