Canonical Isomorphism of Two Lie Algebras Arising in *CR*-geometry

By

Vladimir V. EZHOV* and Alexander V. ISAEV**

Abstract

We show that the maximal prolongation of a certain algebra associated with a non-degenerate Hermitian form on $\mathbb{C}^n \times \mathbb{C}^n$ with values in \mathbb{R}^k is canonically isomorphic to the Lie algebra of infinitesimal holomorphic automorphisms of the corresponding quadric in \mathbb{C}^{n+k} . This fact creates a link between different approaches to the equivalence problem for Levi-nondegenerate strongly uniform CR-manifolds.

§0. Introduction and Formulation of Result

A *CR*-structure on a smooth real manifold M of dimension m is a smooth distribution of subspaces in the tangent spaces $T_p^c(M) \subset T_p(M)$, $p \in M$, with operators of complex structure J_p : $T_p^c(M) \rightarrow T_p^c(M)$, $J_p^2 \equiv -$ id, that depend smoothly on p. A manifold M equipped with a *CR*-structure is called a *CR*-manifold. It follows that the number $CR\dim M := \dim_{\mathbb{C}} T_p^c(M)$ does not depend on p; it is called the *CR*-dimension of M. The number $CR \dim M := m - 2CR \dim M$ is called the *CR*-codimension of M. CR-structures naturally arise on real submanifolds in complex manifolds. Indeed, if, for example, M is a real submanifold of \mathbb{C}^k , then one can define the distribution $T_p^c(M)$ as follows:

$$T_{\boldsymbol{p}}^{\boldsymbol{c}}(M) := T_{\boldsymbol{p}}(M) \cap i T_{\boldsymbol{p}}(M).$$

Communicated by M. Kashiwara, March 30, 1998.

¹⁹⁹¹ Mathematics Subject Classifications: 32C16, 32F40, 17B66

Keywords and Phrases: CR-manifolds, equivalence problem, isomorphism of Lie algebras

^{*}Department of Pure Mathematics, The University of Adelaide, Box 498, G. P. O. Adelaide, South Australia 5001, Australia

e-mail: vezhov@spam.maths.adelaide.edu.au

^{**}Centre for Mathematics and Its Applications, The Australian National University, Canberra, ACT 0200, Australia

e-mail: Alexander.Isaev@anu.edu.au

On each $T_{p}^{c}(M)$ the operator J_{p} is then defined as the operator of multiplication by *i*. Then $\{T_{p}^{c}(M), J_{p}\}_{p \in M}$ form a *CR*-structure on *M*, if dim_C $T_{p}^{c}(M)$ is constant. This is always the case, for example, if *M* is a real hypersurface in \mathbb{C}^{k} (in which case *CR*codimM=1). We say that such a *CR*-structure is *induced* by \mathbb{C}^{k} .

A mapping between two CR-manifolds $f: M_1 \rightarrow M_2$ is called a CR-mapping, if for every $p \in M_1$: (i) df(p) maps $T_p^c(M_1)$ to $T_{f(p)}^c(M_2)$, and (ii) df(p) is complex linear on $T_p^c(M_1)$. Two CR-manifolds M_1, M_2 are called CR-equivalent, if there is a CR-diffeomorphism from M_1 onto M_2 . Such a CR-diffeomorphism f is called a CR-isomorphism.

Let *M* be a *CR*-manifold. For every $p \in M$ consider the complexification $T_p^c(M) \otimes_{\mathbf{R}} \mathbb{C}$. Clearly, this complexification can be represented as the direct sum

$$T^{c}_{p}(M) \bigotimes_{\mu} \mathbb{C} = T^{(1,0)}_{p}(M) \oplus T^{(0,1)}_{p}(M),$$

where

$$T_{p}^{(1,0)}(M) := \{X - iJ_{p}X: X \in T_{p}^{c}(M)\},\$$

$$T_{p}^{(0,1)}(M) := \{X + iJ_{p}X: X \in T_{p}^{c}(M)\}.$$

The *CR*-structure on *M* is called *integrable* if for any local sections *Z*, *Z'* of the bundle $T^{(1,0)}(M)$, the vector field [Z, Z'] is also a section of $T^{(1,0)}(M)$. It is not difficult to see that if $M \subseteq \mathbb{C}^{K}$ and the *CR*-structure on *M* is induced by \mathbb{C}^{K} , then it is integrable.

An important characteristic of a CR-structure called the *Levi form* comes from taking commutators of local sections of $T^{(1,0)}(M)$ and $T^{(0,1)}(M)$. Let $p \in M$, $z, z' \in T_p^{(1,0)}(M)$, and Z, Z' be local sections of $T^{(1,0)}(M)$ near p such that Z(p) =z, Z'(p) = z'. The Levi form of M at p is the Hermitian form on $T_p^{(1,0)}(M) \times T_p^{(1,0)}$ with values in $(T_p(M)/T_p^c(M)) \otimes_{\mathbb{R}} \mathbb{C}$ given by

$$\mathscr{L}_{M}(p) (z, z') := i [Z, Z'] (p) \pmod{T_{p}^{c}(M) \otimes_{\mathbb{RC}}}$$

The Levi form is defined uniquely up to the choice of coordinates in $(T_p(M)/T_p^c(M))\otimes_{\mathbb{RC}}$, and, for fixed z and z', its value does not depend on the choice of Z and Z'.

Let $H = (H^1, \dots, H^k)$ be a Hermitian form on $\mathbb{C}^n \times \mathbb{C}^n$ with values in \mathbb{R}^k . For any such H there is a corresponding standard CR-manifold $Q_H \subset \mathbb{C}^{n+k}$ of CR-dimension n and CR-codimension k defined as follows:

$$Q_{H} := \{ (z, w) : \text{Im } w = H(z, z) \},$$

where $z := (z_1, \dots, z_n)$, $w := (w_1, \dots, w_k)$ are coordinates in \mathbb{C}^{n+k} . The manifold Q_H is often called the *quadric associated with the form H*. The Levi form of Q_H at any point is given by *H*.

A Hermitian form H is called non-degenerate if:

- (i) The scalar Hermitian forms H^1, \dots, H^k are linearly independent over \mathbb{R} ;
- (ii) H(z, z') = 0 for all $z' \in \mathbb{C}^n$ implies z=0.

A CR-structure on M is called Levi non-degenerate, if its Levi form at any $p \in M$ is non-degenerate. An important tool in the geometry of Levi non-degenerate integrable CR-manifolds is the automorphism group of Q_H . Let Aut (Q_H) denote the collection of all local CR-isomorphisms of Q_H to itself that we call local CR-automorphisms. It turns out that, if H is non-degenerate, then any local CR-automorphism extends to a rational (more precisely, a matrix fractional quadratic) map of \mathbb{C}^{n+k} [8], [7], [12], [5]. Thus, for a non-degenerate H, Aut (Q_H) is a finite-dimensional Lie group. Let g_H denote the Lie algebra of Aut (Q_H) . As shown in [1], [10], (see also [6] for a simple proof), the algebra g_H consists of polynomial vector fields on \mathbb{C}^{n+k} of the form

$$g_{H} = \left\{ \left(p + Cz + aw + A(z,z) + B(z,w) \right) \frac{\partial}{\partial z} + \left(q + 2iH(z,p) + sw + 2iH(z,a\overline{w}) + r(w,w) \right) \frac{\partial}{\partial w} \right\},$$
(0.1)

where $p \in \mathbb{C}^n$, $q \in \mathbb{R}^k$, *C* is an $n \times n$ -matrix, *s* is a $k \times k$ -matrix, A(z, z) is a quadratic form on $\mathbb{C}^n \times \mathbb{C}^n$ with values in \mathbb{C}^n , *a* is an $n \times k$ -matrix, B(z, w) is a bilinear form on $\mathbb{C}^n \times \mathbb{C}^k$ with values in \mathbb{C}^n , $r(w_1, w_2)$ is a symmetric bilinear form on $\mathbb{C}^k \times \mathbb{C}^k$ with values in \mathbb{C}^k , and the following holds

2Re
$$H(Cz, z) = sH(z, z)$$
, (0.2.a)

$$H(A(z, z), z) = 2iH(z, aH(z, z)), \qquad (0.2.b)$$

Re
$$H(B(z, u), z) = r(H(z, z), u),$$
 (0.2.c)

Im
$$H(B(z, H(z, z)), z) = 0,$$
 (0.2.d)

for all $z \in \mathbb{C}^n$, $u \in \mathbb{R}^k$.

We can now make g_H into a graded Lie algebra by introducing weights as follows: z has weight 1, w has weight 2, $\frac{\partial}{\partial z}$ has weight -1, $\frac{\partial}{\partial w}$ has weight -2. Then we get $g_H = \bigoplus_{l=-2}^{2} g_{H}^{l}$, where

$$g_{H}^{-2} := \left\{ q \frac{\partial}{\partial w} \right\}, \tag{0.3.a}$$

$$g_{H}^{-1} := \left\{ p \frac{\partial}{\partial z} + 2iH(z, p) \frac{\partial}{\partial w} \right\}, \qquad (0.3.b)$$

$$g_{H}^{0} := \left\{ C z \frac{\partial}{\partial z} + s w \frac{\partial}{\partial w} \right\}, \qquad (0.3.c)$$

$$\mathfrak{g}_{H}^{1} := \left\{ (aw + A(z, z)) \frac{\partial}{\partial z} + 2iH(z, a\overline{w}) \frac{\partial}{\partial w} \right\}, \qquad (0.3.d)$$

$$g_{H}^{2} := \left\{ B(z, w) \frac{\partial}{\partial z} + r(w, w) \frac{\partial}{\partial w} \right\}.$$
(0.3.e)

Note that Q_H is a homogeneous manifold since the global CR-automorphisms

$$z \mapsto z + z^{0},$$

$$w \mapsto w + w^{0} + 2iH(z, z^{0}),$$
(0.4)

for $(z^0, w^0) \in Q_H$, act transitively on Q_H . The subalgebra $g_H^{-1} \oplus g_H^{-2}$ is the Lie algebra of the subgroup of $\operatorname{Aut}(Q_H)$ consisting of automorphisms of the form (0.4). The subalgebra g_H^0 is the Lie algebra of the subgroup of $\operatorname{Aut}(Q_H)$ consisting of linear automorphisms, i.e. automorphisms of the form

$$z \mapsto Pz$$
, $w \mapsto Rw$,

where P is a complex $n \times n$ -matrix, R is a real $k \times k$ -matrix such that

$$R^{-1}H(Pz, Pz) = H(z, z).$$

The components g_{H}^{1} , g_{H}^{2} are responsible for the existence of nonlinear automorphisms of Q_{H} that preserve the origin.

An example of how the algebra g_H is used in *CR*-geometry is the equivalence problem for *strongly uniform CR*-manifolds. Let H_1 , H_2 be two \mathbb{R}^k -valued Hermitian forms on $\mathbb{C}^n \times \mathbb{C}^n$. We say that H_1 and H_2 are *equivalent*, if there exist linear transformations A of \mathbb{C}^n and B of \mathbb{R}^k such that

$$H_2(z, z) = BH_1(Az, Az).$$

We call a CR-manifold M strongly uniform, if the forms $\mathscr{L}_{M}(p)$ are equivalent for all $p \in M$. If, for example, M is Levi non-degenerate and CR codim M=1 then M is strongly uniform. The equivalence problem for strongly uniform Levi non-degenerate integrable CR-manifolds is usually approached by constructing a CR-invariant parallelism on certain bundles over the manifolds with values in a suitable Lie algebra. In a number of cases (see [2], [3], [9], [4]) this Lie algebra was chosen to be g_{H} , where H is a Hermitian form equivalent to any $\mathscr{L}_{M}(p), p \in M$. In the general approach of Tanaka [11], however, a seemingly different algebra was used: Tanaka considered a certain maximal prolongation \tilde{g}_{H} of $g_{H}^{-2} \oplus g_{H}^{-1} \oplus g_{H}^{0}$. It is therefore a reasonable question whether the algebras g_{H} and \tilde{g}_{H} are isomorphic. In this paper we give a positive answer to this question in the main theorem below (see [11] [9], [4] for partial results).

We will now give the precise definition of the algebra \tilde{g}_H from [11]. It is defined as an a priori infinite-dimensional graded Lie algebra

$\tilde{\mathfrak{g}}_{H} = \mathfrak{g}_{H}^{-2} \oplus \mathfrak{g}_{H}^{-1} \oplus \mathfrak{g}_{H}^{0} \oplus (\bigoplus_{l=1}^{\infty} \tilde{\mathfrak{g}}_{H}^{l})$

which is maximal among all Lie algebras of the above form that satisfy the conditioons:

(i) For $l \ge 0$ and $X \in \tilde{g}_{H}^{l}$, $[X, g_{H}^{-1}] = 0$ implies X = 0;

(ii) $g_{H}^{-2} \oplus g_{H}^{-1} \oplus g_{H}^{0}$ is a subalgebra of \tilde{g}_{H} .

It is shown in [11] that $\tilde{\mathfrak{g}}_{H}$ is unique and can be constructed by the following inductive procedure. First we define vector spaces $\tilde{\mathfrak{g}}_{H}^{l}$ and brackets $[X_{l}, X_{-1}] \in \tilde{\mathfrak{g}}_{H}^{l-1}, [X_{l}, X_{-2}] \in \tilde{\mathfrak{g}}_{H}^{l-2}$, where $X_{p} \in \tilde{\mathfrak{g}}_{H}^{p}$ (we set $\tilde{\mathfrak{g}}_{H}^{l} := \mathfrak{g}_{H}^{l}$ for l = -2, -1, 0). Suppose that these spaces and brackets have been defined for $0 \le l \le L-1$ in such a way that the following holds

$$\begin{bmatrix} [X_{l}, X_{-1}], Y_{-1}] - [[X_{l}, Y_{-1}], X_{-1}] = [X_{l}, [X_{-1}, Y_{-1}]], \quad (0.5.a) \\ [[X_{l}, X_{-2}], X_{-1}] = [[X_{l}, X_{-1}], X_{-2}], \quad (0.5.b) \end{bmatrix}$$

for all $X_l \in \tilde{\mathfrak{g}}_H^l$, X_{-1} , $Y_{-1} \in \tilde{\mathfrak{g}}_H^{-1}$. Then we define $\tilde{\mathfrak{g}}_H^L$ to be the vector space of all linear mappings X_L : $\tilde{\mathfrak{g}}_H^{-1} \to \tilde{\mathfrak{g}}_H^{L-1}$ for which there exist linear mappings X'_L : $\tilde{\mathfrak{g}}_H^{-2} \to \tilde{\mathfrak{g}}_H^{L-2}$ such that

$$[X_L(X_{-1}), Y_{-1}] - [X_L(Y_{-1}), X_{-1}] = X'_L([X_{-1}, Y_{-1}]), \qquad (0.6.a)$$

$$[X'_{L}(X_{-2}), X_{-1}] = [X_{L}(X_{-1}), X_{-2}], \qquad (0.6.b)$$

for all X_{-1} , $Y_{-1} \in \tilde{\mathfrak{g}}_{H}^{-1}$, $X_{-2} \in \tilde{\mathfrak{g}}_{H}^{-2}$. We set $[X_{L}, X_{-1}] := X_{L}(X_{-1})$ for all $X_{-1} \in \tilde{\mathfrak{g}}_{H}^{-1}$. Since H is non-degenerate, we have $\tilde{\mathfrak{g}}_{H}^{-2} = [\tilde{\mathfrak{g}}_{H}^{-1}, \tilde{\mathfrak{g}}_{H}^{-1}]$, and therefore X'_{L} is uniquely determined by X_{L} . Then we set $[X_{L}, X_{-2}] := X'_{L}(X_{-2})$ for all $X_{-2} \in \tilde{\mathfrak{g}}_{H}^{-2}$. We also set $[X_{-1}, X_{l}] := -[X_{l}, X_{-1}]$ and $[X_{-2}, X_{l}] := -[X_{l}, X_{-2}]$. Clearly, (0.6) then gives equations (0.5) for l = L.

Note that equations (0.5) imply

$$[[X_{l}, X_{-2}], Y_{-2}] = [[X_{l}, Y_{-2}], X_{-2}], \qquad (0.7)$$

for all $X_l \in \tilde{\mathfrak{g}}_H^l$, $l \ge 0$, and X_{-2} , $Y_{-2} \in \tilde{\mathfrak{g}}_H^{-2}$.

Let us now define brackets $[X_p, X_q] \in \tilde{g}_{H}^{p+q}, X_p \in \tilde{g}_{H}^{p}, X_q \in \tilde{g}_{H}^{p}, p, q \ge 0$, inductively as follows. Suppose that these brackets have been defined for $p, q \ge 0$, $p+q \le L-1$, in such a way that for any $X_p \in \tilde{g}_{H}^{p}, X_q \in \tilde{g}_{H}^{q}$ the following holds

$$\begin{bmatrix} [X_{p}, X_{q}], X_{-1}] = [[X_{p}, X_{-1}], X_{q}] + [X_{p}, [X_{q}, X_{-1}]], \quad (0.8.a)$$

$$\begin{bmatrix} [X_{p}, X_{q}], X_{-2}] = [[X_{p}, X_{-2}], X_{q}] + [X_{p}, [X_{q}, X_{-2}]], \quad (0.8.b)$$

for all $X_{-1} \in \tilde{\mathfrak{g}}_{H}^{-1}$, $X_{-2} \in \tilde{\mathfrak{g}}_{H}^{-2}$. We take any $X_{p} \in \tilde{\mathfrak{g}}_{H}^{p}$, $X_{q} \in \tilde{\mathfrak{g}}_{H}^{q}$ with $p, q \ge 0$ and p+q=L and define linear mappings X_{L} and X'_{L} from $\tilde{\mathfrak{g}}_{H}^{-1}$ and $\tilde{\mathfrak{g}}_{H}^{-2}$ to $\tilde{\mathfrak{g}}_{H}^{L-1}$ and $\tilde{\mathfrak{g}}_{H}^{L-2}$ respectively by

$$X_L(X_{-1}) := [[X_p, X_{-1}], X_q] + [X_p, [X_q, X_{-1}]], X'_L(X_{-2}) := [[X_p, X_{-2}], X_q] + [X_p, [X_q, X_{-2}]].$$

Then we see that X_L , X'_L so defined satisfy (0.6) and therefore $X_L \in \tilde{g}_H^L$. We then define $[X_p, X_q] := X_L$. Clearly, this definition gives identities (0.8) for all $p, q \ge 0, p+q=L$. Thus $[X_p, X_q]$ have been defined for all $p, q\ge 0$. Note that $[X_p, X_q] =$

 $-[X_q, X_p]$ for all $p, q \ge 0$. By induction, we can also prove

$$[[X_{p}, X_{q}], X_{r}] + [[X_{q}, X_{r}], X_{p}] + [[X_{r}, X_{p}], X_{q}] = 0, \qquad (0.9)$$

for all $X_p \in \tilde{g}_{H}^{b}$, $X_q \in \tilde{g}_{H}^{a}$, $X_r \in \tilde{g}_{H}^{r}$, p, q, $r \ge 0$. By (0.5), (0.7), (0.8), (0.9) the brackets defined above give a Lie algebra structure on \tilde{g}_{H} . This completes the construction of \tilde{g}_{H} in [11].

We now define a mapping Φ : $g_H \rightarrow \tilde{g}_H$ as follows:

$$\begin{split} \bar{\boldsymbol{\Phi}} \text{ is identical on } \boldsymbol{g}_{H}^{-1} \bigoplus \boldsymbol{g}_{H}^{-1} \bigoplus \boldsymbol{g}_{H}^{0}, \\ \left[\boldsymbol{\Phi}(X)\right](X_{-1}) &:= [X, X_{-1}] \text{ for } X \in \boldsymbol{g}_{H}^{1}. \\ \left[\left[\boldsymbol{\Phi}(X)\right](X_{-1})\right](Y_{-1}) &:= \left[[X, X_{-1}], Y_{-1}\right] \text{ for } X \in \boldsymbol{g}_{H}^{2}. \end{split}$$

It follows that Φ is a Lie algebra homomorphism and ker $\Phi = \{0\}$. Moreover, $\Phi(\mathfrak{g}_{H}^{p}) \subset \widetilde{\mathfrak{g}}_{H}^{p}$ for p=1, 2.

We are now ready to formulate the main result of the paper.

Theorem 0.1. The mapping Φ is an isomorphism.

We will prove the theorem in the next section. Before proceeding, we would like to thank G. Schmalz for useful discussions.

§1. Proof of Theorem

It is clear from the preceding discussion that to prove the theorem it is sufficient to show that dim $\mathfrak{g}_{H}^{p} = \dim \mathfrak{g}_{H}^{p}$ for p=1, 2, and $\mathfrak{g}_{H}^{3} = \{0\}$.

Lemma 1.1. dim $g_H^1 = \dim \tilde{g}_H^1$.

Proof. Let $X_1 \in \tilde{g}_H^1$. Since g_H^{-1}, g_H^0 are given in the form as in (0.3.b), (0.3.c), X_1 can be written as

$$X_1\left(p\frac{\partial}{\partial z} + 2iH(z, p)\frac{\partial}{\partial w}\right) = \phi(p)z\frac{\partial}{\partial z} + \phi(p)w\frac{\partial}{\partial w}$$

 $p \in \mathbb{C}^n$, where ϕ, ψ are real-linear mappings from \mathbb{C}^n to the spaces $M(n, \mathbb{C})$ of complex $n \times n$ - and $M(k, \mathbb{R})$ of real $k \times k$ -matrices respectively such that, for any $p, z \in \mathbb{C}^n$,

$$\psi(p)H(z,z) = 2\operatorname{Re} H(\phi(p)z,z) \tag{1.1}$$

(see (0.2.a)). Let X'_1 be the linear mapping from g_{H}^{-2} to g_{H}^{-1} corresponding to X_1 as in the definition of \tilde{g}_{H}^{-1} . It then follows from (0.3.a), (0.3.b) that X'_1 can be written in the form

$$X_{1}'\left(q\frac{\partial}{\partial w}\right) = \mu(q)\frac{\partial}{\partial z} + 2iH(z, \mu(q))\frac{\partial}{\partial w},$$

 $q \in \mathbb{R}^k$, where μ is a linear mapping from \mathbb{R}^k to \mathbb{C}^n . Next, conditions (0.6) for L =1 are equivalent to

$$4\mu (\operatorname{Im} H(p_1, p_2)) = \phi(p_1) p_2 - \phi(p_2) p_1, \qquad (1.2.a)$$

$$4\operatorname{Im} H(\mu(q), p) = \phi(p) q, \qquad (1.2.b)$$

for all $p, p_1, p_2 \in \mathbb{C}^n, q \in \mathbb{R}^k$.

We set

$$A(p,p) := \frac{1}{2}\phi(p)p - i\mu(H(p,p)), \quad a := \mu,$$

 $p \in \mathbb{C}^n$. We will show that the following holds (cf. (0.2.b))

$$H(A(p, p), p) = 2iH(p, aH(p, p)), \qquad (1.3)$$

for all $p \in \mathbb{C}^n$. We write ϕ in the most general form

$$\phi(p) = Rp + Q\overline{p},$$

where R, Q are constant vectors of length n with entries from $M(n, \mathbb{C})$. Formulas (1.1), (1.2) then give

$$Rp_1p_2 = Rp_2p_1 \tag{1.4.a}$$

$$\begin{array}{ll} & (1.4.u) \\ Q\bar{p}_1p_2 = 2i\mu(H(p_2, p_1)), \\ (1.4.b) \\ (1.4.b) \\ (1.4.c) \end{array}$$

$$H(Rp_1 p_2, p_3) = 2iH(p_1, \mu(H(p_2, p_3))) - H(p_2, Q\bar{p}_1 p_3), \qquad (1.4.c)$$

for all $p_1, p_2, p_3 \in \mathbb{C}^n$, where μ is complex-linearly extended from \mathbb{R}^k to \mathbb{C}^k . Identities (1.3) easily follow from (1.4.b), (1.4.c). Identity (1.4.b) in addition gives

$$A(p,p) = \frac{1}{2}Rpp,$$

thus showing that A is a quadratic form on $\mathbb{C}^n \times \mathbb{C}^n$.

It is clear from (1.1), (1.4.b), (1.4.c) that a uniquely determines X_1 (also note that (1.3) implies that A and a uniquely determine each other), and the lemma is proved.

Lemma 1.2. dim $g_H^2 = \dim \tilde{g}_H^2$.

Proof. Let $X_2 \in \tilde{\mathfrak{g}}_H^2$. It follows from (0.3.a) - (0.3.c) that there exist real-bilinear mappings $\phi(\cdot, \cdot)$ and $\psi(\cdot, \cdot)$ from $\mathbb{C}^n \times \mathbb{C}^n$ to the spaces $M(n, \cdot)$ \mathbb{C}) and $M(k, \mathbb{R})$ respectively, and a real-bilinear mapping $\mu(\cdot, \cdot)$ from $\mathbb{C}^n \times$ \mathbb{R}^k to \mathbb{C}^n such that

$$X_{2}\left(p_{1}\frac{\partial}{\partial z}+2iH(z, p_{1})\frac{\partial}{\partial w}\right)\left(p_{2}\frac{\partial}{\partial z}+2iH(z, p_{2})\frac{\partial}{\partial w}\right)=\phi\left(p_{1}, p_{2}\right)z\frac{\partial}{\partial z}+\psi\left(p_{1}, p_{2}\right)w\frac{\partial}{\partial w},\\\left[X_{2}\left(p\frac{\partial}{\partial z}+2iH(z, p)\frac{\partial}{\partial w}\right)\right]'\left(q\frac{\partial}{\partial w}\right)=\mu\left(p, q\right)\frac{\partial}{\partial z}+2iH\left(z, \mu\left(p, q\right)\right)\frac{\partial}{\partial w},$$

 $p, p_1, p_2 \in \mathbb{C}^n, q \in \mathbb{R}^k$, where $\left[X_2\left(p\frac{\partial}{\partial z}+2iH(z, p)\frac{\partial}{\partial w}\right)\right]'$ corresponds to $X_2\left(p\frac{\partial}{\partial z}+2iH(z, p)\frac{\partial}{\partial w}\right)$ as an element of \tilde{g}_{H}^1 . Let X'_2 be the corresponding linear mapping from g_{H}^{-2} to g_{H}^0 . It follows from (0.3.a), (0.3.c) that it can be written in the form

$$X_{2}'\left(q\frac{\partial}{\partial w}\right) = \eta\left(q\right)z\frac{\partial}{\partial z} + \nu\left(q\right)w\frac{\partial}{\partial w},$$

 $q \in \mathbb{R}^k$, where η and ν are linear mappings from \mathbb{R}^k to the spaces $M(n, \mathbb{C})$ and $M(k, \mathbb{R})$ respectively. Equation (0.2.a) gives that the following conditions are satisfied

$$\psi(p_1, p_2) H(z, z) = 2 \operatorname{Re} H(\phi(p_1, p_2)z, z), \qquad (1.5.a)$$

$$\nu(q)H(z,z) = 2\operatorname{Re} H(\eta(q)z,z), \qquad (1.5.b)$$

for all $p_1, p_2, z \in \mathbb{C}^n$, $q \in \mathbb{R}^k$. Next, analogously to (1.2), the following holds

$$4\mu(p_1, \operatorname{Im} H(p_2, p_3)) = \phi(p_1, p_2)p_3 - \phi(p_1, p_3)p_2, \qquad (1.6.a)$$

$$4 \text{Im } H(\mu(p_1, q), p_2) = \psi(p_1, p_2)q, \qquad (1.6.b)$$

for all $p, p_1, p_2 \in \mathbb{C}^n, q \in \mathbb{R}^k$. Further, conditions (0.6) for L=2 are equivalent to

$$4\eta (\text{Im } H(p_1, p_2)) = \phi(p_2, p_1) - \phi(p_1, p_2), \qquad (1.7.a)$$

$$\mu(p, q) = -\eta(q)p, \qquad (1.7.b)$$

for all $p, p_1, p_2 \in \mathbb{C}^n, q \in \mathbb{R}^k$. We set

$$B(p, s) := \eta(s)p, \quad r(s_1, s_2) := \frac{1}{2}\nu(s_2)s_1,$$

 $p \in \mathbb{C}^n$, s, $s_1, s_2 \in \mathbb{C}^k$, where η, ν are complex-linearly extended to \mathbb{C}^k . Then (1.5.b) implies

Re
$$H(B(p, q), p) = r(H(p, p), q),$$
 (1.8)

for all $p \in \mathbb{C}^n$, $q \in \mathbb{R}^k$, which is analogous to (0.2.c). It is follows from (1.6) that ϕ is uniquely determined by μ (as in (1.4) above). Therefore, by (1.5.a) and (1.7.b), X_2 is uniquely determined by B (note that B also uniquely determines r by (1.8)). Thus, it is clear from (0.2.d) that to prove the lemma, we need to show that

$$Im H(B(p, H(p, p)), p) = 0, \qquad (1.9)$$

for all $p \in \mathbb{C}^n$ and that $r(s_1, s_2)$ is symmetric. We write ϕ in the most general form

$$\phi(p_1, p_2) = Mp_1p_2 + N\overline{p_1}p_2 + Tp_1\overline{p_2} + S\overline{p_1p_2}.$$

Then (1.5.a), (1.6), (1.7) give

$$M=0,$$
 (1.10.*a*)

$$S=0,$$
 (1.10.*b*)

$$Np_1p_2p_3 = Np_1p_3p_2, \qquad (1.10.c)$$

$$N\overline{p_1}p_2p_3 - Tp_2\overline{p_1}p_3 = 2i\mu(p_3, H(p_2, p_1)), \qquad (1.10.d)$$

$$\begin{array}{c} p_{1}p_{2}p_{3} - Ip_{2}p_{1}p_{3} - 2i\mu(p_{3}, H(p_{2}, p_{1})), \\ Tp_{1}\overline{p_{2}}p_{3} = 2i\mu(p_{1}, H(p_{3}, p_{2})), \end{array}$$
(1.10.*a*)
(1.10.*e*)

$$H(N\overline{p_1}p_2p_3, p_4) = 2iH(p_2, \mu(p_1, H(p_3, p_4))) - H(p_3, Tp_1\overline{p_2}p_4), \qquad (1.10.f)$$

for all p_1 , p_2 , p_3 , $p_4 \in \mathbb{C}^n$, where μ is extended in the last argument to a complex-linear mapping on \mathbb{C}^k . Calculating Im $H(\eta(H(p, p))p, p)$ from (1.7.a) we get

Im
$$H(\eta(H(p, p))p, p) = \frac{1}{2} \operatorname{Re} H(N\overline{p}pp - Tp\overline{p}p, p)$$

On the other hand, (1.5.a), (1.6.b), (1.7.b) give

Im
$$H(\eta (H(p, p))p, p) = -\frac{1}{2} \operatorname{Re} H(N\overline{p}pp + Tp\overline{p}p + Mppp + S\overline{p}pp, p).$$

Comparing the last two expressions and using (1.10.a), (1.10.b), (1.10.d), (1.10.e) yields (1.9).

To show that $r(s_1, s_2)$ is symmetric, by (1.5.b), we need to prove that

Re
$$H(\eta(H(p_1, p_1))p_2, p_2) =$$
 Re $H(\eta(H(p_2, p_2))p_1, p_1)$, (1.11)

for all $p_1, p_2 \in \mathbb{C}^n$. It follows from (1.7a) that

Re
$$H(\eta(H(p_1, p_1))p_2, p_2) = -\frac{1}{2}$$
Im $H(N\overline{p_1}p_1p_2 - Tp_1\overline{p_1}p_2, p_2),$ (1.12)

for all $p_1, p_2 \in \mathbb{C}^n$. On the other hand, (1.5.a), (1.6.b), (1.7.b), (1.10.a), (1.10.b) give

Re
$$H(\eta (H(p_1, p_1))p_2, p_2) = -\frac{1}{2}$$
Im $H(N\overline{p_2}p_2p_1 - Tp_2\overline{p_2}p_1, p_1)$,

for all $p_1, p_2 \in \mathbb{C}^n$, which together with (1.12) implies (1.11).

The lemma is proved.

Lemma 1.3. $\tilde{g}_{H}^{3} = \{0\}$.

Proof. Let $X_3 \in \tilde{g}_H^3$. Then there exist real-trilinear mappings $\phi(\cdot, \cdot, \cdot)$, $\psi(\cdot, \cdot, \cdot)$ from $\mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}^n$ to the spaces $M(n,\mathbb{C})$ and $M(k,\mathbb{R})$ respectively, real-bilinear mappings $\eta(\cdot, \cdot)$, $\nu(\cdot, \cdot)$ from $\mathbb{C}^n \times \mathbb{R}^k$ to the above spaces of matrices respectively, and a real-trilinear mapping $\mu(\cdot, \cdot, \cdot)$ from $\mathbb{C}^n \times \mathbb{C}^n \times \mathbb{R}^k$

to \mathbb{C}^n such that

$$\begin{split} X_{3} \Big(p_{1} \frac{\partial}{\partial z} + 2iH(z, p_{1}) \frac{\partial}{\partial w} \Big) \Big(p_{2} \frac{\partial}{\partial z} + 2iH(z, p_{2}) \frac{\partial}{\partial w} \Big) \Big(p_{3} \frac{\partial}{\partial z} + 2iH(z, p_{3}) \frac{\partial}{\partial w} \Big) = \\ \phi(p_{1}, p_{2}, p_{3}) z \frac{\partial}{\partial z} + \psi(p_{1}, p_{2}, p_{3}) w \frac{\partial}{\partial w}, \\ \Big[X_{3} \Big(p_{1} \frac{\partial}{\partial z} + 2iH(z, p_{1}) \frac{\partial}{\partial w} \Big) \Big(p_{2} \frac{\partial}{\partial z} + 2iH(z, p_{2}) \frac{\partial}{\partial w} \Big) \Big]' \Big(q \frac{\partial}{\partial w} \Big) = \\ \mu(p_{1}, p_{2}, q) \frac{\partial}{\partial z} + 2iH(z, \mu(p_{1}, p_{2}, q)) \frac{\partial}{\partial w}, \\ \Big[X_{3} \Big(p \frac{\partial}{\partial z} + 2iH(z, p) \frac{\partial}{\partial w} \Big) \Big]' \Big(q \frac{\partial}{\partial w} \Big) = \\ \eta(p, q) z \frac{\partial}{\partial z} + \nu(p, q) w \frac{\partial}{\partial w}, \end{split}$$

 $p, p_1, p_2, p_3 \in \mathbb{C}^n, q \in \mathbb{R}^k, \text{ where } \left[X_3\left(p_1\frac{\partial}{\partial z} + 2iH(z, p_1)\frac{\partial}{\partial w}\right)\left(p_2\frac{\partial}{\partial z} + 2iH(z, p_2)\frac{\partial}{\partial w}\right)\right]' \text{ corresponds to } X_3\left(p_1\frac{\partial}{\partial z} + 2iH(z, p_1)\frac{\partial}{\partial w}\right)\left(p_2\frac{\partial}{\partial z} + 2iH(z, p_2)\frac{\partial}{\partial w}\right) \text{ as an element of } \tilde{\mathfrak{g}}_H^1 \text{ and } \left[X_3\left(p\frac{\partial}{\partial z} + 2iH(z, p)\frac{\partial}{\partial w}\right)\right]' \text{ corresponds to } X_3\left(p\frac{\partial}{\partial z} + 2iH(z, p)\frac{\partial}{\partial w}\right) \text{ as an element of } \tilde{\mathfrak{g}}_H^2. \text{ Let } X_3' \text{ be the corresponding linear mapping from } \mathfrak{g}_H^2 \text{ to } \tilde{\mathfrak{g}}_H^1. \text{ Then there exist real-bilinear mappings } \lambda(\cdot, \cdot) \text{ and } \rho(\cdot, \cdot) \text{ from } \mathbb{C}^n \times \mathbb{R}^k \text{ to the spaces } M(n, \mathbb{C}) \text{ and } M(k, \mathbb{R}) \text{ respectively such that}$

$$X_{3}'\left(q\frac{\partial}{\partial w}\right)\left(p\frac{\partial}{\partial z}+2iH(z,p)\frac{\partial}{\partial w}\right)=\lambda\left(p,q\right)z\frac{\partial}{\partial z}+\rho\left(p,q\right)w\frac{\partial}{\partial w},$$

 $p \in \mathbb{C}^n$, $q \in \mathbb{R}^k$. Equation (0.2.a) gives

$$\psi(p_1, p_2, p_3)H(z, z) = 2\text{Re } H(\phi(p_1, p_2, p_3)z, z), \qquad (1.13.a)$$

$$\nu(p, q) H(z, z) = 2 \operatorname{Re} H(\eta(p, q) z, z), \qquad (1.13.b)$$

$$\rho(p, q) H(z, z) = 2\operatorname{Re} H(\lambda(p, q)z, z), \qquad (1.13.c)$$

for all $p, p_1, p_2, p_3, z \in \mathbb{C}^n, q \in \mathbb{R}^k$. Next, analogously to (1.6), we have

$$4\mu(p_1, p_2, \operatorname{Im} H(p_3, p_4)) = \phi(p_1, p_2, p_3)p_4 - \phi(p_1, p_2, p_4)p_3, \qquad (1.14.a)$$

$$4 \text{Im } H(\mu(p_1, p_2, q), p_3) = \psi(p_1, p_2, p_3)q, \qquad (1.14.b)$$

for all $p_1, p_2, p_3 \in \mathbb{C}^n$, $q \in \mathbb{R}^k$. Further, there are the following analogues of identities (1.7)

$$4\eta (p_1, \operatorname{Im} H(p_2, p_3)) = \phi (p_1, p_3, p_2) - \phi (p_1, p_2, p_3), \qquad (1.15.a)$$

$$\mu(p_1, p_2, q) = -\eta(p_1, q)p_2, \qquad (1.15.b)$$

for all $p_1, p_2 \in \mathbb{C}^n$, $q \in \mathbb{R}^k$. Finally, conditions (0.6) for L=3 are equivalent to

$$4\lambda (p_1, \operatorname{Im} H(p_2, p_3)) = \phi (p_3, p_2, p_1) - \phi (p_2, p_3, p_1), \qquad (1.16.a)$$

$$\lambda(p,q) = \eta(p,q), \qquad (1.16.b)$$

for all $p, p_1, p_2, p_3 \in \mathbb{C}^n, q \in \mathbb{R}^k$.

We will now show that identities (1.13) - (1.16) imply that $X_3 = 0$. It follows by the argument in Lemma 1.2 from (1.13.a) and identities (1.14), (1.15) that ϕ has the form (see (1.10.a), (1.10.b))

$$\phi(p_1, p_2, p_3) = Gp_1\overline{p_2}p_3 + K\overline{p_1p_2}p_3 + Fp_1p_2\overline{p_3} + L\overline{p_1}p_2\overline{p_3}$$

and (see (1.10.c)-(1.10.f))

$$\begin{aligned} Gp_1 p_2 p_3 p_4 &= Gp_1 p_2 p_4 p_3, \\ (Cp_1 + K\overline{p_1}) \overline{p_2} p_4 p_4 - (Fp_1 + I\overline{p_1}) p_2 \overline{p_2} p_4 = 2i\mu(p_1 - p_2 + H(p_2 - p_3)) \\ (1.17.a) \end{aligned}$$

$$(Gp_1 + Kp_1/p_2p_3p_4 - (Fp_1 + Lp_1)p_3p_2p_4 - 24\mu \langle p_1, p_4, H \langle p_3, p_2 \rangle), \qquad (1.17.0)$$

$$(Fp_1 + I\overline{p_1})p_5\overline{p_2}p_4 = 2i\mu(p_1, p_2, H(p_4, p_2)) \qquad (1.17.c)$$

$$\begin{array}{l} (1,17,d) \\ H((Gp_1 + K\overline{p_1})\overline{p_2}p_3p_4 - 2d\mu_2(\mu_1, p_2, \mu_1(\mu_4, p_3))), \\ H((Gp_1 + K\overline{p_1})\overline{p_2}p_3p_4, p_5) \\ = 2iH(p_3, \mu(p_1, p_2, H(p_5, p_4))) - H(p_4, (Fp_1 + L\overline{p_1})p_2\overline{p_3}p_5), \\ \end{array}$$

$$Kp_1p_2p_3p_4 = Kp_1p_2p_4p_3, \qquad (1.17.e)$$

for all $p_1, p_2, p_3, p_4 \in \mathbb{C}^n$, where μ is extended complex-linearly to \mathbb{C}^k in the last argument. Further, (1.15.b), (1.16) imply

$$L\overline{p_1}p_2\overline{p_3}p_4 - Gp_2\overline{p_1}p_3p_4 = 2i\mu(p_3, p_4, H(p_2, p_1)), \qquad (1.18)$$

for all $p_1, p_2, p_3, p_4, p_5 \in \mathbb{C}^n$. From (1.17.b) - (1.17.d), (1.18) we obtain

$$\begin{array}{ll} H(K\overline{p_1p_2}p_3p_4, p_5) = H(p_3, Gp_5\overline{p_4}p_1p_2) - H(p_4, Fp_1p_2\overline{p_3}p_5), & (1.19.a) \\ H(Gp_1\overline{p_2}p_3p_4, p_5) = -H(p_3, L\overline{p_4}p_5\overline{p_1}p_2) - H(p_4, L\overline{p_1}p_2\overline{p_3}p_5), & (1.19.a) \\ Fp_1p_2p_3p_4 = -Gp_4p_3p_1p_2, & (1.19.c) \\ Lp_1p_2p_3p_4 = Lp_3p_4p_1p_2, & (1.19.d) \\ Kp_1p_2p_3p_4 = Lp_1p_3p_2p_4 + Lp_1p_4p_2p_3, & (1.19.e) \\ Gp_1p_2p_3p_4 + Gp_3p_2p_1p_4 = Fp_3p_1p_2p_4, & (1.19.f) \end{array}$$

for all $p_1, p_2, p_3, p_4, p_5 \in \mathbb{C}^n$.

We set

$$D(p_1, p_2, H(p_3, p_4)) := iGp_3\overline{p_4}p_2p_1, \qquad (1.20.a)$$

$$t(H(p_1, p_2), H(p_3, p_4)) := -\frac{1}{2}L\overline{p_2}p_1\overline{p_4}p_3,$$
 (1.20.b)

for all p_1 , p_2 , p_3 , $p_4 \in \mathbb{C}^n$. It follows from (1.17.a), (1.18), (1.19.d) and the non-degeneracy of H that (1.20.a) defines a complex-trilinear form D on $\mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}^k$ symmetric with respect to the first two variables and (1.20.b) defines a complex-bilinear symmetric form t on $\mathbb{C}^k \times \mathbb{C}^k$, both valued in \mathbb{C}^n . It follows from (1.13.a), (1.19.c), (1.19.e) that X_3 is uniquely determined by t (note that it follows from (1.19.b) that D is uniquely determined by t). The forms Dand t satisfy the following relations

$$H(D(p, p, q), p) = 4iH(p, t(q, H(p, p))), \qquad (1.21.a)$$

$$H(D(p, p, H(p, p)), p) = 0, \qquad (1.21.b)$$

for all $p \in \mathbb{C}^n$, $q \in \mathbb{R}^k$. Indeed, (1.21.a) follows from (1.19.b), (1.19.d); to prove (1.21.b) we note that it follows from (1.19.c), (1.19.f) that $Gp\bar{p}p \equiv 0$.

We will now show that equations (1.21) can have only zero solutions. For this we note that a polynomial vector field X on \mathbb{C}^{n+k} of the form

$$X = \left(D'(z, z, w) + t'(w, w) \right) \frac{\partial}{\partial z} + 2iH\left(z, t'(\overline{w}, \overline{w})\right) \frac{\partial}{\partial w}$$

defines an infinitesimal holomorphic automorphism of Q_H (i.e. $X \in \mathfrak{g}_H$) if and only if the following conditions are satisfied

$$H(D'(z, z, u), z) = 4iH(z, t'(u, H(z, z))), \qquad (1.22.a)$$

$$H(D'(z, z, H(z, z)), z) = 0, \qquad (1.22.b)$$

for all $z \in \mathbb{C}^n$, $u \in \mathbb{R}^k$, where D' is a complex-trilinear form on $\mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}^k$ symmetric with respect to the first two variables, and t' is a complex-bilinear symmetric form on $\mathbb{C}^k \times \mathbb{C}^k$, both valued in \mathbb{C}^n . Since the vector field X has weight 3, it must be zero by (0.1). This means that equations (1.22) can have only zero solutions and therefore equations (1.21) have only zero solutions also.

Thus, $X_3 = 0$, and the lemma is proved.

References

- Beloshapka, V., A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space (translated from Russian), *Math. Notes*, 47 (1990), 239-242.
- [2] Cartan, E., Sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes: I, Ann. Math. Pura Appl. 11 (1932), 17-90; ∏, Ann. Scuola Norm. Sup. Pisa, 1 (1932), 333-354.
- [3] Chern, S. S. and Moser, J. K., Real hypersurfaces in complex manifolds, Acta Math, 133 (1974), 219-271.
- [4] Ezhov, V., Isaev, A. and Schmalz, G., Invariants of elliptic and hyperbolic CR-structures of codimension 2, Internat. J. Math., to appear.
- [5] Ezhov, V. and Schmalz, G., Holomorphic automorphisms of nondegenerate CR-quadrics: explicit description, J. Geom. Analysis, to appear.
- [6] _____, A simple proof of Beloshapka's theorem on parametrisation of the automorphism groups of CR-manifolds (Russian), Mat. Zametki, to appear.
- [7] Forstnerič, F., Mappings of quadric Cauchy-Riemann manifolds, Math. Ann., 292 (1992), 163-180.
- [8] Khenkin, G., Tumanov, A., Local characterization of holomorphic automorphisms of Siegel domains (translated from Russian), Funct. Anal. Appl., 17 (1983), 285-294.
- [9] Lai, H.-F., Real submanifolds of codimension two in complex manifolds, Trans. Amer. Math. Soc., 264 (1981), 331-352.
- [10] Satake, I., Algebraic Structures of Symmetric Domains, Kanô Memorial Lectures 4, Iwanami Shoten, Tokyo; Princeton University Press, 1980.
- [11] Tanaka, N., On generalized graded Lie algebras and geometric structures I, J. Math. Soc.

Japan, 19(1967), 215-254.

[12] Tumanov, A., Finite-dimensionality of the group of CR automorphisms of a standard CR manifold, and proper holomorphic mappings of Siegel domains (translated from Russian), Math. USSR. Izv., 32 (1989), 655-662.