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Canonical Isomorphism of Two Lie Algebras
Arising in CR-geometry

By

Vladimir V. EzHOV* and Alexander V. ISAEV**

Abstract

We show that the maximal prolongation of a certain algebra associated with a non-degenerate

Hermitian form on €M X (£" with values in Mft is canonically isomorphic to the Lie algebra of

infinitesimal holomorphic automorphisms of the corresponding quadric in (Cn+k. This fact creates a

link between different approaches to the equivalence problem for Levi-nondegenerate strongly

uniform C^-manifolds.

§0. Introduction and Formulation of Result

A CR-structure on a smooth real manifold M of dimension m is a smooth

distribution of subspaces in the tangent spaces Tp (M) c Tp (M), p ^ M, with

operators of complex structure Jp\ Tp(M)—+Tp(M), Jp = — id, that depend
smoothly on p. A manifold M equipped with a C#-structure is called a CR-

manifold. It follows that the number CRdimM' = dim^Tj (M) does not depend on
p\ it is called the CR-dimension of M. The number CRcodimM'-=m — 2CRdimM is
called the CR-codimension of M. Cft-structures naturally arise on real
submanifolds in complex manifolds. Indeed, if, for example, M is a real

submanifold of (Cfc, then one can define the distribution Tp (M) as follows:
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On each Tp (M) the operator Jp is then denned as the operator of multiplication

by i. Then {Tp(M), Jp}p<=M form a C#- structure on M, if dim@Tp(M) is constant.
This is always the case, for example, if M is a real hypersurface in (C* (in
which case CRcodimM=l) . We say that such a CR— structure is induced by (Dk.

A mapping between two CJ?- manifolds /: Mr~ *M2 is called a CR-mapping, if

for every p^Mi. (i) df(p) maps Tp(Mi) to T/(/,)(M2), and (ii) df(p) is complex

linear on Tp (Mi) . Two CR-manifolds MI, M2 are called CR-equivalent, if there is
a C^-diffeomorphism from MI onto M2. Such a CR-diffeomorphism / is called a
CR-isomorphism.

Let M be a C^-manifold. For every p & M consider the complexification

Tp (M) ®R(C. Clearly, this complexification can be represented as the direct sum

TC
P (M) ® JC= If'0' (M) 0Tiftl) (M) ,

where

(M) := (X-iJpX: X^TC
P (M) },

Tf1} (M) : = {X+iJpX: X^TC
P(M}}.

The C^-structure on M is called integrable if for any local sections Z, Zr of the

bundle T(1'0) (M) , the vector field [Z, Z'] is also a section of T(1'0) (M) . It is not
difficult to see that if M<^(CK and the ^-structure on M is induced by (C*, then
it is integrable.

An important characteristic of a Cff-structure called the Lew form comes

from taking commutators of local sections of T(1>0) (M) and T((U)(M). Lel/>eM,

z, z'^Tfr® (M) , and Z, Z' be local sections of T(1'0) (M) near p such that Z(p) =

z, Z'(p} =z. The Levi form of M at p is the Hermitian form on Tp® (M) X

with values in (Tp (M) /Tp (M) ) ®i(C given by

%M (p) fe, /) : =* [Zf Z'] (p) (mod

The Levi form is defined uniquely up to the choice of coordinates in (Tp (M) /

TP(M)) ®]g(C, and, for fixed z and z , its value does not depend on the choice of
Z and Z'.

Let H= (H\--,Hk) be a Hermitian form on €n x€n with values in E*. For

any such H there is a corresponding standard C#-manifold QH
 c= CM+fc of

C#-dimension n and CJ?~codimension fe defined as follows:

where z'= Ui,'"^»), ^:== (wi,'",Wfc) are coordinates in (Dn+k. The manifold QH is
often called the quadric associated with the form H. The Levi form of QH at any
point is given by H.
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A Hermitian form H is called non-degenerate if:

(i) The scalar Hermitian forms H1,t",Hk are linearly independent over ffi;
(ii) H(z, z') =0 for all z^C1 implies * = 0.

A C#-structure on M is called Levi non- degenerate, if its Levi form at any p
^ M is non-degenerate. An important tool in the geometry of Levi
non- degenerate integrable Cft-manifolds is the automorphism group of Q#. Let
Aut (QH) denote the collection of all local CR -isomorphisms of QH to itself that
we call local CR- automorphisms. It turns out that, if H is non-degenerate, then
any local CR-automorphism extends to a rational (more precisely, a matrix

fractional quadratic) map of &n+k [8], [7], [12], [5]. Thus, for a non-
degenerate H, Aut (QH) is a finite-dimensional Lie group. Let QH denote the Lie
algebra of Aut (QH) . As shown in [l] , [10] , (see also [6] for a simple proof) ,

the algebra QH consists of polynomial vector fields on (gn+k of the form

QH={(p+Cz+aw+A (z^+B(z,w)}^z
Jr

(q+2iH(z,p) +sw+2iH(z, aw) +r(w, ^))

where p ^ (Cw, q e M*, C is an n X w-matrix, 5 is a k X fe-matrix, A (z, z) is a
quadratic form on (Dn X (£n with values in (Cw, a is an n X ̂ -matrix, B(Z, w) is a
bilinear form on (Cw X (gk with values in (Cw, r (wi, w2) is a symmetric bilinear
form on Ck X(C fe with values in (Cfe, and the following holds

2Re // (Cz, z} = sPI (z, z) , (0 . 2 . a)
H(A (z, z} , z) =2iH(z, aH(z, z)} , (0.2.5)

Re H (B (z, u) , z) =r (H (z, z),u\ (0 . 2 . c)
H ( e l 2 ) ) , 2 r ) = O f (0.2.d)

for a
We can now make g^ into a graded Lie algebra by introducing weights as

follows: z has weight 1, w has weight 2, -^r- has weight —I, -^— has weight —2.

Then we get QH—®2i=-2§lH, where

(0-3-a)

(0.3. &)

(0-3-c)

(O.S.d)
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Note that QH is a homogeneous manifold since the global CR- automorphisms

°) , (0.4)

for (z°, w°) G Q#, act transitively on QH. The subalgebra QHI © g#2 is the Lie
algebra of the subgroup of Aut(Q#) consisting of automorphisms of the form

(0.4). The subalgebra QH is the Lie algebra of the subgroup of Aut(Q#)
consisting of linear automorphisms, i.e. automorphisms of the form

where P is a complex n x^-matrix, R is a real k Xfc-matrix such that

R-lH(Pz,Pz)=H(t!,z).

The components QH, QH are responsible for the existence of nonlinear
automorphisms of QH that preserve the origin.

An example of how the algebra QH is used in CR -geometry is the
equivalence problem for strongly uniform CR- man if olds. Let HI, H2 be two
ffifc-valued Hermitian forms on (Cw X (Cw. We say that HI and H2 are equivalent, if
there exist linear transformations A of (Dn and B of BJ* such that

H2(z,z)=BHi(Az,Az).

We call a CJ?-manifold M strongly uniform, if the forms £M(P) are equivalent
for all p^M. If, for example, M is Levi non-degenerate and CR codim M=l then
M is strongly uniform. The equivalence problem for strongly uniform Levi
non-degenerate integrable C^-manifolds is usually approached by constructing
a Cft-invariant parallelism on certain bundles over the manifolds with values in
a suitable Lie algebra. In a number of cases (see [2], [3], [9], [4]) this Lie
algebra was chosen to be QH, where H is a Hermitian form equivalent to any
«S?M(P)I p ^ M. In the general approach of Tanaka [11], however, a seemingly
different algebra was used: Tanaka considered a certain maximal prolongation

QH of g52®951©9&. It is therefore a reasonable question whether the algebras
g# and g# are isomorphic. In this paper we give a positive answer to this
question in the main theorem below (see [11] [9], [4] for partial results).

We will now give the precise definition of the algebra QH from [11]. It is
defined as an a priori infinite-dimensional graded Lie algebra

which is maximal among all Lie algebras of the above form that satisfy the
conditioons:

(I) For J>0 and X^QI
H, [X, QH1] =0 implies X=Q;
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(Ii) QH^QH^QH is a subalgebra of g#.

It is shown in [11] that g# is unique and can be constructed by the

following inductive procedure. First we define vector spaces gj? and brackets

[Xi, X-i] egjf1, \Xi, X-2] egif2, where XpGgfc (we set gff: = 9ff for 1= -2, -1,
0). Suppose that these spaces and brackets have been denned for Q<l<L~ 1 in
such a way that the following holds

[ [x,, *-J , y-J - [ [*•„ y. J , *_J - [x/f [*-i,y-J ] , (o . 5 .a)
*- J , *-J - [ to, Z-J , *-J , (0.5.6)

for all Xi GE g#, ^j, y_x e eg1. Then we define g# to be the vector space of all

linear mappings XL. §ff1~~*gir1 for which there exist linear mappings XL'. Qn2~^

QrT2 such that

[Xi (X-2) , X-J = [XL (X-i) , X_2] , (0.6.6)

for all Z-r, 7-1 eg^1, Z_2eg^2. We set [ZL, X-l]: = XL(X-l) for all X-iGgi1.

Since H is non-degenerate, we have g#2— [g^1, gS1], and therefore XL is

uniquely determined by XL. Then we set fc, X-2] •=XrL(X-2) for all J^~2^gi2.
We also set [X-it Xi}'-=~ [Xtt X-d and \X-2, Xt]--=- [Xh X-2~\ . Clearly, (0.6)
then gives equations (0.5) for l—L.

Note that equations (0 . 5) imply

/, X-2] , Y-2] = [ [Xl} Y-2] , X-2] , (0.7)

for all XI^QI
H, [>0, and X-2, 7_2

Let us now define brackets [XP, Xq] e §&+«, Z^ e g&, Z, e g&, /,, ^> 0,
inductively as follows. Suppose that these brackets have been defined for p, q>

0, p+q<L — l, in such a way that for any Xp^c$t, Xq&gfa the following holds

[IX. Xd . ̂ -il = tfe. ^-i3 , ̂ J + \Xp. fc ^-il] . (0.8. a)
X-.2],Xq] + [Xp, fc,X_2]], (0.8.6)

for all X-^gfr1, X-2^Qa2. We take any XpGgfc, Xq^c$ with />, <?>0 and p+q =

L and define linear mappings XL and Al from g^1 and g^2 to g/T1 and

Qn~2 respectively by

XL (X_i) == [ [^, Jf-J , JTJ + fc, IX, *- J ] ,
AI (^-2) '-=[lXp, X-2] , ̂ J + IX, IX, *- J ] -

Then we see that XL, XL so defined satisfy (0.6) and therefore XL^QH. We then
define [Xp, Xq] -=XL. Clearly, this definition gives identities (0.8) for all p, q>
Q,p+q=L. Thus [Xp, Xq] have been defined for all p, q>0. Note that [XPl Xq] =
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— [Xq, Xp] for all p, q>0. By induction, we can also prove

[IX, X<] , Xr] + [[Xq, Xr] , Xp] + [[Xr, Xp] , Xq] =0, (0.9)

for all *,€=§&, *,€=§&, Xr^Qn,P, q, r>0. By (0.5), (0.7), (0.8), (0.9) the
brackets defined above give a Lie algebra structure on g#. This completes the
construction of g# in [11] .

We now define a mapping 0: $H~~*QH as follows:

0 is identical on g

-i): = [X, *-J for
-J] (¥-,): = [[X, X-J, 7-J for

It follows that 0 is a Lie algebra homomorphism and ker 0 — {0} . Moreover,

We are now ready to formulate the main result of the paper.

Theorem 0.1. The mapping 0 is an isomorphism.

We will prove the theorem in the next section. Before proceeding, we would
like to thank G. Schmalz for useful discussions.

§1. Proof of Theorem

It is clear from the preceding discussion that to prove the theorem it is

sufficient to show that dim g&^dim g& for^^l, 2, and g!?={0}.

Lemma 1.1. dim gjy=dim g]y.

Proof. Let X\ ^ g]?. Since g/^gjy are given in the form as in (0 . 3 . b) , (0 . 3 . c) ,
Xi can be written as

n, where 0,0 are real-linear mapppings from Cw to the spaces M(n, (C) of
complex n X n- and M(k, ffi) of real k X ̂ -matrices respectively such that, for
any p, z^€n,

t z) =2Re H ( $ ( p ) z , z} (1.1)

(see (0 . 2 . a) ) . Let X'\ be the linear mapping from g#2 to QHI corresponding to X\

as in the definition of g/j1. It then follows from (0.3. a), (O.S.b) that X{ can be
written in the form
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<?^ffi fc, where ^ is a linear mapping from ffiA to Cw. Next, conditions (0.6) for L
= 1 are equivalent to

i, (1.2. a)

for allp,pl,
We set

p(E(£n. We will show that the following holds (cf. (0.2.b))

H ( A ( p , p ) , p ) = 2 i H ( p , a H ( p t p ) ) t (1.3)

for all p&€,n. We write (f> in the most general form

(f>(p)=Rp+Qp,

where R, Q are constant vectors of length n with entries from M (n, (C).
Formulas (1.1), (1.2) then give

Rpip2=Rp2pi (1.4. a)
p l } } 1 (1.4.6)

for all pi, p2, Ps e &n, where /^ is complex-linearly extended from ffi* to (Cfc.
Identities (1.3) easily follow from (l.4.b), (l.4.c). Identity (1.4.b) in
addition gives

A (p, p} =

thus showing that A is a quadratic form on Cw X (£w.
It is clear from (l.l), (l.4.b), (1.4.c) that a uniquely determines X\ (also

note that (1 . 3) implies that A and a uniquely determine each other) , and the
lemma is proved. D

Lemma 1.2. dimg|-=dim g#.

Proof. Let X2 ^ §!. It follows from (0.3. a) - (O.S.c) that there exist
real-bilinear mappings 0( • , 8 ) and 0( • , • ) from (Cn x€n to the spaces M(n,
C) and M(/f, ffi) respectively, and a real-bilinear mapping fi( • , B ) from Cw X
Mfc to (CB such thaat

^
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P, Pi, p2^&n, tf^IR*, where X2p-^ + 2iH(z, P)~ corresponds to X2p+

2iH (z, p) -fl—) as an element of QH. Let X'2 be the corresponding linear mapping

from QH2 to QH. It follows from (0.3. a), (O.S.c) that it can be written in the
form

q^W, where 19 and y are linear mappings from M* to the spaces M(n, (C) and
M(k, W respectively. Equation (0.2. a) gives that the following conditions are
satisfied

<p(pi,p2)H(?, z) =2Re H(<f>(pi,p2)z, z) , (1.5. a)
v(q)H(?,z)=2ReH(r)(q)z,z), (1.5.6)

for al\pi,p2, z^(Cn, q^W. Next, analogously to (1.2), the following holds

, ImH(p2tp3))=<f>(pi,p2)p3-$(pi,p3)p2, (1.6. a)
p2)q, (1.6.6)

for 2Lllptpi,p2^&n, q^^f. Further, conditions (0.6) for L = 2 are equivalent to

4 r ] ( l m H ( p i , p 2 ) ) = < f i ( p 2 , P i ) - $ ( p i , p 2 ) , (1.7. a)

for allp,pi,
We set

B(p, s)' = rj(s)p, r(si, 52) := "

p G (Dw, 5, 5i, 52 ^ (C*, where 17, y are complex-linearly extended to C*. Then
(1.5.b) implies

ReH(B(p,q),p)=r(H(p,p),q}, (1.8)

for all pe(Cw , ^eE^, which is analogous to (0.2.c). It is follows from (1.6)
that <p is uniquely determined by IJL (as in (1.4) above). Therefore, by (1.5 .a)
and (1 . 7 . b) , X2 is uniquely determined by B (note that B also uniquely
determines r by (1.8)). Thus, it is clear from (0.2.d) that to prove the lemma,
we need to show that

ImH(B(p,H(p,p)},p}=0, (1.9)

for all p^(Cn and that r (si, s2) is symmetric. We write (j) in the most general
form



ISOMORPHISM OF Two LIE ALGEBRAS 257

, ft) =

Then (1.5. a), (1.6), (1.7) give

Af=0, (1.10. a)
S = 0, (1.10.6)

Nftftft = ATftftft, (1.10. c)
- Tftftft = 2ifi (ft, # (ft, ft) ) , (1 . 10 . d)

Tftftft = 2i^ (ft, ff (ft, ft) ) , (1.10.0)
H (ATftftft, ft) = 2t# (p2, IJL (ft, tf (ft , ft) ) ) -# (ft, T/nfafc) , (1.10 ./)

for all ft, ft, ft, ft e (CM, where /^ is extended in the last argument to a
complex-linear mapping on Cft. Calculating Im H(J] (H(p, p ) ) p , p) from (1.7. a)
we get

Im H(n (fl(p,p))p,p) =R

On the other hand, (1.5. a), ( l .G.b) , (l.7.b) give

Im H(ri (H(p, p) )p, p) = -~Re H(Nppp+Tppp+Mppp+Sppp, p) .

Comparing the last two expressions and using (1.10. a), (l.lO.b), (l.lO.d),
(l.lO.e) yields (1.9).

To show that r (s\, s2) is symmetric, by (l.5.b), we need to prove that

ft))ft,ft), (1.11)

for allft,fte(Cw. It follows from (l.7a) that

Re jyr(r?(Ar(/?i,ft))ft,ft) =— |lm F(jVftftft~Tftftft,ft), (1.12)

for all ft, p2^&n. On the other hand, (1.5. a), ( l .G.b) , (l .7.b), (1.10. a),
(l.lO.b) give

Re H(n (#(ft, ft))ft, ft) = — |lm H (Np~2p2pi- Tp2p~2pi, ft) ,

for all ft, ft e(Cw, which together with (1.12) implies (1.11).
The lemma is proved. D

Lemma 1.3. §1= (0>.

Proof. Let X$ ^ g^. Then there exist real-trilinear mappings 0(v,8) ,
(f> (•,•/) from Cn X (Cw x (Cw to the spaces M (n,(C) and M (k,W respectively,
real-bilinear mappings 7?(v), ^(" ," ) from Cw x ffifc to the above spaces of
matrices respectively, and a real-trilinear mapping jj. (*,v) from (Dw
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to (C* such that

, Pa, Pa)r + <f>(pi, Pa,

, Pa, q) -+2iH(z, fi (fc, ps, q) ) ,

P. Pi, P2, Ps e <C«, <? e E* where fc+ 2iH (z, #0 -; p2

corresponds to X3(pi-5 — \~2iH (z, Pi)~gT) \p2~d — f"2tff (z, Pa)~5^} as an element of

g/r and ^(/'"a — \~2iH (js, P~)~A~)\ corresponds to X3\P~fl — \-2iH (z, p)"5TJ as an

element of §B. Let X'3 be the corresponding linear mapping from gi2 to gk Then
there exist real-bilinear mappings ̂ (v) and p ( ' , ° ) from CMx]B.;fc to the spaces
M (n, (D) and M (fe, IE) respectively such that

. Equation (0.2. a) gives

, z) =2Re H($(pi,p2, P*)z, z) , (1.13. a)
v(p, q)H(z, z} =2ReH(f] (p, q)z, z) , (1.13.5)
p(p, q)H(z, z) =2Re H(X (p, q)z, z} , (l.lZ.c)

for all p, pi, p2, p& z^Cn, q^M.k. Next, analogously to (1.6), we have

4// (pi, p2, Im H (p3, pi) ) = 0 (pi, p2, P3)p4~<f> (Pi, P2, P*)P3, (l - 14 .tt)

4Im H (ft (plt p2, q) , ps) = 0 Oi, />2, Ps) «, (1 = 14. 5)

for all pi,p2,Ps ^ Cn, q ^ M.k. Further, there are the following analogues of
identities (1.7)

Im H (p2, />3) ) = 0 (Pi, jps, ̂ 2) - (f> (pi, p2, Ps), (1 . 15 . a)
I*(pi,p2,q)=-r] (pi, q)pz, (1.15.5)

for allpi,p2^(Cn, q^M.k. Finally, conditions (0.6) for L = 3 are equivalent to

P*,Pi), (l.lG.o)
(1.16.6)
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for all/>, pi, p2, p3<^€n, q^Rk.
We will now show that identities (1 . 13) - (1 . 16) imply that X3

 = 0. It
follows by the argument in Lemma 1.2 from (1.13. a) and identities (1.14),
(1.15) that 0 has the form (see (1.10. a), (l . lO.b))

0 (Pi, P2, PS) = Gplp2p3

and (see ( l . lO.c) - ( l . lO. f ) )

p 2 ) ) , (1.17. b)
(Fpi+Lpl)p2p3p4==2ifi (pi, p2, H(p^ p3) ) , (1 . 17. c)

2p~3ps), (1.17. d)
Kpip2p3p*=Kpip2p*p3, (1 .17. e)

for all pi, p2, p3, ̂ 4^(CW, where fi is extended complex-linearly to Cfc in the last
argument Further, (l . 15 . b) , (1 . 16) imply

*, Pi, H(p2, pi) ) , (1 . 18)

for zllpi,p2,p3, P*,Ps^€n. From (I.17.b)-(1.17.d), (1.18) we obtain

H (Kp&PsP*, Ps) =H (p3, GpsMipz) -H (p4, FpipzMs) , (l . 19 . a)
H (Gplp2p3p4, Ps) = -H (p3, Lpip5p[p2) -H (p4, Lplp2p3P5) , (l . 19 . ft)

Fpip2p3pi= -Gp±p3plp2, (1 . 19 .C)

Lpip2p3p*=Lp3ptpip2, (1 .19. d)
4p2p3, (l . 19 . «)

(l . 19 ./)

for all p^pz, p3, K £5^ €n.
We set

D (pi, p2, H(p3, pi) )'-=iGp3pip2pi, (1.20.a)

t (H (pi, p2), H (p3, pi))' = —?Lp2pipips9 (1.20. b)

for all plt p2, ps, p*^Cn. It follows from (1.17.a), (1.18), (I.19.d) and the
non-degeneracy of H that (1.20.a) defines a complex-trilinear form D on (Dw *
(CwX(O f c symmetric with respect to the first two variables and (1.20.b) defines
a complex-bilinear symmetric form t on (C* x C*, both valued in (Dw- It follows
from (1.13.a), (1.19,c), (I.19.e) that A"3 is uniquely determined by t (note
that it follows from (I.19.b) that D is uniquely determined by t). The forms D
and t satisfy the following relations

H ( P ( p , p , q ) , p ) = 4 < i H ( p , t ( q , H ( p , p ) ) t (1.21.a)
)),p)=Q9 (1.21.6)
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for allp^€n, q^m*. Indeed, (1.21. a) follows from (1.19.b), (I.19.d); to
prove (1.21.b) we note that it follows from (1.19.c), (I.19.f) that Gpppp^O.

We will now show that equations (1 . 21) can have only zero solutions. For

this we note that a polynomial vector field X on (Cw+& of the form

= (nf (z, z, w) +t' (w, w) ]~z+2m(z1 f (x= nf (z, z, w) +t' (w, w) ~z+2mz1 f (w,

defines an infinitesimal holomorphic automorphism of QjBr(i.e. X^QH) if and only
if the following conditions are satisfied

H(D'(z, z, u),z) =4:iH(z, ?(u, H(Z, z ) ) ) , (1.22. a)
H(D'(z, z, H(z, *)),*) -0, (1.22.6)

for all z e (gn, u e MA, where Dr is a complex-trilinear form on (Dn X (C* X (Cfc

symmetric with respect to the first two variables, and t' is a complex-bilinear
symmetric form on (C* x (CA, both valued in (Cw. Since the vector field X has
weight 3, it must be zero by (0.1). This means that equations (1.22) can have
only zero solutions and therefore equations (1.21) have only zero solutions
also.

Thus, J^3=0, and the lemma is proved. D
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