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Automorphic Forms on the

Expanded Symmetric Domain of Type IV

By

Hiroki AOKI*

Abstract

We introduce a lifting from a given Jacobi form of index 1 to an automorphic form on an

expanded domain of type F , introduced by Saito [20, 22]. The method is a generalization of

Gritsenko [10, 11] for symmetric domain of type IV. We constract a lifting function satisfying a

certain translation formula on the expanded domain.

§0. Introduction
§1. Expanded symmetric domain of type 1Y
§2. Expanded Jacobi forms
§3. Lifting function of Jacobi forms
§4. Arithmetic lifting on the expanded domain

§0. Introduction

It is classically known as the Jacobi's inversion problem to find a
description of the coordination of a Riemann surface in terms of integrals on the
Riemann surface. In case of an elliptic curve, this was solved by the use of
elliptic modular functions. In general for higher genus case, this was solved by
the use of theta functions (cf. Siegel [23]). One may consider similar problem
for the integrals on higher dimensional varieties. In this case, the main problem
is to construct automorphic forms on the domain of periods. The case for family
of polarized #3 surfaces was studied by Pyatetski-Shapiro [18], where the
domain of periods is the classical symmetric domain of type W. Even in this
case, we do not have a full description of the ring of automorphic forms.
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Saito [19] introduced another theory of period integrals of primitive forms
for any universal unfolding of a singularity, where the period domain is no
more the classical domain. On the other hand, the inversion problem for this
case gets a precise structure, because of some particular generator system,
called the flat generator system on the theory of primitive forms. Except for a
few cases, called simple singularities and simply elliptic singularities (cf. Satake
[24] ) , there is almost no answer known on the flat inversion problem.

The next nontrivial case is the 14 exceptional unimodular singularities, that
is introduced by Arnold [2] . The unfolding theory of these singularities was
studied by several authors (cf. Brieskorn [5] , Dolgacev-Nikulin [6] , Looijenga
[13, 14] and Pinkham [17]), where there is 1-codimensional subspace of the
deformation space which is identified with the deformation space of certain
polarized K3 surfaces. Hence the period domain should be a 1 -dimensional
expansion of the symmetric domain of type IV. Looijenga [13] suggested the
expansion in connection with the triangle singularity. In fact, both domains
studied by Saito and Looijenga coincide for these cases. Hence it is a natural
problem to find flat generator system on the ring of automorphic forms on the
expanded domain, where the weights of the generators are prescribed. The
present article is to contribute for the construction of nontrivial automorphic
forms on the expanded domain.

The construction of nontrivial automorphic forms on the classical domain of
type IV was studied by several authors (cf. Oda [15], Zagier [26], Sugano
[25], Borcherds [4] and Gritsenko [10, 11]). Following the idea of Gritsenko
[11], in present article, we construct automorphic forms on the expanded
domain by lifting a Jacobi form of index 1.

In section 1, we define the expanded domain and the group action on it,
according to Saito [19, 20] .

In section 2, we define and survey a Jacobi form on the expanded domain.
In section 3, we construct a function /«: (CxH[— *C(m ^N), which has the

translation formula

r / \ / / — r met
fm(t, r) ^-x

(a b
for any I 1 ^ SL2 (22) . By multiplying fm, a Jacobi form of index m on the

\c d )
classical domain is lifted to a Jacobi form of index m on the expanded domain.

In section 4, we construct a formal power series with an automorphic
property, from a Jacobi form of index 1 on the expanded domain. In case of a
lifted Jacobi form, the formal power series gives a holomorphic automorphic
form on the expanded domain.
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§1. Expanded Symmetric Domain of Type W

Let L be an even integral lattice of rank /+4, with an inner product defined
by a quadratic form S of signature (2, 1 + 2), where ^M={1, 2, 3,---}, and V: =
L®zlRbe a base vector space of L. We suppose the case L=Li0//i,i and Li=Lo
0//i,i, where //i,i is a hyperbolic plane. We fix one coordinate, such that

5—1 Si I, Si— I ~So

\1 / \1

where S0 is an even integral positive definite matrix. We denote A [ B ] : = *BAB

and A{B}: = tBAB for matrixes A, B. Let X+ be one of the connected component
of X, where X is a topological space. If X is a topological group, we choose X+

with the identity element.
The classical symmetric domain of type IV is defined by

Dv:={V'c:v\dimmy'=l+2, F'<0},

where V <Q means S|y<0. We define a left action of g^G: = O+ (S, ffi) on Dv

by V**-*gV. We fix one orthogonal decomposition of V=V+@V- such that V+>
0 and V-<Q, and let jff: = SO(F+) *SO(V-) be subgroup of G. Then the group
G acts on Dy transitively and the group K is the stabilizer of V-. Hence Dy is
isomorphic to G/K as a real manifold, and DV is a homogeneous domain.

We define a complex domain

and let P<c# be the (C-projective space of #. We remark that H and P^H have
two connected components. Then the domain Dv is isomorphic to (P&H)+ as a
real manifold. The induced action of G on (P^H)+ is z^gz(g^Gt z<^ (Pe#)+) .
This action preserves the complex structure of (P<c#)+. We define a complex
domain

which has two connected components. The domain $s is isomorphic to (P$H)+

as a complex manifold. For simplicity, we choose the connected component of

$s by Im(wi) >0. The induced action of g= (gij)o<i,j^i+3^G on Hfs, induced by
the action on (Pc#)+ is
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where the denominator

1+2

i [w\
/=!

becomes an automorphic factor. This action preserves the complex structure of

3ts. For a holomorphic function F on 2^J, £e2S, and g^G, we define F\kg by

(F\kg) (w) :=j (g, w) ~kF (g (w) ) . This gives a right action of G on the set of all

holomorphic functions on Xs . Let F be a discrete subgroup of G. The action of

F on ffls is properly discontinuous. A holomorphic function F on $s is called

an automorphic form of weight k on 3Cs with respect to the group F if F
satisfies the equation F\kP=F. The set of all automorphic forms of weight k on

ffls with respect to F is a (C-vector space and written asMUC^s, /).

The expanded domain introduced by Saito [20] is defined by

which G acts by q)*->(pO g~l. However, this action is not transitive on By. To
make the action transitive, we consider another action. We define a left action of

_ , ^ /Re(A*)\ /a b\/
GL2

+(E) on (Cby ; :=
\ Im (A*) / \ c d / \

Re(z)\ (a b
, where A =

Im U) / \c d

Hence we can consider the left action of G X GLJ (IE) on BJ by
This action is transitive. Now, we fix one ^-isomorphism c: V+— *(C and define F

£££ by ?1n = ^ and ?k = 0. Let ASO(V+):= {(g, g) g^SO (V+) , g=togor
1},

ASO(V-):={(g,E2)\geSO(V-)}, and K: = ASO(V+) *ASO(V-) be subgroups

of G X GL? (M) . We can easily show that the group K is the stabilizer of T^By.

Hence By is isomorphic to (G X GLJ (IB) ) /#" as a real manifold, and 5f is the
homogeneous domain.

The domain, considered by Looijenga [13] , is

and let P<cB be the (C-projeetive space of B. We remark that B and PcB have
two connected components. Saito [20] showed that By is isomorphic to B as a

complex manifold. The induced action of G x GLJ (IB.) on 5+ is given by
/Re(e)\ /a 6 \ / R e ( e ) \

and I / v l^l 1 / x - Of course, this action is transitive, but it does
\ImGr) / \c d/\lm(z)l

not preserve the complex structure of B+. The subgroup whose action preserve

the complex structure is G X(C X , where we recognize (CXc-*GLj(Ki) by
a b

f. By the restriction to this subgroup, Saito [20] induced the action
~b a,
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of G on (PeB)+. The induced action is [z]«-»[gz] , which preserves the complex
structure of (RoB)+. This action is the expansion of the action of G on

hence not transitive. But we remark that the value inv (z) : = L. A (0 ̂  in v (z)

<l) is invariant with respect to the action of G,
Now, we realizer this expanded domain (P<cB) + as a subset of complex

Euclidean space. Let

w

which has two connected components. The correspondence

w w

I
gives the isomorphism Sis = PcB as a complex manifolds. For simplicity, we

choose the connected component of ®J by Im (wi) >0, where w = * (wi,-~ ,
We remark

(1) inv ̂  = Re to

By an easy calculation, we can write the induced action of G on 38$ as follows,

\
\

where the denominator

1+2

j(g, Z}:—-^-gi+3,Q(t~~Si\w\) +

becomes an automorphic factor. For a holomorphic function F on !$s, k^Z, and

g^ G, we define F\kg by (F\kg) (Z) : = j(g, Z) ~kF (g (z)). This gives a right

action of G on the set of all holomorphic functions on $s. The action of F on Ss

is properly discontinuous. A holomorphic function F on SJ is called an automor-

phic form of weight k on Sis with respect to the group F if F satisfies F\kF=F.

The set of all automorphic forms of weight k on ®J with respect to F is a
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C-vector space and written asM*(SJf /). We remark feML2(#?, /} for any F.
The following diagram means the relation of the spaces in this article.

classical domain expanded domain

Dv — £F

B+

iPc
i=0

Remark. The classical symmetric domain with respect to the quadratic

if -\(W
Xs-\(t

is the double covering space of the expanded symmetric domain $s by

Let a: I I1"*! I be an involutive isomorphism of #if. Then we have the

induced isomorphism

We define a G-action on X* by «: G = O+(S, ffi)t-^0+ (S, E). It follows that TL
and ^ are equivariant with the group action of G. Hence for any finite index

subgroup TCGL (j + 5, 22) f! 0+ (S, ffi) , we have an injective map

where F'-= e~l (F H e (0+ (S, IB))). The image of T is the finite dimensional

(C-vector space. But indeed, M^ G8J , /^) is not finite dimensional. In this article,
we construct automorphic forms on $s, not via #£§. The relation between
automorphic forms in this article and the image of Thas not been clear.

§20 Expanded Jacobi Forms

From now on, we fix the discrete subgroup J7: = Gno(5 l, ^) . For simplicity,

we write w = t(o), ff, r), where a) — w±, t~ = f (w2, • ° ° ,^/+i) and T = wi+2. To
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investigate automorphic forms and Jacobi forms, we define the following
matrixes as elements of G,

(A*

Et

A
a ~bi ^4*-— ±_

c d/' ' ad~bc\-c d //'

(E,

[U]:=l U

\ E2

([/eSO(S0,

/I 0 'yS0 0 TrSoM \

0 0 E! x y

\ 0 0 0 1 0 /

\0 0 0 0 1 /

a o o -r
0 1 0 0 r

[r]:=| 0 0 £, 0 0

0 0 0 1 0

\0 0 0 0 1.

Using these symbols, we can write the parabolic groups and a Jacobi group as
follows,

Pfi= < [GL2
+ (IB) ] , [SO (So, E) ] , DR1, ffi;] , [ffi] > ,

P^= < [SL2 (E) ] , [SO (So, E) ] , [E', E'] , [E] > ,
, [so (s0,

For any fe, TO e Z, we can define an action of Pj& on {<p:(C X (£,' X ]H— » (C) as
follows,

/ /=• \ / i ^ - j(f, f, r) = (cr+d)

(<P\k,m[x, y\~) (t, f, r) =e« ' xSoe+soWr+ '*S f ly? ) ( f , e+^r+j', r),
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(<p\k,m M ) (t, ?, r) =e M <p (t, £, r) ,

where e (2) : = exp (2itJ—lz) .
A holomorphic function <p is called an expanded Jacobi form of weight k

and index m with respect to the group P^ if <p satisfies the equation <p\k,nfz = (P
and if (p has the Fourier expansion

' ^^^ E
where LO is the dual lattice with respect to L0. The set of all expanded Jacobi

forms of weight k and index m with respect to the group P| is a (C-vector space

and written as Sk,m (9&s, Pj). Of couse, restricting this definition within t = Q, we

have the definition of JJ*fW (#Jf PJ).

Lemma 2.1. Let

^' f' r) = E ^(W'M) Wc(-fwS0e+nr) ^k,m(®t PJ).

T/ie function A(n,U) only depends on the values u mod mL0 and 2nm~ SQ[U] .

Proof. It is obvious from the action of [x, 0] , where x^Z1. CH

The first important matter is to show that any Fourier coefficient of an

automorphic form on $s with respect to a) is a Jacobi form.

Lemma 2.2* Let p ^N and F be a holomorphic function on 3&s . If F is
l, (p%£) '] -invariant, we have a Fourier expansion

not depend on £.

. This proof is similar to the one of the book of Eichler-Zagier [8,
Theorem 1.2]. D

Corollary 2.3. // m < 0, then $k,m (#J, PJ) = 0.

Proo/. It is obvious from Lemma 2.2. D

Proposition 2 A. If F (Z) &Mk 68s , /) , ̂ ^ ^av e the Fourier expansion
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w=o

, m>0, Si

Proo/. Let F (Z) = E^L&X to c WSiw). By Lemma 2.2 and (o> <-* r)~
invariance of F, it is enough to show that (ft* (t) =0 if Si [X] <0 and n, w>0. We
assume that there exists a triple Xf— (a, /3, 7) such that 0^(0 ^0, a, 7>0 and

<0. To show the contradiction, we put

1 0 0

and

n
where v:= — . The function

,
P~lw

is PJTP "^invariant. By a direct calculation of P"1 [x, y] P, we have [(a2^)^

(a2Z)1] CPFP'1. Hence F is [(a2Z) J, (a2S) T -invariant. By a similar calcu-

lation, we know that F has some integer period for any component of w.
Therefore we have the Fourier expansion

Therefore, by the assumption, (p^(f), the Fourier coefficient of the term

e (PA'S&v} of F, is not zero. However, F is { [ x , y] \x,y& (a2Z)l} -invariant. Hence

from the Lemma 2.2 the Fourier coefficient of the term e (P/TSit#) is zero. This
completes the proof. D

Fact 2.5. Let q>^Sktm(Sst PZ) and X, j/eCQ)'. Then there exists seme group
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Fl ', which is a finite index subgroup of SL,2 (Z) , such that

0(r):-e(y50[/i]r)^(0, XT+& r)

is a modular form of weight k with respect to F'. This F' depends only on A and fi

Hence have the following results.

(1) Ifm = Q and k<0, then (p\i==Q=0 for any <0ejJM(3BJ, Pi). "

(2) Ifm = Q and k = Q, then <p\t=:Q is a constant function for any

(3) Jjf w>0 and k<0, then (p\t=Q is a constant function for any

It is easily induced by Eichler-Zagier [8, Theorem 1.3].

Corollary 2.6e We have the following results.

(1) I f k < 0 and F^Mk (SJ, D , then F|^0 = 0. Hence r1FGM*+2
(2) If k = Q and F^Mo (Ss, /} , t/ww F|/=O w a constant function. Hence there

exists some c<E(D such that t~l (F~c) ^M2 (SJ, /) .
(3) I f k < 0 , then Mk (^J, /} =0. // fe = 0,

Proo/. It is obvious from previous propositions. D

Proposition 2.7. // / is even and k is odd, then MA(SJf F) = {0} ,

Proo/. If / is even, then ~El+4^F. Hence F= (-l)*F for any Fe

7) andFeJMkttff, /}. D

Let

and

be graded rings.

Theorem 208«, Automorphic froms of positive weight and t generate A (SBJ, /)

. If I is even, automorphic forms of positive even weight and t generate A (9&s,
over€.

Proof. It is obvious from Corollary 2.6 and Proposition 2.7. d
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Theorem 2.9. There exists a subring R of A (#?J, I*) , such that

Proof. It is obvious from the homomorphism

p: A (ffi, D BF^FU^A (ffl, /) .

D

§3. Lifting Function of Jacobi Forms

In this section, we construct a function /OTj which gives the map

The following fact is called Cauchy's estimate.

Fact 3.1. Let f ( z ) be a holomorphic function on {\z — a\<r} and \f(z)\^M.
Then we have

\f(n) (a) | <Mn\r'n.

The proof is, for example, in the book of Ahlfors [1, p.122] .

For any m^-TL, let

fmJ(T):=

and

(2) fm(t,T):

y=o

where 77 (r) is the Dedekind's eta function

We remark

(3)

for
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Proposition 3.2. The function fm is holomorphic on C X M.

Proof. Let a e]ffi, Q<r<lm^ , and M:=max|r-ai<;2r|log 17 (r) |. By Fact 3.1,

we have

-^-logr](T) <Mj\r~j (|r-a|<r).

Hence the series (2) converges absolutely and locally uniformly on (C x H, by
Hadamard's formula for the radius of convergence.

Proposition 3.3o We have the Fourier expansion

£ (w) — 2fl|w a*.

Proo/. It is obvious from the following ^-expansion

00

^(5)

where g:=e(r). D

Lemma 3e4a Wi? ftave t/ie translation formula

* f (ar±b\

for any
\c d

Proof. The case/ — 0, the equation (6) is obvious. The case/ = l, we have

i ^ fr\ <• ^ ^ rf ( \ ( \ , \ -2^ ' /^^"+^\ c

the equation (b) from the equation ~tr(T) = (cT-rd) "Trl r+d) ~~ 2( r+d] '

The case ;>: 2, we use the induction on /. We have the equation (6) by the
assumption of the induction and the equation (3) . CH

Theorem 3e50 Let <p ̂ $k,m (#£s, P|) be a Jacobi form on $s and <p(t, f,
:— <p(%, ?)fm(t, T) be a holamorphic function on OBs- Then <p^$k,m($s, Pj) and
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Proof. By Proposition 3.2 and Proposition 3.3, it is enough to show the
translation formula

/ (4. .A — ~mct t
fm(t, T)

for any I €= SLzdfy . By a direct calculation, we have this translation
\c d I

formula from Lemma 3.4. D

§40 Arithmetic Lifting on the Expanded Domain

In this section, we construct an automorphic form from an expanded Jacobi
form of index 1. About the case of the classical domain of type JY, see Gritsenko

[ii].
Let P<&=PinGL,+4((Q>). We define an action of the Hecke ring H(P|, Pjjj)

on the set of all P^~invariant functions on $s by

i

and we define an embedding of H (SL2 (Z), Mj (E) into H(Pj, P$ by

8-1 0

0 a~]

where M\ (Z)'.= iA ^M2(Z) Idet A >0}. Let

0
o^==m,o|jS

for any m^M. Easily we have

(7) T-(m) =

(See Gritsenko [10].)

Proposition 4.1. // <p^#(®J, P|), then <p\kT- (m) ejj^m («J, PJ),
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Proof. Because T- (m) sends the term e (m CD) to e (m may), (p \kT- (m)

satisfies the translation formulas of $k,mm($ls, PJ). Let

A M ®e (~ tuS°^+nr) •
Then we have the Fourier expansion

(8) <p\kT- (m) = )

2nmm ̂  So \u J a -iu

by a direct calculation.

Now, let

and A(0,0) (t) —^n=obnt
n. We consider the formal power series

n=l aeH m=i

where

Let

E (A (Oi0)) (^, r) := ,o ( _ )2.

If the series ^4 (Ofo> (0 is a holomorphic function on some domain D and if fe ̂  4,

£(A(0,o)) (f, T) is a holomorphic function on

Lemma 4.2. // fe is odd, we have A<0fo) W =0, /i^ncg ffee /irsf part of F(Z) is

zero. If k is even and fc>4, A (0,o) (t) + S^iZae^'^^o) (a2t) e (nr) =£(A (o,o>)
a |n

(f, r) . Hence F(Z) is P%-invariant, formally.

Proof. From the action of [— E2], we have <p(t, f, r) = (— l}k<p(t, ~~f, r).
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Hence if k is odd, we have <p(t, 0, r) =0 and A<o,o) (0 =0. If k is even,

E (I(o,o)) (t, r) =

We calculate the Fourier coefficient of it. We have

oo

/o'E E (

dmod c
W,c)=l

VI f V=L7i L
c=l rfmode

«=0 c=l dmod c

This completes the proof. EH

Lemma 4.3. The formal power series F(Z) is invariant with respect to
exchange variables 0) and T.

Proof. By the equation (8), we have

(9)

E E ak-lA^rm.^(azt)e(-tuS^+nT+ma)').
, M^LO aeN,a!(m,n)

(nyn) * (0,0) 2nm>S0[u] o^uGLi

D
Let
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FH
Wr —

o
o T o |er

\o o i

Lemma 4a40 Formally, F (Z) is F% -invariant.

Proof. By Lemma 2.1, the equation (9) is Fj£ -invariant. EH

Pact 4e50 T&£ group, generated by the group P%, F% and the exchange
variables a) and r, includes the group

r:={g^F\(g-El+4)L
fc:L}.

It is easily induced by Sugano [25, Proposition 6.3] .

Remark. If the lattice L is unimodular i.e. L'=L, then r=r.

Proposition 4«6o Formally, F(Z) is F-invariant.

Proof. It is obvious from previous lemmas. D

From now on, we suppose that <p can be written as <pf\ for some

P%). From Proposition 3.3, we have bn = Q for any n>2. Hence we have

and E(A(o,o)) (t, r) is holomorphic on

Lemma 4.7. // k> 4 or -4(0lo)(0 = 0, the series F(Z) is a holomorphic
function on the domain

f i
t

o/. It is enough to show that

ar+&M , x
e (ma>)
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is holomorphic on ®s • To use Hadamard's formula for the radius of convergence
with respect to e (o>), we estimate

First, we estimate
\ a /1

r
i(f) >0, Im(r) \

where Im(£) >0 means that any component of Im(£) is positive. If Im(—-—)>

~2~, we can choose x^TL1 such that Im(a£+#—^—)>0. Then we have

—— ^

' jQ
If Im (—-—) <~^~, we can choose ( j €= 5L2(Z) and p ^7L such that

5,

. We remark that

73"-r" induces 7=£0. Then we have

, «
(-5a

Because

and

= exp TTwIm Im(r)
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We have

Second, we estimate ki(a2£, — ~j — ) . Let

If Im(r) >T>0, we have

-^rlogr? (r) <M (T) <j -1)! (im (r) - T) -'.

Hence we have

y=i

By the equation (5), we have

Let T = -~f Im (r) for 0 <e <1. Because T> — Im(r), we have M(T) <

( — Im(r) ).\m IM — Im(r) . Hence we have

^ - , 1 , ,-.< I -\ -- (a (l-e)Im(ffr) — 1 )/, 2a:elm(r) , , \e -1/
(1 — e m ) 3

and

(10)

(p|.T_(»)) (f. ?, r)
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for any 0<e<l. Therefore we have

lim sup — (<p\kT- (m))
m->°° ™

for any 0<e<l, that is,

! ̂ exp

— M*T-(m)) (t, £ r) 7r(So[lm(?)]+|t|)
lim SUp •- \y\kJL-\rnjJ \^ S, '<•) - ^ C A p i 7 ™ /-Y"

»fc-+00 "^ ^ •*•!" \ ^ /

Because the right hand of (10) is monotone decreasing with respect to Im (r)
and monotone increasing with respect to S'o[lm($)] and \t\, the series F(Z)

converges absolutely and locally uniformly on Ss . D

Corollary 4.8. If k>4 or ^4(0fo) (t) =0, F(Z) is a holomorphic f-invariant

function on $s .

Proof. It is obvious from Proposition 4.6 and Lemma 4.7. D

Lemma 4.9. The domain $5 contains the fundamental domain of l§s with

respect to the group P^. Hence we have an open covering

<gj= M ^Ss •

Proof. By the equation (l), the condition of ®s is

Let ,4 = ( ^ ) e 5L2 (E) , then [A] maps t to -7 — ;— — . Let Z e SJ. Because
\c d/ (cr+d)2

Im (r) 9^0, we can choose A such that

Hence [A]Z=Ss . This completes the proof. D

By Corollary 4.8 and Lemma 4.9, we can define F(Z) :=/(#, Z)kF(Z) for any Z

^Ss, where Z = gZ, g^F and Z^SJ" . This definition does not depend on the

choice of g and Z, because F(Z) is /^-invariant on $$.
Now, we have our main theorem.
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Theorem 4.10. If £>4 or if A<0,o) (t) ^O, F(Z) is a holomorphic F-invariant

function on SJ. Moreover, if the lattice L is unimodular, then F(Z) ^MU (SBJ, F).

Proof. It is obvious from the definition of F (z) on Ss. D

Remark. Now we have the following commutative diagram.

JJ*,i (#J, PI) ^ <P > * eM* (tfj, 7)
Gritsenko [10.11]

Theorem 4.10
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