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^-Modules Associated to the Group of Similitudes
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Abstract

We classify regular holonomic ^-modules whose characteristic variety is the union of the

conormal bundles of the orbits of the group of similitudes of a non degenerate quadratic form.
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Introduction of Publication

Let V be an n-dimensional complex vector space and q a nondegenerate
quadratic form on V. As usual ©F will refer to the sheaf of analytic differential
operators on V. We shall denote by Q the quadratic cone of equation g — 0, and
by G the group of similitudes of q. Note that G has three orbits in V, {0}, Q\{0},
V\Q.

We shall denote by A c T*V the union of the conormal bundles of these
orbits.

Our aim is to classify the regular holonomic ©-modules whose charac-
teristic variety is contained in A. We give two examples of such modules:

Examples 0.1.
1) The ©^-module which describes the equations satisfied by a

homogeneous SO (4) -invariant section with a generator u and relations (x ° 9*—

u = Of for i,j = l,-,n.
j

2) The ©y-module which describes the equations of the elementary solution
of the Laplace operator A with generator u and relation xtAu = Q, (x ° dx+n~2)

The classification of such modules is well known in dimension 1 and 2. In
dimension 1, L. Boutet de Monvel (see. [BM]) has given a description of
holonomic ©(D-modules which are regular at the origin.

In dimension 2, Galligo, Granger and Maisonobe (see. [G-G-M]) have
described regular holonomic ©-modules whose characteristic variety is
contained in A'.= {Xl=x2 = 0} U {?i = f2 = 0} U fe1 = f2=0}fe2 = fi = 0}.

The aim of this paper is the study of cases n>3.
Let & be the Lie algebra of infinitesimal generators of G. As q is a

nondegenerate quadratic form then $ is generated by the Euler vector field 6 =

Z?=i*i9/ and the vectors field

In Paragraph 1, we show that any coherent ©^-module M which has a good
filtration stable under the action of the Euler vector field 6 on F, is generated
over ©7 by a finite number of global sections ui,°-,up^r(VttM) such that dimc(D
[0]t*/<°o, i = l,~°, p. We also show that if M is a regular holomomic ®y-module
such that char M c A, the infinitesimal action of G lifts to an action of the

universal covering G = Spin(#) X(C (the group of spinors) of G on M. The group
of spinors has a central element denoted e such that e2=l; this acts trivially on

V and defines an automorphism denoted €M such that €M = IM- Then M is
decomposed into M — M+®M- where M+ = ker (1 — e^) (resp. M- — ker (1 + €M) )
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is the fixed points set of 6 (resp. — e) .
In Paragraph 2, we describe models which will be useful for the

classification of regular holonomic 2V~modules such that 6^ — 1^.
In Paragraph 3, we show that if M is a regular holonomic ®F~module such

that €M — \M, then M is generated by a finite number of G -in variant global
sections MI,*", up^F(V, M) such that dimcCt^Ju^00 for i = !,•••,£. The study
of such modules ends by the following main result.

Let Mod?(®y) denote the category of regular holonomic ®F~modules whose
characteristic variety is contained in A. The invariant modules under the action

of € form a full subcategory of the category Mod?(®F); denote it by ModJu

We denote by "Wn the Weyl algebra on V.

Let si c H/n be the subalgebra of SO (q) -invariant differential operators.

Then sS, is the algebra generated over (C by q, 6, A where A is the Laplacian

associated to q (see. Proposition 2.1). Let / be the two sided ideal of sA

generated by the operator qA—0(6+n — 2). One sets si '- — s$/J, si is graded by
the action of homotheties.

We shall denote by Mod11 (sf) the category of homogeneous graded
^-modules T of finite type such that dimcc(D [0] u < °° , for u^T\ in other words

T = ®^ecT^ is a (C~vector space (7Y= LJker (0 — A) p is of finite dimension)
/>e=N

equipped with endomorphisms q, A, 0 of degree 2, —2, 0 such that [0, q] = 2q,
[0, A] = —2A, [4, q] =W+2n, with 0 — X a nilpotent operator on Tj, and T is
generated by a finite number of T^.

Let / c: "(̂ n be the left ideal generated by the infinitesimal generators of
SO (4) and sets M0' = H/n/I, M0 is a (1KW, ^)-bimodule.

If J< is an object of the category Mod^+C^V), denote by W(M) the
©F~module of global sections u of M which are G-invariant and such that
dim(c{D[0]w<°°. Then W(M] is an object of Modh(«^).

Conversely, if T is an object of Modh(^), set $(T) =MQ^^T, an object of

Theorem 0.2. The two functors 0 and ¥ are equivalence of categories Modh

(sf) — Mody£+ (®F) inverse to each other.

After this, we give a classification of such objects in terms of finite
diagrams of linear applications.

Finally, the case CM, — ~~ IM (corresponding to the non-invariant modules) ,
only exists in dimension 3. We show that such a module is a direct sum of a
finite number of a distinguished module described in Paragraph 4.

Note: A similar class of ® -modules, with a different point of view, has been
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announced, by S. I. Gelfand and S. M. Khoroshkin in the announcement [G~K].
Acknowledgements: we wish to thank Professor L. Boutet de Monvel for

many helpful discussions. We would also like to thank Professor M. Kashiwara
and Professor P. Schapira for their comments and corrections, encouragements
and criticisms.

§1. Homogeneous Modules

We refer the reader to [Kl] for the theory of analytic ^-modules.

Definition 1.1. Let M be a SV-module. We will say that M is
homogeneous if there is a good filtration stable under the action of the Euler
vector field 6 on V. We will say that a section s of M is homogeneous if dim^C
[6] s <°°. The section s is said to be homogeneous of degree X ^ C, if there
exists an integer /^N such that (0—A)Js = C.

In this Paragraph we show that any coherent homogeneous ®y~module is
generated over 9JV by a finite number of homogeneous global sections.

Remark 1.2.
i) If M is a coherent ®y-jnodule such that char J^cichar (9), in particular

if M is homogeneous, then it is stable under the action of the group generated

by the hamiltonian He:(x, f) ^Axt -|), A^(C*t (*, f) eT*F. So the support of

M, supp (M), is stable by homotheties. Therefore if M vanishes in a
neighborhood of 0, M vanishes everywhere. Thus if homogeneous global sections
(si) i=i,-,p generate M in a neighborhood of 0, they generate M everywhere.

ii) In the same way if J\f is a coherent ^-module (on V—(Cn or on a ball of

V centered in 0), M is called homogeneous if it is equipped with a lifting 6 of 6

such that 0(f • 5) = (Qf) ° s+f • 0s (*), where s^Mj^0. The support of such
a module is stable under the action of 6 (i.e. supp t/V) is conic). In particular M
vanishes if it vanishes in the neighborhood of 0.

iii) It arises from the previous remark i) that if s is an homogeneous
section of a coherent module on a ball of V centered in 0, s vanishes if it
vanishes in the neighborhood of 0.

One has the following Theorem.

Theorem 1.3. Let M be a coherent homogeneous $)v~module with a good

filtration (FpJfyp&z stable by the Euler vector field 6. Then

i) M is generated over S)v by a finite number of homogeneous global sections,
ii) for anyp<EN, A^€, the ̂ -vector space, F(V, FPM) 0 [UfeeNker (0-,*)*],

of homogeneous global sections of FpM of degree A is of finite dimension.

This result was proved in the case of regular holonomic ®~module by B.
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Malgrange (see. [B-M-V]).

Proof. One may assume that the first term of the good filtration of M, F0M,
generates M in the neighborhood of 0.
We are going to show that F^M is generated by a finite number of homogeneous
global sections and the required result will be deduced. The proof is
decomposed in three steps.

Denote by m the defining ideal of the origin and by Br
= {x^(C",\x\<r} the

ball of radius r>0.

In the first step, taking a surjective homomorphism 6{Bi~*F$M\Br, we show

that the action 6 on FQM lifts to an action 6 on 6N satisfying (*) (see. Remark
1.2,ii)).

In the second step, 0N(Br) is equipped with the norm defined by |j/"| =sup;^o
||fr | where/=Z;>o/; is the Taylor's serie of/ in Br and 1/"J = sup*e5Jl// (*) ||. We
show the following results.

(a) 6 is invertible on \nk0N(Br) if k is large enough.

Let Ej = U ker (6~^i be the spectral subspace of 0 of 0N(Br) and let Ei*} be
;eN

the spectral subspace of 0 of 0N (Br) /mk@N (B,). From (a) we deduced the
following result:

(b) The map Er~*Ej(k} is onto, and one to one for large enough k.
They imply similar results for the coherent ^^-module FoM.

In the third step, we complete the proof.

Step 1. The Cartan's Theorem A (see. [C]) mentions that FQM is
generated above Br by a finite number of global sections. This means that there

exists a morphism of sheaves of ^/-modules: @\Br~~*FoM\Br, Af^N, above Br,
which is surjective. If ei,"-,eN generate FoM on Br and 6. FoM^FoM, there
exists holomorphic functions on Br, aij^0(Br), i,j = l,~-,N such that

(1)

Denote by A-= (a^ the matrix with coefficients in 0(Br}. Let w. 0N(Br}-*
FQM(BT) be the morphism such that u(e'i) = ej, where £}, j — !,••• JV", is the

canonical basis of 0N (Br]. One has

«j)=«[(0+A6c

Let
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(3) A(x)

be the decomposition of A(X) into homogeneous components on Br (Taylor's
serie of A (x)): this serie converges in the neighborhood of Br.

Set 6'-=x ° dx+A (x) and denote by 60=x • dx+AQ the component of degree 0 of

0, where A0= (btj), bfj^€.

The operators 6—x * dx~^A (x) and 60 act continuously on 0N (B^) and preserve

the filtration (m*^ (fir)) *ez. Let f^mk@N(Br}, f= Z/*// its decomposition in
homogeneous components (Taylor's serie of /) in the neighborhood of Br. One
has

Step 2* Denote by ^/,/^EN, the space of homogeneous polynomials, on Br,
of degree/ equipped with the following norm: l|/j-|| — sup^ejsj]// WIL/y^^y. In fact,

on each space ^f=$>./®(CAr
? the operator ft^ = U ° 9*+.Ao) induces the operator

j+Ao so that $o is invertible on £Pf i f j + A o is invertible (i.e. if/>||Ao||:=supi,;
|&tf|). Moreover, one has for large enough/,

PoV?ll<—pj.

Let 0N(Br) equipped with the norm defined by ll/"|| = sup;>oll/>|| (fj^^j with |j/}|| =

supjreBrll/y W II) for all/^^(5r). Then 0 is invertible on the space mk€N(Br]

when ft) is.

Indeed 6=6o+R where R=^q^iAq is bounded i.e. ||#||<C, C=constant. One has

0= 0o+R = ft, [1 + ftT1/?] and as on ̂ - one has

9* —j-

on mk@N(Br) one has

and
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C— constant.

As R: mk6N(Br)-+m(k+l)6N(Br), by iteration one has

Therefore the serie Sn^i (O^R) n converges on mk&N (Br] (as soon as #o 1 is

defined on) for large enough k. Finally 6 is invertible on the space mk0N(Br)

(of inverse 0~l= (l + 6o1R)-l6Gl=I^n^i(do1R)nOol) for fc»0 (as soon as 60

is).

In the sequel, one denotes by Et=Et(Br) = U ker (Q — X)', ^e(C, the spectral
~ /eN

subspace of 6 of 6N (Br} , that is the subspace of homogeneous sections on Br of

degree X. Let£i*> be the spectral subspace of 0 of 0N (Br) /mk0N (Br) .

For a large enough k, (6 — X) is invertible on mk@N(Br). Therefore the map

from EX to the quotient E(k} module mk: Er~*E(® is one to one for fe»0, and EX

is a finite dimensional (C-vector space. For any fe> 1, the map Er~ * Ejf} is

surjective (because 0N (Br) /mk@N (Br) is of finite dimension and the map £|fc)— >

£|r) is surjective £'<fc).

In the same way, let Mi be the special subspace of 6 of F&M and let M(xk) be the

spectral subspace of 6 of FQJl (Br) /m
kF$M (Br) ) , then 6 — X is invertible on

mkFoM (Br} if k is largde enough. Therefore the map Mr~ *M(f is one to one if
k»0 and Mi is a finite dimensional C-vector space. This map is surjective in
all cases.

It remains to check that the spectral subspaces E(k) and M(x] do not depend
on the choice of the ball Br. It comes that for all r>/, the restriction map from
Br to Br

f induced an isomorphism, denoted by Res, from Ex (Br) to Ex (Br'} .
Indeed Res is surjective: FoM\Br is generated by a finite family of homogeneous
sections (s/) j=i,-,p. Let s be a homogeneous section on B^, then 5 is a linear

combination of sections (sj) j=i,-,p, which are homogeneous on Br i.e. 5 = 2f=if;5;-,
fi €= 6 (Br

f} . As 5 is homogeneous, one may choose // a homogeneous polynomial
in 9j (one replaces // by the term of degree (degree of s — degree of sj) in its
Taylor's serie) , therefore 5 extends on Br.
Res is injective because any section which vanishes in the neighborhood of 0
vanishes everywhere (see. Remark 1.2 ii) ) , in particular on Br. Then a section
on the small ball Br

f is the restriction of an unique section on the large ball Br

for all r<oo.

Step 3. One has the surjective map u: mk@N (Br) — » mkFoM (Br] . One sees

that the spectral subspace M(® of 6 is the image by u of the spectral subspace
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Ef} of 0 i.e. u (£|&)) =^iw; indeed
-The image of £jft) by u is contained in M^k\

-Conversely if a is a section of J£jA), it lifts in the neighborhood of 0. If 5 is the

lifting 5 = Z^ec.a^o^s^a (where su,a is homogeneous of degree fi) one may

replace it by s* = Z#+a=;i£%/,a in Ef\ Therefore FoM/mFQM is a finite
dimensional vector space over (C. If the (/Q *=i,...,«0, are the eigenvalues of A$

then FoM/mFoM = Zjii.̂ },. This finite sum lifts in F0Jf in the following finite

sum 2?=i^f, and the Nakayama's Lemma shows that the sum 2?=i«/fe, generates
in 0 the given ^-coherent module FQM\ it also generates F0M everywhere
because the support of F$M is conic (see. Remark 1.2 ii) ) . Therefore the same
finite family of global sections generates M as a ®F~module (see. Remark 1.2
0). D

Let M be a coherent homogeneous ®r~module. We have the following
Lemma:

Lemma 1.4. Let M?ol<^.M be the sub H/n~module generated by homogeneous

global sections. Then one has M — ®F®-r»^po1 and J/tp°l is, up to isomorphism, the
unique homogeneous Wn~module which describes this property.

h
Proof. It suffices to prove that the canonical morphism <2)v®n/nJM?ol~~*M is an

isomorphism. One has Mpo[' = ®^cMx where M*=r(V, M ) C \ [ \ J ker(0-A)*].

The SV-modules M and ^bv®^/nM^01 are homogeneous, so that ker h and
coker h are homogeneous. They vanishe at 0. Indeed the morphism h is
surjective (because the M* generate M see. Theorem 1.3). The morphism h is
injective: if m^S^ecftw^w^ J^, Pt&H/n) is a section of ker h at 0 and if we
decompose the P* in the Taylor's serie in the neighborhood of 0 (P; = 2r2>oPr^)
that is m = Z^ec(Z;i+r=^r,;i®W) =2Aiec(2^+r=/«l®Pr^Wji)f its image in M is m
= S^ec (S/i+r^l ® Pr,m^ = 0 where mx = h (rn_^ (the A are not linearly
depending on so that the homogeneous components w^ ofminM are exactly the
images of the homogeneous components m_\ of m i.e. nu = fe (mj) ) .
Then each homogeneous component of m vanishes i.e. 2^+r=^l®Prf^w^ = 0 for all
jM, so that the homogeneous components of m vanishe also i.e. 2^+r=/«l®Pr^w^:=:

0 for all # therefore w — 0. In other words ker h vanishes at 0. As ker h is
homogeneous and vanishes at 0, it vanishes everywhere and h is injective (see.
Remark 1.2 0). D

Remark 1.5. The action of G (preserving the good filtration) on a ®F~

module M is given by an isomorphism u: pf (M)—*p2 (M) where pi. G X V—*V is
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the projection on V, and p2' G X V—*V, (g, x) *-*g 9 x defined the action of G on V
(satisfying the associativity conditions) . In fact u is an isomorphism above the

isomorphism of algebras u: pi ($)v)~~*p2 (®F) .

Recall that G; — Spin (q) X (C denote the universal covering of the group G.
The result above leads to the following Proposition.

Proposition 1.6. Let M be an object of the category ModJCSV). The

infinitesimal action of G on M lifts to an action of G on M, compatible with the
action of G on V and Sty-

Proof. One knows that M admits a good filtration (Mk)kez stable under the
action of the Lie algebra si. In fact, one has seen that the (D- vector spaces

<Mkj-=r(V, Mic) n [ U ker (6— /()p~\ are of finite dimension and generate M (see.
j>eN

Theorem 1.3). Each M^JL is stable under the action of the Lie algebra *8 of G,

thus this action lifts to an action of the group G on each Mk,A (see. [W] ) .
According to the previous Lemma there is an unique homogeneous "^-module

denoted by Mp°l such that M~ ®7<8>*v#po1. The module J£po1 = ®^7L,x^MkjX is
stable under the action of ® (because the M^ are). This action lifts to an

action of the group G on Mp°l so that G acts also on M. d

Remark 1.7. Let M be an object of ModSh(©^), f /CF an open subset,
F. If 5er(C7, M) then gs^r(gU, M) and g- (Ps) =gP. gs where g is the

image of g in G. In particular 6 acts trivially on V thus e(Ps) =P.€s that is the
action of 6 on F(U, M) (resp. M) defines an automorphism of F(U, ®) (resp.

®) -modules denoted CM such that €M=!M- Therefore M is decomposed into M =
M+@M- with M± = ker(lM±€M).

§2. Description of Models

Recall that & denotes the Lie algebra of infinitesimal generators of G; denote by
% its envelopping algebra. If £ is a finite dimensional representation of G, we
may associate to it a SV~module $E :=®F(8Mi. The ©y-module ©# is equipped
with a natural filtration, quotient of the canonical filtration of ®F®(C E, which is
stable under the action of infinitesimal generators. Then the module ®# is an

object of the category ModSh(SV) (see [B~A]). In particular we denote by
Stwjjf the module corresponding W&)(£ExlN where W is a simple representation
of SO(#), EX,N is the C -module generated by one generator e subjected to the
relation (d-tiNe=Q.

The result of Paragraph 1 (see. Theorem 1.3) shows that if M is an object

of the category Mod? (Sfy) there is a finite dimensional representation of G, E,



232 PHILIBERT NANG

as above, such that the morphism $om®v (Sis, M] (&$}&-+ M is surjective and E is
a finite sum of modules such as W®<cEx,N described above.

2.1. Invariant operators invariant sections

In this section we determine the algebra of SO (q) -invariant differential

( d2a \
ft % ) . Denote by A '• =

dj the Laplacian associated to the nondegenerate quadratic form q.

Let si^-"Wn be the subalgebra of S0(#) -invariant differential operators. We
have the following Proposition:

Proposition 2.1. The subalgebra s& is generated over (C by the operators q,
A, 0 satisfying the following relations [0, q] = 2q, [6, A] = —2A, [q, A] = — (40+
2n).

Proof. Let P'-= ̂ \a\<maad
a (a a€=(C[V]) be an SO (q) -invariant differential

operator with polynomial coefficients of degree m. Its principal symbol om (P) is

also invariant. Therefore crm(P) is a polynomial of (q(x), y2?j=i<po'$*?;> x ° f),

(x, £) ^ T*F, according to Herman Weyl (see. [W]). Since we may take
averages on the real group S0(w, IE) (maximal compact subgroup of SO (#)),

denote by P = fsobwgPdg the average of P on SO(«, ffi), and by am(P) its

principal symbol. Then one has om (P) = am (P) because Gm (P) is SO (n, IE.) -
invariant. Thus there exist a polynomial Q'-=Q(q> A, 6), invariant by SO (4),
such that Pm~~Q (where P«=2|a|=f»aa9

a is the principal part of P) is of degree
m — 1. By induction on the degree of P this shows the result. D

One sets /" = £# fl/ where / is the left ideal of infinitesimal generators of G.

Lemma 2.2 „ The left ideal J is a two sided ideal generated by the central
element Po'-=qA —

Proof. One has P0 = ̂ T.tj=i (xidj-xjdi) 2 (if q (x) = Z?=i4) thus P0^/. One

should remark that the operator P0 is homogeneous with respect to homotheties

and belongs to the center of si. Conversely if P ^ si, one decomposes it into
homogeneous components with respect to homotheties P = lLme%M2m\ dividing
each homogeneous components Hzm by PO we obtain

^QmodPo i f m > 0

4mQmodP0 i fw<0.
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where Q=Q(qA, d) is an operator of degree 0.
Then if P^/, P annihilates qk for all fe^N, its homogeneous components

that is qmQ if w^O (resp. AmQ if w<0) annihilate also qk. Thus implies that
the polynomial in k, Q (2k(2k~n + 2}, 2k) =0 for k>m\ we deduce that the
polynomial in X e(C, Q (2X (2X -n+2), ^) =0, therefore Q is a multiple of P0. D

Remark 2.3. The Lie algebra s!2 ((C) is generated by e, /, h sastisfying the
relations [h, e] = 2e, [h,/] = ~2/, [0,/] = /i. The map which associates e , f , h to
q/2, —A/2, d+n/2 identifies the algebra si with the quotient of the envelopping

algebra of s!2(C) by the left ideal generated by C~ ~o~V2~~~ ^) where C is the

Casimir operator.
In the sequel we will use the following remark:

Remark 2.4. (averages over ©-modules). Let M be a coherent sheaf of
©-modules equipped with a good fitration (Mk)^7L. Each sheaf Mt is, as every
coherent sheaf over 6, a sheaf of Frechet spaces. If G is a compact group acting
continuously on V and ®F, and if this action lifts to M (preserving the good
filtration (Mk)ke%) there is a notion of average on F(U, M} for any invariant
open set 17c: V: for any section 5 ̂  /"([/, JO, one denote by ?= fcg'sdg its
average over G where d# is the Haa^ measure of mass 1. Here, for the modules
we are interested in, one knows from Theorem 1.3 that for each /l^CC, k^-TL,
the complex vector space Mk,i(U) =r(U, Mk) fl [U ;eNker (0 — X)J ] is of finite

dimension; it is stable under the continuous action of Gffi=Spin(w, M) (or S0(w,
M)). Therefore we are just taken averages in a finite dimensional (C~vector
space on which G acts.

§3. Invariant Modules

3.1. Inverse Images

The quadratic form q defines a map V~»(D, which we still denote by q, which is
submersive outside of 0 since q is nondegenerate. In this section, we are
interested in the inverse image, q+J\f, of a ©^module Af.

3oLl. Flatness of the transfer module

Lemma 3.1. The transfer module ©F-CC is flat over q'1 (®F) .

Proof. The transfer module ©iAc is generated over ®F®®C by a generator e
and relations
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where t is the coordinate of (C and x = (xi,"m,xn) is a local coordinate system of
V. Thus it is free over $)(V, dt) = 0V0€ [9j. Since 0t is of dimension 1 this
means that 0y is torsion free over 0& this is obvious because q (x) = t. That is

to say that 0V is flat over 0<c. Then the module ®y-c is flat over g"1 (®<c) . D

Therefore the inverse image functor J/—+q+JV is reduced to its first term

that is the module $)v^v®q-i(®v)q~lN, and it is an exact functor.

3.1.2. Characterisation of q+M

Let M be a ®c~niodule. We have the following Proposition:

Proposition 3020 Let U<^€> be an open subset. The G-invariant sections of

q+N over q~lU are exactly the inverse image of sections of N.

Proof. The sections of q+M are of the form s = 2/e//y (x) q'1 (rjj) where the
6j are the sections of M over U. If s is a germ at 0 of a G-invaiiant section, we
may replace each // (x) by its average (over SO (n, IE.) the compact maximal

subgroup of SO(#) denoted by fj(q (#)), so that s = 2/e//j (q (x)) q~l (rjj) =

q'1 (2/e//y (0 7]j) with t = q(x) . Thus we can see that the invariant sections of
q+J(f are exactly inverse image of sections of M . [U

In particular we have the following Corollary:

Corollary 3*3= The module q+JV has no section supported by 0.

Proof. Otherwise it should contain a section d (the dirac mass d is invariant
by rotation and if q+n (n^N) vanishes outside of 0, it vanishes everywhere) . D

If M is a 2V-module, we set M = j ^ f * ( M ) 1 where/ is the embedding F\{0)

-*V. We have a canonical homorphism M-*M\ the functor M^M is left exact
(as/*).

3e2a Isomorphism between q+N and q+J\f

In this section we intend to show that the inverse image by the map q: X—»(C, of

a regular holonomic ®crmodule M is isomorphic to q+JV=j*j*(q+Ji) that is the

canonical homomorphism q+N—*q+N is an isomorphism. It is the subject of the
following Theorem:

V*/* (M) is the module of holomorphic sections outside of {0} of M.
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Theorem 3.4. If M is a holanomic ^-module regular singular at 0, the

canonical homomorphism q+N—*q+N is an isomorphism.

Proof. We are going to show it at first when N is simple, that is of the form

0<c or d = C (y) 16 or ®C/SC (tdt ~ X) with X $ Z, £ e (C. The module 0+^ is

generated by the sections q + d J
t J ] x , j ^ N , where the j}* are generators of M such

that the degree of each ^ differs form -- « — (because of the relation Aq~lrjz =

• If N = Gc, we have q+M — 0v.
• If JV = ®c/®(c (f9f — ̂ ) with A&Z, as an ^-module it is isomorphic to

\~\ °e where e is a generator such that tdte = Ae, X^-TL. We see that q+,Af ' =

2)v/®v(x-dx-2/t} ^--/(as an ^-module), withf=q-l(e) a SO (q) -invariant

generator such that x.dxf = 2A/. Indeed the module M = ®c/®c (*9f ~" ̂ ) is
generated by the r]fjl(^=2 modZ) and the relations £i?/£ = T70+i, 9f^=r? t f-i(for ^
integer, this is true only for /l<0) .

As an ^-module ^ — ̂ ( *^0
 w^h %Q=/( mod2S(and ̂ 0< <0 if it is integer) .

Denote by M the ®y-module generated by the homogeneous S0(q)~
invariant section /# (with fjt = A mod 2Z) and the relations qf(ji=f»+2, x9d3fn = fjLffl,

n — 2}fu-2. As an £?y-module M-@ ./^ if ^^^ mod2 Z and //< —

n+2. Then Ji is a free 6\ — /-module of rank 1.\ql
We know that ^ is generated by the 77^ (ft = A mod 2) this implies that

q+N is generated by the q+(r]u) and the q+ '(9/7^) = fi(fji — 1) ••• (^ — ; + 1)

q+(r]j-^,]>l. The morphism fi: q+J\f-*M defined by h(q+(r]A)) =/A (it satisfies
the good relations) is surjective since Ji is a finite type module (it is generated
by the/* if Re^<-n).

Then /i is one to one outside of 0 thus ker h and coker h are supported by
(0). But q+M has no submodules supported by {0} (see. Corollary 3.3)
therefore h is one to one. The Theorem is true in this case because meromorphic
functions with poles in the quadric cone {# = 0} extend at the origin ifn>2.

If M = d = 0 (yj 16, q+M is isomorphic to 6 (-J 16 (polar parts) . The

Theorem is true because the cone Q: q = 0 is normal and the origin {0} is of
codimension great than 3 in the cone Q that is any meromorphic section with
poles in the cone extends at 0.
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We prove the general case by induction on the length of J\f: if J\f is not
simple there exists an exact sequence 0 —+N'—*J(f—>J\f"—»0 where Af, N" are of
lengh less that the lengh of M. Hence one has the following diagram

a b

0 > Af' > M » M* > 0
u 4, v 4, w \.

0 > ft' -^ ft -^ JT > 0.

In this diagram the line (a, b) is exact because q+ is an exact functor
(see 3,1.1). Moreover u and w are isomorphisms (by induction hypothesis).

The line (a", b) is left exact (Mr+M is left exact) and b is surjective because bv
=wb is. Therefore it is exact. Finally, by the "five Lemma", v is an isomorphism.

3.2.1. Comparison of M and q+i+(M)

Let 01, 02 be two isotropic vectors (i.e. q(e\) = q(e2) — 0) in V such that 2q(ei, 02)

= 1 where q is, again, the associated bilinear form (for example e2
 = "/^(l, i, 0,

-,0), *2 = 4f (1, -i, Of —,0) if 0 (*) =Z?=i#2;-). Denote by D = C0i+02 the

isotropic affine line parametrized by i (i) — £01+02 where t is a coordinate of (C,
one has qi (t} =t i.e. the map i is a section of q. One has the following Lemma:

Lemma 3e5«, T/i0 line D is nan characteristic for M i.e. ToV fl charge:T*V.

Proof. On the line D one has <? = t, this implies that D is transversal to the
fibers of q, especially to the singular fiber Q: q = 0. D

Let M be an object of Mod? (&Y) • As D is non characteristic for M, M is
canonically isomorphic to q+i+M on a neighborhood of the line D (see. [BM~M],
§3). One knows, according to Kashiwara (see. [K2]) that the sheaf Horn® (M,

q+i+M) is constructible. This implies that the homomorphism of sheaves of
®7~module are all locally constant sheaves in the fibers Qc: q = c, c ^ (C*, in

particular in Q — {0}. As the group G acts on M and q+J\f it acts also on Horn®

(M, q+i+M) and because of the action of the group G the stratas are the orbits

of G that is to say (0), Q\{0}, V\Q (see. [K-K]). The sheaf Horn® U, q+i+M)
has a canonical section u defined in the neighborhood of the line D

(corresponding with the isomorphism M-*q+i+M which induces the identity on
D).

Let us recall that €M is the action of the central spinor on the 2V-module
M. One has the following Proposition.
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Proposition 3.6. If €M— IM, the canonical isomorphism M~^q+i+M defined
in the neighborhood of D such that i+. u=Id, extmds to V\{0}.

Proof. One sets JV'-=i+M. One has in any case 6^ = Ifjv because q+N is
generated by invariant sections.

Let 7 be a path of the group Spin (q) (or a lifting of a path of SO (q) )
joining identity 1 to 6 i.e. 7(0) =1, 7(1) =e. Then for all x in the non singular
quadric (resp. the singular quadric) Qc

:= (#e F\{0), q(x) =c}c^(& c¥=0 (resp.
QQ = Q\{$} if q (*) =0) the closed path 7 • x: t*-+r to*, t e [0, 1] generates the
homotopy group Ui(Qc, x) . Let us recall that this group is trivial except for n =
3, c = 0 (see. [Spa]'): one has

N rr , \ r i Na) Hi (Q \ 10} , XQ) — \ and the generator is the image of the
ifn = 3

closed path
b) /Zi(QCf*)c*o=
c) IIi(V\Q)=Z

This means that the quadric Qc is simply connected if n>4, or if n = 3 and
The homotopy group 77i(Qc, #) acts on the constructible sheaves we are

interested in. The sheaf Horn®, (^, q+i+M) is locally constant over the stratas Q

— {0}, V — Q and it has a section w. The path 7 defines on Rom®v(M, q+i+M} a

path 7A: t^ut = rturt~l which lifts the path t*-+f(t). XQ of Q— {0}. Therefore the

action of the generator of the homotopy group H\ (Qo, ̂ o) on Hom®y (Jf, q+i+M)
is the action of the central spinor € that is jh (1) . The action of e on Hom®v (M,

q+i+M) is trivial. Indeed, as 6^ = 1^, one has 7^ (l) .^ = €^^6^=^.

The sheaf Hom®v (Jf, q+i+M} is trivial outside of the cone Q, and trivial
over the singular quadric Q — {0} . Consequently the section u extends, on a
unique way to the union of quadrics Uc<E<cQc— V— {0}. EH

3.3. General case

Let M be an objecct of Modih(®F). One knows that (see. Remark 1.7) € defines
an automorphism of ©^-modules of M, thus M is decomposed into M = M+®M-
with €M=±IM-

Let i ( t ) =tei+e2 be the parametrisation of an affine line D as in n°3.2.1.
One has seen that the module M is not characteristic for i (see. Lemma 3 . 5) and
one sets N=^i+M\ the fEV-module q+M is isomorphic to M in the neighborhood
of D: denote by u the canonical isomorphism (such that i+u=Id\D) . If 6^ = 1^, it
arises from Proposition 3.6 that t* extends along V— {0} , hence there exists a

morphism it": M—*q+N(=q+N) (see. Theorem 3.4) which is an isomorphism
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outside of 0.
We are going to see that any regular holonomic SV-module invariant under

the action of e, Modj£+ (S)y) , is generated by a finite family of invariant global
sections (%,-) ,-=i,...,j such that dim(cC[0]5z-<°°.

3.3.1. Invariant sections

Theorem 3,7. If €M = IM, M is generated by G-invariant global sections.

Proof. Let us recall that s&a*Wn is the algebra of differential operators with
polynomial coefficients which are SO (q) -invariant.

Let MG (resp. (q+JV) G) be the module over si of global sections of M (resp.
q+M) which are G-invariant Recall that M,{ = r(V, M) fl [linker (O—X)*] is
the complex vector space of homogeneous global sections of M of degree >?^(C.

One knows that there is a morphism M —*q+Af (see. 3.3). This morphism
induces a natural morphism MG—* (q+M}G — q~lJV (inverse image of global

sections of Af see. Proposition 3.2) which sends bij actively MM on q~lN if X $
-n-N(see. Corollary 3.3).

Let Mf^-M be the submodule generated, over ®y, by MG. Then M' contains

the module Mn — q~lMx if X $ — n — N. Seeing that q+M is generated by the

g~Wi with Re (~o~) — ~~ 1» tne restriction of Jf on the line D, i+ (M'} is

isomorphic to ^ and one has M'—q+<N—M outside of the origin.
Let K be the cokernel of the embedding M'^M,, one has the exact sequence

0— *M'-^>M— »K~ »0. The quotient K is coherent and supported by the origin so
that it is generated by invariant homogeneous global sections (5,-) i=i,...,Wl. Let af-
be a lifting of Si. Denote by o i — fso(nMge(?idg the average of a/ over the
compact maximal subgroup S0(w, M) of S0(g) (see. Paragrah 2, Remark 2.3 for
the calculus of averages in ©-modules) . Then af- is also an invariant lifting of
St. Therefore ffi^r(V, Mf} and 5Z- = 0 for i = l,--,ni. Consequently # = 0 and M
-M. ' D

Since 6 acts trivially on all submodules and quotients of M, we have the
following Corollary:

Corollary 3.8. If £M = IM, any subquotient of M is generated by G-invariant
global sections.

3.302a Diagrams associated to the ®-moduie M

Let us reall that H/n indicates the Weyl algebra on V and that s$<^-H/n indicates
the algebra of differential operators with polynomial coefficients which are
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invariant by rotation (see. Paragraph 2) . Recall also that the (C-algebra si is
generated by the operators q, A, 6 satisfying the following relations [9, q] — 2q,

[6, A]=-2A, [A, q] = 4:6+2n (see. Proposition 2.1). One has set d: = d/j$r\I

and that si I si C\I = ̂ /J where I (resp. /) is the left ideal sheaf of 3)v generated
by infinitesimal generators of S0(g) (resp. qA — Q(0~^n~2}} (see. Lemma 2.2).
The algebra si- is graded by the action of homotheties and it acts naturally on
sections which are invariant by rotation.

Denote by Modh (s£) the category of finite type graded erf-module T such
that dimcC [6] u < °°, for u ^ T. It amounts to the same thing to give a graded
vector space T = ®jecTj(TV = T H [U f c € Wker (6 ~ /O*]) equipped with three
endomorphisms 6, q, A of degree 0, +2, —2 respectively such that [6, q] = 2q[6,
A] = ~2A, [A, q] =4cd+2n. Each Tx is a finite dimensional (C-vector space such
that Q — A is a nilpotent operator over T* and T is generated by a finite number
of T,.

Let us recall that Mod/?|+(2V) indicates the category of regular holonomic
®^-modules M such that char M^-A and ZM—^-M.

If M is an object of Mod^+ (®F) , one denotes by W(M) the ^-module formed by
homogeneous global sections of M which are invariant by rotation. Recall that
Wt(M) ' = [W(M)} 0 [U f e e Nker(0 - X)*\ is the C-vector space of the
homogeneous global sections of W(M) of degree A and that W(M) — ®x^Wx(M)
(see. Theorem 1.3). It is easy to see that W(M) is a finite type graded
^-module i.e. ¥(M) ^Modh(^). Indeed, if the ®y-module M is generated by a
finite family of sections si, ••• ,SN which are homogeneous and invariant by

-rotation then si,•••,$# generate W(M] as a ^-module: Let s = ^pi(x, dx)st be an
invariant section of M(pi^F(V, ®F)) and let^i be the average of pi over SO(w,

M), maximal compact subgroup of S0(#), then ^,-e^. Denoting by gt the class
of ft modulo / (i.e. gt ^ s f ) , one also has s = 2j?is* — l^giSi.
Such a module W(M) is characterized by a diagram of (C-vector spaces

-*=*¥i (M) ̂ W^(M) «=±-
A

equipped with operators q (of degree 2), A (of degree ~~ 2), d — x" dx (of
degree 0) satisfying the relations [6, q] =2q, [6, A] = — 2A, [A, q] =4:6 + 2n.
Moreover one has qA = 6(6+n — 2} over invariant sections, and the operator
(0—A) is nilpotent over each W^(M).

Conversely, if T is an object of Modh (si), one associates it the module

where Mo=Wn/EiJiVndj-di='Wn/I. It is a left ^-module and a right
.rf-module.
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Therefore we have defined two functors M,-*W(M) and T~*@(T}. We will
prove the following Theorem:

Theorem 3.9. The functors M-+W(M) (resp. T— ><P(T)) are equivalence of

categories of the category Mod^+ (2V) of regular holonomic $)y-modules M such that
€M = ^M, char M^A over the category ModhC$$) of homogeneous graded sd -modules
of finite type such that T

Remark 3.10. Let us recall that the algebra si becomes identified with

2((C)) / (c— ~2\9~~ 2J) where C denote the Casimir operator (i.e the quotient

of the envelopping algebra of s!2 ((C) by the ideal generated by C~ ~? \~9~2')}

(see. Remark 2.3). In other words the category Mod^+ (®F) is equivalent to the

category of finite type modules over %(s!2((C))/(C— y(y— 2J ).

The previous Theorem follows immediatly from the two Lemmas:

Lemma 3.11. The canonical morphism T— > W (0 (T)) (t *-> 1 ® t) is an
isomorphism, and defines an isomorphism of functors ldModh(d)~

Proof. Let us recall that MQ = tlWn/L Denote by 60 (the class of lwn modulo /)

the canonical generator of MQ. Letf^H/n, denote by/^$? its average on S0(n,

ffi) and by <p the class of / in si modulo si H /. As 60 is invariant by rotation one

has /6o — /6o = £o<p. Moreover fcp = 0 if and only if /^J, in other words <p = Q.

Therefore the average operator (over SO(n, M)) / |-5>/s H/n~^A induces a
surjective homomorphism of ^-modules VQ : M<r* si. More generally for all
^-module T in Modh (s&) the morphism v0®lr is a surjection VT : MQ®MT—*S$
®^T = T which is left inverse of the morphism UT : T-^M^^T, t^€0®t i.e. (v0

®lr) °6001r— fo^o — lr; that is wr is injective. The image of UT is exactly the
set of invariant sections of M0^T that is to say ¥(®(T)}; indeed if s = Zf=°i//

®ti is an invariant section of MQ®^T, we can replace each/* by their average/*

e si, then s = Zfti/,-® f,- = e0® SftiM e 60® T i.e. Zf=°iM e T. Thus the
morphism wr is an isomorphism from T to ¥(0 (T)) and defines a functorial
isomorphism. D

Lemma 3.12. The canonical morphism w : @(W(M))—*M is an isomorphism

and defines an isomorphism of functors (P° ¥—*Iduo<i%+-

Proof. As €M = 1^, M is generated by a finite family of invariant sections
(s^ e W(M) (see. Theorem 3.7) so that w is surjective.
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Anyway w is inject! ve. Indeed if K is the kernel of the morphism
w: 0(W(M))—*M, one has ejr=ljr because 6a>(ru)) — 1^; in other words the
®F~module K is also generated by its invariant sections i.e. W(K) (see.
Corollary 3.8). Thus one has W(K) c ¥ [ ® ( ¥ ( M ) ) ] = W(M] (see. the previous
Lemma) and as ¥(M)-+M is injective (W(M) cF(F, M}) one has W(K) =0.
Therefore #— 0 (because W(K) generates #). D

Remark 3.13. From Lemma 1.4, one deduces that the results above are also
true for analytics ®F~modules.

3.4. Classification of homogeneous graded ^-modules

An 55/-module T^Modh(^) defines an infinite diagram whose objects are finite
dimensional vector spaces T* and arrows are linear maps deduced from <?, A, 6:

A

We shall remark that the operator 6 over TX is completly determined by q

and A because of the relation [A, q] = 4(0 + - o ~ ) . We should forget it in the

/ 1 ndiagram, adding appropriate conditions over qA (i.e. ~r[A, q] —-^—X is nilpotent

over Ti and qA = \^[A, q] +%)(^[A, q] +|--2jj. This diagram is completly

determined by a finite subset of objects and arrows: indeed we see at once that
(i) for <je(C/2Z, if we denote T°<^T the submodule Tff=0^ffm0d2^ then

T is generated by the direct sum of Ta.

X = a mod 2

(ii) if a^O, n, mod2Z(a = A mod2S), thermaps A, q are bijectives. Then
TG is completly determined up isomorphism by one of the Tx and the action of 6

=• \-r\A, q] ~~"o~)- In other words the functor

is an equivalence of categories between the category of the Tff's and the

category of (C~vector spaces T; equipped with a nilpotent endomorphism

(iii) ifn is odd, a=0 (resp. n) mod 22, the functor

T°^ (T_2<=^To) (resp. T_K?=^T-M
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is an equivalence of categories between the category of the Tff's such that Ta =
®x<E2.TLTi (resp. @t=nmod2%Tt) and the category of diagrams of the form above.
The operators qA (resp. Aq) on T* is with one only eigenvalue X U+n — 2) (resp.
Q + 2) U+n)) in such a way that the equation qA = 6(6+n — 2) (resp. Aq= (6

+ 2) (0+n)} admits one unique solution 6 of eigenvalue X if X^ — ̂  - (resp.

— o — ) critical value; here >? = 0, ~2, — w, — n + 2 and — « - is y integer,

thus it is always the case. In the others degrees q or A is bijective and
determines the remaining by induction.

(iv) if n is even, <r=0 mod 22k We may consider either all the diagram

with the operator 6 (which we cannot reconstitute from q, A on T~n~2 if - 9 -
2 £

is even (n = 2mod4) )
or only one diagram with three elements

with a=q(n~®/2, b = A(n~2}/2 and the relations 6, qA, Aq, etc--); and there is an
equivalence of categories between the category of the Ta = @t<=2%Tx and the

category of finite diagrams with 77 (or 3) vertices T-n<
 >T_2< ^To.

L- b A

In any case, except the last one, the number of isomorphism class of
diagrams, for a given dimension and fixed X, is finite. In the last case, there is
continuous family of non isomorphic diagrams (see the example below) .

3.4.1. A continuous family of non isomorphic ®F-moduIes with "fixed
monodromy"

Example 3.14. For n = 4= and for ^e(C, T(X): 7-4^=^7-2^=^^ be the
A A

diagram constructed as follows:
1) Tj is of dimension 2 and has a basis consisting ofej,fj (j==0f ~2, ~~4).

2) On To 0(fo)=-|*o, 0(«o)=0.

On T_2 (6+2} =0.

On T-4 (6>+4)/_4=— |g-4 (e+4)e-4=0.

3) 00-2=0 A?0=0.
qf~2=eQ Afo=e-2+f-2
(one has 40 = 0 over T_2, qA = 28=6(6+4: -2) over T0).
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(one has again qA = 0 on T_2, Aq = -2(0+4) (0+2}}.
The diagramm T(X) as constructed above corresponds to a module M(X} ^

Modr
A

h
+ (®v) . The four lines Ce-2 = T_2 fl ker 4, (C/-i = T_2 H ker A, € (*-2 +/_2)

= T-2 0 Im4 = 4 (To), (C (g_2 + /i/_2) — T_2 D Im g are obviously the invariant of
M(X). Then the module JlU) form a 1-parameter (algebraic) family of
pairwise of non isomorphic modules.

§4. Odd Modules (n = 3f €M=-!M)

In this Paragraph, we study the ^-modules M such that €M = — IM- That case
only exists in dimension 3.

4.1. Description of the model

Let (x, y, z) ^ (C3 be a system of coordinates in which the cone Q is defined by
the equation xy — z2. The map i\ (u,v) *~* (u2, v2, uv} is a proper morphism of
degree 2, surjective from C2 to Q and the restriction to C2~{0} is the universal
covering of Q— {0}. This last induces the covering SL(2, C) — Spin(^)— >SO(q) .
Denote by E'-= i+ (0^-m} the direct image by i of the sheaf of holomorphic
sections outside of {0}. The ®F~module E is decomposed into E — E+@E- as

above under the action of €. The even part E+ belongs to category Mod5^+ (®F)
of modules studied in Paragraph 3, and one checks easily that it is isomorphic

to the module of meromorphic sections with poles in the cone d (q) '• = 0(-~

Let us study the ®^-module E-\ it is supported by the cone Q and it contains
the two sections / : =t+ (u) and g'-=i+(v} , which satisfy the following relations

(n) (x

1

(r3) (2zd, -xdx}f= 0, (2zdv ~xdx)g =f

(r4) (2zdy ~xdx)f=g, (2zdy ~xdx}g=0

(r5) yf—zg, zf=xg,

One has the following Theorem.

Proposition 4.1. The ^y-module E- is generated by the generators f, g and
the relations TJ, i = !,•••, 5.

Proof. Let M be the S^-module defined by the relations (r*) *=i,...,5. One
knows that the module £- is the odd parts of t+(0c2-{o}) and it contains the
sections /=H+ (u) , i+(v) . One has an homomorphism b of ©F~inodules, b: M'—*E-
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such that b (h) =i+ (u) , b (0 =i+ (v) where h and / satisfy the relations (n) i=i,...,5.
It is enough to show that b is an isomorphism.

-The morphism b is injective: indeed it is immediate that b is an
isomorphism at the regular points of the cone (i.e. outside of {0}); in such a
point E- (the germ) is isomorphic to t+(^(C2-{o}), as M which is holonomic of

multiplicity 1 (so that simple) every where in Q~{0} because the group G acts.
Thus N'- = ker b is coherent and supported by {0} , that is CM = 1^, as one also
has €M = CM' — ~ 1 (because M and M are supported by the cone Q) , then M is
zero and b is injective.

-The morphism b is surjective: one sets H = coker b = E_/Im b, it is a
coherent f£V~module supported by {0} that implies CH = IH- But H is also
supported by the cone Q (because E- is) . One deduces that H = {0} and b is
surjective.

4a20 Modules M such that €M— ~ ^-M

Let M be a regular holonomic ®7~module such that €M— ~1^; necessarily M is
supported by the quadratic cone Q because outside of the singular quadric the
homotopy group 17i(Qc) = {1} with Qc={(x, y, z) ^€3/xy—z2=c}, c¥=Q and €M =

IM- Then M is locally isomorphic to the direct sum of copies of 5(q) '• = 0{—

it comes to the same thing to say that locally, outside of {0}, M — 0/LiE* where

Ei—E-. As the monodromy €M is diagonalisable (because €M=!M) then M is
isomorphic, globally outside of {0} , to a direct sum of a finite number of copies
of E-. Let us show that this isomorphism extends at {0}.

Theorem 4,2. // £M = — \M, the module M is isomorphic to a direct sum of
copies of E-.

We propose two elementary methods. In the sequel one will denote again by
E the odd part E- of i+(^c2-{o}). The shortest here is to use the module of
meromorphic sections with poles in {0} : if M is an holonomic ©^-module, one

denotes by M'-=\im fflom® (mp, M) , where m is the defining ideal of the origin
7

(it is the first term of the functor defined by ([K2]), the module of
meromorphic sections outside of {0} ; it is an holonomic ®7~module (in
particular coherent) if M is. One knows, according to Kashiwara that if M and
M are regular holonomic, a morphism w: M—^N defined outside of {0} extends

in w: M—+N (w is an isomorphism if w is) . If n = 3, €M — -~ IM, one has outside of
{0} an isomorphism w : W®cE—*M where W is the complex vector space of
sections of #£om@y (E, M} (constant bundle on the cone Q — {0}), thus an
isomorphism w : W ®cc E~-* M. Indeed the kernels and the cokernels of the
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canonical arrows E— *E and M—*M are coherents and supported by the origin,
thus on these 6=1. But one has also €= — I since they are subquotients of E or

M so that they are zero and w is an isomorphism w : W®c E —*M.

Remark 4.3. Things are intuitively clear if we translate in terms of perverse
sheaves: the perverse sheaf associated to M is R3C<m®v (M, 0) . It is zero outside

of the cone Q, (pur in degree +1) locally constant with 6jMfcWSiru,0) =£0®£Ml =

— 1, and there is nothing at the origin which is a fix point of the group G (the
action of 6 = — 1 comes also from the trivial path) . On Q — {0} there is an
unique locally constant bundle of rank 1 with 6 = — 1 and any locally constant
bundle of rank 1 is a multiple of this one; and (because {0} is of codimension >
2 in Q) there is an unique perverse sheaf, except for —1 -shift, which extends
it.

This is an other method more algebraic.
-Preliminaries calculus: The Lie algebra s!2 (C) is generated by h, e, f with

[h, e] = 2e, [h,f] — —2f, [e,f] =h. It acts on the vector space (C [u, v] generated
by u, v and on the space Wjfc(fe^PJ) of homogeneous polynomial of degree k by h
=udu~vdv, e=udv,f=vdu (one then obtains all the irreducible representations
of finite dimension) .

If x, y, z are three variables, the eigenvalues of zh+ye—xf acting on W\ are

±/( where 2 = (xy— z2}1'2. On Wk these are the numbers £/( — (k—p)A= (2p~k)A,
Q<p<k. The determinant (product of eigenvalues) is zero if k is even, and if k
is odd it is equal to (l.3-k}2(xy-z2)(k+1}/2.

Let M be a ®F~module, W a subspace of finite dimension of r(U, M) (C/d V
an open connected subset) . One supposes that W is stable under the action of
the Lie algebra (@ = so(q) , simple of type k with k odd.

Recall that if q = xy~z\ % is generated by X'- = 2xdx — 2yd1l9 8' = xdz + 2zdx,
2F'-=ydz + 2zdx and one has zX+yS—x3F = Q. From the last calculus it results
that q(k+1}/2 annihilates W. The situation is completly symetric in x and d and

one sees as well, from the relation dgX-2dxS+2d,3F, that A(k+l)/2 annihilates V

The operators <%i=6 + 3/2 (6 = xdx +ydy + dz] , Si = q/2 (q = xy- z2) , Pi =

-A/2(A = 4:dxdy-dj) generate the Lie algebra #i~sl2((£) (the algebra °lii that
they generate over 2V is a quotient of the envelopping algebra of s!2((C) see.
Remark 2.3). The Casimir operator of the algebra $ is

and the Casimir operator of 2?i is

Ci= (19+3/2) 2- 1/2 (qA+Aq) =C-3/4



246 PHILIBERT NANG

If W is as above it is annihilated by AN and q** for N large enough, thus the
§i-module that it generates is also of finite dimension, necessarily of type »w
with k=l+2m($o that one has Ci=m(ro + 2) = (feO + l) ~3)/4). Therefore Xi
is diagonalisable on W\ and the eigenvalues are the integers j of the same parity
with m, such that — w</<m in other words the elements s^ Wi are sum of
homogeneous components st^Wi, of degree — 3/2+m — 2i, Q<i<m.

Let now M be a regular holonomic ®F~module, with char M^-A such that
€M — ~~ Xfl, and let s be a section of Jf outside of {0} . Anyway s is a sum of
series of homogeneous sections (Fourier series) :

= Z/s, with sf= s U2*) l-^dX/Ji (j eZ/2)

(sy is homogeneous of degree /, zero if/ is an integer since 5 (eZin} = €s (x) =

— s (x) ) . As in the general case one may decomposed Sj into components Sj,k of
finite type k under the action of so(q). Since €= ~1, k is necessary odd. That
preceeds shows that Sj,k is the image of a global section (or on if) of E by a

morphism E~^M where one has denoted M'- = j*j*M (j: V— {0}— »F). If one

applies this to M—E one obtains E=E\ in general one has an isomorphism M~^

W&)&E=W&)€E, this proves that M is coherent, since it is isomorphic to M.
(in abstract: if 6 = — 1, any homogeneous section of E is annihilated by a

large enough power of q or A. A homogeneous section of E which is not in E

cannot be annihilated by a power of A, therefore one has E=E.

One has an isomorphism w\ : M— * W0E = W®£; thus M is coherent. If K
and ./T are the kernels and the cokernels of the canonical homomorphism W2 :

M-^M, one has £*=€*'= —1 because # and &"' are subquotients of M and Jf,
and one has also 6^=6^ = 1 because K and K' are coherents, supported by {0},
therefore K=K' = 0, w2 is an isomorphism as wiQw2.)
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